1
|
Wang M, Zhang L, Liu Z, Guo A, Yang G, Yu T. Host-Microbiota Interactions in the Pathogenesis of Porcine Fetal Mummification. Microorganisms 2025; 13:1052. [PMID: 40431225 PMCID: PMC12113762 DOI: 10.3390/microorganisms13051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
The number of mummies (MUM) in pigs is a major factor affecting sow reproductive performance. Reducing the incidence of MUM can effectively improve sow utilization efficiency. However, the complex mechanisms by which the host genome, gut microbiome, and metabolome interact to influence sow MUM remain unclear. Based on the current research landscape, this study systematically reveals the regulatory mechanisms of the host genome-gut microbiome-metabolome interaction network on sow MUM. By conducting a multi-omics analysis on the intestinal contents of Yorkshire sows during late gestation across different parities, we constructed a dynamic atlas of the gut microbiota and identified 385 core microbial taxa. Through multi-model MWAS and meta-analysis, we screened six key microbial taxa significantly associated with MUM, including Bacteroidales_RF16_group, Prevotellaceae_Ga6A1_group, Comamonas, Paraprevotella, Dorea, and Gallicola. An mGWAS analysis further identified Bacteroidales_RF16_group as regulated by host genetics, as well as candidate genes such as EGF, ENPEP, and CASP6, and important SNP loci such as rs345237235 and rs3475666995. The study found that the abundance of Proteobacteria in the sow's gut increased progressively from the first parity, providing a theoretical basis for pathogen suppression mechanisms. By integrating fecal metabolomics data, we constructed a four-dimensional regulatory network of host gene-gut microbiota-metabolite-host phenotype. This study innovatively combines quantitative genetics with multi-omics approaches, not only providing a theoretical foundation for understanding host-microbiota interaction mechanisms but also offering critical scientific guidance for reducing sow MUM incidence and improving reproductive efficiency.
Collapse
Affiliation(s)
| | | | | | | | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
2
|
El-Saadony MT, Salem HM, Attia MM, Yehia N, Abdelkader AH, Mawgod SA, Kamel NM, Alkafaas SS, Alsulami MN, Ahmed AE, Mohammed DM, Saad AM, Mosa WF, Elnesr SS, Farag MR, Alagawany M. Alternatives to antibiotics against coccidiosis for poultry production: the relationship between immunity and coccidiosis management – a comprehensive review. ANNALS OF ANIMAL SCIENCE 2025. [DOI: 10.2478/aoas-2025-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Abstract
Avian coccidiosis is a protozoan infection caused by numerous Eimeria parasitic species and mainly affects the bird’s gastrointestinal tract and results in a reduction of the bird ‘ability to absorb nutrients, slower growth, with a higher mortality rate. According to recent research, immune-based treatments, such as dietary immunomodulating feed additives and recombinant vaccines, can help the hosts protect themselves from intracellular parasites and reduce inflammatory reactions caused by parasites. Coccidiosis control in the post-antiparasitic stage requires thoroughly investigation of the intricate relationships between the parasites, host defense system, enteroendocrine system, and gut microbiome contributing to coccidian infections. To produce a vaccine, it is crucial to explore the defense mechanism of the intestine’s immune machinery and to identify many effector molecules that act against intracellular parasites. Due to the massive usage of chemical anticoccidial drugs, coccidiosis developed resistant against most commonly used anticoccidials; therefore, numerous researches focused on the usage of safe natural anticoccidials such as probiotics, prebiotics, organic acids, and essential oils to counteract such resistance problem. This review describes how host immunity responds to coccidial infection in chickens and the use of some nonantiparasitic safe natural alternative controls to counter the disease. It would throw the light on the possibility of developing effective therapies against Eimeria to alleviate the detrimental effects of avian coccidiosis.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
- Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine , Badr University in Cairo (BUC) , Badr City, Cairo, 11829 , Egypt
| | - Marwa M. Attia
- Department of Parasitology, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production , Animal Health Research Institute, Agriculture Research Center , Dokki, Giza, 12618 , Egypt
| | - Ahmed H. Abdelkader
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Sara Abdel Mawgod
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Nesma Mohamed Kamel
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry , Department of Chemistry, Faculty of Science, Tanta University , , Egypt
| | - Muslimah N. Alsulami
- Department of Biology, College of Science , University of Jeddah , Jeddah , , Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science , King Khalid University , Abha , , Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department , National Research Centre , Dokki, Giza, 12622 , Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Walid F.A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture , Saba Basha, Alexandria University , Alexandria , , Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture , Fayoum University , Fayoum , Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty , Zagazig University , Zagazig , , Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| |
Collapse
|
3
|
Han J, Wang M, Zhou S, Wang Z, Duan D, Li M, Li X, Xin W, Li X. The Joint Contribution of Host Genetics and Probiotics to Pig Growth Performance. Microorganisms 2025; 13:358. [PMID: 40005725 PMCID: PMC11857988 DOI: 10.3390/microorganisms13020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Intestinal probiotics significantly regulate the growth performance of their host, with their composition being influenced by various factors. While many studies have explored how gut microbiota composition affects growth traits such as body weight and BMI, the research on probiotics influenced by host genetic factors, and their subsequent impact on host growth performance, remains limited. To address this research gap, we collected fecal and tissue samples, as well as phenotypic data, from 193 Yunong black pigs at 280 days of age. We then sequenced and genotyped all 193 subjects using the 50K SNP BeadChip, yielding a comprehensive dataset for genetic and microbiome analyses. We then employed microbiome-wide association studies (MWAS), a meta-analysis, and microbiome-wide genetic association studies (MGWASs) to examine the relationship between host genetics, gut microbiota, and growth performance. Four key microbial taxa, namely Coprococcus, Blautia, Ruminococcaceae, and RF16, were identified as being significantly associated with body weight and BMI. The MGWAS analysis revealed that both Coprococcus and Ruminococcaceae were significantly associated with host genomic variations. A total of four important single nucleotide polymorphisms (SNPs) were mapped to two chromosomal regions, corresponding to three candidate genes. Among them, the candidate genes INPP4B, SCOC, and PABPC4L were identified as being related to the abundance of key microbes. This study provides new insights into the joint contributions of host genetics and probiotics to host growth traits, offering theoretical guidance and data support for the development of efficient and targeted breeding strategies.
Collapse
Affiliation(s)
- Jinyi Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingyu Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Shenping Zhou
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Zhenyu Wang
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Dongdong Duan
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Mengyu Li
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenshui Xin
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| |
Collapse
|
4
|
Hou L, Qiu H, Dong J, Liu H, Gao S, Chen F. Lactiplantibacillus plantarum ameliorated the negative effects of a low-protein diet on growth performance, antioxidant capacity, immune status, and gut microbiota of laying chicks. Front Microbiol 2025; 16:1507752. [PMID: 39973937 PMCID: PMC11835938 DOI: 10.3389/fmicb.2025.1507752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
This experiment was conducted to investigate the effects of adding Lactiplantibacillus plantarum to a low-protein diet on the growth performance, ability immune status, and intestinal microbiota of 0-21-day-old layer chickens. A total of 180 one-day-old healthy Hy-line brown laying chicks were randomly divided into three groups with three replicates each of 20 chicks. The control group was fed a basal diet containing 19% protein, the low-protein (LP) group was fed a diet containing 17% protein, and the probiotic (LPL) group was fed with the 17% protein diet supplemented with L. plantarum (1.0 × 109 CFU/kg). The growth performance, antioxidant capacity, immune status, and gut microbiota of laying chickens were detected. We found that L. plantarum supplementation increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and levels of immunoglobulin (Ig) A, IgG, and interleukin-10 (IL-10) in serum of 17% protein +1.0 × 109 CFU/kg L. plantarum (LPL) compared to the 19% protein group (control). Furthermore, L. plantarum supplementation increased the liver index, GSH-Px and T-AOC activity in serum, and changed the microflora structure, diversity, and polyketose unit bioanabolic metabolism of 17% protein +1.0 × 109 CFU/kg L. plantarum (LPL) compared to the 17% protein group (LP). In conclusion, L. plantarum supplementation could compensate for the adverse effects of low-protein diets in chicks, and the combination of a low-protein diet and L. plantarum is a feasible way to reduce protein in the diet.
Collapse
Affiliation(s)
- Lele Hou
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huiling Qiu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, Haidu College, Qingdao Agricultural University, Laiyang, China
| | - Jihong Dong
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huawei Liu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Shansong Gao
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fu Chen
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Zhou M, Luo Y, Qiu J, Wang H, Li X, Zhang K, Li X, Yaqoob MU, Wang M. Effects of dietary supplementation with butyrate glycerides on lipid metabolism, intestinal morphology, and microbiota population in laying hens. Poult Sci 2025; 104:104755. [PMID: 39862486 PMCID: PMC11803851 DOI: 10.1016/j.psj.2024.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
The present study investigated the impact of butyrate glycerides (BG) on lipid metabolism, intestinal morphology, and microbiota of laying hens. Four hundred eighty 54-week-old Hy-line Brown laying hens were randomly selected and divided into five groups. The control group (ND) was fed a basal diet. Meanwhile, the remaining groups were given a basal supplemented with 0.5, 1, 2, and 4 g/kg of the product containing BG and were designated as BG-0.5, BG-1, BG-2, and BG-4 groups, respectively. The findings showed that: (1) BG supplementation significantly decreased (P < 0.001) the blood Glu levels (BG-0.5, BG-1, BG-2, and BG-4) and increased (P < 0.001) the serum HDL-C levels (BG-2, and BG-4). (2) The BG-2 and BG-4 groups showed an increase (P < 0.01) in abdominal lipid HSL activity. (3) The levels of hepatic TC and TG in all BG groups were significantly decreased (P < 0.05). (4) The addition of BG resulted in a significant reduction in the mRNA expression of the liver X receptor alpha (LXRα) (P < 0.05). (5) All BG groups presented a substantial reduction in duodenal crypt depth and a notable increase in the ratio of villus height to crypt depth (V/C) (P < 0.01). Additionally, all BG groups exhibited a significant increase in villus height in the ileum (P < 0.001). (6) Both the BG-1 and BG-4 groups exhibited a significant reduction in the amounts of n-butyric and n-glutaric acids in the cecum contents (P < 0.05). (7) The inclusion of BG did not substantially impact the diversity of cecal microbiota in laying hens. However, it dramatically boosted the proportion of the beneficial bacterium Alistipes (P < 0.05) and reduced the abundance of the harmful bacterium Verrucomicrobiota (P < 0.05). Overall, incorporating BG with glycerol monobutyrate as the diet's primary active component reduces fat accumulation in laying hens' blood and liver. It potentially regulates lipid metabolism via the PPARγ-LXRα-SREBP1c pathway. Additionally, BG has the potential to enhance the structure of the small intestine's mucous membrane and increase the presence of beneficial bacteria. Under the experimental conditions, late-laying hens supplemented with 4 g/kg BG performed best overall.
Collapse
Affiliation(s)
- Minyao Zhou
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yanqiu Luo
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Ji Qiu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Haidong Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Kexin Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoteng Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | | | - Minqi Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Xie C, Liang Q, Cheng J, Yuan Y, Xie L, Ji J. Transplantation of fecal microbiota from low to high residual feed intake chickens: Impacts on RFI, microbial community and metabolites profiles. Poult Sci 2025; 104:104567. [PMID: 39603188 PMCID: PMC11635772 DOI: 10.1016/j.psj.2024.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Improving feed efficiency is vital to bolster profitability and sustainability in poultry production. Although several studies have established links between gut microbiota and feed efficiency, the direct effects remain unclear. In this study, two distinct lines of Huiyang bearded chickens, exhibiting significant differences in residual feed intake (RFI), were developed after 15 generations of selective breeding. Fecal microbiota transplantation (FMT) from low RFI (LRFI) chickens to high RFI (HRFI) chickens resulted in a reduction trend in RFI, decreasing from 5.65 to 4.49 in the HRFI recipient chickens (HFMT). Microbiota composition and functional profiles in LRFI and HFMT chickens formed a distinct cluster compared to HRFI chickens. Using 16S rDNA sequencing and RandomForest analysis, Slackia, Peptococcus, Blautia, and Dorea were identified as key microbial markers associated with feed efficiency. Additionally, untargeted metabolomics identified common differential metabolites between HFMT and LRFI vs. HRFI groups. Correlation analysis showed significant correlations between these microbial markers and differential metabolites. These findings provide a foundation for microbiome-based strategies to improve feed efficiency in poultry.
Collapse
Affiliation(s)
- Chunlin Xie
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiying Liang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiaheng Cheng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yushan Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lu Xie
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jian Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China..
| |
Collapse
|
7
|
Xiong X, Yu C, Qiu M, Zhang Z, Hu C, Zhu S, Yang L, Peng H, Song X, Chen J, Xia B, Wang J, Qing Y, Yang C. Genomic and Gut Microbiome Evaluations of Growth and Feed Efficiency Traits in Broilers. Animals (Basel) 2024; 14:3615. [PMID: 39765519 PMCID: PMC11672845 DOI: 10.3390/ani14243615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, we combined genomic and gut microbiome data to evaluate 13 economically important growth and feed efficiency traits in 407 Dahen broilers, including body weight (BW) at four, six, nine, and ten weeks of age (BW4, BW6, BW9, and BW10), as well as the average daily gain (ADG6, ADG9, and ADG10), feed conversion ratio (FCR6, FCR9, and FCR10), and residual feed intake (RFI6, RFI9, and RFI10) for the three growing ages. The highest ADG and lowest FCR were observed at nine and six weeks of age, respectively. We obtained 47,872 high-quality genomic single-nucleotide polymorphisms (SNPs) by sequencing the genomes and 702 amplicon sequence variants (ASVs) of the gut microbiome by sequencing the 16S rRNA gene, both of which were used for analyses of linear mixed models. The heritability estimates (± standard error, SE) ranged from 0.103 ± 0.072 to 0.156 ± 0.079 for BW, 0.154 ± 0.074 to 0.276 ± 0.079 for the ADG, 0.311 ± 0.076 to 0.454 ± 0.076 for the FCR, and 0.413 ± 0.077 to 0.609 ± 0.076 for the RFI traits. We consistently observed moderate and low negative genetic correlations between the BW traits and the FCR and RFI traits (r = -0.562 to -0.038), whereas strong positive correlations were observed between the FCR and RFI traits (r = 0.564 to 0.979). For the FCR and RFI traits, strong positive correlations were found between the measures at the three ages. In contrast to the genomic contribution, we did not detect a gut microbial contribution to all of these traits, as the estimated microbiabilities did not confidently deviate from zero. We systematically evaluated the contributions of host genetics and gut microbes to several growth and feed efficiency traits in Dahen broilers, and the results show that only the host genetics had significant effects on the phenotypic variations in a flock. The parameters obtained in this study, based on the combined use of genomic and gut microbiota data, may facilitate the implementation of efficient breeding schemes in Dahen broilers.
Collapse
Affiliation(s)
- Xia Xiong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (X.X.); (C.Y.); (M.Q.); (Z.Z.); (C.H.); (S.Z.); (L.Y.); (H.P.); (X.S.); (J.C.); (B.X.); (J.W.)
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (X.X.); (C.Y.); (M.Q.); (Z.Z.); (C.H.); (S.Z.); (L.Y.); (H.P.); (X.S.); (J.C.); (B.X.); (J.W.)
| | - Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (X.X.); (C.Y.); (M.Q.); (Z.Z.); (C.H.); (S.Z.); (L.Y.); (H.P.); (X.S.); (J.C.); (B.X.); (J.W.)
| | - Zengrong Zhang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (X.X.); (C.Y.); (M.Q.); (Z.Z.); (C.H.); (S.Z.); (L.Y.); (H.P.); (X.S.); (J.C.); (B.X.); (J.W.)
| | - Chenming Hu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (X.X.); (C.Y.); (M.Q.); (Z.Z.); (C.H.); (S.Z.); (L.Y.); (H.P.); (X.S.); (J.C.); (B.X.); (J.W.)
| | - Shiliang Zhu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (X.X.); (C.Y.); (M.Q.); (Z.Z.); (C.H.); (S.Z.); (L.Y.); (H.P.); (X.S.); (J.C.); (B.X.); (J.W.)
| | - Li Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (X.X.); (C.Y.); (M.Q.); (Z.Z.); (C.H.); (S.Z.); (L.Y.); (H.P.); (X.S.); (J.C.); (B.X.); (J.W.)
| | - Han Peng
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (X.X.); (C.Y.); (M.Q.); (Z.Z.); (C.H.); (S.Z.); (L.Y.); (H.P.); (X.S.); (J.C.); (B.X.); (J.W.)
| | - Xiaoyan Song
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (X.X.); (C.Y.); (M.Q.); (Z.Z.); (C.H.); (S.Z.); (L.Y.); (H.P.); (X.S.); (J.C.); (B.X.); (J.W.)
| | - Jialei Chen
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (X.X.); (C.Y.); (M.Q.); (Z.Z.); (C.H.); (S.Z.); (L.Y.); (H.P.); (X.S.); (J.C.); (B.X.); (J.W.)
| | - Bo Xia
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (X.X.); (C.Y.); (M.Q.); (Z.Z.); (C.H.); (S.Z.); (L.Y.); (H.P.); (X.S.); (J.C.); (B.X.); (J.W.)
| | - Jiangxian Wang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (X.X.); (C.Y.); (M.Q.); (Z.Z.); (C.H.); (S.Z.); (L.Y.); (H.P.); (X.S.); (J.C.); (B.X.); (J.W.)
| | - Yi Qing
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu 610081, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (X.X.); (C.Y.); (M.Q.); (Z.Z.); (C.H.); (S.Z.); (L.Y.); (H.P.); (X.S.); (J.C.); (B.X.); (J.W.)
| |
Collapse
|
8
|
El-Fateh M, Bilal M, Zhao X. Effect of antibiotic growth promoters (AGPs) on feed conversion ratio (FCR) of broiler chickens: A meta-analysis. Poult Sci 2024; 103:104472. [PMID: 39504822 PMCID: PMC11570957 DOI: 10.1016/j.psj.2024.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Antibiotics have been used for a long time as growth promoters in the poultry industry for growth and health benefits. However, recent studies reflected little, no, or negative impacts of using antibiotics for growth promotion purposes. This study was designed to examine the overall effect of antibiotic supplementation on the feed conversion ratio (FCR) in broiler chickens as a performance indicator and assess different covariates for explaining heterogeneity in response to the use of antibiotics as growth promoters. In this regard, FCRs obtained from articles that compared diets with and without antibiotics for broiler chickens were extracted from electronic databases (PubMed, Web of Science, and Google Scholar) as per PRISMA guidelines. The database comprised 42 scientific articles containing 74 experiments totaling 19,562 chickens. A basic meta-analysis and subgroup analysis were performed to assess the overall impact of antibiotic growth promoters (AGPs) on FCR of broiler chickens while a meta-regression analysis was used to assess different covariates (breed, antibiotic dose, location, time, presence of anticoccidial in the feed, antibiotic type, and housing type) to explain variations in true effect size of the studies. The basic meta-analysis of these studies revealed an overall improvement in FCR by 2.8 % (p < 0.05) due to addition of AGPs than the control group with the confidence interval range from 1.3 to 4.3 % and the prediction interval ranging between -10 and 16 %. The covariates, including breed, dose and location, provided the optimum model fit and explained 53 % of variations in the FCR across different studies. In summary, an overall marginal improvement has been observed in mean FCR of broiler chickens along with a wide range of variations in response to use of AGPs. The variations in true effects among these studies are subject to several confounding effects, particularly breed, dose and location. Considering the marginal positive effect of antibiotic usage in chicken performance, we recommend against using of AGP.
Collapse
Affiliation(s)
- Mohamed El-Fateh
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada, H9×3V9; Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, 35516, El-Dakhelia, Egypt
| | - Muhammad Bilal
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada, H9×3V9
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada, H9×3V9.
| |
Collapse
|
9
|
Machado DT, Dias BDC, Cayô R, Gales AC, Marques de Carvalho F, Vasconcelos ATR. Uncovering new Firmicutes species in vertebrate hosts through metagenome-assembled genomes with potential for sporulation. Microbiol Spectr 2024; 12:e0211324. [PMID: 39283121 PMCID: PMC11536998 DOI: 10.1128/spectrum.02113-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 11/07/2024] Open
Abstract
Metagenome-assembled genomes (MAGs) have contributed to identifying non-culturable microorganisms and understanding their ecological functions. MAGs offer an advantage in investigating sporulation-associated genes, especially given the difficulty of isolating many species residing in the gut microbiota of multiple hosts. Bacterial sporulation is a key survival mechanism with implications for pathogenicity and biotechnology. Here, we investigate MAGs from vertebrate hosts, emphasizing taxonomic identification and identifying sporulation-associated genes in potential novel species within the Firmicutes phylum. We identified potential new species in the classes Clostridia (Borkfalkiaceae, Lachnospiraceae, Monoglobaceae, and Oscillospiraceae families) and Bacilli (Bacillaceae and Erysipelotrichaceae families) through phylogenetic and functional pathway analyses, highlighting their sporulation potential. Our study covers 146 MAGs, 124 of them without refined taxonomic assignments at the family level. We found that Clostridia and Bacilli have unique sporulation gene profiles in the refined family MAGs for cattle, swine, poultry, and human hosts. The presence of genes related to Spo0A regulon, engulfment, and spore cortex in MAGs underscores fundamental mechanisms in sporulation processes in currently uncharacterized species with sporulation potential from metagenomic dark matter. Furthermore, genomic analyses predict sporulation potential based on gene presence, genome size, and metabolic pathways involved in spore formation. We emphasize MAGs covering families not yet characterized through the phylogenetic analysis, and with extensive potential for spore-forming bacteria within Clostridia, Bacilli, UBA4882, and UBA994 classes. These findings contribute to exploring spore-forming bacteria, which provides evidence for novel species diversity in multiple hosts, their adaptive strategies, and potential applications in biotechnology and host health.IMPORTANCESpores are essential for bacterial survival in harsh environments, facilitating their persistence and adaptation. Exploring sporulation-associated genes in metagenome-assembled genomes (MAGs) from different hosts contributes to clinical and biotechnological domains. Our study investigated the extent of genes associated with bacterial sporulation in MAGs from poultry, swine, cattle, and humans, revealing these genes in uncultivated bacteria. We identified potential novel Firmicutes species with sporulation capabilities through phylogenetic and functional analyses. Notably, MAGs belonging to Clostridia, Bacilli, and unknown classes, namely UBA4882 and UBA994, remained uncharacterized at the family level, which raises the hypothesis that sporulation would also be present in these genomes. These findings contribute to our understanding of microbial adaptation and have implications for microbial ecology, underlining the importance of sporulation in Firmicutes across different hosts. Further studies into novel species and their sporulation capability can contribute to bacterial maintenance mechanisms in various organisms and their applications in biotechnology studies.
Collapse
Affiliation(s)
- Douglas Terra Machado
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Beatriz do Carmo Dias
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Rodrigo Cayô
- Laboratory of Environmental Antimicrobial Resistance (LEARN), Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Unidade José Alencar, Centro, Diadema, São Paulo, Brazil
| | - Ana Cristina Gales
- Laboratório ALERTA, Division of Infectious Diseases, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Khukhodziinai JS, Das PK, Mukherjee J, Banerjee D, Ghosh PR, Das AK, Samanta I, Jas R, Mondal S, Patra AK. Effect of Dietary Benzoic Acid and Oregano Essential Oil as a Substitute for an Anti-Coccidial Agent on Growth Performance and Physiological and Immunological Responses in Broiler Chickens Challenged with Eimeria Species. Animals (Basel) 2024; 14:3008. [PMID: 39457937 PMCID: PMC11504159 DOI: 10.3390/ani14203008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
To overcome the antimicrobial residues in food, benzoic acid (BA) and oregano essential oil (OEO) are used in the broiler chicken industry. Independently, both exerted anticoccidial and antimicrobial actions and improved growth performance in broiler chickens. Their effect may be multiplied when they are used in combination. This present study was carried out to evaluate the efficacy of dietary BA and OEO alone or in combination as a substitute for a commercial coccidiostatic drug on growth performance and physiological and immunological responses in broiler chickens challenged with Eimeria species. A total of 252 unsexed 1-day-old broiler chicks were equally allotted to 36 pens, each pen containing seven chicks. The pens were randomly assigned to six treatments with six pens (replicates) for each treatment (n = 6)-(i) negative control, (ii) positive control, coccidia-challenged and non-treated, (iii) supplemented with salinomycin (an anti-coccidial drug) at 60 mg/kg of feed and coccidia-challenged, (iv) supplemented with BA at 500 mg/kg of feed and coccidia-challenged, (v) supplemented with OEOat 500 mg/kg of feed and coccidia-challenged (OEO), and (vi) supplemented with BA at 500 mg/kg of feed and OEO at 500 mg/kg of feed and coccidia-challenged (B&O). The liver enzymes and thyroxine and creatinine levels were not affected (p > 0.05) both in coccidia-challenged and supplemented chickens. The BA and OEO applied separately or in combination (B&O) significantly (p < 0.05) reduced gut pathogenic bacteria (Salmonella and Escherichia coli) and Eimeria spp., and concurrently enhanced (p > 0.05) the Lactobacillus population with better body weight gain, improved feed utilization, and superior hematological values. It also up-regulated (p > 0.05) the interferon-γ gene expression and down-regulated (p < 0.05) the interleukin-10 and Toll-like receptor-4 gene expression to protect the chickens from inflammatory reactions, which were not demonstrated in salinomycin-treated birds. The B&O supplementation increased (p < 0.05) the immune system by enhancing Eimeria-specific immunoglobulin Y titer and lymphocyte proliferation response. This study suggests that the combined application of OEO and BA can substitute for a commercial anti-coccidial agent (salinomycin) in controlling coccidiosis as well as improving growth performance, gut health, and immune responses in broiler chickens with a means of antimicrobial-resistant free food products.
Collapse
Affiliation(s)
- Joycy Seiba Khukhodziinai
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Pradip Kumar Das
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Joydip Mukherjee
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Dipak Banerjee
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Prabal Ranjan Ghosh
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Anil Kumar Das
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Indranil Samanta
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India;
| | - Ruma Jas
- Department of Veterinary Parasitology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Samiran Mondal
- Department of Veterinary Pathology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
| |
Collapse
|
11
|
Keogh K, Kenny DA, Alexandre PA, Waters SM, McGovern E, McGee M, Reverter A. Relationship between the rumen microbiome and liver transcriptome in beef cattle divergent for feed efficiency. Anim Microbiome 2024; 6:52. [PMID: 39304935 DOI: 10.1186/s42523-024-00337-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Feed costs account for a high proportion of the variable cost of beef production, ultimately impacting overall profitability. Thus, improving feed efficiency of beef cattle, by way of determining the underlying genomic control and selecting for feed efficient cattle provides a method through which feed input costs may be reduced whilst also contributing to the environmental sustainability of beef production. The rumen microbiome dictates the feed degradation capacity and consequent nutrient supply in ruminants, thus potentially impacted by feed efficiency phenotype. Equally, liver tissue has been shown to be responsive to feed efficiency phenotype as well as dietary intake. However, although both the rumen microbiome and liver transcriptome have been shown to be impacted by host feed efficiency phenotype, knowledge of the interaction between the rumen microbiome and other peripheral tissues within the body, including the liver is lacking. Thus, the objective of this study was to compare two contrasting breed types (Charolais and Holstein-Friesian) divergent for residual feed intake (RFI) over contrasting dietary phases (zero-grazed grass and high-concentrate), based on gene co-expression network analysis of liver transcriptome data and microbe co-abundance network of rumen microbiome data. Traits including RFI, dry matter intake (DMI) and growth rate (ADG), as well as rumen concentrations of volatile fatty acids were also included within the network analysis. RESULTS Overall, DMI had the greatest number of connections followed by RFI, with ADG displaying the fewest number of significant connections. Hepatic genes related to lipid metabolism were correlated to both RFI and DMI phenotypes, whilst genes related to immune response were correlated to DMI. Despite the known relationship between RFI and DMI, the same microbes were not directly connected to these phenotypes, the Succiniclasticum genus was however, negatively connected to both RFI and ADG. Additionally, a stepwise regression analysis revealed significant roles for both Succiniclasticum genus and Roseburia.faecis sp. in predicting RFI, DMI and ADG. CONCLUSIONS Results from this study highlight the interactive relationships between rumen microbiome and hepatic transcriptome data of cattle divergent for RFI, whilst also increasing our understanding of the underlying biology of both DMI and ADG in beef cattle.
Collapse
Affiliation(s)
- Kate Keogh
- Animal and Bioscience Research Department, Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, QLD, 4067, Australia.
| | - David A Kenny
- Animal and Bioscience Research Department, Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - Pamela A Alexandre
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, QLD, 4067, Australia
| | - Sinead M Waters
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Emily McGovern
- Animal and Bioscience Research Department, Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - Mark McGee
- Livestock Systems Research Department, Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - Antonio Reverter
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, QLD, 4067, Australia
| |
Collapse
|
12
|
Fathima S, Al Hakeem WG, Shanmugasundaram R, Lourenco J, Selvaraj RK. The effect of supplemental arginine on the gut microbial homeostasis of broilers during sub-clinical necrotic enteritis challenge. Front Physiol 2024; 15:1463420. [PMID: 39355151 PMCID: PMC11442325 DOI: 10.3389/fphys.2024.1463420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Necrotic enteritis (NE) is an enteric disease of poultry that alters the structure of the gut microbial community causing dysbiosis. This 28 day experiment investigated the effects of 125% and 135% arginine diets on the gut microbial diversity and composition of broilers during a subclinical NE challenge. One hundred and twenty one-day-old chicks were randomly allocated to 4 treatments with six replicates each- Uninfected + Basal, NE + Basal, NE + Arg 125%, and NE + Arg 135% diet groups. NE was induced by inoculating 1 × 104 E. maxima sporulated oocysts on day 14 and 1 × 108 CFU C. perfringens on days 19, 20, and 21 of age. The NE challenge significantly decreased the number of observed amplicon sequence variants (p = 0.03), the abundance of the phylum Firmicutes (p < 0.01), and the species Mediterraneibacter cottocaccae (p = 0.01) in the ceca of birds on day 21. The NE challenge significantly increased the Bray-Curtis index (p < 0.01), and the abundance of the phylum Bacteroidota (p < 0.01), family Odoribacteraceae (p < 0.01), genus Odoribacter (p < 0.01), and species O. splanchnicus (p = 0.01) on day 21. During NE, the 125% arginine diet restored the abundance of the phylum Bacteroidota (p = 0.03), family Odoribacteraceae (p = 0.03) and Oscillospiraceae (p = 0.03), genus Odoribacter (p = 0.03), and species O. splanchnicus (p = 0.03) and M. cottocaccae (p < 0.01) on day 21. The 135% arginine diet effectively restored the loss in alpha diversity (p = 0.01) caused by NE, the abundance of the phylum Firmicutes (p = 0.01) and Bacteroidota (p < 0.01), family Oscillospiraceae (p = 0.03) and Odoribacteraceae (p < 0.01), genus Odoribacter (p < 0.01), and species O. splanchnicus (p < 0.01) and M. cottocaccae (p < 0.01) on day 21. On day 28, the treatments had a significant effect on the cecal propionate (p = 0.01), butyrate (p = 0.04), and total SCFA (p = 0.04) concentrations. In conclusion, the 125% and 135% arginine diets restored gut microbial composition during a subclinical NE challenge, but not the cecal SCFA profile. Hence, arginine in combination with other feed additives could be used in restoring gut microbial homeostasis during NE in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Walid G Al Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Athens, GA, United States
| | - Jeferson Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
13
|
Mootane ME, Mafuna T, Ramantswana TM, Malatji DP. Microbial community profiling in intestinal tract of indigenous chickens from different villages. Sci Rep 2024; 14:21218. [PMID: 39261629 PMCID: PMC11391056 DOI: 10.1038/s41598-024-72389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024] Open
Abstract
Village chickens (Gallus gallus domesticus) are commonly reared in rural households of South Africa and other developing countries. They play a vital role as a primary source of protein through the provision of meat and eggs. The chicken gut microbiota plays an important role in chicken's immune system, its health, physiological development of the gut, digestion of food, nutrient absorption and productivity. Thus, it is imperative to critically investigate the chicken microbial composition in order to develop effective disease control measures and increase production. In this present study, microbial DNA was isolated from 34 non-descript mixed gender matured village chickens' intestinal contents followed by high throughput Illumina sequencing targeting 16S rRNA gene. Senwamokgope village had the largest microbiota composition as compared to Itieleni and Thakgalang villages. Overall, Firmicutes (74%) was the most abundant phylum observed, followed by Proteobacteria (8%), Actinobateria (5%), and Bacteroidota (3%). At the genus level, Lactobacillus was the dominant bacteria. Other genera found included Sphingomonas (7%), Cutibacterium (4%), and Clostridium_sensu_stricto_1 (2%). The richness of female intestinal microbiota was higher compared to the male microbiota. The findings of this study provide baseline information that can assist to better understand the chicken gut microbiota and its interaction with diseases and parasites.
Collapse
Affiliation(s)
- Mokoma Eunice Mootane
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, 1710, South Africa
| | - Thendo Mafuna
- Department of Biochemistry, Faculty of Sciences, University of Johannesburg, Johannesburg, 2006, South Africa
| | | | - Dikeledi Petunia Malatji
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, 1710, South Africa.
| |
Collapse
|
14
|
Zhang W, Lan F, Zhou Q, Gu S, Li X, Wen C, Yang N, Sun C. Host genetics and gut microbiota synergistically regulate feed utilization in egg-type chickens. J Anim Sci Biotechnol 2024; 15:123. [PMID: 39245742 PMCID: PMC11382517 DOI: 10.1186/s40104-024-01076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/14/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Feed efficiency is a crucial economic trait in poultry industry. Both host genetics and gut microbiota influence feed efficiency. However, the associations between gut microbiota and host genetics, as well as their combined contributions to feed efficiency in laying hens during the late laying period, remain largely unclear. METHODS In total, 686 laying hens were used for whole-genome resequencing and liver transcriptome sequencing. 16S rRNA gene sequencing was conducted on gut chyme (duodenum, jejunum, ileum, and cecum) and fecal samples from 705 individuals. Bioinformatic analysis was performed by integrating the genome, transcriptome, and microbiome to screen for key genetic variations, genes, and gut microbiota associated with feed efficiency. RESULTS The heritability of feed conversion ratio (FCR) and residual feed intake (RFI) was determined to be 0.28 and 0.48, respectively. The ileal and fecal microbiota accounted for 15% and 10% of the FCR variance, while the jejunal, cecal, and fecal microbiota accounted for 20%, 11%, and 10% of the RFI variance. Through SMR analysis based on summary data from liver eQTL mapping and GWAS, we further identified four protein-coding genes, SUCLA2, TNFSF13B, SERTM1, and MARVELD3, that influence feed efficiency in laying hens. The SUCLA2 and TNFSF13B genes were significantly associated with SNP 1:25664581 and SNP rs312433097, respectively. SERTM1 showed significant associations with rs730958360 and 1:33542680 and is a potential causal gene associated with the abundance of Corynebacteriaceae in feces. MARVELD3 was significantly associated with the 1:135348198 and was significantly correlated with the abundance of Enterococcus in ileum. Specifically, a lower abundance of Enterococcus in ileum and a higher abundance of Corynebacteriaceae in feces were associated with better feed efficiency. CONCLUSIONS This study confirms that both host genetics and gut microbiota can drive variations in feed efficiency. A small portion of the gut microbiota often interacts with host genes, collectively enhancing feed efficiency. Therefore, targeting both the gut microbiota and host genetic variation by supporting more efficient taxa and selective breeding could improve feed efficiency in laying hens during the late laying period.
Collapse
Affiliation(s)
- Wenxin Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Fangren Lan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaochang Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Jiang C, Shi Y, Shi X, Yan J, Xuan L, Zhuang L, Li J, Xu G, Zheng J. ELOVL5 and VLDLR synergistically affect n-3 PUFA deposition in eggs of different chicken breeds. Poult Sci 2024; 103:104016. [PMID: 39018654 PMCID: PMC11287006 DOI: 10.1016/j.psj.2024.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024] Open
Abstract
There was no significant difference in the composition and content of fatty acids in eggs among different breeds initially, but following the supplementation of flaxseed oil, Dwarf Layer were observed to deposit more n-3 polyunsaturated fatty acid (PUFA) in eggs. Currently, there is limited research on the mechanisms underlying the differences in egg composition among different breeds. Therefore, in this study, 150 twenty-four-wk-old hens of each breed, including the Dwarf Layer and White Leghorn, were fed either a basal diet or a diet supplemented with 2.5% flaxseed oil. After 28 d, eggs and liver samples were collected to determine fatty acid composition, and serum, liver, intestine, and follicles were collected for subsequent biochemical, intestinal morphology, and lipid metabolism-related genes expression analysis. Duodenal contents were collected for microbial analysis. The results showed that there was no significant difference in the content and deposition efficiency of total n-3 PUFA in the liver of the 2 breeds, but the content and deposition efficiency of total n-3 PUFA in the egg of Dwarf Layer were significantly higher than those of White Leghorn after feeding flaxseed oil. Flaxseed oil and breeds did not have significant effects on cholesterol (CHO), free fatty acids (NEFA), low-density lipoprotein (LDL), and estrogen (E2) levels. After feeding with flaxseed oil, the villus height and the villus-to-crypt ratio in both breeds were increased and duodenal crypt depth was decreased. The villus-to-crypt ratio (4.78 vs. 3.60) in the duodenum of Dwarf Layer was significantly higher than that in White Leghorn after feeding with flaxseed oil. Flaxseed oil can impact the gut microbiota in the duodenum and reduce the microbiota associated with fatty acid breakdown, such as Romboutsia, Subdolibranulum, Lachnochlostridium, and Clostridium. This may mean that less ALA can be decomposed and more ALA can be absorbed into the body. Additionally, after feeding flaxseed oil, the mRNA levels of elongation enzymes 5 (ELOVL5), fatty acid desaturase 1 (FADS1), and fatty acid transporter 1 (FATP1) in the liver of Dwarf Layer were significantly higher than those in White Leghorn, while the mRNA levels of peroxisome proliferator-activated receptor alpha (PPAR), carnitine palmitoyl transferase 1 (CPT1), Acyl CoA oxidase 1 (ACOX1), and Acyl-CoA synthetase (ACSL) were significantly lower than those in White Leghorn. The mRNA level of FABP1 in the duodenum of Dwarf Layer was significantly higher than that of White Leghorn, while the mRNA level of FATP1 was significantly lower than that of White Leghorn. The protein levels of ELOVL5 in the liver of Dwarf Layer and very low-density lipoprotein receptor (VLDLR) in the follicles were significantly higher than those of White Leghorn. In summary, after feeding flaxseed oil, the higher ratio of villus height to crypt depth in Dwarf Layer allows more α-linolenic acid (ALA) to be absorbed into the body. The higher mRNA expression of FADS1, ELOVL5, and FATP1, as well as the higher protein expression of ELOVL5 in the liver of Dwarf Layer enhance the conversion of ALA into DHA. The higher protein expression of VLDLR in follicles of Dwarf Layer allows more n-3 PUFA to deposit in the follicles. These combined factors contribute to the Dwarf Layer's ability to deposit higher levels of n-3 PUFA in eggs, as well as improving the deposition efficiency of n-3 PUFA.
Collapse
Affiliation(s)
- Caiyun Jiang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuanhang Shi
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Shi
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jin Yan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lin Xuan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Longyu Zhuang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Li A, Hu H, Huang Y, Yang F, Mi Q, Jin L, Liu H, Zhang Q, Pan H. Effects of dietary metabolizable energy level on hepatic lipid metabolism and cecal microbiota in aged laying hens. Poult Sci 2024; 103:103855. [PMID: 38796988 PMCID: PMC11153248 DOI: 10.1016/j.psj.2024.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Lipid metabolic capacity, feed utilization, and the diversity of gut microbiota are reduced in the late laying stage for laying hens. This experiment aimed to investigate the effects of different levels of dietary metabolizable energy (ME) on hepatic lipid metabolism and cecal microbiota in late laying hens. The 216 Peking Pink laying hens (57-wk-old) were randomly assigned to experimental diets of 11.56 (HM = high ME), 11.14 (MM = medium ME), or 10.72 (LM = low ME) MJ of ME/kg, with each dietary treatment containing 6 replicates per group and 12 chickens per replicate. The HM group showed higher triglyceride (TG), total cholesterol (T-CHO), and low-density lipoprotein cholesterol (LDL-C) concentrations in the liver compared with the LM group; second, the HM group showed higher TG concentration and the LM group showed lower T-CHO concentration compared with MM group; finally, the HM group showed a lower hepatic lipase (HL) activity compared with the MM and LM groups (P < 0.05). There was a significant difference in the microbial community structure of the cecum between the HM and MM groups (P < 0.05). The decrease of dietary ME level resulted in a gradual decrease relative abundance of Proteobacteria. At the genus level, beneficial bacteria were significantly enriched in the LM group compared to the MM group, including Faecalibacterium, Lactobacillus, and Bifidobacterium, (linear discriminant analysis [LDA] >2, P <0.05). In addition, at the species level, Lactobacillus crispatus, Parabacteroides gordonii, Blautia caecimuris, and Lactobacillus johnsonii were significantly enriched in the LM group (LDA>2, P < 0.05). The HM group had a higher abundance of Sutterella spp. compared to the LM group (LDA>2, P <0.05). In conclusion, this research suggests that the reduction in dietary energy level did not adversely affect glycolipid metabolism or low dietary ME (10.72 MJ/kg). The findings can be helpful for maintaining intestinal homeostasis and increasing benefit for gut microbiota in late laying hens.
Collapse
Affiliation(s)
- Anjian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Fuyan Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qianhui Mi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Liqiang Jin
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongli Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qiang Zhang
- WOD Poultry Research Institute, Beijing, 100193, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; WOD Poultry Research Institute, Beijing, 100193, China.
| |
Collapse
|
17
|
Marková K, Kreisinger J, Vinkler M. Are there consistent effects of gut microbiota composition on performance, productivity and condition in poultry? Poult Sci 2024; 103:103752. [PMID: 38701628 PMCID: PMC11078699 DOI: 10.1016/j.psj.2024.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Microbiome of the gastrointestinal tract (GIT) has been identified as one of the crucial factors influencing the health and condition of domestic animals. The global poultry industry faces the challenge of understanding the complex relationship between gut microbiota composition and performance-related traits in birds. Considerable variation exists in the results of correlational studies using either 16S rRNA profiling or metagenomics to identify bacterial taxa associated with performance, productivity, or condition in poultry (e.g., body weight, growth rate, feeding efficiency, or egg yield). In this review, we survey the existing reports, discuss variation in research approaches, and identify bacterial taxa consistently linked to improved or deteriorated performance across individual poultry-focused studies. Our survey revealed high methodological heterogeneity, which was in contrast with vastly uniform focus of the research mainly on the domestic chicken (Gallus gallus) as a model. We also show that the bacterial taxa most frequently used in manipulative experiments and commercial probiotics intended for use in poultry (e.g., species of Lactobacillus, Bacillus, Enterococcus, or Bifidobacterium) do not overlap with the bacteria consistently correlated with their improved performance (Candidatus Arthromitus, Methanobrevibacter). Our conclusions urge for increased methodological standardization of the veterinary research in this field. We highlight the need to bridge the gap between correlational results and experimental applications in animal science. To better understand causality in the observed relationships, future research should involve a broader range of host species that includes both agricultural and wild models, as well as a broader range of age groups.
Collapse
Affiliation(s)
- Kateřina Marková
- Charles University, Faculty of Science, Department of Zoology, 128 43 Prague, Czech Republic.
| | - Jakub Kreisinger
- Charles University, Faculty of Science, Department of Zoology, 128 43 Prague, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, 128 43 Prague, Czech Republic
| |
Collapse
|
18
|
Chen MY, Duan YL, Zhu Y, Wang JH, Hu QB, Guo SS, Ding BY, Zhang ZF, Li LL. Responses of intestinal morphology, immunity, antioxidant status and cecal microbiota to the mixture of glycerol monolaurate and cinnamaldehyde in laying hens. Poult Sci 2024; 103:103645. [PMID: 38547675 PMCID: PMC11000181 DOI: 10.1016/j.psj.2024.103645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
This study was to determine the effects of the mixture of glycerol monolaurate and cinnamaldehyde (GCM) supplementation on the intestinal morphology, immunity, antioxidant status and cecal microbiota of laying hens. A total of 1,120 healthy laying hens (Jingfen-1 strain) at the age of 14 wk were randomly divided into 4 groups with 10 replicates of 28 layers in each and layers were fed diets containing 0 (control group), or 250, 500, and 1,000 mg/kg GCM for 12 wk. The results showed that dietary supplementation with GCM significantly increased intestinal villus height and villus height/crypt depth, duodenal villus area, total superoxide disumutase activities in the liver and jejunum, jejunal glutathione peroxidase activities while decreased duodenal and jejunal crypt depth, hydrogen peroxide content in the liver and jejunal malondialdehyde content of laying hens aging 28 wk (P < 0.05). Meanwhile, GCM addition significantly increased serum immunoglobulin A and immunoglobulin M concentration of layers at the age of 20, 24, and 28 wk (P < 0.05). Moreover, it was observed in the 16S rRNA sequencing that the addition of GCM elevated the abundance and diversity of gut microbiota in laying hens. The predominant bacteria from each group were Bacteroidota and Firmicutes at the phylum level and Bacteroides and Lactobacillus were the dominant genera. The composition and structure of cecal microflora were changed by the addition of GCM to the diet of laying hens. In conclusion, the addition of GCM (500-1,000 mg/kg diet) can improve intestinal morphology, immune function, intestinal and liver antioxidant status and intestinal flora of laying hens, thereby improving intestinal digestion and absorption capacity. These findings provide a new way to further explore the mechanism of GCM improving intestinal health.
Collapse
Affiliation(s)
- M Y Chen
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Y L Duan
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Y Zhu
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - J H Wang
- Calid biotech (Wuhan) Co., Ltd., Wuhan 430073, China
| | - Q B Hu
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - S S Guo
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - B Y Ding
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Z F Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - L L Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
19
|
Wan S, Wang L, Hao Z, Zhu L, Mao X, Li H, Sun P, Yin W, Fan K, Zhang H, Li B, Nie W, Li Z, Sun N. Baicalin ameliorates the gut barrier function and intestinal microbiota of broiler chickens. Acta Biochim Biophys Sin (Shanghai) 2024; 56:634-644. [PMID: 38511207 DOI: 10.3724/abbs.2024029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
The deoxynivalenol (DON)-contaminated feeds can impair chicken gut barrier function, disturb the balance of the intestinal microbiota, decrease chicken growth performance and cause major economic loss. With the aim of investigating the ameliorating effects of baicalin on broiler intestinal barrier damage and gut microbiota dysbiosis induced by DON, a total of 150 Arbor Acres broilers are used in the present study. The morphological damage to the duodenum, jejunum, and ileum caused by DON is reversed by treatment with different doses of baicalin, and the expression of tight junction proteins (ZO-1, claudin-1, and occludin) is also significantly increased in the baicalin-treated groups. Moreover, the disturbance of the intestinal microbiota caused by DON-contaminated feed is altered by baicalin treatment. In particular, compared with those in the DON group, the relative abundances of Lactobacillus, Lachnoclostridium, Ruminiclostridium and other beneficial microbes in the baicalin-treated groups are significantly greater. However, the percentage of unclassified_f__Lachnospiraceae in the baicalin-treated groups is significantly decreased in the DON group. Overall, the current results demonstrate that different doses of baicalin can improve broiler intestinal barrier function and the ameliorating effects on broiler intestinal barrier damage may be related to modulations of the intestinal microbiota.
Collapse
Affiliation(s)
- Shuangxiu Wan
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
- College of Pharmacy, Heze University, Heze 274000, China
| | - Linzheng Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250035, China
| | - Zhili Hao
- College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Lin Zhu
- College of Pharmacy, Heze University, Heze 274000, China
| | - Xiaoxia Mao
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Hongquan Li
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Panpan Sun
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Wei Yin
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Kuohai Fan
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Hailong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Wansen Nie
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Na Sun
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
20
|
Bernard M, Lecoeur A, Coville JL, Bruneau N, Jardet D, Lagarrigue S, Meynadier A, Calenge F, Pascal G, Zerjal T. Relationship between feed efficiency and gut microbiota in laying chickens under contrasting feeding conditions. Sci Rep 2024; 14:8210. [PMID: 38589474 PMCID: PMC11001975 DOI: 10.1038/s41598-024-58374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
The gut microbiota is known to play an important role in energy harvest and is likely to affect feed efficiency. In this study, we used 16S metabarcoding sequencing to analyse the caecal microbiota of laying hens from feed-efficient and non-efficient lines obtained by divergent selection for residual feed intake. The two lines were fed either a commercial wheat-soybean based diet (CTR) or a low-energy, high-fibre corn-sunflower diet (LE). The analysis revealed a significant line x diet interaction, highlighting distinct differences in microbial community composition between the two lines when hens were fed the CTR diet, and more muted differences when hens were fed the LE diet. Our results are consistent with the hypothesis that a richer and more diverse microbiota may play a role in enhancing feed efficiency, albeit in a diet-dependent manner. The taxonomic differences observed in the microbial composition seem to correlate with alterations in starch and fibre digestion as well as in the production of short-chain fatty acids. As a result, we hypothesise that efficient hens are able to optimise nutrient absorption through the activity of fibrolytic bacteria such as Alistipes or Anaerosporobacter, which, via their production of propionate, influence various aspects of host metabolism.
Collapse
Affiliation(s)
- Maria Bernard
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
- INRAE, SIGENAE, 78350, Jouy-en-Josas, France.
| | - Alexandre Lecoeur
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Luc Coville
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nicolas Bruneau
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Deborah Jardet
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Annabelle Meynadier
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Fanny Calenge
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Géraldine Pascal
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Tatiana Zerjal
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
21
|
Panyako PM, Ommeh SC, Kuria SN, Lichoti JK, Musina J, Nair V, Nene V, Munir M, Oyola SO. Metagenomic Characterization of Poultry Cloacal and Oropharyngeal Swabs in Kenya Reveals Bacterial Pathogens and Their Antimicrobial Resistance Genes. Int J Microbiol 2024; 2024:8054338. [PMID: 38374958 PMCID: PMC10876313 DOI: 10.1155/2024/8054338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/28/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Poultry enteric bacterial diseases are of significant economic importance because they are responsible for production losses due to weight loss, increased morbidity and mortality, and increased cost of production arising from poor feed conversion and treatment. This cross-sectional purposive study characterized enteric bacterial pathogens in poultry from selected agroclimatic regions in Kenya and investigated their antimicrobial resistance gene profiles. Cloacal (n = 563) and oropharyngeal (n = 394) swabs were collected and pooled into 16 and 14 samples, respectively, to characterize bacterial pathogens and their antimicrobial resistance gene profiles. We report that Proteobacteria, Chlamydiae, and Firmicutes are the most dominant phyla present in both cloacal and oropharyngeal swabs of the six poultry species studied, indicating the colonization of the poultry gut by many pathogenic bacteria. Using KEGG and COG databases, some pathways related to metabolism, genetic information, and cellular processing were detected. We also report the abundance of antimicrobial resistance genes that confer resistance to β-lactamases, aminoglycosides, and tetracycline in most of the poultry analyzed, raising concern about the dangers associated with continuous and inappropriate use of these antibiotics in poultry production. The antimicrobial resistance gene data generated in this study provides a valuable indicator of the use of antimicrobials in poultry in Kenya. The information generated is essential for managing bacterial diseases, especially in backyard poultry raised under scavenging conditions.
Collapse
Affiliation(s)
- Philip M. Panyako
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Sheila C. Ommeh
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Stephen N. Kuria
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Jacqueline K. Lichoti
- Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Johns Musina
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | | | - Vish Nene
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Muhammad Munir
- Department: Biomedical and Life Sciences, Lancaster University, Bailrigg, UK
| | - Samuel O. Oyola
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| |
Collapse
|
22
|
Cai P, Liu S, Tu Y, Fu D, Zhang W, Zhang X, Zhou Y, Shan T. Effects of different supplemental levels of protease DE200 on the production performance, egg quality, and cecum microflora of laying hens. J Anim Sci 2024; 102:skae086. [PMID: 38527414 PMCID: PMC11034432 DOI: 10.1093/jas/skae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/24/2024] [Indexed: 03/27/2024] Open
Abstract
This study aimed to investigate the effects of different levels of the protease DE200 on the performance, egg quality, organ index, and cecum microflora of Hy-line W36 laying hens. In this experiment, a total of 180 laying hens aged 300 d were randomly divided into three treatment groups and fed diets containing 0, 100, or 200 g/t DE200. The experimental period was 8 wk, including 2 wk of prefeeding and 6 wk of the formal experiment. Regular feeding was performed thrice a day and eggs were collected twice daily, and the feed intake and the egg quality were recorded. The results showed that in terms of production performance, dietary supplementation with different levels of DE200 significantly increased egg production (EP; P < 0.05) and significantly decreased the feed conversion ratio (FCR; P < 0.05) and average daily feed intake (ADFI; P < 0.05) without affecting egg weight (EW). In addition, the addition of DE200 significantly reduced the egg breakage rate (P < 0.05) and tended to increase the Haugh unit and decrease the water content of the yolk (P > 0.05). In the cecal microflora, the addition of DE200 increased the proportions of Bacteroidetes and Firmicutes at the phylum level while reducing the proportion of Fusobacteria. Furthermore, at the genus level, the addition of DE200 increased the proportions of Bacteroides and Faecalibacterium and reduced the proportion of Megamonas. This study suggested that the protease DE200 can be used as a feed supplement to improve the production performance of laying hens.
Collapse
Affiliation(s)
- Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Dabo Fu
- Wuhan Xinhua Yang Biological Co., Ltd, Wuhan, China
| | - Wei Zhang
- Wuhan Xinhua Yang Biological Co., Ltd, Wuhan, China
| | - Xixi Zhang
- Wuhan Xinhua Yang Biological Co., Ltd, Wuhan, China
| | - Ying Zhou
- Wuhan Xinhua Yang Biological Co., Ltd, Wuhan, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
23
|
Song B, Sun P, Kong L, Xiao C, Pan X, Song Z. The improvement of immunity and activation of TLR2/NF-κB signaling pathway by Romboutsia ilealis in broilers. J Anim Sci 2024; 102:skae286. [PMID: 39305205 PMCID: PMC11544627 DOI: 10.1093/jas/skae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 11/09/2024] Open
Abstract
This study was conducted to investigate the effects of Romboutsia ilealis on the immune function of broilers and the underlying mechanisms. A total of 48 one-day-old Arbor Acres broilers were allocated to 4 groups as follows: broilers treated daily with 1 mL live R. ilealis in general anaerobic medium broth media (0, 1 × 104, 1 × 106, and 1 × 108 CFU/mL) from days 1 to 7. Samples were collected on days 8 and 14. The results showed that R. ilealis had no negative effect on the body weight of broilers (P > 0.05). R. ilealis significantly increased the levels of lysozyme, IFN-γ, IFN-γ/IL-4, and IgG in the serum (P < 0.05). R. ilealis significantly increased the levels of IL-4, IFN-γ, sIgA, lysozyme, and iNOS in the ileal mucosa (P < 0.05). R. ilealis significantly increased the mRNA levels of TLR2, TLR4, NF-κB, IL-1β, TNF-α, IFN-γ, IgA, pIgR, iNOS, and MHC-II in the ileum (P < 0.05). R. ilealis significantly increased the relative abundance of Enterococcus and Paracoccus in the jejunum and ileum, ileal Candidatus Arthromitus, and cecal Romboutsia and Intestinimonas (P < 0.05). Correlation analysis showed that Enterococcus, Paracoccus, Romboutsia, and Intestinimonas were significantly positively correlated with humoral immune function (P < 0.05). In conclusion, R. ilealis boosted the immune system, activated the intestinal TLR2/NF-κB signaling pathway, and improved the gut microbiota in broilers.
Collapse
Affiliation(s)
- Bochen Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Sun
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Linglian Kong
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining, Shandong, China
| | - Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
24
|
Liu M, Chen R, Wang T, Ding Y, Zhang Y, Huang G, Huang J, Qu Q, Lv W, Guo S. Dietary Chinese herbal mixture supplementation improves production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. Poult Sci 2024; 103:103201. [PMID: 37980727 PMCID: PMC10692728 DOI: 10.1016/j.psj.2023.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
Chinese herbs have been used as feed additives and are commonly utilized in domestic intensive livestock farming. However, their impact on the production performance and intestinal health of broiler breeders has yet to be thoroughly explored. This study aimed to evaluate the effects of a Chinese herbal mixture (CHM) on the production performance of broiler breeders in terms of reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. A total of 336 thirty-wk-old hens were randomly allotted to 4 groups with 6 replicates of fourteen hens each, which fed a basal diet supplemented with 0 (CON), 500 (CHM500), 1,000 (CHM1000), and 1,500 (CHM1500) mg/kg CHM for 56 days, respectively. Our results showed that dietary supplementation with CHM1000 increased the laying rate and number of SYF and decreased the feed conversion ratio (P < 0.05). All CHM groups increased oviduct and ovarian indexes, serum E2 and T-AOC levels, and decreased serum TG and MDA levels compared with CON (P < 0.05). In comparison to the CON group, the CHM1000 and CHM1500 groups increased serum ALB, IgM, and IL-10 levels, whereas the CHM1000 group also increased serum TP and SOD levels, and the CHM1500 group increased serum P and decreased serum TNF-α (P < 0.05). The addition of CHM increased FSHR expressions in the ovary, Claudin-1 expressions in the jejunum, and SOD1 expressions in the liver and ovary, but decreased the mRNA expressions of INH in the ovary as well as IL-2 and IL-6 expressions in the jejunum (P < 0.05). Moreover, CHM500 and CHM1000 groups increased CAT, GPx, and HO-1 expression in the ovary, and SOD1 and GPx expression in the jejunum, while decreasing IL-17A expression in the jejunum (P < 0.05). In addition, CHM1000 and CHM1500 groups increased villus height, VCR, and the mRNA expressions of Nrf2, HO-1, Occludin, and MUC2 in the jejunum, and IL-10 expression in the ovary, while decreasing IL-2 and IL-17A expression in the ovary, in addition to increasing GPx, Nrf2, HO-1, NQO1, and IL-10 expression in the liver (P < 0.05). Supplementation with CHM1000 increased ESR-α, ESR-β, GnRH, Nrf2, and NQO1 expression in the ovary, but decreased IFN-γ expression in the ovary as well as crypt depth in the jejunum (P < 0.05). Supplementing CHM1500 increased NQO1 and ZO-1 expression in the jejunum and decreased IL-2 in the liver (P < 0.05). The high-throughput sequencing results showed that dietary CHM1000 supplementation altered the composition of the intestinal microbiota, as evidenced by the regulation of the genera Lactobacillus, Faecalibacterium, and Phascolarctobacterium. PICRUSt analysis revealed that metabolic pathways of bacterial chemotaxis, butanoate metabolism, and synthesis and degradation of ketone bodies were enriched in the CHM1000 group. Spearman's correlation analysis indicated that the differentiated genera were significantly associated with the production performance, serum hormone, and gut barrier-related genes. Taken together, supplementation of CHM, especially at 1,000 mg/kg, could improve production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders, and maybe provide insights into its application as a potential feed additive to promote the performance of broiler breeders.
Collapse
Affiliation(s)
- Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yiqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yinwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Gengxiong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, PR China; International Institute of Traditional Chinese Veterinary Medicine, Guangzhou, PR China.
| |
Collapse
|
25
|
Kim HJ, Kim HS, Yun YS, Shin H, Lee WD, Son J, Hong EC, Jeon IS, Kang HK. Microbiome Changes in Layer Pullets Reared in Floor Pens along the Growth Period. Life (Basel) 2023; 13:2302. [PMID: 38137903 PMCID: PMC10745048 DOI: 10.3390/life13122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The gastrointestinal tract microbiome is essential for regulating nutrient absorption, gut immune function, and host growth and development. In the present study, we characterized the development of ileum and cecum microbiota in pullets throughout the rearing period, encompassing a period from the day of hatching to 18 weeks of age. The growth performance and intestinal microbiome (ileum and cecum) of pullets were analyzed at 1, 5, 11, and 18 weeks of age. The richness of the ileum and cecum bacterial communities (alpha diversity) was higher in pullets at 18 weeks of age than in those at 1 and 5 weeks of age. Microbiota from weeks 1, 5, 11, and 18 were distinctly grouped in a NMDS plot, representing beta diversity within the ileum. However, the results for cecum microbiota did not reveal evident separation among the different age groups in the weighted UniFrac. In conclusion, our findings demonstrate variations and diversification in ileum and cecum microbiota across different rearing stages in pullets. These insights have the potential to inform the development of nutritional strategies that promote gut health and contribute to the improved development of pullets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hwan-Ku Kang
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Republic of Korea; (H.-J.K.); (H.-S.K.); (Y.-S.Y.); (W.-D.L.); (I.-S.J.)
| |
Collapse
|
26
|
Bhagat NR, Chauhan P, Verma P, Mishra A, Bharti VK. High-altitude and low-altitude adapted chicken gut-microbes have different functional diversity. Sci Rep 2023; 13:20856. [PMID: 38012260 PMCID: PMC10682461 DOI: 10.1038/s41598-023-48147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Recently, there has been considerable interest in the functions of gut microbiota in broiler chickens in relation to their use as feed additives. However, the gut-microbiota of chickens reared at different altitudes are not well documented for their potential role in adapting to prevailing conditions and functional changes. In this context, the present study investigates the functional diversity of gut-microbes in high-altitude (HACh) and low-altitude adapted chickens (LACh), assessing their substrate utilization profile through Biolog Ecoplates technology. This will help in the identification of potential microbes or their synthesized metabolites, which could be beneficial for the host or industrial applications. Results revealed that among the 31 different types of studied substrates, only polymers, carbohydrates, carboxylic acids, and amine-based substrates utilization varied significantly (p < 0.05) among the chickens reared at two different altitudes where gut-microbes of LACh utilized a broad range of substrates than the HACh. Further, diversity indices (Shannon and MacIntosh) analysis in LACh samples showed significant (p < 0.05) higher richness and evenness of microbes as compared to the HACh samples. However, no significant difference was observed in the Simpson diversity index in gut microbes of lowversus high-altitude chickens. In addition, the Principal Component Analysis elucidated variation in substrate preferences of gut-microbes, where 13 and 8 carbon substrates were found to constitute PC1 and PC2, respectively, where γ-aminobutyric acid, D-glucosaminic acid, i-erythritol and tween 40 were the most relevant substrates that had a major effect on PC1, however, alpha-ketobutyric acid and glycyl-L-glutamic acid affected PC2. Hence, this study concludes that the gut-microbes of high and low-altitudes adapted chickens use different carbon substrates so that they could play a vital role in the health and immunity of an animal host based on their geographical location. Consequently, this study substantiates the difference in the substrate utilization and functional diversity of the microbial flora in chickens reared at high and low altitudes due to altitudinal changes.
Collapse
Affiliation(s)
- Neha Rani Bhagat
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Ministry of Defence, Leh, 194101, UT Ladakh, India
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Priyanka Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- School of Sciences, P. P. Savani University, NH-8, GETCO, Near Biltech, Kosamba, Surat, 394125, India
| | - Pratibha Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Ministry of Defence, Leh, 194101, UT Ladakh, India.
| |
Collapse
|
27
|
Pont GCD, Lee A, Bortoluzzi C, Rohloff Junior N, Farnell YZ, Pilla R, Suchodolski JS, Ceccantini M, Eyng C, Kogut MH. Distillers dried grains with soluble and enzyme inclusion in the diet effects broilers performance, intestinal health, and microbiota composition. Poult Sci 2023; 102:102981. [PMID: 37742451 PMCID: PMC10523001 DOI: 10.1016/j.psj.2023.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023] Open
Abstract
This study tested the effect of distillers dried grains with soluble (DDGS) inclusion in a broiler diet, with or without supplementation of exogenous enzymes, on the microbiota composition, intestinal health, diet digestibility and performance. A total of 288 one-day-old chickens was assigned to 6 treatments (8 replicate of 6 birds each) according to a completely randomized design with a 3 × 2 factorial scheme with 3 DDGS levels (0, 7 and 14%) and 2 inclusions of exogenous enzymes (with or without a multicarbohydrase complex + phytase [MCPC]). The results exhibited that DDGS inclusion up to 14% did not impair broilers performance up to 28 d, however, DDGS-fed animals exhibited significant improvement with the MCPC supplementation. No effects of the enzymes in the ileal digestibility were found at 21 d. DDGS inclusion in the diet affected dry matter and gross energy digestibility. Broilers fed diets with MCPC were found to have less intestinal histological alteration thus better gut health. No effect of DDGS, enzyme or interaction of those were observed for intestinal permeability and in the serum inflammatory biomarker (calprotectin) at 7 and 28 d. The increase of DDGS percentage in the diet reduced the diversity of the ileal microbiota but increased the cecal microbiota diversity. The inclusion of DDGS showed positive effects on microbiota composition due to a reduction of Proteobacteria phylum in the ileum at 28d and a reduction in the presence of Enterococcaceae family in the ileum at 14 and 28d. The inclusion of MCPC complex might promote beneficial changes in the ileal and cecal microbiota due reduce of Proteobacteria, Bacillaceae and Enterobacteriaceae. The supplementation of xylanase, β-glucanase, arabinofuranosidase and phytase to a DDGS diet improves performance and intestinal health allowing the use of these subproduct in the poultry nutrition.
Collapse
Affiliation(s)
- Gabriela C Dal Pont
- Department of Poultry Science, Texas A&M AgriLife Research, Texas A&M University, College Station, TX 77843
| | - A Lee
- Department of Poultry Science, Texas A&M AgriLife Research, Texas A&M University, College Station, TX 77843
| | - C Bortoluzzi
- Department of Poultry Science, Texas A&M AgriLife Research, Texas A&M University, College Station, TX 77843
| | - N Rohloff Junior
- Department of Animal Science, Western Paraná State University, Unioeste, Marechal C. Rondon, PR 85960000, Brazil
| | - Y Z Farnell
- Department of Poultry Science, Texas A&M AgriLife Research, Texas A&M University, College Station, TX 77843
| | - R Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843
| | - J S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843
| | | | - C Eyng
- Department of Animal Science, Western Paraná State University, Unioeste, Marechal C. Rondon, PR 85960000, Brazil.
| | - M H Kogut
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX 77845
| |
Collapse
|
28
|
Xu X, Rothrock MJ, Mishra A, Kumar GD, Mishra A. Relationship of the Poultry Microbiome to Pathogen Colonization, Farm Management, Poultry Production, and Foodborne Illness Risk Assessment. J Food Prot 2023; 86:100169. [PMID: 37774838 DOI: 10.1016/j.jfp.2023.100169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Despite the continuous progress in food science and technology, the global burden of foodborne illnesses remains substantial, with pathogens in food causing millions of infections each year. Traditional microbiological culture methods are inadequate in detecting the full spectrum of these microorganisms, highlighting the need for more comprehensive detection strategies. This review paper aims to elucidate the relationship between foodborne pathogen colonization and the composition of the poultry microbiome, and how this knowledge can be used for improved food safety. Our review highlights that the relationship between pathogen colonization varies across different sections of the poultry microbiome. Further, our review suggests that the microbiome profile of poultry litter, farm soil, and farm dust may serve as potential indicators of the farm environment's food safety issues. We also agree that the microbiome of processed chicken samples may reveal potential pathogen contamination and food quality issues. In addition, utilizing predictive modeling techniques on the collected microbiome data, we suggest establishing correlations between particular taxonomic groups and the colonization of pathogens, thus providing insights into food safety, and offering a comprehensive overview of the microbial community. In conclusion, this review underscores the potential of microbiome analysis as a powerful tool in food safety, pathogen detection, and risk assessment.
Collapse
Affiliation(s)
- Xinran Xu
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA
| | - Aditya Mishra
- Department of Statistics, University of Georgia, Athens, GA, USA
| | | | - Abhinav Mishra
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
29
|
Zhang Z, Zhao L, Wu J, Pan Y, Zhao G, Li Z, Zhang L. The Effects of Lactobacillus johnsonii on Diseases and Its Potential Applications. Microorganisms 2023; 11:2580. [PMID: 37894238 PMCID: PMC10609197 DOI: 10.3390/microorganisms11102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Lactobacillus johnsonii has been used as a probiotic for decades to treat a wide range of illnesses, and has been found to have specific advantages in the treatment of a number of ailments. We reviewed the potential therapeutic effects and mechanisms of L. johnsonii in various diseases based on PubMed and the Web of Science databases. We obtained the information of 149 L. johnsonii from NCBI (as of 14 February 2023), and reviewed their comprehensive metadata, including information about the plasmids they contain. This review provides a basic characterization of different L. johnsonii and some of their potential therapeutic properties for various ailments. Although the mechanisms are not fully understood yet, it is hoped that they may provide some evidence for future studies. Furthermore, the antibiotic resistance of the various strains of L. johnsonii is not clear, and more complete and in-depth studies are needed. In summary, L. johnsonii presents significant research potential for the treatment or prevention of disease; however, more proof is required to justify its therapeutic application. An additional study on the antibiotic resistance genes it contains is also needed to reduce the antimicrobial resistance dissemination.
Collapse
Affiliation(s)
- Ziyi Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Lanlan Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Jiacheng Wu
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Yingmiao Pan
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200000, China
| | - Ziyun Li
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| |
Collapse
|
30
|
Huang T, Han J, Liu Y, Fei M, Du X, He K, Zhao A. Dynamic distribution of gut microbiota in posthatching chicks and its relationship with average daily gain. Poult Sci 2023; 102:103008. [PMID: 37598556 PMCID: PMC10462888 DOI: 10.1016/j.psj.2023.103008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
The colonization and development of gut microbiota are essential for the health and growth of chicks after hatching. However, the colonization and prevalence of gut microbiota have not been well characterized, and knowledge of which microbes and their relationship with average daily gain in chicks is still limited. This study characterized the dynamic succession of microbiota in the intestinal tract of chicks and investigated its relationship with daily weight gain. A total of 121 fecal samples across 7 time points from d 0 to 10 posthatching were collected from 19 chicks randomly selected from 1,950 chicks. Using 16S rRNA gene sequencing examined microbial composition of fecal samples. The observed species index of alpha diversity increased with age, gradually achieving stability at 3 d of age. The microbiota of chicks after hatching was primarily Clostridium_sensu_stricto_1 (34.49%), and its relative abundance diminishes with age. In contrast, Lactobacillus had a low relative abundance in the first 2 d after hatching and gradually increased with age. Predicted functional capacities found that the microbiota of early-stage posthatching (d 0 and 1 after hatching) was involved in metabolism, including amino acid metabolism, metabolism of cofactors and vitamins, and nitrogen metabolism. However, at the later stage posthatching (from d 3-10 after hatching), the intestinal microbial function was involved in carbohydrate metabolism, amino acid metabolism, cell growth and death, and methane metabolism. It was identified that 47 operational taxonomic units were associated with average daily gain of chicks, 12 of which were annotated with Lactobacillus and significantly positive associated with average daily gain. In addition, Clostridium_sensu_stricto_1 was significantly negatively associated with average daily gain. Taken together, we characterized the dynamic successions of intestinal microbiota in hatching chicks. The intestinal microbiota of chicks has an impact on the host average daily gain. Our findings should be instrumental in improving local chick production.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jie Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yongqi Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Meina Fei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xue Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ke He
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
31
|
Xiong X, Rao Y, Ma J, Wang Z, He Q, Gong J, Sheng W, Xu J, Zhu X, Tan Y, Yang Y. A catalog of microbial genes and metagenome-assembled genomes from the quail gut microbiome. Poult Sci 2023; 102:102931. [PMID: 37499616 PMCID: PMC10393819 DOI: 10.1016/j.psj.2023.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The gut microbiome plays an important role in quail feed efficiency, immunity, production, and even behavior. Gut microbial gene catalogs and reference genomes are important for understanding the quail gut microbiome. However, quail gut microbes are lacked sequenced genomes and functional information to date. In this study, we report the first catalog of the microbial genes and metagenome-assembled genomes (MAGs) in fecal and cecum luminal content samples from 3 quail breeds using deep metagenomic sequencing. We identified a total of 2,419,425 nonredundant genes in the quail genome catalog, and a total of 473 MAGs were reconstructed through binning analysis. At 95% average nucleotide identity, the 473 MAGs were clustered into 283 species-level genome bins (SGBs), of which 225 SGBs belonged to species without any available genomes in the current database. Based on the quail gene catalog and MAGs, we identified 142 discriminative bacterial species and 244 discriminative MAGs between Chinese yellow quails and Japanese quails. The discriminative MAGs suggested a strain-level difference in the gut microbial composition. Additionally, a total of 25 Kyoto Encyclopedia of Genes and Genomes functional terms and 88 carbohydrate-active enzymes were distinctly enriched between Chinese yellow quails and Japanese quails. Most of the different species and MAGs were significantly interrelated with the shifts in the functional capacities of the quail gut microbiome. Taken together, we constructed a quail gut microbial gene catalog and enlarged the reference of quail gut microbial genomes. The results of this study provide a powerful and invaluable resource for quail gut microbiome-related research.
Collapse
Affiliation(s)
- Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China.
| | - Yousheng Rao
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jinge Ma
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Zhangfeng Wang
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Qin He
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jishang Gong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Wentao Sheng
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Xuenong Zhu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Yuwen Tan
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Yanbei Yang
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| |
Collapse
|
32
|
Campos PM, Schreier LL, Proszkowiec-Weglarz M, Dridi S. Cecal microbiota composition differs under normal and high ambient temperatures in genetically distinct chicken lines. Sci Rep 2023; 13:16037. [PMID: 37749169 PMCID: PMC10519933 DOI: 10.1038/s41598-023-43123-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
Modern broilers, selected for high growth rate, are more susceptible to heat stress (HS) as compared to their ancestral jungle fowl (JF). HS affects epithelia barrier integrity, which is associated with gut microbiota. The aim of this study was to determine the effect of HS on the cecal luminal (CeL) and cecal mucosal (CeM) microbiota in JF and three broiler populations: Athens Canadian Random Bred (ACRB), 1995 Random Bred (L1995), and Modern Random Bred (L2015). Broiler chicks were subjected to thermoneutral TN (24 °C) or chronic cyclic HS (8 h/day, 36 °C) condition from day 29 until day 56. HS affected richness in CeL microbiota in a line-dependent manner, decreasing richness in slow-growing JF and ACRB lines, while increasing richness in faster-growing L1995 and L2015. Microbiota were distinct between HS and TN conditions in CeL microbiota of all four lines and in CeM microbiota of L2015. Certain bacterial genera were also affected in a line-dependent manner, with HS tending to increase relative abundance in CeL microbiota of slow-growing lines, while decreases were common in fast-growing lines. Predictive functional analysis suggested a greater impact of HS on metabolic pathways in L2015 compared to other lines.
Collapse
Affiliation(s)
- Philip M Campos
- USDA-ARS Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), 1299 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, 10300 Baltimore Avenue, Bldg. 307, BARC-East, Beltsville, MD, 20705, USA
- USDA-ARS, NEA Bioinformatics, Statistics Group, 10300 Baltimore Ave, Bldg. 003, Rooms 229E, 330, 331; BARC-West, Beltsville, MD, 20705, USA
| | - Lori L Schreier
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, 10300 Baltimore Avenue, Bldg. 307, Room 304, BARC-East, Beltsville, MD, 20705, USA
| | - Monika Proszkowiec-Weglarz
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, 10300 Baltimore Avenue, Bldg. 307, Room 335, BARC-East, Beltsville, MD, 20705, USA.
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| |
Collapse
|
33
|
Ameer A, Cheng Y, Saleem F, Uzma, McKenna A, Richmond A, Gundogdu O, Sloan WT, Javed S, Ijaz UZ. Temporal stability and community assembly mechanisms in healthy broiler cecum. Front Microbiol 2023; 14:1197838. [PMID: 37779716 PMCID: PMC10534011 DOI: 10.3389/fmicb.2023.1197838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
In recent years, there has been an unprecedented advancement in in situ analytical approaches that contribute to the mechanistic understanding of microbial communities by explicitly incorporating ecology and studying their assembly. In this study, we have analyzed the temporal profiles of the healthy broiler cecal microbiome from day 3 to day 35 to recover the stable and varying components of microbial communities. During this period, the broilers were fed three different diets chronologically, and therefore, we have recovered signature microbial species that dominate during each dietary regime. Since broilers were raised in multiple pens, we have also parameterized these as an environmental condition to explore microbial niches and their overlap. All of these analyses were performed in view of different parameters such as body weight (BW-mean), feed intake (FI), feed conversion ratio (FCR), and age (days) to link them to a subset of microbes that these parameters have a bearing upon. We found that gut microbial communities exhibited strong and statistically significant specificity for several environmental variables. Through regression models, genera that positively/negatively correlate with the bird's age were identified. Some short-chain fatty acids (SCFAs)-producing bacteria, including Izemoplasmatales, Gastranaerophilales, and Roseburia, have a positive correlation with age. Certain pathogens, such as Escherichia-Shigella, Sporomusa, Campylobacter, and Enterococcus, negatively correlated with the bird's age, which indicated a high disease risk in the initial days. Moreover, the majority of pathways involved in amino acid biosynthesis were also positively correlated with the bird's age. Some probiotic genera associated with improved performance included Oscillospirales; UCG-010, Shuttleworthia, Bifidobacterium, and Butyricicoccaceae; UCG-009. In general, predicted antimicrobial resistance genes (piARGs) contributed at a stable level, but there was a slight increase in abundance when the diet was changed. To the best of the authors' knowledge, this is one of the first studies looking at the stability, complexity, and ecology of natural broiler microbiota development in a temporal setting.
Collapse
Affiliation(s)
- Aqsa Ameer
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Youqi Cheng
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Farrukh Saleem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Uzma
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - William T. Sloan
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Sundus Javed
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Umer Zeeshan Ijaz
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
34
|
He Z, Liu R, Wang M, Wang Q, Zheng J, Ding J, Wen J, Fahey AG, Zhao G. Combined effect of microbially derived cecal SCFA and host genetics on feed efficiency in broiler chickens. MICROBIOME 2023; 11:198. [PMID: 37653442 PMCID: PMC10472625 DOI: 10.1186/s40168-023-01627-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Improving feed efficiency is the most important goal for modern animal production. The regulatory mechanisms of controlling feed efficiency traits are extremely complex and include the functions related to host genetics and gut microbiota. Short-chain fatty acids (SCFAs), as significant metabolites of microbiota, could be used to refine the combined effect of host genetics and gut microbiota. However, the association of SCFAs with the gut microbiota and host genetics for regulating feed efficiency is far from understood. RESULTS In this study, 464 broilers were housed for RFI measuring and examining the host genome sequence. And 300 broilers were examined for cecal microbial data and SCFA concentration. Genome-wide association studies (GWAS) showed that four out of seven SCFAs had significant associations with genome variants. One locus (chr4: 29414391-29417189), located near or inside the genes MAML3, SETD7, and MGST2, was significantly associated with propionate and had a modest effect on feed efficiency traits and the microbiota. The genetic effect of the top SNP explained 8.43% variance of propionate. Individuals with genotype AA had significantly different propionate concentrations (0.074 vs. 0.131 μg/mg), feed efficiency (FCR: 1.658 vs. 1.685), and relative abundance of 14 taxa compared to those with the GG genotype. Christensenellaceae and Christensenellaceae_R-7_group were associated with feed efficiency, propionate concentration, the top SNP genotypes, and lipid metabolism. Individuals with a higher cecal abundance of these taxa showed better feed efficiency and lower concentrations of caecal SCFAs. CONCLUSION Our study provides strong evidence of the pathway that host genome variants affect the cecal SCFA by influencing caecal microbiota and then regulating feed efficiency. The cecal taxa Christensenellaceae and Christensenellaceae_R-7_group were identified as representative taxa contributing to the combined effect of host genetics and SCFAs on chicken feed efficiency. These findings provided strong evidence of the combined effect of host genetics and gut microbial SCFAs in regulating feed efficiency traits. Video Abstract.
Collapse
Affiliation(s)
- Zhengxiao He
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengjie Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiao Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jumei Zheng
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiqiang Ding
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Alan G Fahey
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
35
|
Paul SS, Rama Rao SV, Chatterjee RN, Raju MVLN, Mahato AK, Prakash B, Yadav SP, Kannan A, Reddy GN, Kumar V, Kumar PSP. An Immobilized Form of a Blend of Essential Oils Improves the Density of Beneficial Bacteria, in Addition to Suppressing Pathogens in the Gut and Also Improves the Performance of Chicken Breeding. Microorganisms 2023; 11:1960. [PMID: 37630519 PMCID: PMC10459846 DOI: 10.3390/microorganisms11081960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial growth promoters (AGP) are used in chicken production to suppress pathogens in the gut and improve performance, but such products tend to suppress beneficial bacteria while favoring the development and spread of antimicrobial resistance. A green alternative to AGP with the ability to suppress pathogens, but with an additional ability to spare beneficial gut bacteria and improve breeding performance is urgently required. We investigated the effect of supplementation of a blend of select essential oils (cinnamon oil, carvacrol, and thyme oil, henceforth referred to as EO; at two doses: 200 g/t and 400 g/t feed) exhibiting an ability to spare Lactobacillus while exhibiting strong E. coli inhibition ability under in vitro tests and immobilized in a sunflower oil and calcium alginate matrix, to broiler chickens and compared the effects with those of a probiotic yeast (Y), an AGP virginiamycin (V), and a negative control (C). qPCR analysis of metagenomic DNA from the gut content of experimental chickens indicated a significantly (p < 0.05) lower density of E. coli in the EO groups as compared to other groups. Amplicon sequence data of the gut microbiome indicated that all the additives had specific significant effects (DESeq2) on the gut microbiome, such as enrichment of uncultured Clostridia in the V and Y groups and uncultured Ruminococcaceae in the EO groups, as compared to the control. LEfSe analysis of the sequence data indicated a high abundance of beneficial bacteria Ruminococcaceae in the EO groups, Faecalibacterium in the Y group, and Blautia in the V group. Supplementation of the immobilized EO at the dose rate of 400 g/ton feed improved body weight gain (by 64 g/bird), feed efficiency (by 5 points), and cellular immunity (skin thickness response to phytoheamagglutinin lectin from Phaseolus vulgaris by 58%) significantly (p < 0.05), whereas neither yeast nor virginiamycin showed a significant effect on performance parameters. Expression of genes associated with gut barrier and immunity function such as CLAUDIN1, IL6, IFNG, TLR2A, and NOD1 were significantly higher in the EO groups. This study showed that the encapsulated EO mixture can improve the density of beneficial microbes in the gut significantly, with concomitant suppression of potential pathogens such as E.coli and improved performance and immunity, and hence, has a high potential to be used as an effective alternative to AGP in poultry.
Collapse
Affiliation(s)
- Shyam Sundar Paul
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Savaram Venkata Rama Rao
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Rudra Nath Chatterjee
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Mantena Venkata Lakshmi Narasimha Raju
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Ajay Kumar Mahato
- The Centre for DNA Fingerprinting and Diagnostics, Department of Biotechnology, Hyderabad 500039, India;
| | - Bhukya Prakash
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Satya Pal Yadav
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Alagarsamy Kannan
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Godumagadda Narender Reddy
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Vikas Kumar
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| | - Prakki Santosh Phani Kumar
- Directorate of Poultry Research, Poultry Nutrition, Indian Council of Agricultural Research (ICAR), Hyderabad 500030, India; (S.V.R.R.); (R.N.C.); (M.V.L.N.R.); (B.P.); (S.P.Y.); (A.K.); (G.N.R.); (V.K.); (P.S.P.K.)
| |
Collapse
|
36
|
Dong L, Li Y, Zhang Y, Zhang Y, Ren J, Zheng J, Diao J, Ni H, Yin Y, Sun R, Liang F, Li P, Zhou C, Yang Y. Effects of organic zinc on production performance, meat quality, apparent nutrient digestibility and gut microbiota of broilers fed low-protein diets. Sci Rep 2023; 13:10803. [PMID: 37402861 DOI: 10.1038/s41598-023-37867-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
The high cost of feed and nitrogen pollution caused by high-protein diets have become major challenges restricting sustainable development in China's animal husbandry sector. Properly reducing protein levels and improving protein utilization in feed are effective approaches to solving this problem. To determine the optimal dose of methionine hydroxyl analogue chelated zinc (MHA-Zn) in broiler diets with a 1.5% reduction in crude protein (CP), a total of 216 1-day-old broilers were randomly assigned into 4 groups (each group consisted of 3 replications with 18 broilers per replicate), and growth and development indexes were assessed after 42 days. The broilers in control group were fed a basic diet, whereas those in the three test groups were fed diets with a 1.5% reduction in CP. The results showed no significant difference in the edible parts of broilers between low-protein (LP) diet group (90 mg/kg MHA-Zn) and normal diet group (p > 0.05), and adding 90 mg/kg MHA-Zn to LP diet significantly improved ileum morphology and apparent total tract digestibility (ATTD) of nutrient (p < 0.01; p < 0.05). A 16S rRNA sequencing analysis indicated that supplementing the LP diet with 90 mg/kg MHA-Zn was adequate for production performance of broilers and promoted beneficial bacteria in the cecum (Lactobacillus, Butyricoccus, Oscillospira, etc.) (p < 0.01). In summary, adding an optimal dose of organic zinc (90 mg/kg MHA-Zn) in low protein diets led to enhanced production performance of broilers and optimized cecum microbiota. Additionally, the reduction of crude protein consumption in broiler production proved to be a cost-effective measure, while also mitigated nitrogen pollutant emissions in the environment.
Collapse
Affiliation(s)
- Liping Dong
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yumei Li
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yonghong Zhang
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yan Zhang
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, 132109, China
| | - Jing Ren
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Jinlei Zheng
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Jizhe Diao
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Hongyu Ni
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yijing Yin
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Ruihong Sun
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Fangfang Liang
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Peng Li
- International Trading (Shanghai) Co., Ltd., Shanghai, 200080, China
| | - Changhai Zhou
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China.
| | - Yuwei Yang
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China.
| |
Collapse
|
37
|
Yan Y, Zhang J, Chen X, Wang Z. Effects of Black Soldier Fly Larvae ( Hermetia illucens Larvae) Meal on the Production Performance and Cecal Microbiota of Hens. Vet Sci 2023; 10:vetsci10050364. [PMID: 37235447 DOI: 10.3390/vetsci10050364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The effects of Hermetia illucens larvae meal (HILM) as a feed supplement on production performance and cecal microflora were studied in 900 Hy-line Brown laying hens. Laying hens (60 weeks old) were randomly divided into four groups. Each group had five replicates, and each replicate had 45 hens. The control group was fed with a corn-soybean-based diet, and the experimental groups were fed with 1% HILM, 2% HILM, or 3% HILM. Results were as follows: (1) With the increase in HILM level, the laying rate increased linearly (p ≤ 0.05), and the feed/egg and cracked-egg rate decreased linearly (p ≤ 0.05). (2) Community composition analysis showed that the dominant bacteria in each group were Bacteroidetes and Firmicutes, followed by Actinobacteria and Proteobacteria, which accounted for more than 97% of 16S rRNA gene sequence of the total cecal bacteria. (3) Alpha diversity analysis at the operational taxonomic unit classification level showed that the HILM-addition groups had higher community richness and community diversity than the control group. (4) Principal co-ordinates analysis showed that the cecum samples in each group were significantly separated (p ≤ 0.05). At the phylum level, the relative abundance of Bacteroidetes in the HILM addition groups was significantly lower than that in the control group (p < 0.001), and the relative abundance of Firmicutes in the HILM addition groups was significantly higher than that in the control group (p < 0.001). In conclusion, dietary HILM supplementation had a significant effect on the production performance and cecal microflora of laying hens at the late laying period under the conditions of this experiment but had no adverse effect on the intestinal dominant flora.
Collapse
Affiliation(s)
- Yan Yan
- Henan Provincial Academician Workstation of Feed Resource Development and Healthy Livestock, Department of Animal Science and Technology, Henan University of Science and Technology, Luoyang 271023, China
| | - Jinjin Zhang
- Henan Provincial Academician Workstation of Feed Resource Development and Healthy Livestock, Department of Animal Science and Technology, Henan University of Science and Technology, Luoyang 271023, China
| | - Xiaochen Chen
- Henan Provincial Academician Workstation of Feed Resource Development and Healthy Livestock, Department of Animal Science and Technology, Henan University of Science and Technology, Luoyang 271023, China
| | - Zhanbin Wang
- Henan Provincial Academician Workstation of Feed Resource Development and Healthy Livestock, Department of Animal Science and Technology, Henan University of Science and Technology, Luoyang 271023, China
| |
Collapse
|
38
|
Sun H, Xu W, Gu T, Sun J, Li C, Chen L, Tian Y, Li G, Lu L, Zeng T. Association of residual feed intake with intestinal microbiome and metabolome in laying period of ducks. Front Microbiol 2023; 14:1138914. [PMID: 37250027 PMCID: PMC10213451 DOI: 10.3389/fmicb.2023.1138914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Residual feed intake (RFI) is a indicator to evaluate animal feed. This experiment was explored to study the relationship between intestinal microbiome and metabolome of ducks with different residual feed intake during laying period. Methods A total of 300 Shaoxing ducks aged 42 weeks were randomly selected and fed a diet of 60 d. At the end of the trial, 20 samples were selected according to the phenotype of RFI and divided into two groups (HRFI and LRFI). The cecal microbiota composition was explored by 16S ribosomal RNA gene sequencing and rectal metabolomics uses liquid chromatography-mass spectrometry (LC-MS) to identify the composition of metabolites in a non-targeted manner. Results Results show feed intake and feed conversion ratio in the group HRFI were significantly higher than those in the group LRFI (p < 0.05). Chao1 indices were higher in the group LRFI than in the HRFI (p < 0.05), Shannon and Simpson indices were higher in the group LRFI than in the HRFI (p < 0.01). After linear discriminant analysis effect size (p < 0.05, LDA score > 3), Rikenellaceae, Rikenellaceae_RC9_gut_group, Lactobacillales and Ruminococcus_2, etc. were significantly enriched in the group LRFI at the genus level, while Prevotellaceae_NK3B31_group and Bacteria were significantly enriched in the group HRFI. After LC-MS analysis we found 338 metabolic difference products and 10 metabolic pathways, including the ABC transporter system, cysteine and methionine metabolism, arginine and proline metabolism, and vitamin B6 metabolism, were identified to be associated with the significantly differentially expressed between the groups LRFI and HRFI (p < 0.05). We hypothesize that the difference between ducks with different RFIs is mainly due to the fact that ducks with LRFI have more SCFAs-producing bacteria in their gut microorganisms, which regulate the RFI of animals. This process we found that Phascolarctobaterium and Anaerobiospirillum may provide energy for ABC transporter system by producing SCFAs, and regulate RFI to improve feed utilization efficiency. Discussion These results revealed the relationship between microbiome and metabonomics in laying ducks with different RFI, and provided theoretical basis for further study on the relationship between them.
Collapse
Affiliation(s)
- Hanxue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jing Sun
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chengfeng Li
- Hubei Shendan Health Food Co., Ltd., Xiaogan, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
39
|
Shterzer N, Sbehat Y, Poudel B, Rothschild N, Oloko OE, Headrick J, Petersen E, Druyan S, Mills E. Differences in gut bacterial community composition between modern and slower-growing broiler breeder lines: Implications of growth selection on microbiome composition. Front Physiol 2023; 14:1151151. [PMID: 37025381 PMCID: PMC10070808 DOI: 10.3389/fphys.2023.1151151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
In the last century broiler chicken lines have undergone an extensive breeding regime aimed primarily at growth and high meat yield. It is not known if breeding has also resulted in a change to the broiler breeder's associated gut microbiota. Here we compared the gut microbiota of 37-week-old commercial Cobb breeding dams with dams from a broiler Legacy line which has not undergone selection since 1986. The dams from both lines were kept together in the same shed under the same management protocol from day of hatch to avoid additional confounders. We chose this age to allow significant bacterial exchange, thus avoiding exposure dependent artifacts and so that we could compare dams at the same developmental state of adulthood and peak laying performance. Significant differences in the composition of the cecum bacterial communities were found. Bacteria of the genus Akkermansia, implicated in mucin degradation and associated with host metabolic health, accounted for 4.98% ± 5.04% of the Cobb cecum community, but were mostly absent from the ceca of the Legacy line dams. Inversely, Legacy dams had higher levels of Clostridiales, Lactobacillales and Aeromonadales. These results show that breeding has resulted in a change in the gut microbiota composition, likely by changing the physiological conditions in the mucosa. It remains unclear if changes in gut microbiota composition are a part of the mechanism affecting growth or are a secondary result of other physiological changes accelerating growth. Therefore, the identification of these changes opens the door to further targeted research.
Collapse
Affiliation(s)
- Naama Shterzer
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yara Sbehat
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Binita Poudel
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nir Rothschild
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Olanrewaju Eunice Oloko
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon, Israel
| | - Joseph Headrick
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Erik Petersen
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Shelly Druyan
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon, Israel
| | - Erez Mills
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
40
|
Papouskova A, Rychlik I, Harustiakova D, Cizek A. Research Note: A mixture of Bacteroides spp. and other probiotic intestinal anaerobes reduces colonization by pathogenic E. coli strain O78:H4-ST117 in newly hatched chickens. Poult Sci 2023; 102:102529. [PMID: 36805398 PMCID: PMC9969313 DOI: 10.1016/j.psj.2023.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
An experimental group of one-day-old chicken from a commercial hatchery was given a defined mixture of 7 gut anaerobes. The next day the chicks were inoculated by an APEC strain O78:H4-ST117 resistant to ciprofloxacin, alongside with the control group and monitored for 4 wk after the inoculation for the presence of the colonizing strains and ciprofloxacin-resistant E. coli. Significant reduction of colonization rates in the first 2 wk was recorded in the experimental group for the numbers of ciprofloxacin-resistant E. coli. The results show that colonization of chicken by defined anaerobic mixtures may provide a decisive protection during the critical period of the chicken intestinal microflora development.
Collapse
Affiliation(s)
- Aneta Papouskova
- Institute of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, The Czech Republic.
| | - Ivan Rychlik
- Veterinary Research Institute, Brno, The Czech Republic
| | - Danka Harustiakova
- RECETOX, Faculty of Science, Masaryk University, Brno, The Czech Republic
| | - Alois Cizek
- Institute of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, The Czech Republic
| |
Collapse
|
41
|
Li X, Sun R, Liu Q, Gong Y, Ou Y, Qi Q, Xie Y, Wang X, Hu C, Jiang S, Zhao G, Wei L. Effects of dietary supplementation with dandelion tannins or soybean isoflavones on growth performance, antioxidant function, intestinal morphology, and microbiota composition in Wenchang chickens. Front Vet Sci 2023; 9:1073659. [PMID: 36686185 PMCID: PMC9846561 DOI: 10.3389/fvets.2022.1073659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Many benefits have been found in supplementing tannins or soybean isoflavones to poultry, including increased body weight gain, antioxidant activity, and better intestinal morphology. However, few studies tested the influence of dandelion tannins or soybean isoflavones supplementation on Wenchang chickens. This study investigates the effects of dietary supplementation with dandelion tannins or soybean isoflavones on the growth performance, antioxidant function, and intestinal health of female Wenchang chickens. A total of 300 chickens were randomly divided into five groups, with six replicates per group and 10 broilers per replicate. The chickens in the control group (Con) were fed a basal diet; the four experimental groups were fed a basal diet with different supplements: 300 mg/kg of dandelion tannin (DT1), 500 mg/kg of dandelion tannin (DT2), 300 mg/kg of soybean isoflavone (SI1), or 500 mg/kg of soybean isoflavone (SI2). The experiment lasted 40 days. The results showed that the final body weight (BW) and average daily gain (ADG) were higher in the DT2 and SI1 groups than in the Con group (P < 0.05). In addition, dietary supplementation with dandelion tannin or soybean isoflavone increased the level of serum albumin (P <0.05); the concentrations of serum aspartate aminotransferase and glucose were significantly higher in the SI1 group (P < 0.05) than in the Con group and the concentration of triglycerides in the DT1 group (P < 0.05). The serum catalase (CAT) level was higher in the DT1 and SI1 groups than in the Con group (P < 0.05). The ileum pH value was lower in the DT2 or SI1 group than in the Con group (P < 0.05). The jejunum villus height and mucosal muscularis thickness were increased in the DT2 and SI1 groups (P < 0.05), whereas the jejunum crypt depth was decreased in the DT1 or DT2 group compared to the Con group (P < 0.05). In addition, the messenger RNA (mRNA) expression level of zonula occludens 1 (ZO-1) in the duodenum of the SI1 group and those of occludin, ZO-1, and claudin-1 in the ileum of the DT2 and SI1 groups were upregulated (P < 0.05) compared to the Con group. Moreover, the DT2 and SI1 groups exhibited reduced intestinal microbiota diversity relative to the Con group, as evidenced by decreased Simpson and Shannon indexes. Compared to the Con group, the relative abundance of Proteobacteria was lower and that of Barnesiella was higher in the DT2 group (P < 0.05). Overall, dietary supplementation with 500 mg/kg of dandelion tannin or 300 mg/kg of soybean isoflavone improved the growth performance, serum biochemical indexes, antioxidant function, and intestinal morphology and modulated the cecal microbiota composition of Wenchang chickens.
Collapse
Affiliation(s)
- Xiang Li
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China,Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Ruiping Sun
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Quanwei Liu
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China
| | - Yuanfang Gong
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Yangkun Ou
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Qi Qi
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yali Xie
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xiuping Wang
- Hainan (Tanniu) Wenchang Chicken Co., Ltd., Haikou, China
| | - Chenjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guiping Zhao
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China,Guiping Zhao ✉
| | - Limin Wei
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China,Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China,*Correspondence: Limin Wei ✉
| |
Collapse
|
42
|
Wang H, Fu L, Zhang JY, Kim IH. Bacillus subtilis and Pichia farinose mixture improves growth performance and nutrient absorption capacity in broiler chicks. Front Vet Sci 2023; 10:1086349. [PMID: 37035823 PMCID: PMC10076679 DOI: 10.3389/fvets.2023.1086349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction This study evaluated the effects of dietary supplementation of Bacillus subtilis and Pichia farinose mixture (BPM) on growth performance, apparent ileal digestibility, cecal bacteria counts, small intestinal morphology and digestive enzymes activities, and jejunal nutrient transporters gene expression in broiler chicks. Methods A total of 768 one-day-old Ross 308 broiler chicks were randomly Q18 assigned into 3 groups based on the initial body weight (42.00 ± 0.08 g). The experimental periods were 35 days. There were 16 replicates per group and 16 birds per cage. Dietary treatments included a basal diet supplemented with 0, 0.1, or 0.2% BPM to form CON, BPM0.1 (consisting Bacillus subtilis with 1.0 × 107 viable spore and Pichia farinose with 1.0 × 107 viable spore per kg diet), and BPM0.2 (consisting Bacillus subtilis with 2.0 × 107 viable spore and Pichia farinose with 2.0 × 107 viable spore per kg diet) groups. Results and discussion Dietary supplementation of graded levels of BPM has positive effects on growth performance of broiler chicks, manifesting in the increase of body weight gain during days 1-35 as well as the decrease of feed conversion ratio during days 1-7, 21-35, and 1-35. Moreover, BPM supplementation positively improved ileal energy and crude protein digestibility, increased Lactobacillus counts, optimized intestinal morphology, enhanced intestinal digestive enzymes activities, and upregulated jejunal SGLT-1, GLUT-2, and PEPT-1 expression. Therefore, BPM supplementation improved growth performance of broiler chicks, which was partially related to the improvement in intestinal nutrient absorption capacity.
Collapse
Affiliation(s)
- Huan Wang
- School of Biology and Food Engineering, Chuzhou University, Chuzhou, China
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
- China Light Industry Hesheng Technology Co., Ltd, Chuzhou, China
- *Correspondence: Huan Wang
| | - Lu Fu
- School of Biology and Food Engineering, Chuzhou University, Chuzhou, China
| | | | - In Ho Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
- In Ho Kim
| |
Collapse
|
43
|
Abdel-Kafy ESM, Youssef SF, Magdy M, Ghoneim SS, Abdelatif HA, Deif-Allah RA, Abdel-Ghafar YZ, Shabaan HMA, Liu H, Elokil A. Gut Microbiota, Intestinal Morphometric Characteristics, and Gene Expression in Relation to the Growth Performance of Chickens. Animals (Basel) 2022; 12:3474. [PMID: 36552394 PMCID: PMC9774407 DOI: 10.3390/ani12243474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
this study aimed to investigate the growth mechanism in a local breed of chickens by comparing the highest weight (HW) and the lowest weight in their microbiota, histological characteristics, and gene expression. Golden Montazah chickens, an Egyptian breed, were reared until they were 49 days old. All of the birds were fed ad libitum by a starter diet from day 1 until day 21, followed by a grower diet from day 21 to the end of the study. At 49 days old, the forty-eight birds with the heaviest body weight (HW) and the lightest body weight (LW) were chosen. Blood biochemical and histological morphometric parameters, electron microscopy, and intestinal nutrient transporter gene expression were studied in the sampled jejunum. The microbial composition and functions of the content and mucosa in HW and LW chickens were studied using 16S rRNA gene sequencing. The histological morphometric parameters were all more significantly (p < 0.05) increased in the HW chickens than in the LW chickens. Total protein, albumin, and triglycerides in serum were significantly higher (p < 0.05) in the HW chickens than in the LW chickens. The microbiome profile in the gut showed that Microbacterium and Sphingomonas were positively correlated with the body weights. In the local breed, there were significant differences in the intestinal microstructure which could enhance the growth mechanism and body weight. Our findings showed that some microbial components were significantly associated with body weight and their interactions with the host could be inferred to explain why these interactions might alter the host’s metabolic responses. Further investigation into combining bioinformatics with lab experiments in chickens will help us to understand how gut bacteria can change the host’s metabolism by special metabolic features in the gastrointestinal system.
Collapse
Affiliation(s)
- El-Sayed M. Abdel-Kafy
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza 12651, Egypt
| | - Sabbah F. Youssef
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza 12651, Egypt
| | - Mahmoud Magdy
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Shereen S. Ghoneim
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza 12651, Egypt
| | - Hesham A. Abdelatif
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza 12651, Egypt
| | - Randa A. Deif-Allah
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza 12651, Egypt
| | - Yasmein Z. Abdel-Ghafar
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza 12651, Egypt
| | - Hoda M. A. Shabaan
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza 12651, Egypt
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Abdelmotaleb Elokil
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
44
|
Zhou Q, Lan F, Gu S, Li G, Wu G, Yan Y, Li X, Jin J, Wen C, Sun C, Yang N. Genetic and microbiome analysis of feed efficiency in laying hens. Poult Sci 2022; 102:102393. [PMID: 36805401 PMCID: PMC9958098 DOI: 10.1016/j.psj.2022.102393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Improving feed efficiency is an important target for poultry breeding. Feed efficiency is affected by host genetics and the gut microbiota, but many of the mechanisms remain elusive in laying hens, especially in the late laying period. In this study, we measured feed intake, body weight, and egg mass of 714 hens from a pedigreed line from 69 to 72 wk of age and calculated the residual feed intake (RFI) and feed conversion ratio (FCR). In addition, fecal samples were also collected for 16S ribosomal RNA gene sequencing (V4 region). Genetic analysis was then conducted in DMU packages by using AI-REML with animal model. Moderate heritability estimates for FCR (h2 = 0.31) and RFI (h2 = 0.52) were observed, suggesting that proper selection programs can directly improve feed efficiency. Genetically, RFI was less correlated with body weight and egg mass than that of FCR. The phenotypic variance explained by gut microbial variance is defined as the microbiability (m2). The microbiability estimates for FCR (m2 = 0.03) and RFI (m2 = 0.16) suggested the gut microbiota was also involved in the regulation of feed efficiency. In addition, our results showed that the effect of host genetics on fecal microbiota was minor in three aspects: 1) microbial diversity indexes had low heritability estimates, and genera with heritability estimates more than 0.1 accounted for only 1.07% of the tested fecal microbiota; 2) the genetic relationship correlations between host genetics and different microbial distance were very weak, ranging from -0.0057 to -0.0003; 3) the microbial distance between different kinships showed no significant difference. Since the RFI has the highest microbiability, we further screened out three genera, including Anaerosporobacter, Candidatus Stoquefichus, and Fournierella, which were negatively correlated with RFI and played positive roles in improving the feed efficiency. These findings contribute to a great understanding of the genetic background and microbial influences on feed efficiency.
Collapse
Affiliation(s)
- Qianqian Zhou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Fangren Lan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Shuang Gu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Guangqi Li
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Guiqin Wu
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Yiyuan Yan
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Xiaochang Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiaming Jin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
45
|
Effects of Dietary Oregano Essential Oil on Cecal Microorganisms and Muscle Fatty Acids of Luhua Chickens. Animals (Basel) 2022; 12:ani12223215. [PMID: 36428443 PMCID: PMC9686890 DOI: 10.3390/ani12223215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
This experiment was conducted to investigate the effects of oregano essential oil on the cecal microorganisms and muscle fatty acids of Luhua chickens. One hundred and twenty 49-day-old healthy dewormed Luhua chickens were randomly divided into four groups with three replicates per group and ten chickens per replicate. The corn−quinoa and soybean meal diets were supplemented with 0 (Q8 group), 50 (QO50 group), 100 (QO100 group) and 150 mg·kg−1 (QO150 group) of oregano essential oil, respectively, and the experiment lasted for 75 days. The composition of intestinal flora was detected by Illumina sequencing of the 16S rRNA V4 region, and the composition and content of fatty acids in the muscles were analyzed by gas chromatography. The results showed that dietary oregano essential oil can effectively increase the contents of elaidic acid (C18:ln9t), polyunsaturated fatty acids (PUFAs) and n-3 polyunsaturated fatty acids (n-3 PUFAs) in breast muscle tissues. However, the fatty acid composition and PUFA content in leg muscle tissues were not significantly improved. According to a 16S rRNA high-throughput sequencing analysis, dietary oregano essential oil supplementation with a certain concentration can change the cecal microbial community composition of broilers. At the phylum level, Elusimicrobia in the QO150 group was significantly lower than that in Q8 group (p < 0.05). At the genus level, Phascolarctobacterium, Parasutterella and Bilophila in the experimental groups (QO50, QO100 and QO150) were significantly lower than those in the Q8 group (p < 0.05). An enrichment analysis of the microbial function found that the amino acid metabolism, energy metabolism, metabolism, signal transduction and genetic information processing were mainly enriched in the experimental groups, which promoted the digestion and absorption of nutrients and enhanced intestinal barrier functioning. An analysis of the association between fatty acids and microbes found that the abundance of microbiota was significantly correlated with partially saturated fatty acids (SFAs) and unsaturated fatty acids (UFAs) (p < 0.05). In conclusion, the dietary addition of oregano essential oil can effectively improve cecal microbial community composition, promote the digestion and absorption of nutrients, and enhance intestinal barrier functioning. It can significantly improve the content of some fatty acids, and there was a certain correlation between caecum microorganisms and fatty acid deposition in muscles.
Collapse
|
46
|
Montso PK, Mnisi CM, Ayangbenro AS. Caecal microbial communities, functional diversity, and metabolic pathways in Ross 308 broiler chickens fed with diets containing different levels of Marama (Tylosema esculentum) bean meal. Front Microbiol 2022; 13:1009945. [PMID: 36338038 PMCID: PMC9630332 DOI: 10.3389/fmicb.2022.1009945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
The caecum of a chicken harbors complex microbial communities that play vital roles in feed digestion, nutrient absorption, and bird health. Understanding the caecal microbial communities could help improve feed utilization efficiency and chicken product quality and, ultimately, deliver sustainable poultry production systems. Thus, this study assessed the caecal microbial communities and their functional diversity and metabolic pathways in broilers reared on diets containing different levels of marama (Tylosema esculentum) bean meal (MBM). A total of 350, day-old male Ross 308 broiler chicks were randomly allocated to five dietary treatments formulated as follows: a soybean-based standard broiler diet (Con_BC); Con_BC in which soybean products were substituted with 7 (M7_BC), 14 (M14_BC), 21 (M21_BC), and 28% (M28_BC) MBM. The dietary treatments were distributed to 35 replicate pens (10 birds each). After 42 days of feeding, the birds were slaughtered and thereafter caecal samples were collected from each replicate pen. Subsequently, the samples were pooled per treatment group for metagenomics sequence analysis. The results revealed that the bacteria domain (99.11%), with Bacteroides, Firmicutes and Proteobacteria being the most prominent phyla (48.28, 47.52, and 4.86%, respectively). Out of 846 genera obtained, the most abundant genera were Bacteroides, Clostridium, Alistipes, Faecalibacterium, Ruminococcus, Eubacterium, and Parabacterioides. At the genus level, the alpha-diversity showed significant (p < 0.05) difference across all treatment groups. Based on the SEED subsystem, 28 functional categories that include carbohydrates (14.65%), clustering-based subsystems (13.01%), protein metabolism (10.12%) were obtained. The KO analysis revealed 183 endogenous pathways, with 100 functional pathways associated with the metabolism category. Moreover, 15 pathways associated with carbohydrates were observed. The glycolysis/gluconeogenesis, galactose metabolism, pyruvate metabolism (15.32, 12.63, and 11.93%) were the most abundant pathways. Moreover, glycoside hydrolases (GH1, GH5, and GH13) were the most prominent carbohydrates-active enzymes. Therefore, results presented in this study suggest that dietary MB meal can improve microbial communities and their functional and metabolic pathways, which may help increase poultry production.
Collapse
Affiliation(s)
- Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Peter Kotsoana Montso,
| | - Caven Mguvane Mnisi
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
47
|
Yang X, Tai Y, Ma Y, Xu Z, Hao J, Han D, Li J, Deng X. Cecum microbiome and metabolism characteristics of Silky Fowl and White Leghorn chicken in late laying stages. Front Microbiol 2022; 13:984654. [PMID: 36338096 PMCID: PMC9633115 DOI: 10.3389/fmicb.2022.984654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Cecal microflora plays a key role in the production performance and immune function of chickens. White Leghorn (WL) is a well-known commercial layer line chicken with high egg production rate. In contrast, Silky Fowl (SF), a Chinese native chicken variety, has a low egg production rate, but good immune performance. This study analyzed the composition of cecal microbiota, metabolism, and gene expression in intestinal tissue of these varieties and the correlations among them. Significant differences were observed in the cecal microbes: Bacteroides was significantly enriched in WL, whereas Veillonellaceae and Parabacteroides were significantly enriched in SF. Carbohydrate biosynthesis and metabolism pathways were significantly upregulated in WL cecum, which might provide more energy to the host, leading to persistently high levels of egg production. The higher Parabacteroides abundance in SF increased volicitin content, enhanced α-linolenic acid metabolism, and significantly negatively correlated with metabolites of propanoate metabolism and carbohydrate metabolism. Genes related to lipid metabolism, immunity, and melanogenesis were significantly upregulated in the SF cecum, regulating lipid metabolism, and participating in the immune response, while genes related to glucose metabolism and bile acid metabolism were expressed at higher levels in WL, benefiting energy support. This study provided a mechanism for intestinal microorganisms and metabolic pathways to regulate chicken egg-laying performance and immunity.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yurong Tai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuhao Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zihan Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaqi Hao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junying Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuemei Deng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Ren Z, Fan H, Gu S, Liu H, Wu Z, Wang H, Bao W, Wu S. Expression Analysis and the Roles of the Sec1 Gene in Regulating the Composition of Mouse Gut Microbiota. Genes (Basel) 2022; 13:1858. [PMID: 36292744 PMCID: PMC9601920 DOI: 10.3390/genes13101858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
The Sec1 gene encodes galactose 2-L-fucosyltransferase, whereas expression during development of the Sec1 gene mouse and its effect on the composition of the gut microbiota have rarely been reported. In this study, we examined Sec1 gene expression during mouse development, constructed Sec1 knockout mice, and sequenced their gut microbial composition. It was found that Sec1 was expressed at different stages of mouse development. Sec1 knockout mice have significantly higher intraperitoneal fat accumulation and body weight than wild-type mice. Analysis of gut microbial composition in Sec1 knockout mice revealed that at the phylum level, Bacteroidetes accounted for 68.8%and 68.3% of gut microbial composition in the Sec1-/- and Sec1+/+ groups, respectively, and Firmicutes accounted for 27.1% and 19.7%, respectively; while Firmicutes/Bacteroidetes were significantly higher in Sec1-/- mice than in Sec1+/+ mice (39.4% vs. 28.8%). In verucomicrobia, it was significantly higher in Sec1-/- mice than in Sec1+/+ group mice. At the family level, the dominant bacteria Prevotellaceae, Akkermansiaceae, Bacteroidaceae, and Lacilltobacaceae were found to be significantly reduced in the gut of Sec1-/- mice among Sec1+/+ gut microbes, while Lachnospiraceae, Ruminococcaceae, Rikenellaceae, Helicobacteraceae, and Tannerellaceae were significantly increased. Indicator prediction also revealed the dominant bacteria Akkermansiaceae and Lactobacillaceae in Sec1+/+ gut microorganisms, while the dominant bacteria Rikenellaceae, Marinifilaceae, ClostridialesvadinBB60aceae, Erysipelotrichaceae, Saccharimonadaceae, Clostridiaceae1, and Christensenellaceae in Sec1-/- group. This study revealed that the Sec1 gene was expressed in different tissues at different time periods in mice, and Sec1 knockout mice had significant weight gain, significant abdominal fat accumulation, and significant changes in gut microbial flora abundance and metabolic function, providing a theoretical basis and data support for the study of Sec1 gene function and effects on gut microbiota-related diseases.
Collapse
Affiliation(s)
- Zhanshi Ren
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shanshen Gu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haoyu Liu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
49
|
Roth C, Sims T, Rodehutscord M, Seifert J, Camarinha-Silva A. The active core microbiota of two high-yielding laying hen breeds fed with different levels of calcium and phosphorus. Front Physiol 2022; 13:951350. [PMID: 36213242 PMCID: PMC9539745 DOI: 10.3389/fphys.2022.951350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The nutrient availability and supplementation of dietary phosphorus (P) and calcium (Ca) in avian feed, especially in laying hens, plays a vital role in phytase degradation and mineral utilization during the laying phase. The required concentration of P and Ca peaks during the laying phase, and the direct interaction between Ca and P concentration shrinks the availability of both supplements in the feed. Our goal was to characterize the active microbiota of the entire gastrointestinal tract (GIT) (crop, gizzard, duodenum, ileum, caeca), including digesta- and mucosa-associated communities of two contrasting high-yielding breeds of laying hens (Lohmann Brown Classic, LB; Lohmann LSL-Classic, LSL) under different P and Ca supplementation levels. Statistical significances were observed for breed, GIT section, Ca, and the interaction of GIT section x breed, P x Ca, Ca x breed and P x Ca x breed (p < 0.05). A core microbiota of five species was detected in more than 97% of all samples. They were represented by an uncl. Lactobacillus (average relative abundance (av. abu.) 12.1%), Lactobacillus helveticus (av. abu. 10.8%), Megamonas funiformis (av. abu. 6.8%), Ligilactobacillus salivarius (av. abu. 4.5%), and an uncl. Fusicatenibacter (av. abu. 1.1%). Our findings indicated that Ca and P supplementation levels 20% below the recommendation have a minor effect on the microbiota compared to the strong impact of the bird’s genetic background. Moreover, a core active microbiota across the GIT of two high-yielding laying hen breeds was revealed for the first time.
Collapse
Affiliation(s)
- Christoph Roth
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Tanja Sims
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Markus Rodehutscord
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jana Seifert
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Amélia Camarinha-Silva
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- *Correspondence: Amélia Camarinha-Silva,
| |
Collapse
|
50
|
Tous N, Marcos S, Goodarzi Boroojeni F, Pérez de Rozas A, Zentek J, Estonba A, Sandvang D, Gilbert MTP, Esteve-Garcia E, Finn R, Alberdi A, Tarradas J. Novel strategies to improve chicken performance and welfare by unveiling host-microbiota interactions through hologenomics. Front Physiol 2022; 13:884925. [PMID: 36148301 PMCID: PMC9485813 DOI: 10.3389/fphys.2022.884925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Fast optimisation of farming practices is essential to meet environmental sustainability challenges. Hologenomics, the joint study of the genomic features of animals and the microbial communities associated with them, opens new avenues to obtain in-depth knowledge on how host-microbiota interactions affect animal performance and welfare, and in doing so, improve the quality and sustainability of animal production. Here, we introduce the animal trials conducted with broiler chickens in the H2020 project HoloFood, and our strategy to implement hologenomic analyses in light of the initial results, which despite yielding negligible effects of tested feed additives, provide relevant information to understand how host genomic features, microbiota development dynamics and host-microbiota interactions shape animal welfare and performance. We report the most relevant results, propose hypotheses to explain the observed patterns, and outline how these questions will be addressed through the generation and analysis of animal-microbiota multi-omic data during the HoloFood project.
Collapse
Affiliation(s)
- Núria Tous
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), Constantí, Spain
| | - Sofia Marcos
- Applied Genomics and Bioinformatics, University of the Basque Country (UPV/EHU, Bilbao, Spain
| | - Farshad Goodarzi Boroojeni
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin (FUB), Berlin, Germany
| | - Ana Pérez de Rozas
- Animal Health-CReSA, Institute of Agrifood Research and Technology (IRTA), Bellaterra, Spain
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin (FUB), Berlin, Germany
| | - Andone Estonba
- Applied Genomics and Bioinformatics, University of the Basque Country (UPV/EHU, Bilbao, Spain
| | - Dorthe Sandvang
- Chr. Hansen A/S, Animal Health Innovation, Hoersholm, Denmark
| | - M. Thomas P. Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Enric Esteve-Garcia
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), Constantí, Spain
| | - Robert Finn
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Antton Alberdi,
| | - Joan Tarradas
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), Constantí, Spain
| |
Collapse
|