1
|
Sutcliffe EI, Irvine A, Rooney J, Smith D, Northcote HM, McKenzie D, Bakshi S, Nisbet AJ, Price D, Graham R, Morphew R, Atkinson L, Mousley A, Cantacessi C. Antimicrobial peptides in nematode secretions - Unveiling biotechnological opportunities for therapeutics and beyond. Biotechnol Adv 2025; 81:108572. [PMID: 40154760 DOI: 10.1016/j.biotechadv.2025.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/02/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Gastrointestinal (GI) parasitic nematodes threaten food security and affect human health and animal welfare globally. Current anthelmintics for use in humans and livestock are challenged by continuous re-infections and the emergence and spread of multidrug resistance, underscoring an urgent need to identify novel control targets for therapeutic exploitation. Recent evidence has highlighted the occurrence of complex interplay between GI parasitic nematodes of humans and livestock and the resident host gut microbiota. Antimicrobial peptides (AMPs) found within nematode biofluids have emerged as potential effectors of these interactions. This review delves into the occurrence, structure, and function of nematode AMPs, highlighting their potential as targets for drug discovery and development. We argue that an integrated approach combining advanced analytical techniques, scalable production methods, and innovative experimental models is needed to unlock the full potential of nematode AMPs and pave the way for the discovery and development of sustainable parasite control strategies.
Collapse
Affiliation(s)
- E I Sutcliffe
- Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - A Irvine
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - J Rooney
- Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - D Smith
- Moredun Research Institute, United Kingdom
| | - H M Northcote
- Department of Life Sciences, Aberystwyth University, United Kingdom
| | - D McKenzie
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - S Bakshi
- Department of Engineering, University of Cambridge, United Kingdom
| | - A J Nisbet
- Moredun Research Institute, United Kingdom
| | - D Price
- Moredun Research Institute, United Kingdom
| | - R Graham
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - R Morphew
- Department of Life Sciences, Aberystwyth University, United Kingdom
| | - L Atkinson
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - A Mousley
- School of Biological Sciences, Queen's University Belfast, United Kingdom
| | - C Cantacessi
- Department of Veterinary Medicine, University of Cambridge, United Kingdom.
| |
Collapse
|
2
|
van der Kaaij A, Bunte MJM, Nijhof L, Mokhtari S, Overmars H, Schots A, Wilbers RHP, Nibbering P. Identification of β-galactosidases along the secretory pathway of Nicotiana benthamiana that collectively hamper engineering of galactose-extended glycans on recombinant glycoproteins. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40333706 DOI: 10.1111/pbi.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
Glycosylation is an important aspect for many biopharmaceuticals, including vaccines against parasitic helminths. Plants, especially Nicotiana benthamiana, have proven to be excellent production hosts for biopharmaceuticals with tailor-made glycosylation. If desired, galactosylation can be introduced on biopharmaceuticals through co-expression of the appropriate glycosyltransferase. However, achieving homogenous glycoforms with terminal galactose residues remains difficult as native N. benthamiana β-galactosidases (NbBGALs) truncate these glycans. Recently, the first NbBGAL has been identified, but a knockout line was insufficient to achieve near complete galactosylation, suggesting that other enzymes could have similar activity. In this study, we selected 10 NbBGALs for further investigation into subcellular localization, in vitro and in vivo activity against β1,4-linked galactose on N-glycans and β1,3-linked galactose on O-glycans. We show that NbBGAL3B is localized in the apoplast and has similar specificity for β1,4-linked galactose on N-glycans as the previously identified NbBGAL1. In contrast, none of the selected NbBGALs cleaved β1,3-linked galactose from O-glycans besides BGAL1. In addition, we provide a novel strategy to achieve near complete galactosylation on galactosidase-prone glycoproteins by using the protective capacity of the Lewis X motif and subsequent removal of the antennary fucose residues. Taken together, our results provide a broad view of the ability of NbBGALs to cleave galactoses and have identified NbBGAL3B as the second major contributor of undesired β-galactosidase activity while engineering N-glycans. This work lays the foundation for generating knockout lines that are devoid of undesired NbBGALs and therefore do not hamper the production of recombinant glycoproteins with galactose-extended glycans.
Collapse
Affiliation(s)
- Alex van der Kaaij
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Myrna J M Bunte
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Lisa Nijhof
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Sanaz Mokhtari
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Hein Overmars
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Pieter Nibbering
- Laboratory of Nematology, Plant Sciences Department, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
3
|
Yan S. Glycans of parasitic nematodes - from glycomes to novel diagnostic tools and vaccines. Carbohydr Res 2025; 550:109407. [PMID: 39879943 DOI: 10.1016/j.carres.2025.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Nematodes, commonly known as roundworms, are among the most prevalent and diverse multicellular organisms on Earth, belonging to the large phylum Nematoda. In addition to free-living species, many nematodes are parasitic, infecting plants, animals, and humans. Nematodes possess a wide array of genes responsible for carbohydrate metabolism and glycosylation. The glycosylation processes in parasitic nematodes often result in unique glycan modifications that are not present in their hosts. These distinct glycans can be highly immunogenic to mammalian hosts and play significant immunoregulatory roles during infection. This mini-review article summarises the glycosylation capabilities and characteristics of parasitic nematodes based on glycomic data. It also highlights recent research advances that explore the biological significance of nematode glycans and their potential for diagnostic and vaccine applications.
Collapse
Affiliation(s)
- Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, A-1210, Wien, Austria.
| |
Collapse
|
4
|
Kildemoes AO, Veldhuizen T, Hilt ST, van Lieshout L, Supali T, Yazdanbakhsh M, Camprubí-Ferrer D, Muñoz J, Clerinx J, Harvey M, Codée J, Corstjens PLAM, van Dam GJ, Visser LG, Roestenberg M, van Diepen A, Hokke CH. Identification of a circulating carbohydrate antigen as a highly specific and sensitive target for schistosomiasis serology. J Clin Microbiol 2025; 63:e0100824. [PMID: 39804062 PMCID: PMC11837524 DOI: 10.1128/jcm.01008-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/11/2024] [Indexed: 02/20/2025] Open
Abstract
The World Health Organization (WHO) 2030 roadmap for schistosomiasis calls for development of highly sensitive and specific diagnostic tools to continue and sustain progress towards elimination. Serological assays are excellent for sensitive detection of primary schistosome infections and for schistosomiasis surveillance in near- and post-elimination settings. To develop accurate assay formats, it is necessary to identify defined antibody targets with low cross-reactivity and potential for standardized production. Here we aim to identify such target(s) with focus on defined schistosome glycan antigens. Target identification was performed by assessing antibody responses in well-characterized cross-sectional and cohort sample sets (n = 366 individuals) on tailor-made antigen microarrays. IgM and IgG binding to candidate diagnostic targets was measured for serum/plasma samples from controlled human schistosome infection models, schistosome-infected travelers, soil-transmitted helminth-infected individuals, and non-infected individuals. We found that antibodies to a schistosome gut-associated glycan, the circulating anodic antigen (CAA), identify schistosome infection with high sensitivity (IgM ≥100%, IgG ≥97%) and specificity (IgM ≥93%, IgG ≥97%) in the test samples. Infection dose affected timing of anti-CAA antibody isotype switch. Furthermore, we demonstrate that other non-specific glycan epitopes in crude schistosome cercarial and egg antigen preparations can contribute to generation of false schistosomiasis positives, which is relevant for current serological assays based on these antigen mixtures. In conclusion, CAA is an excellent single glycan antigen target for development of highly sensitive and specific tools for schistosomiasis serology with use cases for travelers and surveillance in near- and post-elimination settings, as well as emerging transmission zones. IMPORTANCE The WHO 2030 roadmap deems diagnostics developments for schistosomiasis critically needed. Here we present identification of an antibody target with superior performance compared to traditionally used crude antigens in schistosomiasis serology. Access to unique controlled human infection model samples, traveler samples, and negative controls enabled this discovery, which forms the basis for development of new diagnostic tools urgently needed in travel medicine, surveillance in emerging transmission zones driven by climate change, and in pre- and post-elimination scenarios.
Collapse
Affiliation(s)
- Anna O. Kildemoes
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom Veldhuizen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Stan T. Hilt
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lisette van Lieshout
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Taniawati Supali
- Department of Parasitology, Universitas Indonesia, Jakarta, Indonesia
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jose Muñoz
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Joannes Clerinx
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Mickey Harvey
- Leiden Institute of Chemistry, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen Codée
- Leiden Institute of Chemistry, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul L. A. M. Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Govert J. van Dam
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Leo G. Visser
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Angela van Diepen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelis H. Hokke
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
5
|
Patente TA, Gasan TA, Scheenstra M, Ozir-Fazalalikhan A, Obieglo K, Schetters S, Verwaerde S, Vergote K, Otto F, Wilbers RHP, van Bloois E, Wijck YV, Taube C, Hammad H, Schots A, Everts B, Yazdanbakhsh M, Guigas B, Hokke CH, Smits HH. S. mansoni -derived omega-1 prevents OVA-specific allergic airway inflammation via hampering of cDC2 migration. PLoS Pathog 2024; 20:e1012457. [PMID: 39186814 PMCID: PMC11379383 DOI: 10.1371/journal.ppat.1012457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic infection with Schistosoma mansoni parasites is associated with reduced allergic sensitization in humans, while schistosome eggs protects against allergic airway inflammation (AAI) in mice. One of the main secretory/excretory molecules from schistosome eggs is the glycosylated T2-RNAse Omega-1 (ω1). We hypothesized that ω1 induces protection against AAI during infection. Peritoneal administration of ω1 prior to sensitization with Ovalbumin (OVA) reduced airway eosinophilia and pathology, and OVA-specific Th2 responses upon challenge, independent from changes in regulatory T cells. ω1 was taken up by monocyte-derived dendritic cells, mannose receptor (CD206)-positive conventional type 2 dendritic cells (CD206+ cDC2), and by recruited peritoneal macrophages. Additionally, ω1 impaired CCR7, F-actin, and costimulatory molecule expression on myeloid cells and cDC2 migration in and ex vivo, as evidenced by reduced OVA+ CD206+ cDC2 in the draining mediastinal lymph nodes (medLn) and retainment in the peritoneal cavity, while antigen processing and presentation in cDC2 were not affected by ω1 treatment. Importantly, RNAse mutant ω1 was unable to reduce AAI or affect DC migration, indicating that ω1 effects are dependent on its RNAse activity. Altogether, ω1 hampers migration of OVA+ cDC2 to the draining medLn in mice, elucidating how ω1 prevents allergic airway inflammation in the OVA/alum mouse model.
Collapse
Affiliation(s)
- Thiago A Patente
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Thomas A Gasan
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Maaike Scheenstra
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Arifa Ozir-Fazalalikhan
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Katja Obieglo
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sjoerd Schetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stijn Verwaerde
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Frank Otto
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Eline van Bloois
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Christian Taube
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Arjen Schots
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart Everts
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
6
|
Zwanenburg L, Borloo J, Decorte B, Bunte MJM, Mokhtari S, Serna S, Reichardt NC, Seys LJM, van Diepen A, Schots A, Wilbers RHP, Hokke CH, Claerebout E, Geldhof P. Plant-based production of a protective vaccine antigen against the bovine parasitic nematode Ostertagia ostertagi. Sci Rep 2023; 13:20488. [PMID: 37993516 PMCID: PMC10665551 DOI: 10.1038/s41598-023-47480-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
The development of effective recombinant vaccines against parasitic nematodes has been challenging and so far mostly unsuccessful. This has also been the case for Ostertagia ostertagi, an economically important abomasal nematode in cattle, applying recombinant versions of the protective native activation-associated secreted proteins (ASP). To gain insight in key elements required to trigger a protective immune response, the protein structure and N-glycosylation of the native ASP and a non-protective Pichia pastoris recombinant ASP were compared. Both antigens had a highly comparable protein structure, but different N-glycan composition. After mimicking the native ASP N-glycosylation via the expression in Nicotiana benthamiana plants, immunisation of calves with these plant-produced recombinants resulted in a significant reduction of 39% in parasite egg output, comparable to the protective efficacy of the native antigen. This study provides a valuable workflow for the development of recombinant vaccines against other parasitic nematodes.
Collapse
Affiliation(s)
- Laurens Zwanenburg
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Jimmy Borloo
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Bregt Decorte
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Myrna J M Bunte
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sanaz Mokhtari
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Niels-C Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia San Sebastián, Spain
- CIBER-BBN, Paseo Miramón 194, 20014, San Sebastian, Spain
| | - Leen J M Seys
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Edwin Claerebout
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
7
|
Strasser R. Plant glycoengineering for designing next-generation vaccines and therapeutic proteins. Biotechnol Adv 2023; 67:108197. [PMID: 37315875 DOI: 10.1016/j.biotechadv.2023.108197] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Protein glycosylation has a huge impact on biological processes in all domains of life. The type of glycan present on a recombinant glycoprotein depends on protein intrinsic features and the glycosylation repertoire of the cell type used for expression. Glycoengineering approaches are used to eliminate unwanted glycan modifications and to facilitate the coordinated expression of glycosylation enzymes or whole metabolic pathways to furnish glycans with distinct modifications. The formation of tailored glycans enables structure-function studies and optimization of therapeutic proteins used in different applications. While recombinant proteins or proteins from natural sources can be in vitro glycoengineered using glycosyltransferases or chemoenzymatic synthesis, many approaches use genetic engineering involving the elimination of endogenous genes and introduction of heterologous genes to cell-based production systems. Plant glycoengineering enables the in planta production of recombinant glycoproteins with human or animal-type glycans that resemble natural glycosylation or contain novel glycan structures. This review summarizes key achievements in glycoengineering of plants and highlights current developments aiming to make plants more suitable for the production of a diverse range of recombinant glycoproteins for innovative therapies.
Collapse
Affiliation(s)
- Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
8
|
Chayé MAM, Gasan TA, Ozir-Fazalalikhan A, Scheenstra MR, Zawistowska-Deniziak A, van Hengel ORJ, Gentenaar M, Manurung MD, Harvey MR, Codée JDC, Chiodo F, Heijke AM, Kalinowska A, van Diepen A, Hensbergen PJ, Yazdanbakhsh M, Guigas B, Hokke CH, Smits HH. Schistosoma mansoni egg-derived thioredoxin and Sm14 drive the development of IL-10 producing regulatory B cells. PLoS Negl Trop Dis 2023; 17:e0011344. [PMID: 37363916 DOI: 10.1371/journal.pntd.0011344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
During chronic schistosome infections, a complex regulatory network is induced to regulate the host immune system, in which IL-10-producing regulatory B (Breg) cells play a significant role. Schistosoma mansoni soluble egg antigens (SEA) are bound and internalized by B cells and induce both human and mouse IL-10 producing Breg cells. To identify Breg-inducing proteins in SEA, we fractionated SEA by size exclusion chromatography and found 6 fractions able to induce IL-10 production by B cells (out of 18) in the high, medium and low molecular weight (MW) range. The high MW fractions were rich in heavily glycosylated molecules, including multi-fucosylated proteins. Using SEA glycoproteins purified by affinity chromatography and synthetic glycans coupled to gold nanoparticles, we investigated the role of these glycan structures in inducing IL-10 production by B cells. Then, we performed proteomics analysis on active low MW fractions and identified a number of proteins with putative immunomodulatory properties, notably thioredoxin (SmTrx1) and the fatty acid binding protein Sm14. Subsequent splenic murine B cell stimulations and hock immunizations with recombinant SmTrx1 and Sm14 showed their ability to dose-dependently induce IL-10 production by B cells both in vitro and in vivo. Identification of unique Breg cells-inducing molecules may pave the way to innovative therapeutic strategies for inflammatory and auto-immune diseases.
Collapse
Affiliation(s)
- Mathilde A M Chayé
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas A Gasan
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Maaike R Scheenstra
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Zawistowska-Deniziak
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Parasitology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Oscar R J van Hengel
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Max Gentenaar
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mikhael D Manurung
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael R Harvey
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Fabrizio Chiodo
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Italian National Research Council, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Anouk M Heijke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alicja Kalinowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
10
|
Krammer EM, Bridot C, Serna S, Echeverria B, Semwal S, Roubinet B, van Noort K, Wilbers RP, Bourenkov G, de Ruyck J, Landemarre L, Reichardt N, Bouckaert J. Structural insights into a cooperative switch between one and two FimH bacterial adhesins binding pauci- and high-mannose type N-glycan receptors. J Biol Chem 2023; 299:104627. [PMID: 36944399 PMCID: PMC10127133 DOI: 10.1016/j.jbc.2023.104627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
The FimH type-1 fimbrial adhesin allows pathogenic Escherichia coli to adhere to glycoproteins in the epithelial linings of human bladder and intestinal tract, by using multiple fimbriae simultaneously. Pauci- and high-mannose type N-glycans are natural FimH receptors on those glycoproteins. Oligomannose-3 and -5 bind with the highest affinity to FimH by using the same Manα1,3Man branch. Oligomannose-6 is generated from oligomannose-5 in the next step of the biogenesis of high-mannose N-glycans, by the transfer of a mannose in α1,2-linkage onto this branch. Using serial crystallography and by measuring the kinetics of binding, we demonstrate that shielding the high-affinity epitope drives the binding of multiple FimH molecules. First, we profiled FimH glycan binding on a microarray containing paucimannosidic N-glycans and in a FimH LEctPROFILE® assay. To make the transition to oligomannose-6, we measured the kinetics of FimH binding using paucimannosidic N-glycans, glycoproteins and all four α-dimannosides conjugated to bovine serum albumin. Equimolar mixed interfaces of the dimannosides present in oligomannose-6 and molecular dynamics simulations suggest a positive cooperativity in the bivalent binding of Manα1,3Manα1 and Manα1,6Manα1 dimannosides. The binding of core α1,6-fucosylated oligomannose-3 in the co-crystals of FimH is monovalent, but interestingly the GlcNAc1 - Fuc moiety retains highly flexibility. In co-crystals with oligomannose-6, two FimH bacterial adhesins bind the Manα1,3Manα1 and Manα1,6Manα1 endings of the second trimannose core (A-4'-B). This cooperative switch towards bivalent binding appears sustainable beyond a molar excess of oligomannose-6. Our findings provide important novel structural insights for the design of multivalent FimH antagonists that bind with positive cooperativity.
Collapse
Affiliation(s)
- Eva-Maria Krammer
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 CNRS and University of Lille, 50 Avenue Halley, 59658 Villeneuve d'Ascq, France
| | - Clarisse Bridot
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 CNRS and University of Lille, 50 Avenue Halley, 59658 Villeneuve d'Ascq, France
| | - Sonia Serna
- Glycotechnology Group, Basque Research and Technology Alliance (BRTA), CIC biomaGUNE, Paseo Miramon 194, 20014 Donostia, Spain
| | - Begoña Echeverria
- Glycotechnology Group, Basque Research and Technology Alliance (BRTA), CIC biomaGUNE, Paseo Miramon 194, 20014 Donostia, Spain
| | - Shubham Semwal
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 CNRS and University of Lille, 50 Avenue Halley, 59658 Villeneuve d'Ascq, France
| | | | - Kim van Noort
- Laboratory of Nematology, Plant Science Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 Wageningen, The Netherlands
| | - RuudH P Wilbers
- Laboratory of Nematology, Plant Science Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 Wageningen, The Netherlands
| | - Gleb Bourenkov
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jérôme de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 CNRS and University of Lille, 50 Avenue Halley, 59658 Villeneuve d'Ascq, France
| | | | - Niels Reichardt
- Glycotechnology Group, Basque Research and Technology Alliance (BRTA), CIC biomaGUNE, Paseo Miramon 194, 20014 Donostia, Spain; CIBER-BBN, Paseo Miramon 194, 20014 Donostia, Spain
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 CNRS and University of Lille, 50 Avenue Halley, 59658 Villeneuve d'Ascq, France.
| |
Collapse
|
11
|
Tsubokawa D. Immunomodulators secreted from parasitic helminths act on pattern recognition receptors. FRONTIERS IN PARASITOLOGY 2023; 1:1091596. [PMID: 39816467 PMCID: PMC11731691 DOI: 10.3389/fpara.2022.1091596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2025]
Abstract
Excretory-secretory (ES) products from parasitic helminths contain immunomodulatory molecules, which can regulate host immune responses. These immunomodulatory molecules are crucial for successful parasitism, and play roles in tissue migration, maturation, and reproduction. Some target pattern recognition receptors (PRRs), including toll-like receptor, C-type lectin receptor, receptor for advanced glycation end products, and nucleotide-binding oligomerization domain-like receptor. PRRs trigger activation of signaling cascades, inducing innate inflammatory responses and adaptive immunity in hosts. This article reviews ES immunomodulators identified in parasitic helminths that act on PRRs, and their PRR-facilitated immune-regulatory mechanisms. In addition, we describe the therapeutic potential of ES immunomodulators for allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Adduci I, Sajovitz F, Hinney B, Lichtmannsperger K, Joachim A, Wittek T, Yan S. Haemonchosis in Sheep and Goats, Control Strategies and Development of Vaccines against Haemonchus contortus. Animals (Basel) 2022; 12:ani12182339. [PMID: 36139199 PMCID: PMC9495197 DOI: 10.3390/ani12182339] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Haemonchus contortus is the most pathogenic blood-feeding parasitic nematode in sheep and goats, threatening animal welfare and causing tremendous economic losses to the small ruminant industry. This comprehensive review article sums up current control strategies, worm-derived antigens and recent advances in anti-Haemonchus vaccine development. New insights into antigen engineering and general considerations for clinical trials are discussed here. Abstract The evolutionary success of parasitic worms causes significant economic losses and animal health problems, including in the small ruminant industry. The hematophagous nematode Haemonchus contortus is a common endoparasite that infects wild and domestic ruminants worldwide, especially in tropical and subtropical regions. To date, the most commonly applied control strategy is the administration of anthelminthic drugs. The main disadvantages of these chemicals are their ecotoxic effects, the necessary withdrawal period (especially important in dairy animals) and the increasing development of resistance. Vaccines offer an attractive alternative control strategy against Haemonchus infections. In previous years, several potential vaccine antigens prepared from H. contortus using the latest technologies have been assessed in clinical trials using different methods and strategies. This review highlights the current state of knowledge on anti-H. contortus vaccines (covering native, recombinant and DNA-based vaccines), including an evaluation, as well a discussion of the challenges and achievements in developing protective, efficient, and long-lasting vaccines to control H. contortus infection and haemonchosis in small ruminants. This paper also addresses novel developments tackling the challenge of glycosylation of putative candidates in recombinant form.
Collapse
Affiliation(s)
- Isabella Adduci
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
| | - Floriana Sajovitz
- University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
| | - Barbara Hinney
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
| | - Katharina Lichtmannsperger
- University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
| | - Thomas Wittek
- University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
| | - Shi Yan
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
- Correspondence:
| |
Collapse
|
14
|
Naidoo P, Mkhize-Kwitshana ZL. Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR associated protein 9-mediated editing of Schistosoma mansoni genes: Identifying genes for immunologically potent drug and vaccine development. Rev Soc Bras Med Trop 2022; 55:e0131. [PMID: 35976333 PMCID: PMC9405935 DOI: 10.1590/0037-8682-0131-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/08/2022] [Indexed: 12/26/2022] Open
Abstract
Schistosomiasis is a neglected acute and chronic tropical disease caused by intestinal (Schistosoma mansoni and Schistosoma japonicum) and urogenital (Schistosoma haematobium) helminth parasites (blood flukes or digenetic trematodes). It afflicts over 250 million people worldwide, the majority of whom reside in impoverished tropical and subtropical regions in sub-Saharan Africa. Schistosomiasis is the second most common devastating parasitic disease in the world after malaria and causes over 200,000 deaths annually. Currently, there is no effective and approved vaccine available for human use, and treatment strongly relies on praziquantel drug therapy, which is ineffective in killing immature larval schistosomula stages and eggs already lodged in the tissues. The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9)-mediated gene editing tool is used to deactivate a gene of interest to scrutinize its role in health and disease, and to identify genes for vaccine and drug targeting. The present review aims to summarize the major findings from the current literature reporting the usage of CRISPR/Cas9-mediated gene editing to inactivate genes in S. mansoni (acetylcholinesterase (AChE), T2 ribonuclease omega-1 (ω1), sulfotransferase oxamniquine resistance protein (SULT-OR), and α-N-acetylgalactosaminidase (SmNAGAL)), and freshwater gastropod snails, Biomphalaria glabrata (allograft inflammatory factor (BgAIF)), an obligatory component of the life cycle of S. mansoni, to identify their roles in the pathogenesis of schistosomiasis, and to highlight the importance of such studies in identifying and developing drugs and vaccines with high therapeutic efficacy.
Collapse
Affiliation(s)
- Pragalathan Naidoo
- University of KwaZulu-Natal, College of Health Sciences, Department of Medical Microbiology, Durban, KwaZulu-Natal, South Africa.,South African Medical Research Council (SAMRC), Division of Research Capacity Development, Cape Town, Western Cape, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- University of KwaZulu-Natal, College of Health Sciences, Department of Medical Microbiology, Durban, KwaZulu-Natal, South Africa.,South African Medical Research Council (SAMRC), Division of Research Capacity Development, Cape Town, Western Cape, South Africa
| |
Collapse
|
15
|
van der Kaaij A, van Noort K, Nibbering P, Wilbers RHP, Schots A. Glyco-Engineering Plants to Produce Helminth Glycoproteins as Prospective Biopharmaceuticals: Recent Advances, Challenges and Future Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:882835. [PMID: 35574113 PMCID: PMC9100689 DOI: 10.3389/fpls.2022.882835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Glycoproteins are the dominant category among approved biopharmaceuticals, indicating their importance as therapeutic proteins. Glycoproteins are decorated with carbohydrate structures (or glycans) in a process called glycosylation. Glycosylation is a post-translational modification that is present in all kingdoms of life, albeit with differences in core modifications, terminal glycan structures, and incorporation of different sugar residues. Glycans play pivotal roles in many biological processes and can impact the efficacy of therapeutic glycoproteins. The majority of biopharmaceuticals are based on human glycoproteins, but non-human glycoproteins, originating from for instance parasitic worms (helminths), form an untapped pool of potential therapeutics for immune-related diseases and vaccine candidates. The production of sufficient quantities of correctly glycosylated putative therapeutic helminth proteins is often challenging and requires extensive engineering of the glycosylation pathway. Therefore, a flexible glycoprotein production system is required that allows straightforward introduction of heterologous glycosylation machinery composed of glycosyltransferases and glycosidases to obtain desired glycan structures. The glycome of plants creates an ideal starting point for N- and O-glyco-engineering of helminth glycans. Plants are also tolerant toward the introduction of heterologous glycosylation enzymes as well as the obtained glycans. Thus, a potent production platform emerges that enables the production of recombinant helminth proteins with unusual glycans. In this review, we discuss recent advances in plant glyco-engineering of potentially therapeutic helminth glycoproteins, challenges and their future prospects.
Collapse
|
16
|
Development of Plant-Based Vaccines for Prevention of Avian Influenza and Newcastle Disease in Poultry. Vaccines (Basel) 2022; 10:vaccines10030478. [PMID: 35335110 PMCID: PMC8952014 DOI: 10.3390/vaccines10030478] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Viral diseases, including avian influenza (AI) and Newcastle disease (ND), are an important cause of morbidity and mortality in poultry, resulting in significant economic losses. Despite the availability of commercial vaccines for the major viral diseases of poultry, these diseases continue to pose a significant risk to global food security. There are multiple factors for this: vaccine costs may be prohibitive, cold chain storage for attenuated live-virus vaccines may not be achievable, and commercial vaccines may protect poorly against local emerging strains. The development of transient gene expression systems in plants provides a versatile and robust tool to generate a high yield of recombinant proteins with superior speed while managing to achieve cost-efficient production. Plant-derived vaccines offer good stability and safety these include both subunit and virus-like particle (VLP) vaccines. VLPs offer potential benefits compared to currently available traditional vaccines, including significant reductions in virus shedding and the ability to differentiate between infected and vaccinated birds (DIVA). This review discusses the current state of plant-based vaccines for prevention of the AI and ND in poultry, challenges in their development, and potential for expanding their use in low- and middle-income countries.
Collapse
|
17
|
Stroehlein AJ, Korhonen PK, Lee VV, Ralph SA, Mentink-Kane M, You H, McManus DP, Tchuenté LAT, Stothard JR, Kaur P, Dudchenko O, Aiden EL, Yang B, Yang H, Emery AM, Webster BL, Brindley PJ, Rollinson D, Chang BCH, Gasser RB, Young ND. Chromosome-level genome of Schistosoma haematobium underpins genome-wide explorations of molecular variation. PLoS Pathog 2022; 18:e1010288. [PMID: 35167626 PMCID: PMC8846543 DOI: 10.1371/journal.ppat.1010288] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/19/2022] [Indexed: 01/08/2023] Open
Abstract
Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover 'new' genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic 'signatures' that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis.
Collapse
Affiliation(s)
- Andreas J. Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - V. Vern Lee
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Margaret Mentink-Kane
- NIH-NIAID Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, Maryland, United States of America
| | - Hong You
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Louis-Albert Tchuem Tchuenté
- Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - J. Russell Stothard
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Erez Lieberman Aiden
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong, China
- Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Bicheng Yang
- BGI Australia, Oceania, BGI Group, CBCRB Building, Herston, Queensland, Australia
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Aidan M. Emery
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Bonnie L. Webster
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Paul J. Brindley
- School of Medicine & Health Sciences, Department of Microbiology, Immunology & Tropical Medicine, George Washington University, Washington DC, United States of America
| | - David Rollinson
- Parasites and Vectors Division, The Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), London, United Kingdom
| | - Bill C. H. Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Bunte MJM, Schots A, Kammenga JE, Wilbers RHP. Helminth Glycans at the Host-Parasite Interface and Their Potential for Developing Novel Therapeutics. Front Mol Biosci 2022; 8:807821. [PMID: 35083280 PMCID: PMC8784694 DOI: 10.3389/fmolb.2021.807821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Helminths are parasitic worms that have successfully co-evolved with their host immune system to sustain long-term infections. Their successful parasitism is mainly facilitated by modulation of the host immune system via the release of excretory-secretory (ES) products covered with glycan motifs such as Lewis X, fucosylated LDN, phosphorylcholine and tyvelose. Evidence is accumulating that these glycans play key roles in different aspects of helminth infection including interactions with immune cells for recognition and evasion of host defences. Moreover, antigenic properties of glycans can be exploited for improving the efficacy of anti-helminthic vaccines. Here, we illustrate that glycans have the potential to open new avenues for the development of novel biopharmaceuticals and effective vaccines based on helminth glycoproteins.
Collapse
|
19
|
Ittiprasert W, Chatupheeraphat C, Mann VH, Li W, Miller A, Ogunbayo T, Tran K, Alrefaei YN, Mentink-Kane M, Brindley PJ. RNA-Guided AsCas12a- and SpCas9-Catalyzed Knockout and Homology Directed Repair of the Omega-1 Locus of the Human Blood Fluke, Schistosoma mansoni. Int J Mol Sci 2022; 23:631. [PMID: 35054816 PMCID: PMC8775552 DOI: 10.3390/ijms23020631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/17/2022] Open
Abstract
The efficiency of the RNA-guided AsCas12a nuclease of Acidaminococcus sp. was compared with SpCas9 from Streptococcus pyogenes, for functional genomics in Schistosoma mansoni. We deployed optimized conditions for the ratio of guide RNAs to the nuclease, donor templates, and electroporation parameters, to target a key schistosome enzyme termed omega-1. Programmed cleavages catalyzed by Cas12a and Cas9 resulted in staggered- and blunt-ended strand breaks, respectively. AsCas12a was more efficient than SpCas9 for gene knockout, as determined by TIDE analysis. CRISPResso2 analysis confirmed that most mutations were deletions. Knockout efficiency of both nucleases markedly increased in the presence of single-stranded oligodeoxynucleotide (ssODN) template. With AsCas12a, ssODNs representative of both the non-CRISPR target (NT) and target (T) strands were tested, resulting in KO efficiencies of 15.67, 28.71, and 21.43% in the SpCas9 plus ssODN, AsCas12a plus NT-ssODN, and AsCas12a plus T-ssODN groups, respectively. Trans-cleavage against the ssODNs by activated AsCas12a was not apparent in vitro. SpCas9 catalyzed more precise transgene insertion, with knock-in efficiencies of 17.07% for the KI_Cas9 group, 14.58% for KI_Cas12a-NT-ssODN, and 12.37% for KI_Cas12a-T-ssODN. Although AsCas12a induced fewer mutations per genome than SpCas9, the phenotypic impact on transcription and expression of omega-1 was similar for both nucleases.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
| | - Chawalit Chatupheeraphat
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
| | - Wenhui Li
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - André Miller
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA; (A.M.); (T.O.); (K.T.); (M.M.-K.)
| | - Taiwo Ogunbayo
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA; (A.M.); (T.O.); (K.T.); (M.M.-K.)
| | - Kenny Tran
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA; (A.M.); (T.O.); (K.T.); (M.M.-K.)
| | - Yousef N. Alrefaei
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
- Department of Medical Laboratory Technology, College of Health Sciences, PAEET, Adailiya, Kuwait City 73101, Kuwait
| | - Margaret Mentink-Kane
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD 20850, USA; (A.M.); (T.O.); (K.T.); (M.M.-K.)
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, & Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA; (C.C.); (V.H.M.); (W.L.); (Y.N.A.)
| |
Collapse
|
20
|
He W, Baysal C, Lobato Gómez M, Huang X, Alvarez D, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennaser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Alexandra Abreu I, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Sathish Kumar R, Lacorte C, Lomonossoff GP, Luís IM, K.‐C. Ma J, McDonald KA, Murad A, Nandi S, O’Keef B, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JC, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Christou P, Oksman‐Caldentey K, Capell T. Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1921-1936. [PMID: 34181810 PMCID: PMC8486237 DOI: 10.1111/pbi.13658] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/05/2023]
Abstract
The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.
Collapse
Affiliation(s)
- Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Aamaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennaser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andrea Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ramalingam Sathish Kumar
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keef
- Division of Cancer Treatment and DiagnosisMolecular Targets ProgramCenter for Cancer ResearchNational Cancer Institute, and Natural Products Branch, Developmental Therapeutics ProgramNational Cancer Institute, NIHFrederickMDUSA
| | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwich Research Park, NorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Julio C.M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| | | | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| |
Collapse
|
21
|
Seifert GJ, Strasser R, Van Damme EJM. Editorial: Plant Glycobiology - A Sweet World of Glycans, Glycoproteins, Glycolipids, and Carbohydrate-Binding Proteins. FRONTIERS IN PLANT SCIENCE 2021; 12:751923. [PMID: 34539724 PMCID: PMC8446655 DOI: 10.3389/fpls.2021.751923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 05/08/2023]
Affiliation(s)
- Georg J. Seifert
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | |
Collapse
|
22
|
Robakiewicz S, Bridot C, Serna S, Gimeno A, Echeverria B, Delgado S, Ruyck J, Semwal S, Charro D, Dansercoer A, Verstraete K, Azkargorta M, Noort K, Wilbers R, Savvides SN, Abrescia NGA, Arda A, Reichardt NC, Jiménez-Barbero J, Bouckaert J. Minimal epitope for Mannitou IgM on paucimannose-carrying glycoproteins. Glycobiology 2021; 31:1005-1017. [PMID: 33909073 DOI: 10.1093/glycob/cwab027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/30/2021] [Indexed: 11/14/2022] Open
Abstract
Paucimannosidic glycans are restricted to the core structure [Man1-3GlcNAc2Fuc0-1] of N-glycans and are rarely found in mammalian tissues. Yet, especially [Man2-3GlcNAc2Fuc1] have been found significantly upregulated in tumors, including in colorectal and liver cancer. Mannitou IgM is a murine monoclonal antibody that was previously shown to recognise Man3GlcNAc2 with an almost exclusive selectivity. Here, we have sought the definition of the minimal glycan epitope of Mannitou IgM, initiated by screening on a newly designed paucimannosidic glycan microarray. Among the best binders were Man3GlcNAc2 and its α1,6 core-fucosylated variant, Man3GlcNAc2Fuc1. Unexpectedly and in contrast to earlier findings, Man5GlcNAc2-type structures bind equally well and a large tolerance was observed for substitutions on the α1,6 arm. It was confirmed that any substitution on the single α1,3-linked mannose completely abolishes binding. Surface plasmon resonance for kinetic measurements of Mannitou IgM binding, either directly on the glycans or as presented on omega-1 and kappa-5 soluble egg antigens from the helminth parasite Schistosoma mansoni, showed submicromolar affinities. To characterize the epitope in greater and atomic detail, saturation transfer difference nuclear magnetic resonance spectroscopy was performed with the Mannitou antigen-binding fragment. The STD-NMR data demonstrated the strongest interactions with the aliphatic protons H1 and H2 of the α1-3-linked mannose, and weaker imprints on its H3, H4 and H5 protons. In conclusion, Mannitou IgM binding requires a non-substituted α1,3-linked mannose branch of paucimannose also on proteins, making it a highly specific tool for the distinction of concurrent human tumor-associated carbohydrate antigens.
Collapse
Affiliation(s)
- Stefania Robakiewicz
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| | - Clarisse Bridot
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Ana Gimeno
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Begoña Echeverria
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Sandra Delgado
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Jérôme Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| | - Shubham Semwal
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| | - Diego Charro
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Ann Dansercoer
- Unit for Structural Biology, VIB - UGent Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Kenneth Verstraete
- Unit for Structural Biology, VIB - UGent Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Mikel Azkargorta
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Kim Noort
- Laboratory of Nematology, Plant Science Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud Wilbers
- Laboratory of Nematology, Plant Science Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Savvas N Savvides
- Unit for Structural Biology, VIB - UGent Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Nicola G A Abrescia
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ana Arda
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Niels C Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| |
Collapse
|
23
|
Ramos-Vega A, Monreal-Escalante E, Dumonteil E, Bañuelos-Hernández B, Angulo C. Plant-made vaccines against parasites: bioinspired perspectives to fight against Chagas disease. Expert Rev Vaccines 2021; 20:1373-1388. [PMID: 33612044 DOI: 10.1080/14760584.2021.1893170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Three decades of evidence have demonstrated that plants are an affordable platform for biopharmaceutical production and delivery. For instance, several plant-made recombinant proteins have been approved for commercialization under good manufacturing practice (GMP). Thus far, plant-based vaccine prototypes have been evaluated at pre- and clinical levels. Particularly, plant-made vaccines against parasitic diseases, such as malaria, cysticercosis, and toxoplasmosis have been successfully produced and orally delivered with promising outcomes in terms of immunogenicity and protection. The experience on several approaches and technical strategies over 30 years accounts for their potential low-cost, high scalability, and easy administration.Areas covered: This platform is an open technology to fight against Chagas disease, one of the most important neglected tropical diseases worldwide.Expert opinion: This review provides a perspective for the potential use of plants as a production platform and delivery system of Trypanosoma cruzi recombinant antigens, analyzing the advantages and limitations with respect to plant-made vaccines produced for other parasitic diseases. Plant-made vaccines are envisioned to fight against Chagas disease and other neglected tropical diseases in those countries suffering endemic prevalence.
Collapse
Affiliation(s)
- Abel Ramos-Vega
- Grupo de Inmunología & Vacunología. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.c.s. C.p., México
| | - Elizabeth Monreal-Escalante
- Grupo de Inmunología & Vacunología. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.c.s. C.p., México.,CONACYT- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.c.s. C.p, México
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Bernardo Bañuelos-Hernández
- Facultad de Agronomía Y Veterinaria, Universidad de La Salle Bajio, Avenida Universidad 602, Lomas del Campestre, León Guanajuato, México
| | - Carlos Angulo
- Grupo de Inmunología & Vacunología. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.c.s. C.p., México
| |
Collapse
|
24
|
van der Zande HJ, Gonzalez MA, de Ruiter K, Wilbers RH, García‐Tardón N, van Huizen M, van Noort K, Pelgrom LR, Lambooij JM, Zawistowska‐Deniziak A, Otto F, Ozir‐Fazalalikhan A, van Willigen D, Welling M, Poles J, van Leeuwen F, Hokke CH, Schots A, Yazdanbakhsh M, Loke P, Guigas B. The helminth glycoprotein omega-1 improves metabolic homeostasis in obese mice through type 2 immunity-independent inhibition of food intake. FASEB J 2021; 35:e21331. [PMID: 33476078 PMCID: PMC7898285 DOI: 10.1096/fj.202001973r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Type 2 immunity plays an essential role in the maintenance of metabolic homeostasis and its disruption during obesity promotes meta-inflammation and insulin resistance. Infection with the helminth parasite Schistosoma mansoni and treatment with its soluble egg antigens (SEA) induce a type 2 immune response in metabolic organs and improve insulin sensitivity and glucose tolerance in obese mice, yet, a causal relationship remains unproven. Here, we investigated the effects and underlying mechanisms of the T2 ribonuclease omega-1 (ω1), one of the major S mansoni immunomodulatory glycoproteins, on metabolic homeostasis. We show that treatment of obese mice with plant-produced recombinant ω1, harboring similar glycan motifs as present on the native molecule, decreased body fat mass, and improved systemic insulin sensitivity and glucose tolerance in a time- and dose-dependent manner. This effect was associated with an increase in white adipose tissue (WAT) type 2 T helper cells, eosinophils, and alternatively activated macrophages, without affecting type 2 innate lymphoid cells. In contrast to SEA, the metabolic effects of ω1 were still observed in obese STAT6-deficient mice with impaired type 2 immunity, indicating that its metabolic effects are independent of the type 2 immune response. Instead, we found that ω1 inhibited food intake, without affecting locomotor activity, WAT thermogenic capacity or whole-body energy expenditure, an effect also occurring in leptin receptor-deficient obese and hyperphagic db/db mice. Altogether, we demonstrate that while the helminth glycoprotein ω1 can induce type 2 immunity, it improves whole-body metabolic homeostasis in obese mice by inhibiting food intake via a STAT6-independent mechanism.
Collapse
Affiliation(s)
| | - Michael A. Gonzalez
- Department of MicrobiologyNew York University School of MedicineNew YorkNYUSA
| | - Karin de Ruiter
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | - Ruud H.P. Wilbers
- Department Laboratory of NematologyWageningen University and ResearchWageningenThe Netherlands
| | - Noemí García‐Tardón
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | - Mariska van Huizen
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | - Kim van Noort
- Department Laboratory of NematologyWageningen University and ResearchWageningenThe Netherlands
| | - Leonard R. Pelgrom
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | - Joost M. Lambooij
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | - Anna Zawistowska‐Deniziak
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
- Witold Stefański Institute of ParasitologyPolish Academy of SciencesWarsawPoland
| | - Frank Otto
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Danny van Willigen
- Interventional Molecular Imaging LaboratoryDepartment of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Mick Welling
- Interventional Molecular Imaging LaboratoryDepartment of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jordan Poles
- Department of MicrobiologyNew York University School of MedicineNew YorkNYUSA
| | - Fijs van Leeuwen
- Interventional Molecular Imaging LaboratoryDepartment of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Cornelis H. Hokke
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | - Arjen Schots
- Department Laboratory of NematologyWageningen University and ResearchWageningenThe Netherlands
| | - Maria Yazdanbakhsh
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | - P'ng Loke
- Department of MicrobiologyNew York University School of MedicineNew YorkNYUSA
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Bruno Guigas
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
25
|
Tumor Necrosis Factor and Schistosoma mansoni egg antigen omega-1 shape distinct aspects of the early egg-induced granulomatous response. PLoS Negl Trop Dis 2021; 15:e0008814. [PMID: 33465071 PMCID: PMC7845976 DOI: 10.1371/journal.pntd.0008814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/29/2021] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
Infections by schistosomes result in granulomatous lesions around parasite eggs entrapped within the host tissues. The host and parasite determinants of the Schistosoma mansoni egg-induced granulomatous response are areas of active investigation. Some studies in mice implicate Tumor Necrosis Factor (TNF) produced in response to the infection whereas others fail to find a role for it. In addition, in the mouse model, the S. mansoni secreted egg antigen omega-1 is found to induce granulomas but the underlying mechanism remains unknown. We have recently developed the zebrafish larva as a model to study macrophage recruitment and granuloma formation in response to Schistosoma mansoni eggs. Here we use this model to investigate the mechanisms by which TNF and omega-1 shape the early granulomatous response. We find that TNF, specifically signaling through TNF receptor 1, is not required for macrophage recruitment to the egg and granuloma initiation but does mediate granuloma enlargement. In contrast, omega-1 mediates initial macrophage recruitment, with this chemotactic activity being dependent on its RNase activity. Our findings further the understanding of the role of these host- and parasite-derived factors and show that they impact distinct facets of the granulomatous response to the schistosome egg. Schistosomiasis is a disease caused by parasitic flatworms which lay eggs within the veins of their human host. Upon sensing the parasite egg, macrophages, the first line defense cells, aggregate tightly around the egg to encapsulate it within an immune structure known as a granuloma. These granulomas are the key pathological structures which determine both host disease outcome and parasite transmission. Studies in mice have implicated omega-1, a secreted parasite protein. Omega-1 is an RNase, an enzyme that degrades host RNA. Mouse studies have also suggested that a host defense protein, Tumor Necrosis Factor (TNF), is required to form granulomas around the egg. We used the small and transparent zebrafish larva to examine the requirement of omega-1 and TNF for granuloma formation. We find that omega-1 induces rapid macrophage migration and that its RNase activity is required for this. In contrast, TNF is not involved in the initial recruitment of macrophages. Rather, it enlarges granulomas after they are initiated. These findings improve our understanding of the role of omega-1 and TNF, and show that they impact distinct facets of granuloma formation around Schistosoma eggs.
Collapse
|
26
|
Alvisi N, van Noort K, Dwiani S, Geschiere N, Sukarta O, Varossieau K, Nguyen DL, Strasser R, Hokke CH, Schots A, Wilbers RHP. β-Hexosaminidases Along the Secretory Pathway of Nicotiana benthamiana Have Distinct Specificities Toward Engineered Helminth N-Glycans on Recombinant Glycoproteins. FRONTIERS IN PLANT SCIENCE 2021; 12:638454. [PMID: 33815445 PMCID: PMC8010188 DOI: 10.3389/fpls.2021.638454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/23/2021] [Indexed: 05/14/2023]
Abstract
Secretions of parasitic worms (helminths) contain a wide collection of immunomodulatory glycoproteins with the potential to treat inflammatory disorders, like autoimmune diseases. Yet, the identification of single molecules that can be developed into novel biopharmaceuticals is hampered by the limited availability of native parasite-derived proteins. Recently, pioneering work has shown that helminth glycoproteins can be produced transiently in Nicotiana benthamiana plants while simultaneously mimicking their native helminth N-glycan composition by co-expression of desired glycosyltransferases. However, efficient "helminthization" of N-glycans in plants by glyco-engineering seems to be hampered by the undesired truncation of complex N-glycans by β-N-acetyl-hexosaminidases, in particular when aiming for the synthesis of N-glycans with antennary GalNAcβ1-4GlcNAc (LacdiNAc or LDN). In this study, we cloned novel β-hexosaminidase open reading frames from N. benthamiana and characterized the biochemical activity of these enzymes. We identified HEXO2 and HEXO3 as enzymes responsible for the cleavage of antennary GalNAc residues of N-glycans on the model helminth glycoprotein kappa-5. Furthermore, we reveal that each member of the HEXO family has a distinct specificity for N-glycan substrates, where HEXO2 has strict β-galactosaminidase activity, whereas HEXO3 cleaves both GlcNAc and GalNAc. The identification of HEXO2 and HEXO3 as major targets for LDN cleavage will enable a targeted genome editing approach to reduce undesired processing of these N-glycans. Effective knockout of these enzymes could allow the production of therapeutically relevant glycoproteins with tailor-made helminth N-glycans in plants.
Collapse
Affiliation(s)
- Nicolò Alvisi
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Kim van Noort
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Sarlita Dwiani
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Nathan Geschiere
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Octavina Sukarta
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Koen Varossieau
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Dieu-Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Ruud H. P. Wilbers
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Ruud H. P. Wilbers,
| |
Collapse
|
27
|
Göritzer K, Strasser R. Glycosylation of Plant-Produced Immunoglobulins. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:519-543. [PMID: 34687021 DOI: 10.1007/978-3-030-76912-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many economically important protein-based therapeutics like monoclonal antibodies are glycosylated. Due to the recognized importance of this type of posttranslational modification, glycoengineering of expression systems to obtain highly active and homogenous therapeutics is an emerging field. Although most of the monoclonal antibodies on the market are still produced in mammalian expression platforms, plants are emerging as an alternative cost-effective and scalable production platform that allows precise engineering of glycosylation to produce targeted human glycoforms at large homogeneity. Apart from producing more effective antibodies, pure glycoforms are required in efforts to link biological functions to specific glycan structures. Much is already known about the role of IgG1 glycosylation and this antibody class is the dominant recombinant format that has been expressed in plants. By contrast, little attention has been paid to the glycoengineering of recombinant IgG subtypes and the other four classes of human immunoglobulins (IgA, IgD, IgE, and IgM). Except for IgD, all these antibody classes have been expressed in plants and the glycosylation has been analyzed in a site-specific manner. Here, we summarize the current data on glycosylation of plant-produced monoclonal antibodies and discuss the findings in the light of known functions for these glycans.
Collapse
Affiliation(s)
| | - Richard Strasser
- University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Nkurunungi G, Mpairwe H, Versteeg SA, Diepen A, Nassuuna J, Kabagenyi J, Nambuya I, Sanya RE, Nampijja M, Serna S, Reichardt N, Hokke CH, Webb EL, Ree R, Yazdanbakhsh M, Elliott AM. Cross-reactive carbohydrate determinant-specific IgE obscures true atopy and exhibits ⍺-1,3-fucose epitope-specific inverse associations with asthma. Allergy 2021; 76:233-246. [PMID: 32568414 PMCID: PMC7610925 DOI: 10.1111/all.14469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/03/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022]
Abstract
Background In high-income, temperate countries, IgE to allergen extracts is a risk factor for, and mediator of, allergy-related diseases (ARDs). In the tropics, positive IgE tests are also prevalent, but rarely associated with ARD. Instead, IgE responses to ubiquitous cross-reactive carbohydrate determinants (CCDs) on plant, insect and parasite glycoproteins, rather than to established major allergens, are dominant. Because anti-CCD IgE has limited clinical relevance, it may impact ARD phenotyping and assessment of contribution of atopy to ARD. Methods Using an allergen extract-based test, a glycan and an allergen (glyco)protein microarray, we mapped IgE fine specificity among Ugandan rural Schistosoma mansoni (Sm)-endemic communities, proximate urban communities, and importantly in asthmatic and nonasthmatic schoolchildren. Results Overall, IgE sensitization to extracts was highly prevalent (43%-73%) but allergen arrays indicated that this was not attributable to established major allergenic components of the extracts (0%-36%); instead, over 40% of all participants recognized CCD-bearing components. Using glycan arrays, we dissected IgE responses to specific glycan moieties and found that reactivity to classical CCD epitopes (core β-1,2-xylose, α-1,3-fucose) was positively associated with sensitization to extracts, rural environment and Sm infection, but not with skin reactivity to extracts or sensitization to their major allergenic components. Interestingly, we discovered that reactivity to only a subset of core α-1,3-fucose-carrying N-glycans was inversely associated with asthma. Conclusions CCD reactivity is not just an epiphenomenon of parasite exposure hampering specificity of allergy diagnostics; mechanistic studies should investigate whether specific CCD moieties identified here are implicated in the protective effect of certain environmental exposures against asthma.
Collapse
Affiliation(s)
- Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
- Department of Clinical Research London School of Hygiene and Tropical Medicine London UK
| | - Harriet Mpairwe
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
| | - Serge A. Versteeg
- Departments of Experimental Immunology and of Otorhinolaryngology Amsterdam University Medical Centers (AMC) Amsterdam The Netherlands
| | - Angela Diepen
- Department of Parasitology Leiden University Medical Center Leiden The Netherlands
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
| | - Joyce Kabagenyi
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
| | - Irene Nambuya
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
| | - Richard E. Sanya
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
- College of Health Sciences Makerere University Kampala Uganda
| | - Margaret Nampijja
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
| | - Sonia Serna
- Glycotechnology Laboratory Centro de Investigación Cooperativa en Biomateriales (CIC biomaGUNE) San Sebastián Spain
| | - Niels‐Christian Reichardt
- Glycotechnology Laboratory Centro de Investigación Cooperativa en Biomateriales (CIC biomaGUNE) San Sebastián Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN) San Sebastián Spain
| | - Cornelis H. Hokke
- Department of Parasitology Leiden University Medical Center Leiden The Netherlands
| | - Emily L. Webb
- Department of Infectious Disease Epidemiology London School of Hygiene and Tropical Medicine MRC Tropical Epidemiology Group London UK
| | - Ronald Ree
- Departments of Experimental Immunology and of Otorhinolaryngology Amsterdam University Medical Centers (AMC) Amsterdam The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology Leiden University Medical Center Leiden The Netherlands
| | - Alison M. Elliott
- Immunomodulation and Vaccines Programme Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit Entebbe Uganda
- Department of Clinical Research London School of Hygiene and Tropical Medicine London UK
| |
Collapse
|
29
|
The potential for vaccines against scour worms of small ruminants. Int J Parasitol 2020; 50:533-553. [PMID: 32569640 DOI: 10.1016/j.ijpara.2020.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
Abstract
This review addresses the research landscape regarding vaccines against scour worms, particularly Trichostrongylus spp. and Teladorsagia circumcincta. The inability of past research to deliver scour-worm vaccines with reliable and reproducible efficacy has been due in part to gaps in knowledge concerning: (i) host-parasite interactions leading to development of type-2 immunity, (ii) definition of an optimal suite of parasite antigens, and (iii) rational formulation and administration to induce protective immunity against gastrointestinal nematodes (GIN) at the site of infestation. Recent 'omics' developments enable more systematic analyses. GIN genomes are reaching completion, facilitating "reverse vaccinology" approaches that have been used successfully for the Rhipicephalus australis vaccine for cattle tick, while methods for gene silencing and editing in GIN enable identification and validation of potential vaccine antigens. We envisage that any efficacious scour worm vaccine(s) would be adopted similarly to "Barbervax™" within integrated parasite management schemes. Vaccines would therefore effectively parallel the use of resistant animals, and reduce the frequency of drenching and pasture contamination. These aspects of integration, efficacy and operation require updated models and validation in the field. The conclusion of this review outlines an approach to facilitate an integrated research program.
Collapse
|
30
|
Kuipers ME, Nolte-'t Hoen ENM, van der Ham AJ, Ozir-Fazalalikhan A, Nguyen DL, de Korne CM, Koning RI, Tomes JJ, Hoffmann KF, Smits HH, Hokke CH. DC-SIGN mediated internalisation of glycosylated extracellular vesicles from Schistosoma mansoni increases activation of monocyte-derived dendritic cells. J Extracell Vesicles 2020; 9:1753420. [PMID: 32489529 PMCID: PMC7241508 DOI: 10.1080/20013078.2020.1753420] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Helminths like Schistosoma mansoni release excretory/secretory (E/S) products that modulate host immunity to enable infection. Extracellular vesicles (EVs) are among these E/S products, yet molecular mechanisms and functionality of S. mansoni EV interaction with host immune cells is unknown. Here we demonstrate that EVs released by S. mansoni schistosomula are internalised by human monocyte-derived dendritic cells (moDCs). Importantly, we show that this uptake was mainly mediated via DC-SIGN (CD209). Blocking DC-SIGN almost completely abrogated EV uptake, while blocking mannose receptor (MR, CD206) or dendritic cell immunoreceptor (DCIR, CLEC4A) had no effect on EV uptake. Mass spectrometric analysis of EV glycans revealed the presence of surface N-glycans with terminal Galβ1-4(Fucα1-3)GlcNAc (LewisX) motifs, and a wide array of fucosylated lipid-linked glycans, including LewisX, a known ligand for DC-SIGN. Stimulation of moDCs with schistosomula EVs led to increased expression of costimulatory molecules CD86 and CD80 and regulatory surface marker PD-L1. Furthermore, schistosomula EVs increased expression of IL-12 and IL-10 by moDCs, which was partly dependent on the interaction with DC-SIGN. These results provide the first evidence that glycosylation of S. mansoni EVs facilitates the interaction with host immune cells and reveals a role for DC-SIGN and EV-associated glycoconjugates in parasite-induced immune modulation.
Collapse
Affiliation(s)
- Marije E Kuipers
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands.,Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Alwin J van der Ham
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - D Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Clarize M de Korne
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Roman I Koning
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - John J Tomes
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
31
|
Kytidou K, Artola M, Overkleeft HS, Aerts JMFG. Plant Glycosides and Glycosidases: A Treasure-Trove for Therapeutics. FRONTIERS IN PLANT SCIENCE 2020; 11:357. [PMID: 32318081 PMCID: PMC7154165 DOI: 10.3389/fpls.2020.00357] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/11/2020] [Indexed: 05/10/2023]
Abstract
Plants contain numerous glycoconjugates that are metabolized by specific glucosyltransferases and hydrolyzed by specific glycosidases, some also catalyzing synthetic transglycosylation reactions. The documented value of plant-derived glycoconjugates to beneficially modulate metabolism is first addressed. Next, focus is given to glycosidases, the central theme of the review. The therapeutic value of plant glycosidases is discussed as well as the present production in plant platforms of therapeutic human glycosidases used in enzyme replacement therapies. The increasing knowledge on glycosidases, including structure and catalytic mechanism, is described. The novel insights have allowed the design of functionalized highly specific suicide inhibitors of glycosidases. These so-called activity-based probes allow unprecedented visualization of glycosidases cross-species. Here, special attention is paid on the use of such probes in plant science that promote the discovery of novel enzymes and the identification of potential therapeutic inhibitors and chaperones.
Collapse
Affiliation(s)
- Kassiani Kytidou
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Marta Artola
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
32
|
Larsen JS, Karlsson RTG, Tian W, Schulz MA, Matthes A, Clausen H, Petersen BL, Yang Z. Engineering mammalian cells to produce plant-specific N-glycosylation on proteins. Glycobiology 2020; 30:528-538. [DOI: 10.1093/glycob/cwaa009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/30/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
Protein N-glycosylation is an essential and highly conserved posttranslational modification found in all eukaryotic cells. Yeast, plants and mammalian cells, however, produce N-glycans with distinct structural features. These species-specific features not only pose challenges in selecting host cells for production of recombinant therapeutics for human medical use but also provide opportunities to explore and utilize species-specific glycosylation in design of vaccines. Here, we used reverse cross-species engineering to stably introduce plant core α3fucose (α3Fuc) and β2xylose (β2Xyl) N-glycosylation epitopes in the mammalian Chinese hamster ovary (CHO) cell line. We used directed knockin of plant core fucosylation and xylosylation genes (AtFucTA/AtFucTB and AtXylT) and targeted knockout of endogenous genes for core fucosylation (fut8) and elongation (B4galt1), for establishing CHO cells with plant N-glycosylation capacities. The engineering was evaluated through coexpression of two human therapeutic N-glycoproteins, erythropoietin (EPO) and an immunoglobulin G (IgG) antibody. Full conversion to the plant-type α3Fuc/β2Xyl bi-antennary agalactosylated N-glycosylation (G0FX) was demonstrated for the IgG1 produced in CHO cells. These results demonstrate that N-glycosylation in mammalian cells is amenable for extensive cross-kingdom engineering and that engineered CHO cells may be used to produce glycoproteins with plant glycosylation.
Collapse
Affiliation(s)
- Joachim Steen Larsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, København, Denmark
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| | - Richard Torbjörn Gustav Karlsson
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| | - Morten Alder Schulz
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| | - Annemarie Matthes
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, København, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, København, Denmark
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| |
Collapse
|
33
|
Sialoglycans and genetically engineered plants. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153322 DOI: 10.1016/b978-0-12-816126-5.00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plants express N-glycosylation pathways and produce N-glycosylated proteins but differ from the mammalian-type proteins. Therefore attempts are made to design and engineer plant glycosylation pathways that can produce mammalian-type glycosylated moieties so that large quantities of biopharmaceuticals compatible to the human body can be produced. Most of the studies of plant expression systems for molecular farming have been conducted on Nicotiana sp. and genetic engineering and molecular biology tools have enabled the generation of glycoengineered plant for human use in the production of therapeutic recombinant proteins. We have discussed in this chapter the advances of glycoengineering in plants with special reference to the reconstruction of silaylation pathways in plants and the latest application in the production of antibody and therapeutics in plants.
Collapse
|
34
|
Mouser EEIM, Pollakis G, Smits HH, Thomas J, Yazdanbakhsh M, de Jong EC, Paxton WA. Schistosoma mansoni soluble egg antigen (SEA) and recombinant Omega-1 modulate induced CD4+ T-lymphocyte responses and HIV-1 infection in vitro. PLoS Pathog 2019; 15:e1007924. [PMID: 31487324 PMCID: PMC6728022 DOI: 10.1371/journal.ppat.1007924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/19/2019] [Indexed: 01/17/2023] Open
Abstract
Parasitic helminths evade, skew and dampen human immune responses through numerous mechanisms. Such effects will likely have consequences for HIV-1 transmission and disease progression. Here we analyzed the effects that soluble egg antigen (SEA) from Schistosoma mansoni had on modulating HIV-1 infection and cytokine/chemokine production in vitro. We determined that SEA, specifically through kappa-5, can potently bind to DC-SIGN and thereby blocks DC-SIGN mediated HIV-1 trans-infection (p<0.05) whilst not interfering with cis-infection. DCs exposed to SEA whilst maturing under Th2 promoting conditions, will upon co-culture with naïve T-cells induce a T-cell population that was less susceptible to HIV-1 R5 infection (p<0.05) compared to DCs unexposed to SEA, whereas HIV-1 X4 virus infection was unaffected. This was not observed for DCs exposed to SEA while maturing under Th1 or Th1/Th2 (Tmix) promoting conditions. All T-cell populations induced by SEA exposed DCs demonstrate a reduced capacity to produce IFN-γ and MIP-1β. The infection profile of T-cells infected with HIV-1 R5 was not associated with down-modulation of CCR5 cell surface expression. We further show that DCs maturing under Tmix conditions exposed to plant recombinant omega-1 protein (rω-1), which demonstrates similar functions to natural ω-1, induced T-cell populations that were less sensitive for HIV-1 R5 infection (p<0.05), but not for X4 virus infection. This inhibition associated again with a reduction in IFN-γ and MIP-1β expression, but additionally correlated with reduced CCR5 expression. We have shown that SEA parasite antigens and more specifically rω-1 can modulate HIV-1 infectivity with the potential to influence disease course in co-infected individuals. Parasitic helminths have developed a number of strategies to evade, skew and dampen human immune responses. Such effects will likely have consequences for HIV-1 transmission and disease progression. Here we analyzed the effect that soluble egg antigen (SEA) from Schistosoma mansoni had on HIV-1 infection in vitro. We determined that SEA, through kappa-5, can potently block DC-SIGN mediated HIV-1 trans-infection of CD4+ T-lymphocytes, but not block cis-infection. Dendritic cells (DC) exposed to SEA during maturation under Th2 skewing conditions, induce T-cell populations that are less susceptible to HIV-1 R5 infection compared to cells induced by unexposed DCs. HIV-1 X4 infection was unaffected. This restricted infection profile was not associated with down-modulation of CCR5 surface expression or observed differences in cytokine/chemokine production. Using recombinant omega-1, an abundant component of SEA, HIV-1 R5 infection was similarly inhibited with no effect on HIV-1 X4 infection levels. Hence SEA possesses antigens, namely omega-1, that can modulate HIV-1 infection and potentially influence disease course in co-infected individuals.
Collapse
Affiliation(s)
- Emily EIM Mouser
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Georgios Pollakis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Esther C. de Jong
- Department of Cell Biology and Histology, Amsterdam UMC, Location Academic Medical Center, Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Location Academic Medical Center, Amsterdam, the Netherlands
- * E-mail: (ECdJ); (WAP)
| | - William A. Paxton
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail: (ECdJ); (WAP)
| |
Collapse
|
35
|
Abstract
Many invertebrates are either parasites themselves or vectors involved in parasite transmission; thereby, the interactions of parasites with final or intermediate hosts are often mediated by glycans. Therefore, it is of interest to compare the glycan structures or motifs present across invertebrate species. While a typical vertebrate modification such as sialic acid is rare in lower animals, antennal and core modifications of N-glycans are highly varied and range from core fucose, galactosylated fucose, fucosylated galactose, methyl groups, glucuronic acid and sulphate through to addition of zwitterionic moieties (phosphorylcholine, phosphoethanolamine and aminoethylphosphonate). Only in some cases are the enzymatic bases and the biological function of these modifications known. We are indeed still in the phase of discovering invertebrate glycomes primarily using mass spectrometry, but molecular biology and microarraying techniques are complementary to the determination of novel glycan structures and their functions.
Collapse
|
36
|
Ittiprasert W, Mann VH, Karinshak SE, Coghlan A, Rinaldi G, Sankaranarayanan G, Chaidee A, Tanno T, Kumkhaek C, Prangtaworn P, Mentink-Kane MM, Cochran CJ, Driguez P, Holroyd N, Tracey A, Rodpai R, Everts B, Hokke CH, Hoffmann KF, Berriman M, Brindley PJ. Programmed genome editing of the omega-1 ribonuclease of the blood fluke, Schistosoma mansoni. eLife 2019; 8:e41337. [PMID: 30644357 PMCID: PMC6355194 DOI: 10.7554/elife.41337] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022] Open
Abstract
CRISPR/Cas9-based genome editing has yet to be reported in species of the Platyhelminthes. We tested this approach by targeting omega-1 (ω1) of Schistosoma mansoni as proof of principle. This secreted ribonuclease is crucial for Th2 polarization and granuloma formation. Schistosome eggs were exposed to Cas9 complexed with guide RNA complementary to ω1 by electroporation or by transduction with lentiviral particles. Some eggs were also transfected with a single stranded donor template. Sequences of amplicons from gene-edited parasites exhibited Cas9-catalyzed mutations including homology directed repaired alleles, and other analyses revealed depletion of ω1 transcripts and the ribonuclease. Gene-edited eggs failed to polarize Th2 cytokine responses in macrophage/T-cell co-cultures, while the volume of pulmonary granulomas surrounding ω1-mutated eggs following tail-vein injection into mice was vastly reduced. Knock-out of ω1 and the diminished levels of these cytokines following exposure showcase the novel application of programmed gene editing for functional genomics in schistosomes.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Victoria H Mann
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Shannon E Karinshak
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | - Apisit Chaidee
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Department of Parasitology, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Toshihiko Tanno
- Department of SurgeryUniversity of MarylandBaltimoreUnited States
- Institute of Human VirologyUniversity of MarylandBaltimoreUnited States
| | - Chutima Kumkhaek
- Cellular and Molecular Therapeutics LaboratoryNational Heart, Lungs and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Pannathee Prangtaworn
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Department of Parasitology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | | | - Christina J Cochran
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Patrick Driguez
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Rutchanee Rodpai
- Department of Parasitology, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Bart Everts
- Department of ParasitologyLeiden University Medical CenterLeidenNetherlands
| | - Cornelis H Hokke
- Department of ParasitologyLeiden University Medical CenterLeidenNetherlands
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUnited Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| |
Collapse
|
37
|
Maizels RM, Smits HH, McSorley HJ. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity 2018; 49:801-818. [PMID: 30462997 PMCID: PMC6269126 DOI: 10.1016/j.immuni.2018.10.016] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 02/09/2023]
Abstract
Helminths are extraordinarily successful parasites due to their ability to modulate the host immune response. They have evolved a spectrum of immunomodulatory molecules that are now beginning to be defined, heralding a molecular revolution in parasite immunology. These discoveries have the potential both to transform our understanding of parasite adaptation to the host and to develop possible therapies for immune-mediated disease. In this review we will summarize the current state of the art in parasite immunomodulation and discuss perspectives on future areas for research and discovery.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | | | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
38
|
Helminth-induced IL-4 expands bystander memory CD8 + T cells for early control of viral infection. Nat Commun 2018; 9:4516. [PMID: 30375396 PMCID: PMC6207712 DOI: 10.1038/s41467-018-06978-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022] Open
Abstract
Infection with parasitic helminths can imprint the immune system to modulate bystander inflammatory processes. Bystander or virtual memory CD8+ T cells (TVM) are non-conventional T cells displaying memory properties that can be generated through responsiveness to interleukin (IL)-4. However, it is not clear if helminth-induced type 2 immunity functionally affects the TVM compartment. Here, we show that helminths expand CD44hiCD62LhiCXCR3hiCD49dlo TVM cells through direct IL-4 signaling in CD8+ T cells. Importantly, helminth-mediated conditioning of TVM cells provided enhanced control of acute respiratory infection with the murid gammaherpesvirus 4 (MuHV-4). This enhanced control of MuHV-4 infection could further be explained by an increase in antigen-specific CD8+ T cell effector responses in the lung and was directly dependent on IL-4 signaling. These results demonstrate that IL-4 during helminth infection can non-specifically condition CD8+ T cells, leading to a subsequently raised antigen-specific CD8+ T cell activation that enhances control of viral infection. Parasitic helminth infection is known to impact upon the host response to other bystander inflammatory processes. Here the authors show that IL4 production induced by helminth infection results in expansion of bystander CD8+ memory T cells and enhanced control to viral infection.
Collapse
|
39
|
Zakeri A, Hansen EP, Andersen SD, Williams AR, Nejsum P. Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles. Front Immunol 2018; 9:2349. [PMID: 30369927 PMCID: PMC6194161 DOI: 10.3389/fimmu.2018.02349] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites are masters at manipulating host immune responses, using an array of sophisticated mechanisms. One of the major mechanisms enabling helminths to establish chronic infections is the targeting of pattern recognition receptors (PRRs) including toll-like receptors, C-type lectin receptors, and the inflammasome. Given the critical role of these receptors and their intracellular pathways in regulating innate inflammatory responses, and also directing adaptive immunity toward Th1 and Th2 responses, recognition of the pathways triggered and/or modulated by helminths and their products will provide detailed insights about how helminths are able to establish an immunoregulatory environment. However, helminths also target PRRs-independent mechanisms (and most likely other yet unknown mechanisms and pathways) underpinning the battery of different molecules helminths produce. Herein, the current knowledge on intracellular pathways in antigen presenting cells activated by helminth-derived biomolecules is reviewed. Furthermore, we discuss the importance of helminth-derived vesicles as a less-appreciated components released during infection, their role in activating these host intracellular pathways, and their implication in the development of new therapeutic approaches for inflammatory diseases and the possibility of designing a new generation of vaccines.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Eline P. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sidsel D. Andersen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
40
|
Walwyn-Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald AS, Davis DM. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2028-2041. [PMID: 30120122 PMCID: PMC6139540 DOI: 10.4049/jimmunol.1800475] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Cross-talk between NK cells and dendritic cells (DCs) is important in Th1 immune responses, including antitumor immunity and responses to infections. DCs also play a crucial role in polarizing Th2 immunity, but the impact of NK cell-DC interactions in this context remains unknown. In this study, we stimulated human monocyte-derived DCs in vitro with different pathogen-associated molecules: LPS or polyinosinic-polycytidylic acid, which polarize a Th1 response, or soluble egg Ag from the helminth worm Schistosoma mansoni, a potent Th2-inducing Ag. Th2-polarizing DCs were functionally distinguishable from Th1-polarizing DCs, and both showed distinct morphology and dynamics from immature DCs. We then assessed the outcome of autologous NK cells interacting with these differently stimulated DCs. Confocal microscopy showed polarization of the NK cell microtubule organizing center and accumulation of LFA-1 at contacts between NK cells and immature or Th2-polarizing DCs but not Th1-polarizing DCs, indicative of the assembly of an activating immune synapse. Autologous NK cells lysed immature DCs but not DCs treated with LPS or polyinosinic-polycytidylic acid as reported previously. In this study, we demonstrated that NK cells also degranulated in the presence of Th2-polarizing DCs. Moreover, time-lapse live-cell microscopy showed that DCs that had internalized fluorescently labeled soluble egg Ag were efficiently lysed. Ab blockade of NK cell-activating receptors NKp30 or DNAM-1 abrogated NK cell lysis of Th2-polarizing DCs. Thus, these data indicate a previously unrecognized role of NK cell cytotoxicity and NK cell-activating receptors NKp30 and DNAM-1 in restricting the pool of DCs involved in Th2 immune responses.
Collapse
Affiliation(s)
- Katherine Walwyn-Brown
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Karolin Guldevall
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, SE-106 91 Stockholm, Sweden
| | - Mezida Saeed
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Daniela Pende
- Laboratorio Immunologia, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, 16132 Genova, Italy; and
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, SE-106 91 Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom;
| |
Collapse
|
41
|
Kytidou K, Beekwilder J, Artola M, van Meel E, Wilbers RHP, Moolenaar GF, Goosen N, Ferraz MJ, Katzy R, Voskamp P, Florea BI, Hokke CH, Overkleeft HS, Schots A, Bosch D, Pannu N, Aerts JMFG. Nicotiana benthamiana α-galactosidase A1.1 can functionally complement human α-galactosidase A deficiency associated with Fabry disease. J Biol Chem 2018; 293:10042-10058. [PMID: 29674318 PMCID: PMC6028973 DOI: 10.1074/jbc.ra118.001774] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
α-Galactosidases (EC 3.2.1.22) are retaining glycosidases that cleave terminal α-linked galactose residues from glycoconjugate substrates. α-Galactosidases take part in the turnover of cell wall-associated galactomannans in plants and in the lysosomal degradation of glycosphingolipids in animals. Deficiency of human α-galactosidase A (α-Gal A) causes Fabry disease (FD), a heritable, X-linked lysosomal storage disorder, characterized by accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3). Current management of FD involves enzyme-replacement therapy (ERT). An activity-based probe (ABP) covalently labeling the catalytic nucleophile of α-Gal A has been previously designed to study α-galactosidases for use in FD therapy. Here, we report that this ABP labels proteins in Nicotiana benthamiana leaf extracts, enabling the identification and biochemical characterization of an N. benthamiana α-galactosidase we name here A1.1 (gene accession ID GJZM-1660). The transiently overexpressed and purified enzyme was a monomer lacking N-glycans and was active toward 4-methylumbelliferyl-α-d-galactopyranoside substrate (Km = 0.17 mm) over a broad pH range. A1.1 structural analysis by X-ray crystallography revealed marked similarities with human α-Gal A, even including A1.1's ability to hydrolyze Gb3 and lyso-Gb3, which are not endogenous in plants. Of note, A1.1 uptake into FD fibroblasts reduced the elevated lyso-Gb3 levels in these cells, consistent with A1.1 delivery to lysosomes as revealed by confocal microscopy. The ease of production and the features of A1.1, such as stability over a broad pH range, combined with its capacity to degrade glycosphingolipid substrates, warrant further examination of its value as a potential therapeutic agent for ERT-based FD management.
Collapse
Affiliation(s)
| | - Jules Beekwilder
- the Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, and
| | | | | | - Ruud H P Wilbers
- the Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, and
| | - Geri F Moolenaar
- Cloning and Protein Purification Facility, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden
| | - Nora Goosen
- Cloning and Protein Purification Facility, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden
| | | | | | | | | | - Cornelis H Hokke
- the Department of Parasitology, Centre of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | - Arjen Schots
- the Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, and
| | - Dirk Bosch
- the Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, and
| | | | | |
Collapse
|
42
|
The Untapped Pharmacopeic Potential of Helminths. Trends Parasitol 2018; 34:828-842. [PMID: 29954660 DOI: 10.1016/j.pt.2018.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
The dramatic rise in immunological disorders that occurs with socioeconomic development is associated with alterations in microbial colonization and reduced exposure to helminths. Excretory-secretory (E/S) helminth products contain a mixture of proteins and low-molecular-weight molecules representing the primary interface between parasite and host. Research has shown great pharmacopeic potential for helminth-derived products in animal disease models and even in clinical trials. Although in its infancy, the translation of worm-derived products into therapeutics is highly promising. Here, we focus on important key aspects in the development of immunomodulatory drugs, also highlighting novel approaches that hold great promise for future development of innovative research strategies.
Collapse
|
43
|
A novel broad specificity fucosidase capable of core α1-6 fucose release from N-glycans labeled with urea-linked fluorescent dyes. Sci Rep 2018; 8:9504. [PMID: 29934601 PMCID: PMC6015026 DOI: 10.1038/s41598-018-27797-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/07/2018] [Indexed: 11/08/2022] Open
Abstract
Exoglycosidases are often used for detailed characterization of glycan structures. Bovine kidney α-fucosidase is commonly used to determine the presence of core α1-6 fucose on N-glycans, an important modification of glycoproteins. Recently, several studies have reported that removal of core α1-6-linked fucose from N-glycans labeled with the reactive N-hydroxysuccinimide carbamate fluorescent labels 6-aminoquinolyl-N-hydroxysuccinimidylcarbamate (AQC) and RapiFluor-MS is severely impeded. We report here the cloning, expression and biochemical characterization of an α-fucosidase from Omnitrophica bacterium (termed fucosidase O). We show that fucosidase O can efficiently remove α1-6- and α1-3-linked core fucose from N-glycans. Additionally, we demonstrate that fucosidase O is able to efficiently hydrolyze core α1-6-linked fucose from N-glycans labeled with any of the existing NHS-carbamate activated fluorescent dyes.
Collapse
|
44
|
Montero-Morales L, Steinkellner H. Advanced Plant-Based Glycan Engineering. Front Bioeng Biotechnol 2018; 6:81. [PMID: 29963553 PMCID: PMC6010556 DOI: 10.3389/fbioe.2018.00081] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023] Open
Abstract
With respect to biomanufacturing, glycosylation is one of the most addressed post-translational modifications, since it is well-known that the attachment of sugar residues efficiently affects protein homogeneity and functionality. Much effort has been taken into engineering various expression systems to control glycosylation and to generate molecules with targeted sugar profiles. Nevertheless, engineering of N- and O-linked glycans on well-established expression systems remains challenging. On the one side the glycosylation machinery in mammalian cells is hard to control due to its complexity. Most bacteria, on the other side, completely lack such glycan formations, and in general exhibit fundamental differences in their glycosylation abilities. Beyond that, plants generate complex N-glycans typical of higher eukaryotes, but simpler than those produced by mammals. Paradoxically, it seems that the limited glycosylation capacity of plant cells is an advantage for specific glycan manipulations. This review focuses on recent achievements in plant glycan engineering and provides a short outlook on how new developments (in synthetic biology) might have a positive impact.
Collapse
Affiliation(s)
- Laura Montero-Morales
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
45
|
Darwiche R, Lugo F, Drurey C, Varossieau K, Smant G, Wilbers RHP, Maizels RM, Schneiter R, Asojo OA. Crystal structure of Brugia malayi venom allergen-like protein-1 (BmVAL-1), a vaccine candidate for lymphatic filariasis. Int J Parasitol 2018; 48:371-378. [PMID: 29501266 PMCID: PMC5893361 DOI: 10.1016/j.ijpara.2017.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/04/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
The vaccine candidate Brugia malayi venom allergen-like 1 protein (BmVAL-1) has three distinct binding cavities. The cavities are the central cavity; the sterol-binding caveolin-binding motif (CBM); and the palmitate-binding cavity. These cavities are connected by channels, which can accommodate water molecules, ions and small ligands. The channels explain how blocking divalent ions in the central cavity affects sterol binding in the distinct CBM cavity. BmVAL-1 has a glycosylated CBM, is an effective sterol transporter in vivo and binds cholesterol and palmitate in vitro.
Brugia malayi is a causative agent of lymphatic filariasis, a major tropical disease. The infective L3 parasite stage releases immunomodulatory proteins including the venom allergen-like proteins (VALs), which are members of the SCP/TAPS (Sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. BmVAL-1 is a major target of host immunity with >90% of infected B. malayi microfilaraemic cases being seropositive for antibodies to BmVAL-1. This study is part of ongoing efforts to characterize the structures and functions of important B. malayi proteins. Recombinant BmVAL-1 was produced using a plant expression system, crystallized and the structure was solved by molecular replacement and refined to 2.1 Å, revealing the characteristic alpha/beta/alpha sandwich topology of eukaryotic SCP/TAPS proteins. The protein has more than 45% loop regions and these flexible loops connect the helices and strands, which are longer than predicted based on other parasite SCP/TAPS protein structures. The large central cavity of BmVAL-1 is a prototypical CRISP cavity with two histidines required to bind divalent cations. The caveolin-binding motif (CBM) that mediates sterol binding in SCP/TAPS proteins is large and open in BmVAL-1 and is N-glycosylated. N-glycosylation of the CBM does not affect the ability of BmVAL-1 to bind sterol in vitro. BmVAL-1 complements the in vivo sterol export phenotype of yeast mutants lacking their endogenous SCP/TAPS proteins. The in vitro sterol-binding affinity of BmVAL-1 is comparable with Pry1, a yeast sterol transporting SCP/TAPS protein. Sterol binding of BmVAL-1 is dependent on divalent cations. BmVAL-1 also has a large open palmitate-binding cavity, which binds palmitate comparably to tablysin-15, a lipid-binding SCP/TAPS protein. The central cavity, CBM and palmitate-binding cavity of BmVAL-1 are interconnected within the monomer with channels that can serve as pathways for water molecules, cations and small molecules.
Collapse
Affiliation(s)
- Rabih Darwiche
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Fernanda Lugo
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claire Drurey
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Koen Varossieau
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Oluwatoyin A Asojo
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Asojo OA, Darwiche R, Gebremedhin S, Smant G, Lozano-Torres JL, Drurey C, Pollet J, Maizels RM, Schneiter R, Wilbers RHP. Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) is a sterol binding protein. Int J Parasitol 2018; 48:359-369. [PMID: 29505764 PMCID: PMC5893428 DOI: 10.1016/j.ijpara.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) was produced in plants as a glycosylated protein. The crystal structure of HpVAL-4 was solved and reveals three distinct cavities. These cavities are the central cavity; the sterol-binding caveolin-binding motif (CBM); and the palmitate-binding cavity. The central cavity of Hp-VAL-4 lacks the characteristic histidines that coordinate divalent cations. Hp-VAL-4 binds sterol in vivo and in vitro.
Heligmosomoides polygyrus bakeri is a model parasitic hookworm used to study animal and human helminth diseases. During infection, the parasite releases excretory/secretory products that modulate the immune system of the host. The most abundant protein family in excretory/secretory products comprises the venom allergen-like proteins (VALs), which are members of the SCP/TAPS (sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. There are >30 secreted Heligmosomoides polygyrus VAL proteins (HpVALs) and these proteins are characterised by having either one or two 15 kDa CAP (cysteine-rich secretory protein (CRISP)/antigen 5/pathogenesis related-1) domains. The first known HpVAL structure, HpVAL-4, refined to 1.9 Å is reported. HpVAL-4 was produced as a homogeneously glycosylated protein in leaves of Nicotiana benthamiana infiltrated with recombinant plasmids, making this plant expression platform amenable for the production of biological products. The overall topology of HpVAL-4 is a three layered αβα sandwich between a short N-terminal loop and a C-terminal cysteine rich extension. The C-terminal cysteine rich extension has two strands stabilized by two disulfide bonds and superposes well with the previously reported extension from the human hookworm Necator americanus Ancylostoma secreted protein-2 (Na-ASP-2). The N-terminal loop is connected to alpha helix 2 via a disulfide bond previously observed in Na-ASP-2. HpVAL-4 has a central cavity that is more similar to the N-terminal CAP domain of the two CAP Na-ASP-1 from Necator americanus. Unlike Na-ASP-2, mammalian CRISP, and the C-terminal CAP domain of Na-ASP-1, the large central cavity of HpVAL-4 lacks the two histidines required to coordinate divalent cations. HpVAL-4 has both palmitate-binding and sterol-binding cavities and is able to complement the in vivo sterol export phenotype of yeast mutants lacking their endogenous CAP proteins. More studies are required to determine endogenous binding partners of HpVAL-4 and unravel the possible impact of sterol binding on immune-modulatory functions.
Collapse
Affiliation(s)
- Oluwatoyin A Asojo
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Rabih Darwiche
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Selam Gebremedhin
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jose L Lozano-Torres
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Claire Drurey
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Jeroen Pollet
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Ruud H P Wilbers
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
47
|
Kallolimath S, Gruber C, Steinkellner H, Castilho A. Promoter Choice Impacts the Efficiency of Plant Glyco-Engineering. Biotechnol J 2018; 13. [PMID: 28755501 DOI: 10.1002/biot.201700380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/20/2017] [Indexed: 01/19/2023]
Abstract
Glyco-modulation of therapeutic proteins produced in plants has shown great success. Plant-based expression platforms for tailored human-like N-glycosylation are based on the overexpression of foreign genes. However, drawbacks such as protein miss targeting, interference with endogenous glycosyltransferases, or with plant development hamper the widespread use of the technology. Here a technique that facilitates the generation of recombinant proteins with targeted N-glycosylation at high homogeneity is described. It is focused on the synthesis of human-type β1,4-galactosylation by the overexpression of the human β1,4-galactosyltransferase (GalT) in Nicotiana benthamiana. A GalT construct that targets the enzyme to the required late Golgi compartment (ST GalT) is transiently co-expressed with two pharmaceutically relevant glycoproteins. The impact of eight promoters driving the expression of ST GalT is evaluated by mass spectrometry (MS) -based analyses. It is shown that five promoters (amongst them high expressors) induce aberrant non-human glycosylation. In contrast, three promoters, considered as moderately active, regulate gene expression to levels leading to an improved efficiency of di-galactosylation (and subsequent sialylation) on the reporter proteins. The results point to the importance of promoter choice for optimizing glycan engineering processes.
Collapse
Affiliation(s)
- Somanath Kallolimath
- S. Kallolimath, Prof. H. Steinkellner, Dr. A. Castilho, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Gruber
- Dr. C. Gruber, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Herta Steinkellner
- S. Kallolimath, Prof. H. Steinkellner, Dr. A. Castilho, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alexandra Castilho
- S. Kallolimath, Prof. H. Steinkellner, Dr. A. Castilho, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
48
|
Haeberlein S, Obieglo K, Ozir-Fazalalikhan A, Chayé MAM, Veninga H, van der Vlugt LEPM, Voskamp A, Boon L, den Haan JMM, Westerhof LB, Wilbers RHP, Schots A, Schramm G, Hokke CH, Smits HH. Schistosome egg antigens, including the glycoprotein IPSE/alpha-1, trigger the development of regulatory B cells. PLoS Pathog 2017; 13:e1006539. [PMID: 28753651 PMCID: PMC5550006 DOI: 10.1371/journal.ppat.1006539] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/09/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
Infection with the helminth Schistosoma (S.) mansoni drives the development of interleukin (IL)-10-producing regulatory B (Breg) cells in mice and man, which have the capacity to reduce experimental allergic airway inflammation and are thus of high therapeutic interest. However, both the involved antigen and cellular mechanisms that drive Breg cell development remain to be elucidated. Therefore, we investigated whether S. mansoni soluble egg antigens (SEA) directly interact with B cells to enhance their regulatory potential, or act indirectly on B cells via SEA-modulated macrophage subsets. Intraperitoneal injections of S. mansoni eggs or SEA significantly upregulated IL-10 and CD86 expression by marginal zone B cells. Both B cells as well as macrophages of the splenic marginal zone efficiently bound SEA in vivo, but macrophages were dispensable for Breg cell induction as shown by macrophage depletion with clodronate liposomes. SEA was internalized into acidic cell compartments of B cells and induced a 3-fold increase of IL-10, which was dependent on endosomal acidification and was further enhanced by CD40 ligation. IPSE/alpha-1, one of the major antigens in SEA, was also capable of inducing IL-10 in naïve B cells, which was reproduced by tobacco plant-derived recombinant IPSE. Other major schistosomal antigens, omega-1 and kappa-5, had no effect. SEA depleted of IPSE/alpha-1 was still able to induce Breg cells indicating that SEA contains more Breg cell-inducing components. Importantly, SEA- and IPSE-induced Breg cells triggered regulatory T cell development in vitro. SEA and recombinant IPSE/alpha-1 also induced IL-10 production in human CD1d+ B cells. In conclusion, the mechanism of S. mansoni-induced Breg cell development involves a direct targeting of B cells by SEA components such as the secretory glycoprotein IPSE/alpha-1. Infection with helminth parasites is known to be inversely associated with hyper-inflammatory disorders. While Schistosoma (S.) mansoni has been described to exert its down-modulatory effects on inflammation by inducing a network of regulatory immune cells such as regulatory B (Breg), the mechanisms of Breg cell induction remain unclear. Here, we use in vivo and in vitro approaches to show that antigens from S. mansoni eggs, among which the major glycoprotein IPSE/alpha-1, directly interact with splenic marginal zone B cells of mice which triggers them to produce the anti-inflammatory cytokine IL-10 and their capacity to induce regulatory T (Treg) cells. We also found that IPSE/alpha-1 induces IL-10 in human CD1d+ B cells, and that both natural and recombinant IPSE/alpha-1 are equally effective in driving murine and human Breg cells. Our study thus provides insight into the mechanisms of Breg cell induction by schistosomes, and an important step towards the development of helminth-based treatment strategies against hyper-inflammatory diseases.
Collapse
Affiliation(s)
- Simone Haeberlein
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Katja Obieglo
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Mathilde A. M. Chayé
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Henrike Veninga
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | | | - Astrid Voskamp
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Lotte B. Westerhof
- Plant Science Department, Wageningen University and Research Centre, Droevendaalsesteeg, Wageningen, Netherlands
| | - Ruud H. P. Wilbers
- Plant Science Department, Wageningen University and Research Centre, Droevendaalsesteeg, Wageningen, Netherlands
| | - Arjen Schots
- Plant Science Department, Wageningen University and Research Centre, Droevendaalsesteeg, Wageningen, Netherlands
| | - Gabriele Schramm
- Experimental Pneumology, Priority Research Area Asthma & Allergy, Research Center Borstel, Parkallee, Borstel, Germany
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- * E-mail:
| |
Collapse
|
49
|
Webb LM, Lundie RJ, Borger JG, Brown SL, Connor LM, Cartwright AN, Dougall AM, Wilbers RH, Cook PC, Jackson-Jones LH, Phythian-Adams AT, Johansson C, Davis DM, Dewals BG, Ronchese F, MacDonald AS. Type I interferon is required for T helper (Th) 2 induction by dendritic cells. EMBO J 2017; 36:2404-2418. [PMID: 28716804 PMCID: PMC5556270 DOI: 10.15252/embj.201695345] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
Type 2 inflammation is a defining feature of infection with parasitic worms (helminths), as well as being responsible for widespread suffering in allergies. However, the precise mechanisms involved in T helper (Th) 2 polarization by dendritic cells (DCs) are currently unclear. We have identified a previously unrecognized role for type I IFN (IFN‐I) in enabling this process. An IFN‐I signature was evident in DCs responding to the helminth Schistosoma mansoni or the allergen house dust mite (HDM). Further, IFN‐I signaling was required for optimal DC phenotypic activation in response to helminth antigen (Ag), and efficient migration to, and localization with, T cells in the draining lymph node (dLN). Importantly, DCs generated from Ifnar1−/− mice were incapable of initiating Th2 responses in vivo. These data demonstrate for the first time that the influence of IFN‐I is not limited to antiviral or bacterial settings but also has a central role to play in DC initiation of Th2 responses.
Collapse
Affiliation(s)
- Lauren M Webb
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Rachel J Lundie
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Jessica G Borger
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Sheila L Brown
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Lisa M Connor
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Adam Nr Cartwright
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Annette M Dougall
- Fundamental and Applied Research in Animals and Health, Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Ruud Hp Wilbers
- Plant Sciences Department, Laboratory of Nematology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Peter C Cook
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Lucy H Jackson-Jones
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | | | - Cecilia Johansson
- Respiratory Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Benjamin G Dewals
- Fundamental and Applied Research in Animals and Health, Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| |
Collapse
|