1
|
Li X, Wu Z, Si X, Li J, Wu G, Wang M. The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease and future strategies for targeted therapy. Eur J Med Res 2025; 30:434. [PMID: 40450332 DOI: 10.1186/s40001-025-02699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 05/17/2025] [Indexed: 06/03/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, behavioral impairments, and psychiatric comorbidities. The pathogenesis of AD remains incompletely elucidated, despite advances in dominant hypotheses such as the β-amyloid (Aβ) cascade, tauopathy, cholinergic deficiency, and neuroinflammation mechanisms. However, these hypotheses inadequately explain the multifactorial nature of AD, which exposes limitations in our understanding of its mechanisms. Mitochondrial dysfunction is known to play a pivotal role in AD, and since patients exhibit intracellular mitochondrial dysfunction and structural changes in the brain at an early stage, correcting the imbalance of mitochondrial homeostasis and the cytopathological changes caused by it may be a potential target for early treatment of AD. Mitochondrial structural abnormalities accelerate AD pathogenesis. For instance, structural and functional alterations in the mitochondria-associated endoplasmic reticulum membrane (MAM) can disrupt intracellular Ca2⁺ homeostasis and cholesterol metabolism, consequently promoting Aβ accumulation. In addition, the overaccumulation of Aβ and hyperphosphorylated tau proteins can further damage neurons by disrupting mitochondrial integrity and mitophagy, thereby amplifying pathological aggregation and exacerbating neurodegeneration in AD. Furthermore, Aβ deposition and abnormal tau proteins can disrupt mitochondrial dynamics through dysregulation of fission/fusion proteins, leading to excessive mitochondrial fragmentation and subsequent dysfunction. Additionally, hyperphosphorylated tau proteins can impair mitochondrial transport, resulting in axonal dysfunction in AD. This article reviews the biological significance of mitochondrial structural morphology, dynamics, and mitochondrial DNA (mtDNA) instability in AD pathology, emphasizing mitophagy abnormalities as a critical contributor to AD progression. Additionally, mitochondrial biogenesis and proteostasis are critical for maintaining mitochondrial function and integrity. Impairments in these processes have been implicated in the progression of AD, further highlighting the multifaceted role of mitochondrial dysfunction in neurodegeneration. It further discusses the therapeutic potential of mitochondria-targeted strategies for AD drug development.
Collapse
Affiliation(s)
- Xin Li
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Ziyang Wu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiaying Si
- Department of Psychiatry, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jing Li
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Guode Wu
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Park S, Choi P, Kim H, Lee E, Lee D, Kim M, Kim D, Seo H, Hahm J, Jeon T, Huh Y, Ahn J, Ha T, Jung C. A Natural Autophagy Activator Castanea crenata Flower Alleviates Skeletal Muscle Ageing. J Cachexia Sarcopenia Muscle 2025; 16:e13710. [PMID: 39873130 PMCID: PMC11773338 DOI: 10.1002/jcsm.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/22/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Sarcopenia, characterized by a gradual decline in skeletal muscle mass and function with age, significantly impacts both quality of life and mortality. Autophagy plays a crucial role in maintaining muscle health. There is growing interest in leveraging autophagy to mitigate muscle ageing effects. The impact of natural autophagy activators on skeletal muscle ageing remains elusive. This study aims to identify natural autophagy activators and assess their effects on skeletal muscle ageing. METHODS To discover novel autophagy activators, we screened 493 natural products and identified Castanea crenata flower extract (CCFE) as a promising candidate. We investigated the effect of CCFE on cellular senescence in C2C12 cells induced by etoposide. In animal experiments, aged mice (18 months old) were fed a diet supplemented with 0.1% and 0.2% CCFE for 3 months. We assessed exercise capacity, mitochondrial function and autophagic flux to determine the impact of CCFE on skeletal muscle ageing. The components present in CCFE were analysed using LC-MS/MS, and their functional properties were examined. RESULTS CCFE enhanced autophagic flux (LC3II 80% increase, p < 0.05) and reduced senescence-associated β-galactosidase activity (32.78% decrease, p < 0.001). In aged mice, a 3-month supplementation with CCFE improved muscle weight (18% increase, p < 0.05) and function (treadmill performance increased by 60%, p < 0.5; grip strength increased by 25%, p < 0.05). It alleviated mitochondrial dysfunction (basal oxygen consumption rate increased by 59%, p < 0.05) and restored autophagy. CCFE enhanced autophagy by activating AMPK (80% increase, p < 0.01) and inhibiting Atg5 protein acetylation (65% decrease, p < 0.001), with contributions from ellagic acid and polyamines. CCFE supplementation restored polyamine levels (serum spermidine increased from 0.98 ± 0.08 to 2.22 ± 0.05 μg/mL, p < 0.001) and increased urolithin levels (serum urolithin A increased from 0 to 18.79 ± 0.062 ng/mL, p < 0.001), metabolites produced by the gut microbiome from ellagic acid in aged mice. CONCLUSIONS CCFE effectively suppressed skeletal muscle ageing by preventing mitochondrial dysfunction and restoring autophagic flux in aged mice. It achieved this by modulating AMPK and EP300 acetyltransferase activity, with contributions from its constituents, ellagic acid and polyamines. These findings highlight the potential of CCFE as a therapeutic agent for extending healthspan and mitigating sarcopenia, providing a basis for future clinical trials.
Collapse
Affiliation(s)
- So‐Hyun Park
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Food BiotechnologyUniversity of Science and TechnologyWanju‐gunJeollabuk‐doRepublic of Korea
| | - Pyeong Geun Choi
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Food BiotechnologyUniversity of Science and TechnologyWanju‐gunJeollabuk‐doRepublic of Korea
| | - Hee‐Soo Kim
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Food BiotechnologyUniversity of Science and TechnologyWanju‐gunJeollabuk‐doRepublic of Korea
| | - Eunyoung Lee
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
| | - Da‐Hye Lee
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Min Jung Kim
- Personalized Diet Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
| | - Daedong Kim
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Food BiotechnologyUniversity of Science and TechnologyWanju‐gunJeollabuk‐doRepublic of Korea
| | - Hyo‐Deok Seo
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
| | - Jeong‐Hoon Hahm
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
| | - Tae‐Il Jeon
- Department of Animal ScienceChonnam National UniversityGwangjuRepublic of Korea
| | - Yang‐Hoon Huh
- Electron Microscopy Research CenterKorea Basic Science InstituteOchangChungbukRepublic of Korea
| | - Jiyun Ahn
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Food BiotechnologyUniversity of Science and TechnologyWanju‐gunJeollabuk‐doRepublic of Korea
| | - Tae‐Youl Ha
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Food BiotechnologyUniversity of Science and TechnologyWanju‐gunJeollabuk‐doRepublic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research GroupKorea Food Research InstituteWanju‐gunJeollabuk‐doRepublic of Korea
- Department of Food BiotechnologyUniversity of Science and TechnologyWanju‐gunJeollabuk‐doRepublic of Korea
| |
Collapse
|
3
|
Xiao Y, Zhang L, Zhou H, Cui Y, Chen K, Zhang H, Wu Q, Liu F. Berberine extends healthspan and delays neurodegenerative diseases in Caenorhabditis elegans through ROS-dependent PMK-1/SKN-1 activation. Arch Gerontol Geriatr 2025; 128:105644. [PMID: 39357500 DOI: 10.1016/j.archger.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Oxidative stress, or the chronic generation of reactive oxygen species (ROS), is thought to contribute to the progression of aging and aging related diseases. However, low degree of ROS generation has repeatedly been shown to be associated with beneficial outcomes via activation of protective signaling pathways. Berberine, a natural alkaloid isolated from Rhizomacoptidis, has a long history of medicinal use in both Ayurvedic and traditional Chinese medicine, which possesses anti-cancer, anti-inflammatory and anti-neurodegenerative properties. In this study, we utilize Caenorhabditis elegans to examine the mechanisms by which berberine influences healthspan and neurodegenerative diseases. We find that 10 μM berberine significantly extends healthy lifespan in wild type C. elegans. We further show that berberine generates ROS, which is followed by activation of PMK-1/SKN-1 to extend healthspan. Intriguingly, berberine also delays neurodegenerative diseases such as Alzheimer's and polyglutamine diseases in a PMK-1/SKN-1dependent manner. Our work suggests that berberine may be a viable candidate for the prevention and treatment of aging and aging related diseases.
Collapse
Affiliation(s)
- Yi Xiao
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China.
| | - Li Zhang
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Hanlin Zhou
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Yingwen Cui
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Keer Chen
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Han Zhang
- Institute of life sciences, Zunyi Medical University, Zunyi Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Qinyi Wu
- Yunnan University of Chinese Medicine, Kunming, Yunnan 650000, China.
| | - Fang Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou563000, China.
| |
Collapse
|
4
|
Li Z, Cheng P, Xi H, Jiang T, Zheng X, Qiu J, Gong Y, Wu X, Mi S, Hong Y, Hong Z, Zhou W. Tomatidine Alleviates Intervertebral Disc Degeneration by Activating the Nrf2/HO-1/GPX4 Signaling Pathway. Drug Des Devel Ther 2024; 18:6313-6329. [PMID: 39741916 PMCID: PMC11687091 DOI: 10.2147/dddt.s481714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Intervertebral disc degeneration (IDD) is a leading cause of low back pain, and developing new molecular drugs and targets for IDD is a new direction for future treatment strategies. The aim of this study is to investigate the effects and mechanisms of tomatidine in ameliorating lumbar IDD. Methods Nucleus pulposus cells (NPCs) exposed to lipopolysaccharides were used as an in vitro model to investigate changes in the expression of extracellular matrix components and associated signaling pathway molecules. A lumbar instability model was used to simulate IDD. Tomatidine (Td) was then administered intraperitoneally, and its effects were evaluated through histopathological analysis. Results In vitro, Td significantly promoted ECM anabolism, inhibited ECM catabolism, and reduced oxidative stress and ferroptosis in LPS-stimulated NPCs. When Nrf2 expression was inhibited, oxidative stress and ferroptosis were exacerbated, and the protective effects of Td on NPCs were lost, suggesting the Nrf2/HO-1/GPX4 axis is critical for the therapeutic effects of Td. In vivo, histopathological analysis demonstrated that Td ameliorated IDD in a murine model. Conclusion Td alleviates IDD in vitro and in vivo by activating the Nrf2/HO-1/GPX4 pathway to inhibit ferroptosis in NPCs. This mechanism suggests Td is a promising candidate for IDD treatment.
Collapse
Affiliation(s)
- Ze Li
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Pu Cheng
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Huifeng Xi
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Ting Jiang
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Xiaohang Zheng
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Jianxin Qiu
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Yuhang Gong
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Xinyu Wu
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Shuang Mi
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Yuzhen Hong
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, 430065, People’s Republic of China
| | - Zhenghua Hong
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| | - Weiwei Zhou
- Department of Orthopaedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, People’s Republic of China
- Bone Development and Metabolism Research Center of Taizhou Hospital, Linhai, Zhejiang Province, People’s Republic of China
| |
Collapse
|
5
|
Cai L, Hou B, Hu J. Tomatidine ameliorates high-fat-diet/streptozocin (HFD/STZ)-induced type 2 diabetes mellitus in mice. Arch Physiol Biochem 2024; 130:848-853. [PMID: 38186367 DOI: 10.1080/13813455.2023.2298404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To investigate the effects of tomatidine (Td) on the progression of type 2 diabetes mellitus (T2DM) in mice and uncover the mechanism. METHODS T2DM mice model was induced by high-fat diet (HFD) and intrabitoneal injection of streptozotocin (STZ). The mice were grouped as follows: 1, control; 2, T2D; 3, T2D + tomatidine (5 mg/kg); 4, T2D + tomatidine (10 mg/kg); 5, T2D + tomatidine (20 mg/kg). Fasting blood glucose was detected by glucose metre and fasting insulin was detected by the kit to determine the effect of Td on T2DM mice. ELISA, qPCR, and Immunoblot assays were performed to detect the effects of Td on the hepatic glucose homeostasis and inflammation of mice. Immunoblot assays further confirmed the mechanism. RESULTS Td improved blood glucose and insulin resistance in T2DM mice. In addition, Td improved liver function and lipid metabolism disorder in T2DM mice. Td also affected the liver glucose homeostasis related genes in T2DM mice. Td alleviated serum inflammation in T2DM mice. We further found that Td activated AMPK pathway, therefore ameliorating T2DM. CONCLUSION Td ameliorated HFD/STZ-induced T2DM in mice, suggesting that it could serve as a drug of T2DM.
Collapse
Affiliation(s)
- Li Cai
- Department of Endocrinology, the Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Baojian Hou
- Department of Endocrinology, the Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Juping Hu
- Department of Endocrinology, the Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
6
|
Wang Y, Cao X, Ma J, Liu S, Jin X, Liu B. Unveiling the Longevity Potential of Natural Phytochemicals: A Comprehensive Review of Active Ingredients in Dietary Plants and Herbs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24908-24927. [PMID: 39480905 PMCID: PMC11565747 DOI: 10.1021/acs.jafc.4c07756] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Ancient humans used dietary plants and herbs to treat disease and to pursue eternal life. Today, phytochemicals in dietary plants and herbs have been shown to be the active ingredients, some of which have antiaging and longevity-promoting effects. Here, we summarize 210 antiaging phytochemicals in dietary plants and herbs, systematically classify them into 8 groups. We found that all groups of phytochemicals can be categorized into six areas that regulate organism longevity: ROS levels, nutrient sensing network, mitochondria, autophagy, gut microbiota, and lipid metabolism. We review the role of these processes in aging and the molecular mechanism of the health benefits through phytochemical-mediated regulation. Among these, how phytochemicals promote longevity through the gut microbiota and lipid metabolism is rarely highlighted in the field. Our understanding of the mechanisms of phytochemicals based on the above six aspects may provide a theoretical basis for the further development of antiaging drugs and new insights into the promotion of human longevity.
Collapse
Affiliation(s)
- Yu Wang
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jin Ma
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41390, Sweden
| |
Collapse
|
7
|
Lin TL, So EC, Wu SN. Exploring the Effects of Tomatidine ((3β, 5α, 22β, and 25β)-Spirosolan-3-ol) on Voltage-gated Na+ currents: Insights Into Its Ionic Mechanisms of Action on Current Magnitude, Gating, and Frequency Dependence. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:298-311. [PMID: 39641137 DOI: 10.4103/ejpi.ejpi-d-24-00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024]
Abstract
ABSTRACT Tomatidine, a major tomato glycoalkaloid, is effective for the prevention of skeletal muscle wasting and enhancing mitophagy. However, its effects on transmembrane ionic currents are not well explored. In this study, we explored the interactions between tomatidine and Na+ current. GH3 or Neuro-2a cells were used for recording the ion currents employing modified patch-clamp technique under whole-cell configuration. Tomatidine increased both the peak, (transient Na+ current [INa (T)]) and sustained (late Na+ current [INa (L)]) components of voltage-gated Na+ current (INa) in a concentration-dependent manner, with the concentration required for 50% stimulation values of 43.3 μM and 3.1 μM, respectively. The steady-state current-voltage relationship of INa (T) remained unchanged; however, the steady-state inactivation curve of INa (T) in the presence of 3 μM tomatidine was shifted to less depolarized potential by around 6 mV. Tomatidine enhanced the window INa (window Na+ current [INa (W)]), which were attenuated by the ranolazine (Ran) and carbamazepine (CBZ). During a train of depolarizing pulses, tomatidine slowed the exponential decay of INa (T), and this effect was reversed by Ran or dapagliflozin. Tomatidine increased both fast and slow recovery time constants from INa (T) block, affecting the recovery time course. Tomatidine increased the amplitude of persistent Na+ current in response to a sinusoidal waveform. In neuro-2a cells, tomatidine increased INa (T) amplitude and slowed its inactivation, with this effect being attenuated by Ran or CBZ. In conclusion, tomatidine enhanced magnitude and modified its gating behaviors.
Collapse
Affiliation(s)
- Tso-Lin Lin
- Department of Paediatrics, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Edmund Cheung So
- Department of Anaesthesia, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Anaesthesiology, University of Hong Kong, Hong Kong
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Medical Education and Research, An Nan Hospital, China Medical University, Tainan, Taiwan
| |
Collapse
|
8
|
He K, Xu T, Song X, Fang J, Jiang K, Hu C, He X, Tao Y, Jin L. BMI Mediates the Association between Macronutrient Subtypes and Phenotypic Age Acceleration. Nutrients 2024; 16:3436. [PMID: 39458432 PMCID: PMC11510402 DOI: 10.3390/nu16203436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: There is growing evidence that diet and aging are associated; however, few studies have examined the relationship between macronutrient subtypes and phenotypic age acceleration, and the extent to which BMI (body mass index) mediates this association is unclear. Methods: This study included 6911 individuals who were 20 years or older and had participated in the National Health and Nutrition Examination Survey. Daily macronutrient intakes were calculated and classified by the quartile of their subtypes. PhenoAgeAccel was calculated as an aging index using nine chemistry biomarkers. Multivariable linear regression and isocaloric substitution effects were used to evaluate the association of macronutrients with PhenoAgeAccel. Mediation analyses were used to examine the mediation role of BMI in the association. Results: After adjusting for the potential covariates, the consumption of high-quality carbohydrates (β = -1.01, 95% CI: -1.91, -0.12), total protein (β = -2.00, 95% CI: -3.16, -0.84), and plant protein (β = -1.65, 95% CI: -2.52, -0.78) was negatively correlated with PhenoAgeAccel; the consumption of SFAs (β = 1.77, 95% CI: 0.72, 2.81) was positively correlated with PhenoAgeAccel. For every serving of low-quality carbohydrates/animal protein and other calories replaced by one serving of high-quality carbohydrates/plant protein, PhenoAgeAccel would be reduced by about 25 percent. The ratio between BMI-mediated high-quality carbohydrates and PhenoAgeAccel accounted for 19.76% of the total effect, while the ratio between BMI-mediated total fat and PhenoAgeAccel accounted for 30.78% of the total effect. Conclusions: Different macronutrient consumption subtypes are related to PhenoAgeAccel, which is partially mediated by BMI, depending on the quality of macronutrients. Replacing low-quality macronutrients with high-quality macronutrients might slow aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuchun Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; (K.H.); (T.X.); (X.S.); (J.F.); (K.J.); (C.H.); (X.H.)
| | - Lina Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; (K.H.); (T.X.); (X.S.); (J.F.); (K.J.); (C.H.); (X.H.)
| |
Collapse
|
9
|
Zhao P, Wang Z, Liao S, Liao Y, Hu S, Qin J, Zhang D, Yan X. Components in SLPE Alleviate AD Model Nematodes by Up-Regulating Gene gst-5. Int J Mol Sci 2024; 25:10188. [PMID: 39337674 PMCID: PMC11432538 DOI: 10.3390/ijms251810188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Salvia leucantha is a perennial herb of the genus Salvia in the family Labiatae, which has a wide range of biological activities, mainly including inhibition of acetylcholinesterase, antibacterial, and anti-inflammatory activity. To explore the protective effects and mechanism of action of S. leucantha on Alzheimer's disease (AD), the anti-AD activity of SLE (extracts of S. leucantha) was determined by using a transgenic Caenorhabditis elegans (C. elegans) model (CL4176). Analyses included paralysis assay, phenotypic experiments, transcriptome sequencing, RNA interference (RNAi), heat shock assays, and gas chromatography-mass spectrometry (GC-MS). SLPE (S. leucantha petroleum ether extract) could significantly delay CL4176 paralysis and extend the longevity of C. elegans N2 without harmful effects. A total of 927 genes were significantly changed by SLPE treatment in C. elegans, mainly involving longevity regulatory pathways-nematodes, drug metabolism-cytochrome P450, and glutathione metabolic pathways. RNAi showed that SLPE exerted its anti-AD activity through up-regulation of the gene gst-5; the most abundant compound in SLPE analyzed by GC-MS was 2,4-Di-tert-butylphenol (2,4-DTBP), and the compound delayed nematode paralysis. The present study suggests that active components in S. leucantha may serve as new-type anti-AD candidates and provide some insights into their biological functions.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Zifu Wang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Shimei Liao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Yangxin Liao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Shijun Hu
- Key Laboratory of Biodiversity Conservationin Southwest China (State Forestry Administration), Southwest Forestry University, Kunming 650224, China;
| | - Jianchun Qin
- College of Plant Science, Jilin University, Xi’an Road No. 5333, Changchun 130062, China;
| | - Donghua Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Xiaohui Yan
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| |
Collapse
|
10
|
Sun M, Wei C, Gao Y, Chen X, Zhong K, Li Y, Yang Z, Gao Y, Wang H. TSG Extends the Longevity of Caenorhabditis elegans by Targeting the DAF-16/SKN-1/SIR-2.1-Mediated Mitochondrial Quality Control Process. Antioxidants (Basel) 2024; 13:1086. [PMID: 39334745 PMCID: PMC11428426 DOI: 10.3390/antiox13091086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The improvement of mitochondrial function is described as a strategy for alleviating oxidative stress and intervening in the aging process. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is one of the major bioactive components isolated from Polygonum multiflorum Thunb, and it exhibits multiple activities, including antioxidant and anti-inflammatory effects. In this study, we found that 200 μM TSG significantly extended the mean lifespan of Caenorhabditis elegans by 16.48% and improved health status by delaying age-associated physiological decline in worms. The longevity prolongation effect of TSG depended on the regulation of the mitochondrial quality control process mediated by DAF-16/FOXO, SKN-1/Nrf2 and SIR-2.1/SIRT1 to improve mitochondrial function. Moreover, TSG treatment obviously alleviated the proteotoxicity of β-amyloid and tau proteins in worms. Our findings indicated that TSG is a promising natural product for preventing aging and treating aging-associated neurodegenerative diseases by regulating the mitochondrial quality control process to improve mitochondrial function.
Collapse
Affiliation(s)
- Menglu Sun
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Congmin Wei
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yehui Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xinyan Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kaixin Zhong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yingzi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhou Yang
- Tongji Alpha Natural Medicine Research Institute, Tongji University, Shanghai 200070, China
| | - Yihuai Gao
- Tongji Alpha Natural Medicine Research Institute, Tongji University, Shanghai 200070, China
| | - Hongbing Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tongji Alpha Natural Medicine Research Institute, Tongji University, Shanghai 200070, China
| |
Collapse
|
11
|
Ayvaz HB, Yenigül M, Gencer Akçok EB. Tomatidine, a Steroidal Alkaloid, Synergizes with Cisplatin to Inhibit Cell Viability and Induce Cell Death Selectively on FLT3-ITD+ Acute Myeloid Leukemia Cells. Cell Biochem Biophys 2024; 82:2889-2900. [PMID: 38987440 DOI: 10.1007/s12013-024-01406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Acute Myeloid Leukemia (AML) is a hematological cancer that frequently presents with a range of side effects and drug resistance during anticancer drug treatment. The current study aims to achieve increased efficacy by combining lower doses of cisplatin with increasing concentrations of tomatidine in AML cells to increase efficacy. METHODS Anti-proliferative effects of single and combination of cisplatin and tomatidine were assessed via MTT cell viability assay. The Annexin V/Propidium Iodide Double Staining method was used to measure the apoptotic effects of combined tomatidine and cisplatin treatment. Then, Western Blot analysis was performed to measure Poly (ADP-ribose) polymerase (PARP) and Caspase-3 protein expression levels. RESULTS Cisplatin treatment with lower concentrations displayed high cytotoxic effects on AML cells, compared with tomatidine. The combination of the Inhibitory Concentration (IC) 20 value of cisplatin and increasing doses of tomatidine exhibited a significant decrease in cell viability relative to single treatments. The combination index analysis revealed a mild synergistic effect of cisplatin IC20 and varying tomatidine doses. The apoptosis induced when cisplatin was combined with 500 µM tomatidine by almost 20%, while the percentage of apoptosis in combination with 1 mM tomatidine was measured by 50% for both cell lines. The upregulation of proapoptotic cleaved-PARP (3.2 and 1.08-fold for THP-1 and MOLM-13, respectively) and downregulation in Caspase-3 (0.23 and 0.13-fold for THP-1 and MOLM-13, respectively) was detected. CONCLUSIONS Together, the study indicated that when tomatidine combined with cisplatin on AML cell lines, a combinatorial anti-proliferative and apoptotic effect is observed. The combination of cisplatin with tomatidine may be a promising approach.
Collapse
Affiliation(s)
- Havva Berre Ayvaz
- Abdullah Gul University, Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Kayseri, Turkey
| | - Münevver Yenigül
- Abdullah Gul University, Graduate School of Engineering and Science, Bioengineering Department, Kayseri, Turkey
| | - Emel Başak Gencer Akçok
- Abdullah Gul University, Faculty of Life and Natural Sciences, Molecular Biology and Genetics Department, Kayseri, Turkey.
| |
Collapse
|
12
|
Huang Y, Wang Y, Deng J, Gao S, Qiu J, He J, Yang T, Tan N, Cheng S, Song Z. Research on the anti-oxidant and anti-aging effects of Polygonatum kingianum saponins in Caenorhabditis elegans. Heliyon 2024; 10:e35556. [PMID: 39170193 PMCID: PMC11336756 DOI: 10.1016/j.heliyon.2024.e35556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative stress and its impact on aging are critical areas of research. Natural anti-oxidants, such as saponins found in Polygonatum sibiricum, hold promise as potential clinical interventions against aging. In this study, we utilized the nematode model organism, Caenorhabditis elegans, to investigate the pharmacological effects of Polygonatum sibiricum saponins (PKS) on antioxidation and anti-aging. The results demonstrated a significant anti-aging biological activity associated with PKS. Through experiments involving lifespan and stress, lipofuscin, q-PCR, and ROS measurement, we found that PKS effectively mitigated aging-related processes. Furthermore, the mechanism underlying these anti-aging effects was linked to the SKN-1 signaling pathway. PKS increased the nuclear localization of the SKN-1 transcription factor, leading to the up-regulation of downstream anti-oxidant genes, such as gst-4 and sod-3, and a substantial reduction in intracellular ROS levels within the nematode. In conclusion, our study sheds light on the anti-oxidant and anti-aging properties of PKS in C. elegans. This research not only contributes to understanding the biological mechanisms involved but also highlights the potential therapeutic applications of these natural compounds in combating aging-related processes.
Collapse
Affiliation(s)
- Yaqi Huang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yetong Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jia Deng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Sijie Gao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jiakang Qiu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Tong Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Nianhua Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
13
|
Navakkode S, Kennedy BK. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity. Front Aging Neurosci 2024; 16:1428244. [PMID: 39161341 PMCID: PMC11330810 DOI: 10.3389/fnagi.2024.1428244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Ageing is characterized by a gradual decline in the efficiency of physiological functions and increased vulnerability to diseases. Ageing affects the entire body, including physical, mental, and social well-being, but its impact on the brain and cognition can have a particularly significant effect on an individual's overall quality of life. Therefore, enhancing lifespan and physical health in longevity studies will be incomplete if cognitive ageing is over looked. Promoting successful cognitive ageing encompasses the objectives of mitigating cognitive decline, as well as simultaneously enhancing brain function and cognitive reserve. Studies in both humans and animal models indicate that cognitive decline related to normal ageing and age-associated brain disorders are more likely linked to changes in synaptic connections that form the basis of learning and memory. This activity-dependent synaptic plasticity reorganises the structure and function of neurons not only to adapt to new environments, but also to remain robust and stable over time. Therefore, understanding the neural mechanisms that are responsible for age-related cognitive decline becomes increasingly important. In this review, we explore the multifaceted aspects of healthy brain ageing with emphasis on synaptic plasticity, its adaptive mechanisms and the various factors affecting the decline in cognitive functions during ageing. We will also explore the dynamic brain and neuroplasticity, and the role of lifestyle in shaping neuronal plasticity.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Buck Institute for Research on Ageing, Novato, CA, United States
| |
Collapse
|
14
|
Chen X, Bahramimehr F, Shahhamzehei N, Fu H, Lin S, Wang H, Li C, Efferth T, Hong C. Anti-aging effects of medicinal plants and their rapid screening using the nematode Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155665. [PMID: 38768535 DOI: 10.1016/j.phymed.2024.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Aging is the primary risk factor of most chronic diseases in humans, including cardiovascular diseases, osteoporosis and neurodegenerative diseases, which extensively damage the quality of life for elderly individuals. Aging is a multifaceted process with numerous factors affecting it. Efficient model organisms are essential for the research and development of anti-aging agents, particularly when investigating pharmacological mechanisms are needed. PURPOSE This review discusses the application of Caenorhabditis elegans for studying aging and its related signaling pathways, and presents an overview of studies exploring the mechanism and screening of anti-aging agents in C. elegans. Additionally, the review summarizes related clinical trials of anti-aging agents to inspire the development of new medications. METHOD Literature was searched, analyzed, and collected using PubMed, Web of Science, and Science Direct. The search terms used were "anti-aging", "medicinal plants", "synthetic compounds", "C. elegans", "signal pathway", etc. Several combinations of these keywords were used. Studies conducted in C. elegans or humans were included. Articles were excluded, if they were on studies conducted in silico or in vitro or could not offer effective data. RESULTS Four compounds mainly derived through synthesis (metformin, rapamycin, nicotinamide mononucleotide, alpha-ketoglutarate) and four active ingredients chiefly obtained from plants (resveratrol, quercetin, Astragalus polysaccharide, ginsenosides) are introduced emphatically. These compounds and active ingredients exhibit potential anti-aging effects in preclinical and clinical studies. The screening of these anti-aging agents and the investigation of their pharmacological mechanisms can benefit from the use of C. elegans. CONCLUSION Medicinal plants provide valuable resource for the treatment of diseases. A wide source of raw materials for the particular plant medicinal compounds having anti-aging effects meet diverse pharmaceutical requirements, such as immunomodulatory, anti-inflammation and alleviating oxidative stress. C. elegans possesses advantages in scientific research including short life cycle, small size, easy maintenance, genetic tractability and conserved biological processes related to aging. C. elegans can be used for the efficient and rapid evaluation of compounds with the potential to slow down aging.
Collapse
Affiliation(s)
- Xiaodan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Faranak Bahramimehr
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nasim Shahhamzehei
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Huangjie Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siyi Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hanxiao Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Chunlan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
15
|
Lei Y, Gan M, Qiu Y, Chen Q, Wang X, Liao T, Zhao M, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Zhu L, Shen L. The role of mitochondrial dynamics and mitophagy in skeletal muscle atrophy: from molecular mechanisms to therapeutic insights. Cell Mol Biol Lett 2024; 29:59. [PMID: 38654156 PMCID: PMC11036639 DOI: 10.1186/s11658-024-00572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Skeletal muscle is the largest metabolic organ of the human body. Maintaining the best quality control and functional integrity of mitochondria is essential for the health of skeletal muscle. However, mitochondrial dysfunction characterized by mitochondrial dynamic imbalance and mitophagy disruption can lead to varying degrees of muscle atrophy, but the underlying mechanism of action is still unclear. Although mitochondrial dynamics and mitophagy are two different mitochondrial quality control mechanisms, a large amount of evidence has indicated that they are interrelated and mutually regulated. The former maintains the balance of the mitochondrial network, eliminates damaged or aged mitochondria, and enables cells to survive normally. The latter degrades damaged or aged mitochondria through the lysosomal pathway, ensuring cellular functional health and metabolic homeostasis. Skeletal muscle atrophy is considered an urgent global health issue. Understanding and gaining knowledge about muscle atrophy caused by mitochondrial dysfunction, particularly focusing on mitochondrial dynamics and mitochondrial autophagy, can greatly contribute to the prevention and treatment of muscle atrophy. In this review, we critically summarize the recent research progress on mitochondrial dynamics and mitophagy in skeletal muscle atrophy, and expound on the intrinsic molecular mechanism of skeletal muscle atrophy caused by mitochondrial dynamics and mitophagy. Importantly, we emphasize the potential of targeting mitochondrial dynamics and mitophagy as therapeutic strategies for the prevention and treatment of muscle atrophy, including pharmacological treatment and exercise therapy, and summarize effective methods for the treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yuhang Lei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanhao Qiu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiuyang Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyu Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianci Liao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengying Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
16
|
Hahm JH, Nirmala FS, Ha TY, Ahn J. Nutritional approaches targeting mitochondria for the prevention of sarcopenia. Nutr Rev 2024; 82:676-694. [PMID: 37475189 DOI: 10.1093/nutrit/nuad084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
A decline in function and loss of mass, a condition known as sarcopenia, is observed in the skeletal muscles with aging. Sarcopenia has a negative effect on the quality of life of elderly. Individuals with sarcopenia are at particular risk for adverse outcomes, such as reduced mobility, fall-related injuries, and type 2 diabetes mellitus. Although the pathogenesis of sarcopenia is multifaceted, mitochondrial dysfunction is regarded as a major contributor for muscle aging. Hence, the development of preventive and therapeutic strategies to improve mitochondrial function during aging is imperative for sarcopenia treatment. However, effective and specific drugs that can be used for the treatment are not yet approved. Instead studies on the relationship between food intake and muscle aging have suggested that nutritional intake or dietary control could be an alternative approach for the amelioration of muscle aging. This narrative review approaches various nutritional components and diets as a treatment for sarcopenia by modulating mitochondrial homeostasis and improving mitochondria. Age-related changes in mitochondrial function and the molecular mechanisms that help improve mitochondrial homeostasis are discussed, and the nutritional components and diet that modulate these molecular mechanisms are addressed.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Farida S Nirmala
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Tae Youl Ha
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Jiyun Ahn
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| |
Collapse
|
17
|
Turner CD, Ramos CM, Curran SP. Disrupting the SKN-1 homeostat: mechanistic insights and phenotypic outcomes. FRONTIERS IN AGING 2024; 5:1369740. [PMID: 38501033 PMCID: PMC10944932 DOI: 10.3389/fragi.2024.1369740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
The mechanisms that govern maintenance of cellular homeostasis are crucial to the lifespan and healthspan of all living systems. As an organism ages, there is a gradual decline in cellular homeostasis that leads to senescence and death. As an organism lives into advanced age, the cells within will attempt to abate age-related decline by enhancing the activity of cellular stress pathways. The regulation of cellular stress responses by transcription factors SKN-1/Nrf2 is a well characterized pathway in which cellular stress, particularly xenobiotic stress, is abated by SKN-1/Nrf2-mediated transcriptional activation of the Phase II detoxification pathway. However, SKN-1/Nrf2 also regulates a multitude of other processes including development, pathogenic stress responses, proteostasis, and lipid metabolism. While this process is typically tightly regulated, constitutive activation of SKN-1/Nrf2 is detrimental to organismal health, this raises interesting questions surrounding the tradeoff between SKN-1/Nrf2 cryoprotection and cellular health and the ability of cells to deactivate stress response pathways post stress. Recent work has determined that transcriptional programs of SKN-1 can be redirected or suppressed to abate negative health outcomes of constitutive activation. Here we will detail the mechanisms by which SKN-1 is controlled, which are important for our understanding of SKN-1/Nrf2 cytoprotection across the lifespan.
Collapse
Affiliation(s)
- Chris D. Turner
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Carmen M. Ramos
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States
| | - Sean P. Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Xu B, Huang M, Qi H, Xu H, Cai L. Tomatidine activates autophagy to improve lung injury and inflammation in sepsis by inhibiting NF-κB and MAPK pathways. Mol Genet Genomics 2024; 299:14. [PMID: 38400847 DOI: 10.1007/s00438-024-02109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/29/2023] [Indexed: 02/26/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening medical condition with high mortality and morbidity. Autophagy is involved in the pathophysiological process of sepsis-induced ALI, including inflammation, which indicates that regulating autophagy may be beneficial for this disease. Tomatidine, a natural compound abundant in unripe tomatoes, has been reported to have anti-inflammatory, anti-tumorigenic, and lipid-lowering effects. However, the biological functions and mechanisms of tomatidine in sepsis-induced ALI remain unknown. The principal objective of this study was to investigate the effect of tomatidine on sepsis-induced ALI. Cecal ligation and puncture (CLP) was used to induce septic lung injury in mice, and 10 mg/kg tomatidine was intraperitoneally injected into mice 2 h after the operation. The results of hematoxylin and eosin staining and assessment of lung edema and total protein levels in bronchoalveolar lavage fluid (BALF) demonstrated that tomatidine alleviated CLP-induced severe lung injuries such as hemorrhage, infiltration of inflammatory cells, and interstitial and alveolar edema in mice. Additionally, the levels of proinflammatory cytokines in BALF and lung tissues were measured by enzyme-linked immunosorbent assay (ELISA), and the results showed that tomatidine inhibited CLP-induced inflammatory damage to lungs. Moreover, the results of western blotting showed that tomatidine promoted autophagy during CLP-induced ALI. Mechanistically, immunofluorescence staining and western blotting were used to measure the protein levels of TLR4, phosphorylated NF-κB, phosphorylated IκBα, and phosphorylated MAPKs, showing that tomatidine inactivated NF-κB and MAPK signaling in lung tissues of CLP-induced ALI mice. In conclusion, tomatidine exerts protective effects against sepsis-induced severe damage to the lungs by inhibiting inflammation and activating autophagy in CLP-treated mice through inactivating the NF-κB and MAPK pathways, which may be an effective candidate for treating septic ALI.
Collapse
Affiliation(s)
- Bo Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China.
| | - Min Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 230000, China
| | - Hang Qi
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| | - Hongzhou Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| | - Liang Cai
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| |
Collapse
|
19
|
Picca A, Faitg J, Auwerx J, Ferrucci L, D'Amico D. Mitophagy in human health, ageing and disease. Nat Metab 2023; 5:2047-2061. [PMID: 38036770 DOI: 10.1038/s42255-023-00930-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Maintaining optimal mitochondrial function is a feature of health. Mitophagy removes and recycles damaged mitochondria and regulates the biogenesis of new, fully functional ones preserving healthy mitochondrial functions and activities. Preclinical and clinical studies have shown that impaired mitophagy negatively affects cellular health and contributes to age-related chronic diseases. Strategies to boost mitophagy have been successfully tested in model organisms, and, recently, some have been translated into clinics. In this Review, we describe the basic mechanisms of mitophagy and how mitophagy can be assessed in human blood, the immune system and tissues, including muscle, brain and liver. We outline mitophagy's role in specific diseases and describe mitophagy-activating approaches successfully tested in humans, including exercise and nutritional and pharmacological interventions. We describe how mitophagy is connected to other features of ageing through general mechanisms such as inflammation and oxidative stress and forecast how strengthening research on mitophagy and mitophagy interventions may strongly support human health.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Julie Faitg
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA.
| | | |
Collapse
|
20
|
Srivastava V, Gross E. Mitophagy-promoting agents and their ability to promote healthy-aging. Biochem Soc Trans 2023; 51:1811-1846. [PMID: 37650304 PMCID: PMC10657188 DOI: 10.1042/bst20221363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The removal of damaged mitochondrial components through a process called mitochondrial autophagy (mitophagy) is essential for the proper function of the mitochondrial network. Hence, mitophagy is vital for the health of all aerobic animals, including humans. Unfortunately, mitophagy declines with age. Many age-associated diseases, including Alzheimer's and Parkinson's, are characterized by the accumulation of damaged mitochondria and oxidative damage. Therefore, activating the mitophagy process with small molecules is an emerging strategy for treating multiple aging diseases. Recent studies have identified natural and synthetic compounds that promote mitophagy and lifespan. This article aims to summarize the existing knowledge about these substances. For readers' convenience, the knowledge is presented in a table that indicates the chemical data of each substance and its effect on lifespan. The impact on healthspan and the molecular mechanism is reported if known. The article explores the potential of utilizing a combination of mitophagy-inducing drugs within a therapeutic framework and addresses the associated challenges of this strategy. Finally, we discuss the process that balances mitophagy, i.e. mitochondrial biogenesis. In this process, new mitochondrial components are generated to replace the ones cleared by mitophagy. Furthermore, some mitophagy-inducing substances activate biogenesis (e.g. resveratrol and metformin). Finally, we discuss the possibility of combining mitophagy and biogenesis enhancers for future treatment. In conclusion, this article provides an up-to-date source of information about natural and synthetic substances that activate mitophagy and, hopefully, stimulates new hypotheses and studies that promote healthy human aging worldwide.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| | - Einav Gross
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| |
Collapse
|
21
|
Park JS, Rustamov N, Roh YS. The Roles of NFR2-Regulated Oxidative Stress and Mitochondrial Quality Control in Chronic Liver Diseases. Antioxidants (Basel) 2023; 12:1928. [PMID: 38001781 PMCID: PMC10669501 DOI: 10.3390/antiox12111928] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic liver disease (CLD) affects a significant portion of the global population, leading to a substantial number of deaths each year. Distinct forms like non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD), though they have different etiologies, highlight shared pathologies rooted in oxidative stress. Central to liver metabolism, mitochondria are essential for ATP production, gluconeogenesis, fatty acid oxidation, and heme synthesis. However, in diseases like NAFLD, ALD, and liver fibrosis, mitochondrial function is compromised by inflammatory cytokines, hepatotoxins, and metabolic irregularities. This dysfunction, especially electron leakage, exacerbates the production of reactive oxygen species (ROS), augmenting liver damage. Amidst this, nuclear factor erythroid 2-related factor 2 (NRF2) emerges as a cellular protector. It not only counters oxidative stress by regulating antioxidant genes but also maintains mitochondrial health by overseeing autophagy and biogenesis. The synergy between NRF2 modulation and mitochondrial function introduces new therapeutic potentials for CLD, focusing on preserving mitochondrial integrity against oxidative threats. This review delves into the intricate role of oxidative stress in CLD, shedding light on innovative strategies for its prevention and treatment, especially through the modulation of the NRF2 and mitochondrial pathways.
Collapse
Affiliation(s)
| | | | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.-S.P.); (N.R.)
| |
Collapse
|
22
|
Bondy SC. The Hormesis Concept: Strengths and Shortcomings. Biomolecules 2023; 13:1512. [PMID: 37892194 PMCID: PMC10604602 DOI: 10.3390/biom13101512] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Hormesis implies that the effects of various materials or conditions that organisms are exposed to, may not have linear dose-response characteristics but rather, can be biphasic. Thus the response to a low dose of a stressor may be the opposite to that occurring at higher doses. Such a dual response is postulated for many toxicants and physical conditions and may involve a beneficial adaptive response. Such a non-linear effect is undoubtedly present in many useful pharmacological and nutraceutical agents with can be toxic at high concentrations. This somewhat divisive topic is an area of study that should be objectively studied and not clouded by political and policy considerations. The objective of this review is to examine claims concerning those exposures where hormesis seems to exist and also those where there is no good supporting evidence. The breadth of this phenomenon and potential mechanisms underlying hormetic events are discussed together with their limitations.
Collapse
Affiliation(s)
- Stephen C. Bondy
- Center for Occupational and Environmental Health, Department of Environmental & Occupational Health, University of California, Irvine, CA 92697, USA;
- Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
23
|
Zhuang XM, Guo ZY, Zhang M, Chen YH, Qi FN, Wang RQ, Zhang L, Zhao PJ, Lu CJ, Zou CG, Ma YC, Xu J, Zhang KQ, Cao YR, Liang LM. Ethanol mediates the interaction between Caenorhabditis elegans and the nematophagous fungus Purpureocillium lavendulum. Microbiol Spectr 2023; 11:e0127023. [PMID: 37560934 PMCID: PMC10580998 DOI: 10.1128/spectrum.01270-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Accurately recognizing pathogens by the host is vital for initiating appropriate immune response against infecting microorganisms. Caenorhabditis elegans has no known receptor to recognize pathogen-associated molecular pattern. However, recent studies showed that nematodes have a strong specificity for transcriptomes infected by different pathogens, indicating that they can identify different pathogenic microorganisms. However, the mechanism(s) for such specificity remains largely unknown. In this study, we showed that the nematophagous fungus Purpureocillium lavendulum can infect the intestinal tract of the nematode C. elegans and the infection led to the accumulation of reactive oxygen species (ROS) in the infected intestinal tract, which suppressed fungal growth. Co-transcriptional analysis revealed that fungal genes related to anaerobic respiration and ethanol production were up-regulated during infection. Meanwhile, the ethanol dehydrogenase Sodh-1 in C. elegans was also up-regulated. Together, these results suggested that the infecting fungi encounter hypoxia stress in the nematode gut and that ethanol may play a role in the host-pathogen interaction. Ethanol production in vitro during fungal cultivation in hypoxia conditions was confirmed by gas chromatography-mass spectrometry. Direct treatment of C. elegans with ethanol elevated the sodh-1 expression and ROS accumulation while repressing a series of immunity genes that were also repressed during fungal infection. Mutation of sodh-1 in C. elegans blocked ROS accumulation and increased the nematode's susceptibility to fungal infection. Our study revealed a new recognition and antifungal mechanism in C. elegans. The novel mechanism of ethanol-mediated interaction between the fungus and nematode provides new insights into fungal pathogenesis and for developing alternative biocontrol of pathogenic nematodes by nematophagous fungi. IMPORTANCE Nematodes are among the most abundant animals on our planet. Many of them are parasites in animals and plants and cause human and animal health problems as well as agricultural losses. Studying the interaction of nematodes and their microbial pathogens is of great importance for the biocontrol of animal and plant parasitic nematodes. In this study, we found that the model nematode Caenorhabditis elegans can recognize its fungal pathogen, the nematophagous fungus Purpureocillium lavendulum, through fungal-produced ethanol. Then the nematode elevated the reactive oxygen species production in the gut to inhibit fungal growth in an ethanol dehydrogenase-dependent manner. With this mechanism, novel biocontrol strategies may be developed targeting the ethanol receptor or metabolic pathway of nematodes. Meanwhile, as a volatile organic compound, ethanol should be taken seriously as a vector molecule in the microbial-host interaction in nature.
Collapse
Affiliation(s)
- Xue-Mei Zhuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Zhi-Yi Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Meng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Yong-Hong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Feng-Na Qi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Ren-Qiao Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Ling Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Chao-Jun Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Cheng-Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Yi-Cheng Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Yan-Ru Cao
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
24
|
Ghosh Chowdhury S, Ray R, Karmakar P. Relating aging and autophagy: a new perspective towards the welfare of human health. EXCLI JOURNAL 2023; 22:732-748. [PMID: 37662706 PMCID: PMC10471842 DOI: 10.17179/excli2023-6300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
The most common factor that contributes to aging is the loss of proteostasis, resulting in an excess amount of non-functional/damaged proteins. These proteins lead to various age-associated phenotypes such as cellular senescence and dysfunction in the nutrient-sensing pathways. Despite the various factors that can contribute to aging, it is still a process that can be changed. According to recent advances in the field of biology, the ability to alter the pathways that are involved in aging can improve the lifespan of a person. Autophagy is a process that helps in preserving survival during stressful situations, such as starvation. It is a common component of various anti-aging interventions, including those that target the insulin/IGF-1 and rapamycin signaling pathways. It has been shown that altered autophagy is a common feature of old age and its impaired regulation could have significant effects on the aging process. This review aims to look into the role of autophagy in aging and how it can be used to improve one's health.
Collapse
Affiliation(s)
| | - Rachayeeta Ray
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
25
|
Delbrouck JA, Desgagné M, Comeau C, Bouarab K, Malouin F, Boudreault PL. The Therapeutic Value of Solanum Steroidal (Glyco)Alkaloids: A 10-Year Comprehensive Review. Molecules 2023; 28:4957. [PMID: 37446619 DOI: 10.3390/molecules28134957] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.
Collapse
Affiliation(s)
- Julien A Delbrouck
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Christian Comeau
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Kamal Bouarab
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
26
|
Musci RV, Andrie KM, Walsh MA, Valenti ZJ, Linden MA, Afzali MF, Bork S, Campbell M, Johnson T, Kail TE, Martinez R, Nguyen T, Sanford J, Wist S, Murrell MD, McCord JM, Hybertson BM, Zhang Q, Javors MA, Santangelo KS, Hamilton KL. Phytochemical compound PB125 attenuates skeletal muscle mitochondrial dysfunction and impaired proteostasis in a model of musculoskeletal decline. J Physiol 2023; 601:2189-2216. [PMID: 35924591 PMCID: PMC9898472 DOI: 10.1113/jp282273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
Impaired mitochondrial function and disrupted proteostasis contribute to musculoskeletal dysfunction. However, few interventions simultaneously target these two drivers to prevent musculoskeletal decline. Nuclear factor erythroid 2-related factor 2 (Nrf2) activates a transcriptional programme promoting cytoprotection, metabolism, and proteostasis. We hypothesized daily treatment with a purported Nrf2 activator, PB125, in Hartley guinea pigs, a model of musculoskeletal decline, would attenuate the progression of skeletal muscle mitochondrial dysfunction and impaired proteostasis and preserve musculoskeletal function. We treated 2- and 5-month-old male and female Hartley guinea pigs for 3 and 10 months, respectively, with the phytochemical compound PB125. Longitudinal assessments of voluntary mobility were measured using Any-MazeTM open-field enclosure monitoring. Cumulative skeletal muscle protein synthesis rates were measured using deuterium oxide over the final 30 days of treatment. Mitochondrial oxygen consumption in soleus muscles was measured using high resolution respirometry. In both sexes, PB125 (1) increased electron transfer system capacity; (2) attenuated the disease/age-related decline in coupled and uncoupled mitochondrial respiration; and (3) attenuated declines in protein synthesis in the myofibrillar, mitochondrial and cytosolic subfractions of the soleus. These effects were not associated with statistically significant prolonged maintenance of voluntary mobility in guinea pigs. Collectively, treatment with PB125 contributed to maintenance of skeletal muscle mitochondrial respiration and proteostasis in a pre-clinical model of musculoskeletal decline. Further investigation is necessary to determine if these documented effects of PB125 are also accompanied by slowed progression of other aspects of musculoskeletal dysfunction. KEY POINTS: Aside from exercise, there are no effective interventions for musculoskeletal decline, which begins in the fifth decade of life and contributes to disability and cardiometabolic diseases. Targeting both mitochondrial dysfunction and impaired protein homeostasis (proteostasis), which contribute to the age and disease process, may mitigate the progressive decline in overall musculoskeletal function (e.g. gait, strength). A potential intervention to target disease drivers is to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2) activation, which leads to the transcription of genes responsible for redox homeostasis, proteome maintenance and mitochondrial energetics. Here, we tested a purported phytochemical Nrf2 activator, PB125, to improve mitochondrial function and proteostasis in male and female Hartley guinea pigs, which are a model for musculoskeletal ageing. PB125 improved mitochondrial respiration and attenuated disease- and age-related declines in skeletal muscle protein synthesis, a component of proteostasis, in both male and female Hartley guinea pigs.
Collapse
Affiliation(s)
- Robert V. Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Kendra M. Andrie
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maureen A. Walsh
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Zackary J. Valenti
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Melissa A. Linden
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Maryam F. Afzali
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sydney Bork
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Margaret Campbell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Taylor Johnson
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Thomas E. Kail
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Richard Martinez
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tessa Nguyen
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Joseph Sanford
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sara Wist
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | - Joe M. McCord
- Pathways Bioscience, Aurora, CO
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Brooks M. Hybertson
- Pathways Bioscience, Aurora, CO
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Qian Zhang
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | | | - Kelly S. Santangelo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Karyn L. Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
27
|
Chatzinikita E, Maridaki M, Palikaras K, Koutsilieris M, Philippou A. The Role of Mitophagy in Skeletal Muscle Damage and Regeneration. Cells 2023; 12:716. [PMID: 36899852 PMCID: PMC10000750 DOI: 10.3390/cells12050716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Mitochondria are cellular organelles that play an essential role in generating the chemical energy needed for the biochemical reactions in cells. Mitochondrial biogenesis, i.e., de novo mitochondria formation, results in enhanced cellular respiration, metabolic processes, and ATP generation, while autophagic clearance of mitochondria (mitophagy) is required to remove damaged or useless mitochondria. The balance between the opposing processes of mitochondrial biogenesis and mitophagy is highly regulated and crucial for the maintenance of the number and function of mitochondria as well as for the cellular homeostasis and adaptations to metabolic demands and extracellular stimuli. In skeletal muscle, mitochondria are essential for maintaining energy homeostasis, and the mitochondrial network exhibits complex behaviors and undergoes dynamic remodeling in response to various conditions and pathologies characterized by changes in muscle cell structure and metabolism, such as exercise, muscle damage, and myopathies. In particular, the involvement of mitochondrial remodeling in mediating skeletal muscle regeneration following damage has received increased attention, as modifications in mitophagy-related signals arise from exercise, while variations in mitochondrial restructuring pathways can lead to partial regeneration and impaired muscle function. Muscle regeneration (through myogenesis) following exercise-induced damage is characterized by a highly regulated, rapid turnover of poor-functioning mitochondria, permitting the synthesis of better-functioning mitochondria to occur. Nevertheless, essential aspects of mitochondrial remodeling during muscle regeneration remain poorly understood and warrant further characterization. In this review, we focus on the critical role of mitophagy for proper muscle cell regeneration following damage, highlighting the molecular mechanisms of the mitophagy-associated mitochondrial dynamics and network reformation.
Collapse
Affiliation(s)
- Eirini Chatzinikita
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Maria Maridaki
- Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, 172 37 Athens, Greece
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
28
|
Mishra E, Thakur MK. Mitophagy: A promising therapeutic target for neuroprotection during ageing and age-related diseases. Br J Pharmacol 2023; 180:1542-1561. [PMID: 36792062 DOI: 10.1111/bph.16062] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/17/2022] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
Mitochondria and mitochondria-mediated signalling pathways are known to control synaptic signalling, as well as long-lasting changes in neuronal structure and function. Mitochondrial impairment is linked to synaptic dysfunction in normal ageing and age-associated neurodegenerative ailments, including Parkinson's disease (PD) and Alzheimer's disease (AD). Both proteolysis and mitophagy perform a major role in neuroprotection, by maintaining a healthy mitochondrial population during ageing. Mitophagy, a highly evolutionarily conserved cellular process, helps in the clearance of damaged mitochondria and thereby maintains the mitochondrial and metabolic balance, energy supply, neuronal survival and neuronal health. Besides the maintenance of brain homeostasis, hippocampal mitophagy also helps in synapse formation, axonal development, dopamine release and long-term depression. In contrast, defective mitophagy contributes to ageing and age-related neurodegeneration by promoting the accumulation of damaged mitochondria leading to cellular dysfunction. Exercise, stress management, maintaining healthy mitochondrial dynamics and administering natural or synthetic pharmacological compounds are some of the strategies used for neuroprotection during ageing and age-related neurological diseases. The current review discusses the impact of defective mitophagy in ageing and age-associated neurodegenerative conditions, the underlying molecular pathways and potential therapies based on recently elucidated mitophagy-inducing strategies.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
29
|
Naringin Alleviates Glucose-Induced Aging by Reducing Fat Accumulation and Promoting Autophagy in Caenorhabditis elegans. Nutrients 2023; 15:nu15040907. [PMID: 36839265 PMCID: PMC9961211 DOI: 10.3390/nu15040907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Naringin (Nar) is a dihydroflavonoid compound, widely found in citrus fruit and used in Chinese herbal medicine. As a phytochemical, it acts as a dietary supplement that can delay aging and prevent aging-related disease, such as obesity and diabetes. However, its exact mechanism remains unclear. In this study, the high-glucose-induced (HGI) Caenorhabditis elegans model was used to evaluate the anti-aging and anti-obesity effects of Nar. The mean lifespan and fast movement span of HGI worms were extended roughly 24% and 11%, respectively, by Nar treatment. Oil red O staining revealed a significant reduction in fat accumulation and dFP::LGG-labeled worms showed the promotion of autophagy. Additionally, whole transcriptome sequencing and gene set variation analysis suggested that Nar upregulated the lipid biosynthesis and metabolism pathways, as well as the TGF-β, Wnt and longevity signaling pathways. Protein-protein interaction (PPI) network analysis identified hub genes in these pathways for further analysis. Mutant worms and RNA interference were used to study mechanisms; the suppression of hlh-30, lgg-1, unc-51, pha-4, skn-1 and yap-1 disabled the fat-lowering, lifespan-prolonging, and health-promoting properties of Nar. Collectively, our findings indicate that Nar plays an important role in alleviating HGI-aging and anti-obesity effects by reducing fat accumulation and promoting autophagy.
Collapse
|
30
|
Zhang L, Zhang X, Zhang T, Guo Y, Pei W, Liu R, Chang M, Wang X. Linolenic acid ameliorates sarcopenia in C. elegans by promoting mitophagy and fighting oxidative stress. Food Funct 2023; 14:1498-1509. [PMID: 36651495 DOI: 10.1039/d2fo02974j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sarcopenia is a syndrome of age-related loss of muscle mass and strength that seriously affects human health, and there are currently no effective drugs to treat the disease. Linolenic acid as a common n-3 polyunsaturated fatty acid (n-3 PUFA) is known to have many beneficial functions. Some studies have found that n-3 PUFA might have the potential to improve sarcopenia. In this study, Caenorhabditis elegans (C. elegans) was used as a model animal to investigate the effects of linolenic acid on C. elegans muscles. The results showed that 50 μg mL-1 linolenic acid significantly improved sarcopenia by repairing mitochondrial function by promoting mitophagy and fighting oxidative stress (p < 0.05). This included the increase of the expression of the mitophagy gene pink-1 and DAF-16/FOXO transcription factors, respectively, by linolenic acid. This study could provide some evidence for the application of n-3 PUFA in improving sarcopenia.
Collapse
Affiliation(s)
- Lu Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xueyi Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Tao Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yiwen Guo
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenjun Pei
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Ming Chang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
31
|
Romero-García N, Huete-Acevedo J, Mas-Bargues C, Sanz-Ros J, Dromant M, Borrás C. The Double-Edged Role of Extracellular Vesicles in the Hallmarks of Aging. Biomolecules 2023; 13:165. [PMID: 36671550 PMCID: PMC9855573 DOI: 10.3390/biom13010165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
The exponential growth in the elderly population and their associated socioeconomic burden have recently brought aging research into the spotlight. To integrate current knowledge and guide potential interventions, nine biochemical pathways are summarized under the term hallmarks of aging. These hallmarks are deeply inter-related and act together to drive the aging process. Altered intercellular communication is particularly relevant since it explains how damage at the cellular level translates into age-related loss of function at the organismal level. As the main effectors of intercellular communication, extracellular vesicles (EVs) might play a key role in the aggravation or mitigation of the hallmarks of aging. This review aims to summarize this role and to provide context for the multiple emerging EV-based gerotherapeutic strategies that are currently under study.
Collapse
Affiliation(s)
- Nekane Romero-García
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari Valencia, University of Valencia, 46010 Valencia, Spain
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Cardiology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
32
|
Yan C, Shi Y, Yuan L, Lv D, Sun B, Wang J, Liu X, An F. Mitochondrial quality control and its role in osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1077058. [PMID: 36793284 PMCID: PMC9922754 DOI: 10.3389/fendo.2023.1077058] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are important organelles that provide cellular energy and play a vital role in cell differentiation and apoptosis. Osteoporosis is a chronic metabolic bone disease mainly caused by an imbalance in osteoblast and osteoclast activity. Under physiological conditions, mitochondria regulate the balance between osteogenesis and osteoclast activity and maintain bone homeostasis. Under pathological conditions, mitochondrial dysfunction alters this balance; this disruption is important in the pathogenesis of osteoporosis. Because of the role of mitochondrial dysfunction in osteoporosis, mitochondrial function can be targeted therapeutically in osteoporosis-related diseases. This article reviews different aspects of the pathological mechanism of mitochondrial dysfunction in osteoporosis, including mitochondrial fusion and fission, mitochondrial biogenesis, and mitophagy, and highlights targeted therapy of mitochondria in osteoporosis (diabetes induced osteoporosis and postmenopausal osteoporosis) to provide novel targets and prevention strategies for the prevention and treatment of osteoporosis and other chronic bone diseases.
Collapse
Affiliation(s)
- Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Research Center of Traditional Chinese Medicine of Gansu, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yao Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lingqing Yuan
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Donghui Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayu Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiyan Liu
- Internal Medicine, Northwestern University, Xian, Shanxi, China
- *Correspondence: Xiyan Liu, ; Fangyu An,
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- *Correspondence: Xiyan Liu, ; Fangyu An,
| |
Collapse
|
33
|
Planococcus maritimu ML1206 Strain Enhances Stress Resistance and Extends the Lifespan in Caenorhabditis elegans via FOXO/DAF-16. Mar Drugs 2022; 21:md21010001. [PMID: 36662174 PMCID: PMC9866299 DOI: 10.3390/md21010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The antioxidant effect of probiotics has been widely recognized across the world, which is of great significance in food, medicine, and aquaculture. There are abundant marine microbial resources in the ocean, which provide a new space for humans to explore new probiotics. Previously, we reported on the anti-infective effects of Planococcus maritimu ML1206, a potential marine probiotic. The antioxidant activity of ML1206 in C. elegans was studied in this paper. The study showed that ML1206 could improve the ability of nematodes to resist oxidative stress and effectively prolong their lifespan. The results confirmed that ML1206 could significantly increase the activities of CAT and GSH-PX, and reduce the accumulation of reactive oxygen species (ROS) in nematodes under oxidative stress conditions. In addition, ML1206 promoted DAF-16 transfer to the nucleus and upregulated the expression of sod-3, hsp-16.2, and ctl-2, which are downstream antioxidant-related genes of DAF-16. Furthermore, the expression of the SOD-3::GFP and HSP-16.2::GFP was significantly higher in the transgenic strains fed with ML1206 than that in the control group fed with OP50, with or without stress. In summary, these findings suggest that ML1206 is a novel marine probiotic with an antioxidant function that stimulates nematodes to improve their defense abilities against oxidative stress and prolong the lifespan by regulating the translocation of FOXO/DAF-16. Therefore, ML1206 may be explored as a potential dietary supplement in aquaculture and for anti-aging and antioxidant purposes.
Collapse
|
34
|
Caponio D, Veverová K, Zhang SQ, Shi L, Wong G, Vyhnalek M, Fang EF. Compromised autophagy and mitophagy in brain ageing and Alzheimer's diseases. AGING BRAIN 2022; 2:100056. [PMID: 36908880 PMCID: PMC9997167 DOI: 10.1016/j.nbas.2022.100056] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most persistent and devastating neurodegenerative disorders of old age, and is characterized clinically by an insidious onset and a gradual, progressive deterioration of cognitive abilities, ranging from loss of memory to impairment of judgement and reasoning. Despite years of research, an effective cure is still not available. Autophagy is the cellular 'garbage' clearance system which plays fundamental roles in neurogenesis, neuronal development and activity, and brain health, including memory and learning. A selective sub-type of autophagy is mitophagy which recognizes and degrades damaged or superfluous mitochondria to maintain a healthy and necessary cellular mitochondrial pool. However, emerging evidence from animal models and human samples suggests an age-dependent reduction of autophagy and mitophagy, which are also compromised in AD. Upregulation of autophagy/mitophagy slows down memory loss and ameliorates clinical features in animal models of AD. In this review, we give an overview of autophagy and mitophagy and their link to the progression of AD. We also summarize approaches to upregulate autophagy/mitophagy. We hypothesize that age-dependent compromised autophagy/mitophagy is a cause of brain ageing and a risk factor for AD, while restoration of autophagy/mitophagy to more youthful levels could return the brain to health.
Collapse
Affiliation(s)
- Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kateřina Veverová
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Shi-qi Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
- Novo Nordisk Research Centre Oxford (NNRCO)
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
35
|
Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites 2022; 12:metabo12111149. [DOI: 10.3390/metabo12111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Neurogenic muscle atrophy is a debilitating condition that occurs from nerve trauma in association with diseases or during aging, leading to reduced interaction between motoneurons and skeletal fibers. Current therapeutic approaches aiming at preserving muscle mass in a scenario of decreased nervous input include physical activity and employment of drugs that slow down the progression of the condition yet provide no concrete resolution. Nutritional support appears as a precious tool, adding to the success of personalized medicine, and could thus play a relevant part in mitigating neurogenic muscle atrophy. We herein summarize the molecular pathways triggered by denervation of the skeletal muscle that could be affected by functional nutrients. In this narrative review, we examine and discuss studies pertaining to the use of functional ingredients to counteract neurogenic muscle atrophy, focusing on their preventive or curative means of action within the skeletal muscle. We reviewed experimental models of denervation in rodents and in amyotrophic lateral sclerosis, as well as that caused by aging, considering the knowledge generated with use of animal experimental models and, also, from human studies.
Collapse
|
36
|
SenGupta T, Lefol Y, Lirussi L, Suaste V, Luders T, Gupta S, Aman Y, Sharma K, Fang EF, Nilsen H. Krill oil protects dopaminergic neurons from age-related degeneration through temporal transcriptome rewiring and suppression of several hallmarks of aging. Aging (Albany NY) 2022; 14:8661-8687. [DOI: 10.18632/aging.204375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Tanima SenGupta
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
- Department of Biosciences, University of Oslo, Oslo N-0318, Norway
| | - Yohan Lefol
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
| | - Lisa Lirussi
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Veronica Suaste
- Department of Microbiology, Oslo University Hospital, Oslo N-0424, Norway
- Department of Biosciences, University of Oslo, Oslo N-0318, Norway
| | - Torben Luders
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
| | - Swapnil Gupta
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Yahyah Aman
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Kulbhushan Sharma
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Evandro Fei Fang
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
| | - Hilde Nilsen
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, Oslo N-0318, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Nordbyhagen N-1474, Norway
- Department of Microbiology, Oslo University Hospital, Oslo N-0424, Norway
| |
Collapse
|
37
|
Schmitt F, Eckert GP. Caenorhabditis elegans as a Model for the Effects of Phytochemicals on Mitochondria and Aging. Biomolecules 2022; 12:1550. [PMID: 36358900 PMCID: PMC9687847 DOI: 10.3390/biom12111550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
The study of aging is an important topic in contemporary research. Considering the demographic changes and the resulting shifts towards an older population, it is of great interest to preserve youthful physiology in old age. For this endeavor, it is necessary to choose an appropriate model. One such model is the nematode Caenorhabditis elegans (C. elegans), which has a long tradition in aging research. In this review article, we explore the advantages of using the nematode model in aging research, focusing on bioenergetics and the study of secondary plant metabolites that have interesting implications during this process. In the first section, we review the situation of aging research today. Conventional theories and hypotheses about the ongoing aging process will be presented and briefly explained. The second section focuses on the nematode C. elegans and its utility in aging and nutrition research. Two useful genome editing methods for monitoring genetic interactions (RNAi and CRISPR/Cas9) are presented. Due to the mitochondria's influence on aging, we also introduce the possibility of observing bioenergetics and respiratory phenomena in C. elegans. We then report on mitochondrial conservation between vertebrates and invertebrates. Here, we explain why the nematode is a suitable model for the study of mitochondrial aging. In the fourth section, we focus on phytochemicals and their applications in contemporary nutritional science, with an emphasis on aging research. As an emerging field of science, we conclude this review in the fifth section with several studies focusing on mitochondrial research and the effects of phytochemicals such as polyphenols. In summary, the nematode C. elegans is a suitable model for aging research that incorporates the mitochondrial theory of aging. Its living conditions in the laboratory are optimal for feeding studies, thus enabling bioenergetics to be observed during the aging process.
Collapse
Affiliation(s)
| | - Gunter P. Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Science, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
38
|
Xiao B, Kuruvilla J, Tan EK. Mitophagy and reactive oxygen species interplay in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:135. [PMID: 36257956 PMCID: PMC9579202 DOI: 10.1038/s41531-022-00402-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Mitophagy impairment and oxidative stress are cardinal pathological hallmarks in Parkinson's disease (PD), a common age-related neurodegenerative condition. The specific interactions between mitophagy and reactive oxygen species (ROS) have attracted considerable attention even though their exact interplay in PD has not been fully elucidated. We highlight the interactions between ROS and mitophagy, with a focus on the signalling pathways downstream to ROS that triggers mitophagy and draw attention to potential therapeutic compounds that target these pathways in both experimental and clinical models. Identifying a combination of ROS inhibitors and mitophagy activators to provide a physiologic balance in this complex signalling pathways may lead to a more optimal outcome. Deciphering the exact temporal relationship between mitophagy and oxidative stress and their triggers early in the course of neurodegeneration can unravel mechanistic clues that potentially lead to the development of compounds for clinical drug trials focusing on prodromic PD or at-risk individuals.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
| | - Joshua Kuruvilla
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
- Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
39
|
Therapeutic Antiaging Strategies. Biomedicines 2022; 10:biomedicines10102515. [PMID: 36289777 PMCID: PMC9599338 DOI: 10.3390/biomedicines10102515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aging constitutes progressive physiological changes in an organism. These changes alter the normal biological functions, such as the ability to manage metabolic stress, and eventually lead to cellular senescence. The process itself is characterized by nine hallmarks: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. These hallmarks are risk factors for pathologies, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Emerging evidence has been focused on examining the genetic pathways and biological processes in organisms surrounding these nine hallmarks. From here, the therapeutic approaches can be addressed in hopes of slowing the progression of aging. In this review, data have been collected on the hallmarks and their relative contributions to aging and supplemented with in vitro and in vivo antiaging research experiments. It is the intention of this article to highlight the most important antiaging strategies that researchers have proposed, including preventive measures, systemic therapeutic agents, and invasive procedures, that will promote healthy aging and increase human life expectancy with decreased side effects.
Collapse
|
40
|
Ajoolabady A, Chiong M, Lavandero S, Klionsky DJ, Ren J. Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Trends Mol Med 2022; 28:836-849. [PMID: 35879138 PMCID: PMC9509460 DOI: 10.1016/j.molmed.2022.06.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022]
Abstract
With the growing prevalence of cardiovascular disease (CVD), there is an urgent need to explore non-conventional therapeutic measures to alleviate the burden of CVD on global healthcare. Mitochondrial injury plays a cardinal role in the pathogenesis of CVD. Mitochondrial dynamics and mitophagy are essential machineries that govern mitochondrial health in cardiomyocytes in physiological and pathophysiological settings. However, with the onset and progression of CVD, homeostasis of mitophagy is disturbed through largely unknown pathological mechanisms, causing mitochondrial damage and ultimately cardiomyocyte death. In this review we decipher the dual regulatory role of mitophagy in CVD pathogenesis, summarize controversies in mitophagy, and highlight recently identified compounds capable of modulating mitophagy. We share our perspectives on future mitophagy research directions in the context of CVD.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mario Chiong
- Center for Advanced Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Sergio Lavandero
- Center for Advanced Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago 8380492, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
41
|
Supplementation with Queen Bee Larva Powder Extended the Longevity of Caenorhabditis elegans. Nutrients 2022; 14:nu14193976. [PMID: 36235629 PMCID: PMC9573043 DOI: 10.3390/nu14193976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Queen bee larva (QBL) is one kind of important edible insect that is harvested during royal jelly production process. QBL has many physiological functions; however, limited information is available regarding its antiaging effects. In this study, the antiaging function of freeze-dried QBL powder (QBLP) was investigated by combining the Caenorhabditis elegans (C. elegans) model and transcriptomics. The administration of QBLP to C. elegans was shown to improve lifespan parameters. Additionally, QBLP improved the mobility of nematodes. Transcriptome analysis showed the differentially expressed genes (DEGs) were significantly enriched in Gene Ontology (GO) terms that were almost all related to the biological functions of cell metabolism and stress, which are associated with lifespan. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the lifespan of C. elegans was related to the longevity regulating pathway-worm. The expression levels of the key genes sod-3, gst-6, hsp-12.6, lips-7, ins-8, and lips-17 were upregulated. sod-3, hsp-12.6, lips-7, and lips-17 are downstream targets of DAF-16, which is an important transcription factor related to lifespan extension. CF1038 (daf-16(mu86)) supplemented with QBLP did not show a life-prolonging. This indicates that the antiaging function of QBLP is closely related to daf-16. Thus, QBLP is a component that could potentially be used as a functional material to ameliorate aging and aging-related symptoms.
Collapse
|
42
|
Strope TA, Birky CJ, Wilkins HM. The Role of Bioenergetics in Neurodegeneration. Int J Mol Sci 2022; 23:9212. [PMID: 36012480 PMCID: PMC9409169 DOI: 10.3390/ijms23169212] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022] Open
Abstract
Bioenergetic and mitochondrial dysfunction are common hallmarks of neurodegenerative diseases. Decades of research describe how genetic and environmental factors initiate changes in mitochondria and bioenergetics across Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Mitochondria control many cellular processes, including proteostasis, inflammation, and cell survival/death. These cellular processes and pathologies are common across neurodegenerative diseases. Evidence suggests that mitochondria and bioenergetic disruption may drive pathological changes, placing mitochondria as an upstream causative factor in neurodegenerative disease onset and progression. Here, we discuss evidence of mitochondrial and bioenergetic dysfunction in neurodegenerative diseases and address how mitochondria can drive common pathological features of these diseases.
Collapse
Affiliation(s)
- Taylor A. Strope
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS 66205, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Cole J. Birky
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS 66205, USA
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS 66205, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
43
|
Zhi D, Zhao C, Dong J, Ma W, Xu S, Yue J, Wang D. cep-1 mediated the mitohormesis effect of Shengmai formula in regulating Caenorhabditis elegans lifespan. Biomed Pharmacother 2022; 152:113246. [PMID: 35687906 DOI: 10.1016/j.biopha.2022.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Ageing is one of the major causes of many diseases such as cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. It has been found that mitochondrion acts as a crucial regulator of healthy lifespan. In this work, traditional Chinese medicine Shengmai formula (SMH) was used to treat mitochondrial mutants of Caenorhabditis elegans. The results showed that SMH shortened the lifespan of short-lived mev-1 mutant, but lengthened the lifespan of long-lived isp-1 mutant. Acute SMH treatment has benefit effect by increasing resistance capacity and motion activity in both ETC mutants and wild type N2. Compared with N2, the genome-wide transcriptome profile of ETC mutants showed on a similar pattern after SMH treatment. GO and KEGG enrichment analysis addressed that SMH-induced genes mainly enriched in metabolic process and oxidation-reduction process. The ROS levels in ETC mutants and N2 firstly rose then fell after SMH treatment, in company with the elevation of SOD-1, SOD-3 and GST-4, the increment of HSP-16.2 combined with heat shock. SMH increased oxygen consumption and ATP content, improved the restoration of mitochondrial homeostasis. SMH-induced opposed lifespan outcomes were markedly counteracted by cep-1 RNAi, together with the mitochondrial dynamics. Western blot assay also demonstrated a SMH-induced CEP-1 expression. Collectively, SMH acts as a prooxidant to regulate mitochondrial homeostasis and causes mitohormesis to exert therapeutic effect based on the redox background of the recipients, and cep-1 was required for the mitochondrial hormetic responses. The results shed a light on the rational clinical anti-ageing applications of SMH in the future.
Collapse
Affiliation(s)
- Dejuan Zhi
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Chengmu Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Juan Dong
- Qinghai University Affiliated Hospital, Tongren Road No. 29th, Chengxi District, Xining, Qinghai, PR China
| | - Wenjuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Shuaishuai Xu
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Juan Yue
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Dongsheng Wang
- School of Pharmacy, Lanzhou University, Lanzhou, PR China.
| |
Collapse
|
44
|
Wang YZ, Guo SY, Kong RL, Sui AR, Wang ZH, Guan RX, Supratik K, Zhao J, Li S. Scorpion Venom Heat–Resistant Synthesized Peptide Increases Stress Resistance and Extends the Lifespan of Caenorhabditis elegans via the Insulin/IGF-1-Like Signal Pathway. Front Pharmacol 2022; 13:919269. [PMID: 35910355 PMCID: PMC9330001 DOI: 10.3389/fphar.2022.919269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Improving healthy life expectancy by targeting aging-related pathological changes has been the spotlight of geroscience. Scorpions have been used in traditional medicine in Asia and Africa for a long time. We have isolated heat-resistant peptides from scorpion venom of Buthusmartensii Karsch (SVHRP) and found that SVHRP can attenuate microglia activation and protect Caenorhabditis elegans (C. elegans) against β-amyloid toxicity. Based on the amino acid sequence of these peptides, scorpion venom heat–resistant synthesized peptide (SVHRSP) was prepared using polypeptide synthesis technology. In the present study, we used C. elegans as a model organism to assess the longevity-related effects and underlying molecular mechanisms of SVHRSP in vivo. The results showed that SVHRSP could prolong the lifespan of worms and significantly improve the age-related physiological functions of worms. SVHRSP increases the survival rate of larvae under oxidative and heat stress and decreases the level of reactive oxygen species and fat accumulation in vivo. Using gene-specific mutation of C. elegans, we found that SVHRSP-mediated prolongation of life depends on Daf-2, Daf-16, Skn-1, and Hsf-1 genes. These results indicate that the antiaging mechanism of SVHRSP in nematodes might be mediated by the insulin/insulin-like growth factor-1 signaling pathway. Meanwhile, SVHRSP could also up-regulate the expression of stress-inducing genes Hsp-16.2, Sod-3, Gei-7, and Ctl-1 associated with aging. In general, our study may have important implications for SVHRSP to promote healthy aging and provide strategies for research and development of drugs to treat age-related diseases.
Collapse
Affiliation(s)
- Ying-Zi Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Song-Yu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Rui-Li Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Ao-Ran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - Zhen-Hua Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Rong-Xiao Guan
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Kundu Supratik
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- *Correspondence: Jie Zhao, ; Shao Li,
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- *Correspondence: Jie Zhao, ; Shao Li,
| |
Collapse
|
45
|
Pekkurnaz G, Wang X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab 2022; 4:802-812. [PMID: 35817853 PMCID: PMC11151822 DOI: 10.1038/s42255-022-00594-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Mitochondria are vital organelles with distinct morphological features and functional properties. The dynamic network of mitochondria undergoes structural and functional adaptations in response to cell-type-specific metabolic demands. Even within the same cell, mitochondria can display wide diversity and separate into functionally distinct subpopulations. Mitochondrial heterogeneity supports unique subcellular functions and is crucial to polarized cells, such as neurons. The spatiotemporal metabolic burden within the complex shape of a neuron requires precisely localized mitochondria. By travelling great lengths throughout neurons and experiencing bouts of immobility, mitochondria meet distant local fuel demands. Understanding mitochondrial heterogeneity and homeostasis mechanisms in neurons provides a framework to probe their significance to many other cell types. Here, we put forth an outline of the multifaceted role of mitochondria in regulating neuronal physiology and cellular functions more broadly.
Collapse
Affiliation(s)
- Gulcin Pekkurnaz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
46
|
Pradeepkiran JA, Hindle A, Kshirsagar S, Reddy PH. Are mitophagy enhancers therapeutic targets for Alzheimer's disease? Biomed Pharmacother 2022; 149:112918. [PMID: 35585708 PMCID: PMC9148418 DOI: 10.1016/j.biopha.2022.112918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 01/09/2023] Open
Abstract
Healthy mitochondria are essential for functional bioenergetics, calcium signaling, and balanced redox homeostasis. Dysfunctional mitochondria are a central aspect of aging and neurodegenerative diseases such as Alzheimer's disease (AD). The formation and accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (P-tau) play large roles in the cellular changes seen in AD, including mitochondrial dysfunction, synaptic damage, neuronal loss, and defective mitophagy. Mitophagy is the cellular process whereby damaged mitochondria are selectively removed, and it plays an important role in mitochondrial quality control. Dysfunctional mitochondria are associated with increased reactive oxygen species and increased levels of Aβ, P-tau and Drp1, which together trigger mitophagy and autophagy. Impaired mitophagy causes the progressive accumulation of defective organelles and damaged mitochondria, and it has been hypothesized that the restoration of mitophagy may offer therapeutic benefits to AD patients. This review highlights the challenges of pharmacologically inducing mitophagy through two different signaling cascades: 1) The PINK1/parkin-dependent pathway and 2) the PINK1/parkin-independent pathway, with an emphasis on abnormal mitochondrial interactions with Aβ and P-Tau, which alter mitophagy in an age-dependent manner. This article also summarizes recent studies on the effects of mitophagy enhancers, including urolithin A, NAD+, actinonin, and tomatidine, on mutant APP/Aβ and mutant Tau. Findings from our lab have revealed that mitophagy enhancers can suppress APP/Aβ-induced and mutant Tau-induced mitochondrial and synaptic dysfunctions in mouse and cell line models of AD. Finally, we discuss the mechanisms underlying the beneficial health effects of mitophagy enhancers like urolithin A, NAD+, resveratrol and spermidine in AD.
Collapse
Affiliation(s)
| | - Ashly Hindle
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
47
|
Abstract
Significance: Aging is a natural process that affects most living organisms, resulting in increased mortality. As the world population ages, the prevalence of age-associated diseases, and their associated health care costs, has increased sharply. A better understanding of the molecular mechanisms that lead to cellular dysfunction may provide important targets for interventions to prevent or treat these diseases. Recent Advances: Although the mitochondrial theory of aging had been proposed more than 40 years ago, recent new data have given stronger support for a central role for mitochondrial dysfunction in several pathways that are deregulated during normal aging and age-associated disease. Critical Issues: Several of the experimental evidence linking mitochondrial alterations to age-associated loss of function are correlative and mechanistic insights are still elusive. Here, we review how mitochondrial dysfunction may be involved in many of the known hallmarks of aging, and how these pathways interact in an intricate net of molecular relationships. Future Directions: As it has become clear that mitochondrial dysfunction plays causative roles in normal aging and age-associated diseases, it is necessary to better define the molecular interactions and the temporal and causal relationship between these changes and the relevant phenotypes seen during the aging process. Antioxid. Redox Signal. 36, 824-843.
Collapse
Affiliation(s)
- Caio M P F Batalha
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Anibal Eugênio Vercesi
- Departamento de Patologia Clínica, Faculdade de Medicina, Universidade de Campinas, Campinas, Brazil
| | - Nadja C Souza-Pinto
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Acetaldehyde Induces Cytotoxicity via Triggering Mitochondrial Dysfunction and Overactive Mitophagy. Mol Neurobiol 2022; 59:3933-3946. [PMID: 35438433 DOI: 10.1007/s12035-022-02828-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
Overconsumption of alcohol damages brain tissue and causes cognitive dysfunction. It has been suggested that the neurotoxicity caused by excessive alcohol consumption is largely mediated by acetaldehyde, the most toxic metabolite of ethanol. Evidence shows that acetaldehyde impairs mitochondrial function and induces cytotoxicity of neuronal cells; however, the exact mechanisms are not fully understood. The aim of this study was to investigate the role of mitophagy in acetaldehyde-induced cytotoxicity. It was found that acetaldehyde treatment induced mitophagic responses and caused cytotoxicity in SH-SY5Y cells. The levels of light chain 3 (LC3)-II, Beclin1, autophagy-related protein (Atg) 5 and Atg16L1, PTEN-induced putative kinase (PINK)1, and Parkin were significantly elevated, while the level of p62 was reduced in acetaldehyde-treated cells. Acetaldehyde also promoted the accumulation of PINK1 and Parkin on mitochondria and caused a remarkable decrease of mitochondrial mass. Treatment with autophagy inhibitors prevented the decline of mitochondrial mass and alleviated the cytotoxicity induced by acetaldehyde, suggesting that overactive mitophagy might be an important mechanism contributing to acetaldehyde-induced cytotoxicity. Antioxidant N-acetyl-L-cysteine significantly attenuated the mitophagic responses and alleviated the cytotoxicity induced by acetaldehyde, indicating that oxidative stress was a major mediator of the excessive mitophagy induced by acetaldehyde. Taken together, these findings provided new insights into the role of mitophagy and oxidative stress in acetaldehyde-induced cytotoxicity.
Collapse
|
49
|
Zhu A, Zheng F, Zhang W, Li L, Li Y, Hu H, Wu Y, Bao W, Li G, Wang Q, Li H. Oxidation and Antioxidation of Natural Products in the Model Organism Caenorhabditiselegans. Antioxidants (Basel) 2022; 11:antiox11040705. [PMID: 35453390 PMCID: PMC9029379 DOI: 10.3390/antiox11040705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Natural products are small molecules naturally produced by multiple sources such as plants, animals, fungi, bacteria and archaea. They exert both beneficial and detrimental effects by modulating biological targets and pathways involved in oxidative stress and antioxidant response. Natural products’ oxidative or antioxidative properties are usually investigated in preclinical experimental models, including virtual computing simulations, cell and tissue cultures, rodent and nonhuman primate animal models, and human studies. Due to the renewal of the concept of experimental animals, especially the popularization of alternative 3R methods for reduction, replacement and refinement, many assessment experiments have been carried out in new alternative models. The model organism Caenorhabditis elegans has been used for medical research since Sydney Brenner revealed its genetics in 1974 and has been introduced into pharmacology and toxicology in the past two decades. The data from C. elegans have been satisfactorily correlated with traditional experimental models. In this review, we summarize the advantages of C. elegans in assessing oxidative and antioxidative properties of natural products and introduce methods to construct an oxidative damage model in C. elegans. The biomarkers and signaling pathways involved in the oxidative stress of C. elegans are summarized, as well as the oxidation and antioxidation in target organs of the muscle, nervous, digestive and reproductive systems. This review provides an overview of the oxidative and antioxidative properties of natural products based on the model organism C. elegans.
Collapse
Affiliation(s)
- An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Wenjing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Guojun Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
- School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| |
Collapse
|
50
|
Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol 2022; 18:243-258. [PMID: 35145250 PMCID: PMC9059418 DOI: 10.1038/s41574-021-00626-7] [Citation(s) in RCA: 455] [Impact Index Per Article: 151.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
Organismal ageing is accompanied by progressive loss of cellular function and systemic deterioration of multiple tissues, leading to impaired function and increased vulnerability to death. Mitochondria have become recognized not merely as being energy suppliers but also as having an essential role in the development of diseases associated with ageing, such as neurodegenerative and cardiovascular diseases. A growing body of evidence suggests that ageing and age-related diseases are tightly related to an energy supply and demand imbalance, which might be alleviated by a variety of interventions, including physical activity and calorie restriction, as well as naturally occurring molecules targeting conserved longevity pathways. Here, we review key historical advances and progress from the past few years in our understanding of the role of mitochondria in ageing and age-related metabolic diseases. We also highlight emerging scientific innovations using mitochondria-targeted therapeutic approaches.
Collapse
Affiliation(s)
- João A Amorim
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- IIIUC, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Giuseppe Coppotelli
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- George and Anne Ryan Institute for Neuroscience, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Anabela P Rolo
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Jaime M Ross
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- George and Anne Ryan Institute for Neuroscience, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|