1
|
Coquin S, Ormeno E, Pasqualini V, Monnier B, Culioli G, Lecareux C, Fernandez C, Saunier A. Chemical Diversity of Mediterranean Seagrasses Volatilome. Metabolites 2024; 14:705. [PMID: 39728486 DOI: 10.3390/metabo14120705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr-1, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000-600,000 km2). This study aims to examine BVOC emissions from key Mediterranean seagrass species (Cymodocea nodosa, Posidonia oceanica, Zostera noltei, and Zostera marina) in marine and coastal lagoon environments. METHODS BVOCs were collected using headspace solid-phase microextraction (HS-SPME) using divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibers and analyzed by gas chromatography-mass spectrometry (GC-MS). RESULTS An important chemical diversity was found with a total of 92 volatile compounds (61 for Z. noltei, 59 for C. nodosa, 55 for P. oceanica, and 51 for Z. marina), from different biosynthetic pathways (e.g., terpenoids, benzenoids, and fatty acid derivatives) and with several types of chemical functions (e.g., alkanes, esters, aldehydes, and ketones) or heteroatoms (e.g., sulfur). No differences in chemical richness or diversity of compounds were observed between species. The four species shared 29 compounds enabling us to establish a specific chemical footprint for Mediterranean marine plants, including compounds like benzaldehyde, benzeneacetaldehyde, 8-heptadecene, heneicosane, heptadecane, nonadecane, octadecane, pentadecane, tetradecane, and tridecanal. PLS-DA and Heatmap show that the four species presented significantly different chemical profiles. The major compounds per species in relative abundance were isopropyl myristate for C. nodosa (25.6%), DMS for P. oceanica (39.3%), pentadecane for Z. marina (42.9%), and heptadecane for Z. noltei (46%). CONCLUSIONS These results highlight the potential of BVOCs' emission from seagrass ecosystems and reveal species-specific chemical markers.
Collapse
Affiliation(s)
- Salomé Coquin
- CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France
| | - Elena Ormeno
- CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France
| | - Vanina Pasqualini
- UMR CNRS SPE, UAR CNRS Stella Mare, Université de Corse, BP 52, 20250 Corte, France
| | - Briac Monnier
- UMR CNRS SPE, UAR CNRS Stella Mare, Université de Corse, BP 52, 20250 Corte, France
| | - Gérald Culioli
- CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France
| | - Caroline Lecareux
- CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France
| | - Catherine Fernandez
- CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France
| | - Amélie Saunier
- CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France
| |
Collapse
|
2
|
Ngandjui YAT, Kereeditse TT, Kamika I, Madikizela LM, Msagati TAM. Nutraceutical and Medicinal Importance of Marine Molluscs. Mar Drugs 2024; 22:201. [PMID: 38786591 PMCID: PMC11123371 DOI: 10.3390/md22050201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Marine molluscs are of enormous scientific interest due to their astonishing diversity in terms of their size, shape, habitat, behaviour, and ecological roles. The phylum Mollusca is the second most common animal phylum, with 100,000 to 200,000 species, and marine molluscs are among the most notable class of marine organisms. This work aimed to show the importance of marine molluscs as a potential source of nutraceuticals as well as natural medicinal drugs. In this review, the main classes of marine molluscs, their chemical ecology, and the different techniques used for the extraction of bioactive compounds have been presented. We pointed out their nutraceutical importance such as their proteins, peptides, polysaccharides, lipids, polyphenolic compounds pigments, marine enzymes, minerals, and vitamins. Their pharmacological activities include antimicrobial, anticancer, antioxidant, anti-inflammatory, and analgesic activities. Moreover, certain molluscs like abalones and mussels contain unique compounds with potential medicinal applications, ranging from wound healing to anti-cancer effects. Understanding the nutritional and therapeutic value of marine molluscs highlights their significance in both pharmaceutical and dietary realms, paving the way for further research and utilization in human health.
Collapse
Affiliation(s)
- Yvan Anderson Tchangoue Ngandjui
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, Johannesburg 1705, South Africa; (T.T.K.); (I.K.); (L.M.M.)
| | | | | | | | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, Johannesburg 1705, South Africa; (T.T.K.); (I.K.); (L.M.M.)
| |
Collapse
|
3
|
Chen ZH, Guo YW, Li XW. Recent advances on marine mollusk-derived natural products: chemistry, chemical ecology and therapeutical potential. Nat Prod Rep 2023; 40:509-556. [PMID: 35942896 DOI: 10.1039/d2np00021k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2011-2021Marine mollusks, which are well known as rich sources of diverse and biologically active natural products, have attracted significant attention from researchers due to their chemical and pharmacological properties. The occurrence of some of these marine mollusk-derived natural products in their preys, predators, and associated microorganisms has also gained interest in chemical ecology research. Based on previous reviews, herein, we present a comprehensive summary of the recent advances of interesting secondary metabolites from marine mollusks, focusing on their structural features, possible chemo-ecological significance, and promising biological activities, covering the literature from 2011 to 2021.
Collapse
Affiliation(s)
- Zi-Hui Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
4
|
Ju H, Yu C, Liu W, Li HH, Fu Z, Wu YC, Gong PX, Li HJ. Polysaccharides from marine resources exhibit great potential in the treatment of tumor: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
|
5
|
Uguen M, Nicastro KR, Zardi GI, Gaudron SM, Spilmont N, Akoueson F, Duflos G, Seuront L. Microplastic leachates disrupt the chemotactic and chemokinetic behaviours of an ecosystem engineer (Mytilus edulis). CHEMOSPHERE 2022; 306:135425. [PMID: 35809744 DOI: 10.1016/j.chemosphere.2022.135425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The massive contamination of the environment by plastics is an increasing global scientific and societal concern. Knowing whether and how these pollutants affect the behaviour of keystone species is essential to identify environmental risks effectively. Here, we focus on the effect of plastic leachates on the behavioural response of the common blue mussel Mytilus edulis, an ecosystem engineer responsible for the creation of biogenic structures that modify the environment and provide numerous ecosystem functions and services. Specifically, we assess the effect of virgin polypropylene beads on mussels' chemotactic (i.e. a directional movement in response to a chemical stimulus) and chemokinetic (i.e. a non-directional change in movement properties such as speed, distance travelled or turning frequency in response to a chemical stimulus) responses to different chemical cues (i.e. conspecifics, injured conspecifics and a predator, the crab Hemigrapsus sanguineus). In the presence of predator cues, individual mussels reduced both their gross distance and speed, changes interpreted here as an avoidance behaviour. When exposed to polypropylene leachates, mussels moved less compared to control conditions, regardless of the cues tested. Additionally, in presence of crab cues with plastic leachates, mussels significantly changed the direction of movement suggesting a leachate-induced loss of their negative chemotaxis response. Taken together, our results indicate that the behavioural response of M. edulis is cue-specific and that its anti-predator behaviour as well as its mobility are impaired when exposed to microplastic leachates, potentially affecting the functioning of the ecosystem that the species supports.
Collapse
Affiliation(s)
- Marine Uguen
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France.
| | - Katy R Nicastro
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; CCMAR-Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Gerardo I Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Sylvie M Gaudron
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France; Sorbonne Université, UFR 927, F-75005, Paris, France
| | - Nicolas Spilmont
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France
| | - Fleurine Akoueson
- ANSES - Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, F-62200, Boulogne-sur-Mer, France; Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, EA 7394, Institut Charles Viollette, USC ANSES, INRAe, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Uni. Liège, F-62200, Boulogne-sur-Mer, France
| | - Guillaume Duflos
- ANSES - Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, F-62200, Boulogne-sur-Mer, France
| | - Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; ANSES - Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, F-62200, Boulogne-sur-Mer, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
6
|
Hong LL, Ding YF, Zhang W, Lin HW. Chemical and biological diversity of new natural products from marine sponges: a review (2009-2018). MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:356-372. [PMID: 37073163 PMCID: PMC10077299 DOI: 10.1007/s42995-022-00132-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
Marine sponges are productive sources of bioactive secondary metabolites with over 200 new compounds isolated each year, contributing 23% of approved marine drugs so far. This review describes statistical research, structural diversity, and pharmacological activity of sponge derived new natural products from 2009 to 2018. Approximately 2762 new metabolites have been reported from 180 genera of sponges this decade, of which the main structural types are alkaloids and terpenoids, accounting for 50% of the total. More than half of new molecules showed biological activities including cytotoxic, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, enzyme inhibition, and antimalarial activities. As summarized in this review, macrolides and peptides had higher proportions of new bioactive compounds in new compounds than other chemical classes. Every chemical class displayed cytotoxicity as the dominant activity. Alkaloids were the major contributors to antibacterial, antifungal, and antioxidant activities while steroids were primarily responsible for pest resistance activity. Alkaloids, terpenoids, and steroids displayed the most diverse biological activities. The statistic research of new compounds by published year, chemical class, sponge taxonomy, and biological activity are presented. Structural novelty and significant bioactivities of some representative compounds are highlighted. Marine sponges are rich sources of novel bioactive compounds and serve as animal hosts for microorganisms, highlighting the undisputed potential of sponges in the marine drugs research and development. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00132-3.
Collapse
Affiliation(s)
- Li-Li Hong
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Ya-Fang Ding
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316000 China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042 Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| |
Collapse
|
7
|
Zeng T, Chen Y, Jian Y, Zhang F, Wu R. Chemotaxonomic investigation of plant terpenoids with an established database (TeroMOL). THE NEW PHYTOLOGIST 2022; 235:662-673. [PMID: 35377469 DOI: 10.1111/nph.18133] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Terpenoids constitute the biggest class of plant-derived natural products with diverse chemical structures and extensive biological activities. Interpreting enzyme functions and mining new structures of terpenoids could be inspired by the cheminformatic and chemotaxonomic analysis, whereas it is hampered by the incompleteness of available data for terpenoids. Here a dedicated terpenoids database, TeroMOL, is developed to collect more than 170 000 terpenoids and their derivatives annotated with reported biological sources, along with a user-friendly and freely accessible webserver to visualise and analyse the terpenoids skeletons and organism sources. The quantitative distributions as well as the qualitative trends between terpenoid skeletons and organism sources in plant kingdom are revealed from a chemotaxonomic view, while no comparisons are attempted due to the inherent data biases. Nevertheless, the terpenoid chemomarkers in several organisms are discussed based on the available data with highly enriched and exclusive carbon skeletons. We believe that the TeroMOL database and its accessory computational tools will be very promising for exploring the chemical space and biological sources of terpenoids, and assisting the terpenoid research community in the future.
Collapse
Affiliation(s)
- Tao Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuxinxin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongxing Jian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Mostafa O, Al-Shehri M, Moustafa M. Promising antiparasitic agents from marine sponges. Saudi J Biol Sci 2022; 29:217-227. [PMID: 35002412 PMCID: PMC8716901 DOI: 10.1016/j.sjbs.2021.08.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022] Open
Abstract
Parasitic diseases especially those prevail in tropical and subtropical regions severely threaten the lives of people due to available drugs found to be ineffective as several resistant strains have been emerged. Due to the complexity of the marine environment, researchers considered it as a new field to search for compounds with therapeutic efficacy, marine sponges represents the milestone in the discovery of unique compounds of potent activities against parasitic infections. In the present article, literatures published from 2010 until March 2021 were screened to review antiparasitic potency of bioactive compounds extracted from marine sponges. 45 different genera of sponges have been studied for their antiparasitic activities. The antiparasitic activity of the crude extract or the compounds that have been isolated from marine sponges were assayed in vitro against Plasmodium falciparum, P. berghei, Trypanosoma brucei rhodesiense, T. b. brucei, T. cruzi, Leishmania donovani, L. tropica, L. infantum, L. amazonesis, L. major, L. panamesis, Haemonchus contortus and Schistosoma mansoni. The majority of antiparastic compounds extracted from marine sponges were related to alkaloids and peroxides represent the second important group of antiparasitic compounds extracted from sponges followed by terpenoids. Some substances have been extracted and used as antiparasitic agents to a lesser extent like steroids, amino acids, lipids, polysaccharides and isonitriles. The activities of these isolated compounds against parasites were screened using in vitro techniques. Compounds' potent activity in screened papers was classified in three categories according to IC50: low active or inactive, moderately active and good potent active.
Collapse
Affiliation(s)
- Osama Mostafa
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| |
Collapse
|
9
|
Bayona LM, Kim MS, Swierts T, Hwang GS, de Voogd NJ, Choi YH. Metabolic variation in Caribbean giant barrel sponges: Influence of age and sea-depth. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105503. [PMID: 34673313 DOI: 10.1016/j.marenvres.2021.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The biochemical differentiation of widely distributed long-living marine organisms according to their age or the depth of waters in which they grow is an intriguing topic in marine biology. Especially sessile life forms, such as sponges, could be expected to actively regulate biological processes and interactions with their environment through chemical signals in a multidimensional manner. In recent years, the development of chemical profiling methods such as metabolomics provided an approach that has encouraged the investigation of the chemical interactions of these organisms. In this study, LC-MS based metabolomics followed by Feature-based molecular networking (FBMN) was used to explore the effects of both biotic and environmental factors on the metabolome of giant barrel sponges, chosen as model organisms as they are distributed throughout a wide range of sea-depths. This allowed the identification of differences in the metabolic composition of the sponges related to their age and depth.
Collapse
Affiliation(s)
- Lina M Bayona
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands.
| | - Min-Sun Kim
- Food Analysis Research Center, Korea Food Research Institute, Wanju, South Korea
| | - Thomas Swierts
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, the Netherlands
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, the Netherlands; Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands; College of Pharmacy, Kyung Hee University, 130, Seoul, South Korea
| |
Collapse
|
10
|
Gavriilidou A, Mackenzie TA, Sánchez P, Tormo JR, Ingham C, Smidt H, Sipkema D. Bioactivity Screening and Gene-Trait Matching across Marine Sponge-Associated Bacteria. Mar Drugs 2021; 19:75. [PMID: 33573261 PMCID: PMC7912018 DOI: 10.3390/md19020075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022] Open
Abstract
Marine sponges harbor diverse microbial communities that represent a significant source of natural products. In the present study, extracts of 21 sponge-associated bacteria were screened for their antimicrobial and anticancer activity, and their genomes were mined for secondary metabolite biosynthetic gene clusters (BGCs). Phylogenetic analysis assigned the strains to four major phyla in the sponge microbiome, namely Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Bioassays identified one extract with anti-methicillin-resistant Staphylococcus aureus (MRSA) activity, and more than 70% of the total extracts had a moderate to high cytotoxicity. The most active extracts were derived from the Proteobacteria and Actinobacteria, prominent for producing bioactive substances. The strong bioactivity potential of the aforementioned strains was also evident in the abundance of BGCs, which encoded mainly beta-lactones, bacteriocins, non-ribosomal peptide synthetases (NRPS), terpenes, and siderophores. Gene-trait matching was performed for the most active strains, aiming at linking their biosynthetic potential with the experimental results. Genetic associations were established for the anti-MRSA and cytotoxic phenotypes based on the similarity of the detected BGCs with BGCs encoding natural products with known bioactivity. Overall, our study highlights the significance of combining in vitro and in silico approaches in the search of novel natural products of pharmaceutical interest.
Collapse
Affiliation(s)
- Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (H.S.); (D.S.)
| | - Thomas Andrew Mackenzie
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (T.A.M.); (P.S.); (J.R.T.)
| | - Pilar Sánchez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (T.A.M.); (P.S.); (J.R.T.)
| | - José Ruben Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (T.A.M.); (P.S.); (J.R.T.)
| | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (H.S.); (D.S.)
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (H.S.); (D.S.)
| |
Collapse
|
11
|
Bioactive Secondary Metabolites from Psychrophilic Fungi and Their Industrial Importance. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Jomori T, Matsuda K, Egami Y, Abe I, Takai A, Wakimoto T. Insights into phosphatase-activated chemical defense in a marine sponge holobiont. RSC Chem Biol 2021; 2:1600-1607. [PMID: 34977575 PMCID: PMC8637855 DOI: 10.1039/d1cb00163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022] Open
Abstract
Marine sponges often contain potent cytotoxic compounds, which in turn evokes the principle question of how marine sponges avoid self-toxicity. In a marine sponge Discodermia calyx, the highly toxic calyculin A is detoxified by the phosphorylation, which is catalyzed by the phosphotransferase CalQ of a producer symbiont, “Candidatus Entotheonella” sp. Here we show the activating mechanism to dephosphorylate the stored phosphocalyculin A protoxin. The phosphatase specific to phosphocalyculin A is CalL, which is also encoded in the calyculin biosynthetic gene cluster. CalL represents a new clade and unprecedently coordinates the heteronuclear metals Cu and Zn. CalL is localized in the periplasmic space of the sponge symbiont, where it is ready for the on-demand production of calyculin A in response to sponge tissue disruption. The phosphatase that activates calyculin biogenesis in the sponge Discodermia calyx turned out to originate from the bacterial symbiont Entotheonella.![]()
Collapse
Affiliation(s)
- Takahiro Jomori
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | - Yoko Egami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Takai
- Department of Physiology, Asahikawa Medical University, 1-1-1 Midorigaoka Higashi 2 jo, Asahikawa 078-8510, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| |
Collapse
|
13
|
Li XW. Chemical ecology-driven discovery of bioactive marine natural products as potential drug leads. Chin J Nat Med 2020; 18:837-838. [PMID: 33308604 DOI: 10.1016/s1875-5364(20)60024-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 11/30/2022]
|
14
|
Lee S, Tanaka N, Takahashi S, Tsuji D, Kim SY, Kojoma M, Itoh K, Kobayashi J, Kashiwada Y. Agesasines A and B, Bromopyrrole Alkaloids from Marine Sponges Agelas spp. Mar Drugs 2020; 18:E455. [PMID: 32872586 PMCID: PMC7551770 DOI: 10.3390/md18090455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 01/16/2023] Open
Abstract
Exploration for specialized metabolites of Okinawan marine sponges Agelas spp. resulted in the isolation of five new bromopyrrole alkaloids, agesasines A (1) and B (2), 9-hydroxydihydrodispacamide (3), 9-hydroxydihydrooroidin (4), and 9E-keramadine (5). Their structures were elucidated on the basis of spectroscopic analyses. Agesasines A (1) and B (2) were assigned as rare bromopyrrole alkaloids lacking an aminoimidazole moiety, while 3-5 were elucidated to be linear bromopyrrole alkaloids with either aminoimidazolone, aminoimidazole, or N-methylated aminoimidazole moieties.
Collapse
Affiliation(s)
- Sanghoon Lee
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan; (S.L.); (S.T.); (D.T.); (K.I.)
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Naonobu Tanaka
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan; (S.L.); (S.T.); (D.T.); (K.I.)
| | - Sakura Takahashi
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan; (S.L.); (S.T.); (D.T.); (K.I.)
| | - Daisuke Tsuji
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan; (S.L.); (S.T.); (D.T.); (K.I.)
| | - Sang-Yong Kim
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan; (S.-Y.K.); (M.K.)
| | - Mareshige Kojoma
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu 061-0293, Japan; (S.-Y.K.); (M.K.)
| | - Kohji Itoh
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan; (S.L.); (S.T.); (D.T.); (K.I.)
| | - Jun’ichi Kobayashi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan;
| | - Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan; (S.L.); (S.T.); (D.T.); (K.I.)
| |
Collapse
|
15
|
Dobretsov S, Rittschof D. Love at First Taste: Induction of Larval Settlement by Marine Microbes. Int J Mol Sci 2020; 21:ijms21030731. [PMID: 31979128 PMCID: PMC7036896 DOI: 10.3390/ijms21030731] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Marine biofilms are composed of many species of bacteria, unicellular algae, and protozoa. Biofilms can induce, inhibit, or have no effect on settlement of larvae and spores of algae. In this review, we focus on induction of larval settlement by marine bacteria and unicellular eukaryotes and review publications from 2010 to September 2019. This review provides insights from meta-analysis on what is known about the effect of marine biofilms on larval settlement. Of great interest is the impact of different components of marine biofilms, such as bacteria and diatoms, extracellular polymeric substances, quorum sensing signals, unique inductive compounds, exoenzymes, and structural protein degradation products on larval settlement and metamorphosis. Molecular aspects of larval settlement and impact of climate change are reviewed and, finally, potential areas of future investigations are provided.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Centre of Excellence in Marine Biotechnology, Sultan Qaboos University, Al Khoud 123 P.O. Box 50, Muscat 123, Oman
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 P.O. Box 34, Muscat 123, Oman
- Correspondence:
| | - Daniel Rittschof
- Marine Science and Conservation, Marine Laboratory, Nicholas School, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA;
| |
Collapse
|
16
|
Reiter S, Cahn JKB, Wiebach V, Ueoka R, Piel J. Characterization of an Orphan Type III Polyketide Synthase Conserved in Uncultivated "Entotheonella" Sponge Symbionts. Chembiochem 2019; 21:564-571. [PMID: 31430416 PMCID: PMC7064976 DOI: 10.1002/cbic.201900352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/19/2019] [Indexed: 02/06/2023]
Abstract
Uncultivated bacterial symbionts from the candidate genus "Entotheonella" have been shown to produce diverse natural products previously attributed to their sponge hosts. In addition to these known compounds, "Entotheonella" genomes contain rich sets of biosynthetic gene clusters that lack identified natural products. Among these is a small type III polyketide synthase (PKS) cluster, one of only three clusters present in all known "Entotheonella" genomes. This conserved "Entotheonella" PKS (cep) cluster encodes the type III PKS CepA and the putative methyltransferase CepB. Herein, the characterization of CepA as an enzyme involved in phenolic lipid biosynthesis is reported. In vitro analysis showed a specificity for alkyl starter substrates and the production of tri- and tetraketide pyrones and tetraketide resorcinols. The conserved distribution of the cep cluster suggests an important role for the phenolic lipid polyketides produced in "Entotheonella" variants.
Collapse
Affiliation(s)
- Silke Reiter
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.,Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Jackson K B Cahn
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Vincent Wiebach
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Reiko Ueoka
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jörn Piel
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
17
|
Rua CPJ, de Oliveira LS, Froes A, Tschoeke DA, Soares AC, Leomil L, Gregoracci GB, Coutinho R, Hajdu E, Thompson CC, Berlinck RGS, Thompson FL. Microbial and Functional Biodiversity Patterns in Sponges that Accumulate Bromopyrrole Alkaloids Suggest Horizontal Gene Transfer of Halogenase Genes. MICROBIAL ECOLOGY 2018; 76:825-838. [PMID: 29546438 DOI: 10.1007/s00248-018-1172-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Marine sponge holobionts harbor complex microbial communities whose members may be the true producers of secondary metabolites accumulated by sponges. Bromopyrrole alkaloids constitute a typical class of secondary metabolites isolated from sponges that very often display biological activities. Bromine incorporation into secondary metabolites can be catalyzed by either halogenases or haloperoxidases. The diversity of the metagenomes of sponge holobiont species containing bromopyrrole alkaloids (Agelas spp. and Tedania brasiliensis) as well as holobionts devoid of bromopyrrole alkaloids spanning in a vast biogeographic region (approx. Seven thousand km) was studied. The origin and specificity of the detected halogenases was also investigated. The holobionts Agelas spp. and T. brasiliensis did not share microbial halogenases, suggesting a species-specific pattern. Bacteria of diverse phylogenetic origins encoding halogenase genes were found to be more abundant in bromopyrrole-containing sponges. The sponge holobionts (e.g., Agelas spp.) with the greatest number of sequences related to clustered, interspaced, short, palindromic repeats (CRISPRs) exhibited the fewest phage halogenases, suggesting a possible mechanism of protection from phage infection by the sponge host. This study highlights the potential of phages to transport halogenases horizontally across host sponges, particularly in more permissive holobiont hosts, such as Tedania spp.
Collapse
Affiliation(s)
- Cintia P J Rua
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Caixa Postal 780 - CEP13560-970, São Carlos, SP, CEP 13566-590, Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Louisi S de Oliveira
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Adriana Froes
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Diogo A Tschoeke
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
- Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764 - São José do Barreto, Macaé - RJ, Macaé, RJ, CEP 27965-045, Brazil
| | - Ana Carolina Soares
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Luciana Leomil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Gustavo B Gregoracci
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Alm. Saldanha da Gama, 89, Santos, CEP 11030-400, Brazil
| | - Ricardo Coutinho
- Instituto de Estudos do Mar Almirante Paulo Moreira, Rua Kioto, 253, Praia dos Anjos, Arraial do Cabo, RJ, CEP 28930-000, Brazil
| | - Eduardo Hajdu
- Museu Nacional - UFRJ, Departamento de Invertebrados. Laboratório de Porifera, Quinta da Boa Vista, s/n. São Cristóvão, Rio de Janeiro, CEP 20940-040, Brazil
| | - Cristiane C Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Caixa Postal 780 - CEP13560-970, São Carlos, SP, CEP 13566-590, Brazil.
| | - Fabiano L Thompson
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Caixa Postal 780 - CEP13560-970, São Carlos, SP, CEP 13566-590, Brazil.
| |
Collapse
|
18
|
Mehbub MF, Tanner JE, Barnett SJ, Bekker J, Franco CMM, Zhang W. A controlled aquarium system and approach to study the role of sponge-bacteria interactions using Aplysilla rosea and Vibrio natriegens. Sci Rep 2018; 8:11801. [PMID: 30087404 PMCID: PMC6081443 DOI: 10.1038/s41598-018-30295-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/23/2018] [Indexed: 11/09/2022] Open
Abstract
Sponge-bacteria interactions are very important due to their ecological and biological significance. To understand the impact of interactions between sponges and bacteria (both associated with and external to sponges) on sponge-associated microbial diversity, sponge metabolite profiles and bioactivity, we used a controlled aquarium system and designed an experimental approach that allows the study of sponge-bacteria interactions in a well-defined manner. To test the feasibility of this approach, this system was used to study the interaction between a sponge Aplysilla rosea and a marine bacterium commonly found in seawater, Vibrio natriegens. Sponge explants were exposed to V. natriegens, at 5 × 106 cfu/ml, and changes were monitored for 48 hours. Pyro-sequencing revealed significant shifts in microbial communities associated with the sponges after 24 to 48 hours. Both the control (sponge only without added bacteria) and Vibrio-exposed sponges showed a distinct shift in bacterial diversity and abundance with time. Vibrio exposure significantly increased bacterial diversity, the abundance of a number of taxa compared to control sponges. The result experimentally supports the notion of dynamic and concerted responses by the sponge when interacting with a bacterium, and demonstrates the feasibility of using this controlled aquarium system for the study of sponge-bacteria interactions.
Collapse
Affiliation(s)
- Mohammad F Mehbub
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia.
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia.
| | - Jason E Tanner
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia
- SARDI Aquatic Sciences, 2 Hamra Avenue, West Beach, SA, 5024, Adelaide, Australia
| | - Stephen J Barnett
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia
| | - Jan Bekker
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia
| | - Christopher M M Franco
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia.
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia.
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia.
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia.
| |
Collapse
|
19
|
Rampelotto PH, Trincone A. Anti-infective Compounds from Marine Organisms. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [PMCID: PMC7123853 DOI: 10.1007/978-3-319-69075-9_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pabulo H. Rampelotto
- Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antonio Trincone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| |
Collapse
|
20
|
Coutinho MCL, Teixeira VL, Santos CSG. A Review of “Polychaeta” Chemicals and their Possible Ecological Role. J Chem Ecol 2017; 44:72-94. [DOI: 10.1007/s10886-017-0915-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 01/20/2023]
|
21
|
Muthiyan R, Nambikkairaj B, Mahanta N, Immanuel T, Mandal RS, Kumaran K, De AK. Antiproliferative and Proapoptotic Activities of Marine Sponge Hyrtios erectus Extract on Breast Carcinoma Cell Line (MCF-7). Pharmacogn Mag 2017; 13:S41-S47. [PMID: 28479725 PMCID: PMC5407115 DOI: 10.4103/0973-1296.203983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/28/2016] [Indexed: 01/01/2023] Open
Abstract
Background: Marine sponge is a rich natural resource of many pharmacologically important compounds. Objective: Marine sponge Hyrtios erectus, collected from North Bay, South Andaman Sea, India, was screened for potential antiproliferative and proapoptotic properties on a breast adenocarcinoma cell line (MCF-7). Materials and Methods: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to test the antiproliferative and cytotoxicity effects of the sponge extract. Analysis of apoptosis and cell cycle stages were done by flow cytometry. The expression of several apoptotic-related proteins in MCF-7 cells treated by the extract was evaluated by Western blot analysis. Various analytical techniques including Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry, and nuclear magnetic resonance were employed to determine the identity of the active compounds in the sponge extract. Results: N-Hexane extract of the sponge inhibited proliferation of the MCF-7 cell line in a dose- and time-dependent manner. Exposure of the sponge extract triggered apoptosis of the MCF-7 cells, induced DNA fragmentation, and arrested the cells in G2/M phase. Treatment of the sponge extract induced downregulation of antiapoptotic Bcl-2 protein and upregulation of Bax, caspase-3, caspase-9, and fragmented poly(ADP ribose)polymerase proteins in MCF-7 cells. Five bioactive compounds have been identified in the extract. Conclusion: The antiproliferative and proapoptotic activities of the tested extract suggested the pharmacologic potential of the identified compounds. Further characterization of the identified compounds are in progress. SUMMARY The N-hexane extract of the marine sponge Hyrtios erectus, collected from North Bay, South Andaman Sea, India, showed potential antiproliferative and proapoptotic properties against a breast adenocarcinoma cell line (MCF-7). The sponge extract retarded the growth of breast carcinoma cell line MCF-7 cells in a time- and dose-dependent manner. The sponge extract induced apoptosis of breast cancer cell line MCF-7 and arrested cells in G2/M phase. The sponge extract induced downregulation of Bcl-2 protein in MCF-7 cell line and upregulation of Bax, caspase-3, and cleaved PARP. Five bioactive compounds have been identified in the extract.
Abbreviations used: GC-MS: Gas chromatography-mass spectrometry; FT-IR: Fourier transform infrared spectroscopy; NMR: Nuclear magnetic resonance; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
Collapse
Affiliation(s)
| | - Balwin Nambikkairaj
- Department of Zoology, Voorhees College, Thiruvalluvar University, Vellore, India
| | - Nilkamal Mahanta
- Department of Chemistry, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Titus Immanuel
- Division of Fisheries Sciences, Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Rahul Shubhra Mandal
- Biomedical Informatics Centre, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | | | - Arun Kumar De
- Department of Animal Sciences, Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, Illinois, USA
| |
Collapse
|
22
|
Bornancin L, Bonnard I, Mills SC, Banaigs B. Chemical mediation as a structuring element in marine gastropod predator-prey interactions. Nat Prod Rep 2017; 34:644-676. [DOI: 10.1039/c6np00097e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Some diterpenoid compounds protect the sacoglossansElysiasp. andCyerce nigricansfrom their carnivorous predator the dorid nudibranch,Gymnodorissp., unlike chemically unprotected gastropods that are consumed by this voracious nudibranch (photo Philippe Bourseiller).
Collapse
Affiliation(s)
- L. Bornancin
- CRIOBE
- USR CNRS-EPHE-UPVD 3278
- Université de Perpignan
- 66860 Perpignan
- France
| | - I. Bonnard
- CRIOBE
- USR CNRS-EPHE-UPVD 3278
- Université de Perpignan
- 66860 Perpignan
- France
| | - S. C. Mills
- PSL Research University
- CRIOBE
- USR EPHE-UPVD-CNRS 3278
- 98729 Moorea
- French Polynesia
| | - B. Banaigs
- CRIOBE
- USR CNRS-EPHE-UPVD 3278
- Université de Perpignan
- 66860 Perpignan
- France
| |
Collapse
|
23
|
Phenolic content, anti-oxidant, anti-plasmodium and cytotoxic properties of the sponge Acanthella cavernosa. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61136-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Gomes NGM, Dasari R, Chandra S, Kiss R, Kornienko A. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the "Supply Problem". Mar Drugs 2016; 14:E98. [PMID: 27213412 PMCID: PMC4882572 DOI: 10.3390/md14050098] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors' opinion should be pursued due to their most promising anticancer activities.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira No. 228, 4050-313 Porto, Portugal.
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Sunena Chandra
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Campus de la Plaine, CP205/1, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
25
|
Núñez-Pons L, Avila C. Natural products mediating ecological interactions in Antarctic benthic communities: a mini-review of the known molecules. Nat Prod Rep 2015; 32:1114-30. [PMID: 25693047 DOI: 10.1039/c4np00150h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Out of the many bioactive compounds described from the oceans, only a small fraction have been studied for their ecological significance. Similarly, most chemically mediated interactions are not well understood, because the molecules involved remain unrevealed. In Antarctica, this gap in knowledge is even more acute in comparison to tropical or temperate regions, even though polar organisms are also prolific producers of chemical defenses, and pharmacologically relevant products are being reported from the Southern Ocean. The extreme and unique marine environments surrounding Antarctica along with the numerous unusual interactions taking place in benthic communities are expected to select for novel functional secondary metabolites. There is an urgent need to comprehend the evolutionary role of marine derived substances in general, and particularly at the Poles, since molecules of keystone significance are vital in species survival, and therefore, in structuring the communities. Here we provide a mini-review on the identified marine natural products proven to have an ecological function in Antarctic ecosystems. This report recapitulates some of the bibliography from original Antarctic reviews, and updates the new literature in the field from 2009 to the present.
Collapse
|
26
|
Singh A, Thakur NL. Significance of investigating allelopathic interactions of marine organisms in the discovery and development of cytotoxic compounds. Chem Biol Interact 2015; 243:135-47. [PMID: 26362501 DOI: 10.1016/j.cbi.2015.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 07/01/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022]
Abstract
Marine sessile organisms often inhabit rocky substrata, which are crowded by other sessile organisms. They acquire living space via growth interactions and/or by allelopathy. They are known to secrete toxic compounds having multiple roles. These compounds have been explored for their possible applications in cancer chemotherapy, because of their ability to kill rapidly dividing cells of competitor organisms. As compared to the therapeutic applications of these compounds, their possible ecological role in competition for space has received little attention. To select the potential candidate organisms for the isolation of lead cytotoxic molecules, it is important to understand their chemical ecology with special emphasis on their allelopathic interactions with their competitors. Knowledge of the ecological role of allelopathic compounds will contribute significantly to an understanding of their natural variability and help us to plan effective and sustainable wild harvests to obtain novel cytotoxic chemicals. This review highlights the significance of studying allelopathic interactions of marine invertebrates in the discovery of cytotoxic compounds, by selecting sponge as a model organism.
Collapse
Affiliation(s)
- Anshika Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR - National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - Narsinh L Thakur
- Academy of Scientific and Innovative Research (AcSIR), CSIR - National Institute of Oceanography, Dona Paula, Goa 403 004, India.
| |
Collapse
|
27
|
Rohde S, Nietzer S, Schupp PJ. Prevalence and Mechanisms of Dynamic Chemical Defenses in Tropical Sponges. PLoS One 2015; 10:e0132236. [PMID: 26154741 PMCID: PMC4496075 DOI: 10.1371/journal.pone.0132236] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/11/2015] [Indexed: 11/18/2022] Open
Abstract
Sponges and other sessile invertebrates are lacking behavioural escape or defense mechanisms and rely therefore on morphological or chemical defenses. Studies from terrestrial systems and marine algae demonstrated facultative defenses like induction and activation to be common, suggesting that sessile marine organisms also evolved mechanisms to increase the efficiency of their chemical defense. However, inducible defenses in sponges have not been investigated so far and studies on activated defenses are rare. We investigated whether tropical sponge species induce defenses in response to artificial predation and whether wounding triggers defense activation. Additionally, we tested if these mechanisms are also used to boost antimicrobial activity to avoid bacterial infection. Laboratory experiments with eight pacific sponge species showed that 87% of the tested species were chemically defended. Two species, Stylissa massa and Melophlus sarasinorum, induced defenses in response to simulated predation, which is the first demonstration of induced antipredatory defenses in marine sponges. One species, M. sarasinorum, also showed activated defense in response to wounding. Interestingly, 50% of the tested sponge species demonstrated induced antimicrobial defense. Simulated predation increased the antimicrobial defenses in Aplysinella sp., Cacospongia sp., M. sarasinorum, and S. massa. Our results suggest that wounding selects for induced antimicrobial defenses to protect sponges from pathogens that could otherwise invade the sponge tissue via feeding scars.
Collapse
Affiliation(s)
- Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
- * E-mail:
| | - Samuel Nietzer
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany
| |
Collapse
|
28
|
Mehbub MF, Lei J, Franco C, Zhang W. Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs 2014; 12:4539-77. [PMID: 25196730 PMCID: PMC4145330 DOI: 10.3390/md12084539] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/07/2014] [Accepted: 07/15/2014] [Indexed: 12/20/2022] Open
Abstract
Marine sponges belonging to the phylum Porifera (Metazoa), evolutionarily the oldest animals are the single best source of marine natural products. The present review presents a comprehensive overview of the source, taxonomy, country of origin or geographical position, chemical class, and biological activity of sponge-derived new natural products discovered between 2001 and 2010. The data has been analyzed with a view to gaining an outlook on the future trends and opportunities in the search for new compounds and their sources from marine sponges.
Collapse
Affiliation(s)
- Mohammad Ferdous Mehbub
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042, Australia.
| | - Jie Lei
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042, Australia.
| | - Christopher Franco
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042, Australia.
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042, Australia.
| |
Collapse
|
29
|
Majik MS, Shirodkar D, Rodrigues C, D’Souza L, Tilvi S. Evaluation of single and joint effect of metabolites isolated from marine sponges, Fasciospongia cavernosa and Axinella donnani on antimicrobial properties. Bioorg Med Chem Lett 2014; 24:2863-6. [DOI: 10.1016/j.bmcl.2014.04.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 11/26/2022]
|
30
|
Bose U, Hewavitharana AK, Vidgen ME, Ng YK, Shaw PN, Fuerst JA, Hodson MP. Discovering the recondite secondary metabolome spectrum of Salinispora species: a study of inter-species diversity. PLoS One 2014; 9:e91488. [PMID: 24621594 PMCID: PMC3951395 DOI: 10.1371/journal.pone.0091488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/11/2014] [Indexed: 12/23/2022] Open
Abstract
Patterns of inter-species secondary metabolite production by bacteria can provide valuable information relating to species ecology and evolution. The complex nature of this chemical diversity has previously been probed via directed analyses of a small number of compounds, identified through targeted assays rather than more comprehensive biochemical profiling approaches such as metabolomics. Insights into ecological and evolutionary relationships within bacterial genera can be derived through comparative analysis of broader secondary metabolite patterns, and this can also eventually assist biodiscovery search strategies for new natural products. Here, we investigated the species-level chemical diversity of the two marine actinobacterial species Salinispora arenicola and Salinispora pacifica, isolated from sponges distributed across the Great Barrier Reef (GBR), via their secondary metabolite profiles using LC-MS-based metabolomics. The chemical profiles of these two species were obtained by UHPLC-QToF-MS based metabolic profiling. The resultant data were interrogated using multivariate data analysis methods to compare their (bio)chemical profiles. We found a high level of inter-species diversity in strains from these two bacterial species. We also found rifamycins and saliniketals were produced exclusively by S. arenicola species, as the main secondary metabolites differentiating the two species. Furthermore, the discovery of 57 candidate compounds greatly increases the small number of secondary metabolites previously known to be produced by these species. In addition, we report the production of rifamycin O and W, a key group of ansamycin compounds, in S. arenicola for the first time. Species of the marine actinobacteria harbour a much wider spectrum of secondary metabolites than suspected, and this knowledge may prove a rich field for biodiscovery as well as a database for understanding relationships between speciation, evolution and chemical ecology.
Collapse
Affiliation(s)
- Utpal Bose
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Miranda E. Vidgen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Yi Kai Ng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - P. Nicholas Shaw
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark P. Hodson
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
31
|
Morrow KM, Ritson-Williams R, Ross C, Liles MR, Paul VJ. Macroalgal extracts induce bacterial assemblage shifts and sublethal tissue stress in Caribbean corals. PLoS One 2012; 7:e44859. [PMID: 23028648 PMCID: PMC3441602 DOI: 10.1371/journal.pone.0044859] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 08/08/2012] [Indexed: 12/14/2022] Open
Abstract
Benthic macroalgae can be abundant on present-day coral reefs, especially where rates of herbivory are low and/or dissolved nutrients are high. This study investigated the impact of macroalgal extracts on both coral-associated bacterial assemblages and sublethal stress response of corals. Crude extracts and live algal thalli from common Caribbean macroalgae were applied onto the surface of Montastraea faveolata and Porites astreoides corals on reefs in both Florida and Belize. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons was used to examine changes in the surface mucus layer (SML) bacteria in both coral species. Some of the extracts and live algae induced detectable shifts in coral-associated bacterial assemblages. However, one aqueous extract caused the bacterial assemblages to shift to an entirely new state (Lobophora variegata), whereas other organic extracts had little to no impact (e.g. Dictyota sp.). Macroalgal extracts more frequently induced sublethal stress responses in M. faveolata than in P. astreoides corals, suggesting that cellular integrity can be negatively impacted in selected corals when comparing co-occurring species. As modern reefs experience phase-shifts to a higher abundance of macroalgae with potent chemical defenses, these macroalgae are likely impacting the composition of microbial assemblages associated with corals and affecting overall reef health in unpredicted and unprecedented ways.
Collapse
Affiliation(s)
- Kathleen M Morrow
- Auburn University, Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America.
| | | | | | | | | |
Collapse
|
32
|
Rohde S, Gochfeld DJ, Ankisetty S, Avula B, Schupp PJ, Slattery M. Spatial variability in secondary metabolites of the indo-pacific sponge Stylissa massa. J Chem Ecol 2012; 38:463-75. [PMID: 22569832 DOI: 10.1007/s10886-012-0124-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/12/2012] [Accepted: 04/17/2012] [Indexed: 11/28/2022]
Abstract
Chemical diversity represents a measure of selective pressures acting on genotypic variability. In order to understand patterns of chemical ecology and biodiversity in the environment, it is necessary to enhance our knowledge of chemical diversity within and among species. Many sponges produce variable levels of secondary metabolites in response to diverse biotic and abiotic environmental factors. This study evaluated intra-specific variability in secondary metabolites in the common Indo-Pacific sponge Stylissa massa over various geographic scales, from local to ocean basin. Several major metabolites were quantified in extracts from sponges collected in American Samoa, Pohnpei, Saipan, and at several sites and depths in Guam. Concentrations of several of these metabolites varied geographically across the Pacific basin, with American Samoa and Pohnpei exhibiting the greatest differences, and Guam and Saipan more similar to each other. There were also significant differences in concentrations among different sites and depths within Guam. The crude extract of S. massa exhibited feeding deterrence against the omnivorous pufferfish Canthigaster solandri at natural concentrations, however, none of the isolated compounds was deterrent at the maximum natural concentrations observed, nor were mixtures of these compounds, thus emphasizing the need for bioassay-guided isolation to characterize specific chemical defenses. Antibacterial activity against a panel of ecologically relevant pathogens was minimal. Depth transplants, predator exclusion, and UV protection experiments were performed, but although temporal variability in compound concentrations was observed, there was no evidence that secondary metabolite concentration in S. massa was induced by any of these factors. Although the reasons behind the variability observed in the chemical constituents of S. massa are still in question, all sponges are not created equal from a chemical standpoint, and these studies provide further insights into patterns of chemical diversity within S. massa.
Collapse
Affiliation(s)
- Sven Rohde
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), 26382, Wilhelmshaven, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Trade-Offs in Defensive Metabolite Production But Not Ecological Function in Healthy and Diseased Sponges. J Chem Ecol 2012; 38:451-62. [DOI: 10.1007/s10886-012-0099-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/13/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
|
34
|
Sacristán-Soriano O, Banaigs B, Becerro MA. Temporal trends in the secondary metabolite production of the sponge Aplysina aerophoba. Mar Drugs 2012; 10:677-693. [PMID: 22690137 PMCID: PMC3366669 DOI: 10.3390/md10040677] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 11/29/2022] Open
Abstract
Temporal changes in the production of secondary metabolites are far from being fully understood. Our study quantified, over a two-year period, the concentrations of brominated alkaloids in the ectosome and the choanosome of Aplysina aerophoba, and examined the temporal patterns of these natural products. Based on standard curves, we quantified the concentrations of aerophobin-2, aplysinamisin-1, and isofistularin-3: three of the four major peaks obtained through chemical profiling with high-performance liquid chromatography. Our results showed a striking variation in compound abundance between the outer and inner layers of the sponge. The ectosome showed high concentrations of bromocompounds during the summer months, while the choanosome followed no pattern. Additionally, we found that, from the outer layer of the sponge, aerophobin-2 and isofistularin-3 were significantly correlated with water temperature. The present study is one of the first to document quantitative seasonal variations in individual compounds over multiple years. Further studies will clarify the role of environmental, biological, and physiological factors in determining the seasonal patterns in the concentration of brominated alkaloids.
Collapse
Affiliation(s)
- Oriol Sacristán-Soriano
- Center for Advanced Studies of Blanes (CEAB-CSIC), Accés a la Cala St. Francesc 14, Blanes 17300, Girona, Spain; or
| | - Bernard Banaigs
- Environmental and Biomolecular Chemistry Laboratory, University of Perpignan, Via Domitia, 52 Paul Alduy Ave., Perpignan Cedex 66860, France;
| | - Mikel A. Becerro
- Natural Products and Agrobiology Institute (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez 3, La Laguna, Tenerife 38206, Spain
- Author to whom correspondence should be addressed; ; Tel.: +34-922-256-847; Fax: +34-922-260-135
| |
Collapse
|
35
|
Genta-Jouve G, Thomas OP. Sponge chemical diversity: from biosynthetic pathways to ecological roles. ADVANCES IN MARINE BIOLOGY 2012; 62:183-230. [PMID: 22664123 DOI: 10.1016/b978-0-12-394283-8.00004-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Since more than 50 years, sponges have raised the interest of natural product chemists due to the presence of structurally original secondary metabolites. While the main objective were first to discover new drugs from the Sea, a large number of interrogations arose along with the isolation and structure elucidations of a wide array of original architectures and new families of natural products not found in the terrestrial environment. In this chapter, we focus on the results obtained during this period on the following questions. A preliminary but still unresolved issue to be addressed will be linked to the role of the microbiota into the biosynthesis of these low-weight compounds. Our knowledge on the biosynthetic pathways leading to plant secondary metabolites is now well established, and this background will influence our comprehension of the biosynthetic events occurring in a sponge. But is the level of similarity between both metabolisms so important? We clearly need more experimental data to better assess this issue. This question is of fundamental interest because sponges have a long evolutionary history, and this will allow a better understanding on the transfer of the genetic information corresponding to the biosynthesis of secondary metabolites. After the how, the why! The question of the ecological role of these metabolites is also of high importance first not only because they can serve as synapomorphic characters but also because they may represent chemical cues in the water environment. Even if most of these compounds are considered as defensive weapons for these sessile invertebrates, they may also be linked to physiological characters as the reproduction. Finally, a metabolomic approach can appear as a complementary tool to give additional information on the sponge fitness. All the new developments in molecular biology and bioanalytical tools will open the way for a better comprehension on the complex field of sponge secondary metabolites.
Collapse
|
36
|
Relevant spatial scales of chemical variation in Aplysina aerophoba. Mar Drugs 2011; 9:2499-2513. [PMID: 22363236 PMCID: PMC3280577 DOI: 10.3390/md9122499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/14/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022] Open
Abstract
Understanding the scale at which natural products vary the most is critical because it sheds light on the type of factors that regulate their production. The sponge Aplysina aerophoba is a common Mediterranean sponge inhabiting shallow waters in the Mediterranean and its area of influence in Atlantic Ocean. This species contains large concentrations of brominated alkaloids (BAs) that play a number of ecological roles in nature. Our research investigates the ecological variation in BAs of A. aerophoba from a scale of hundred of meters to thousand kilometers. We used a nested design to sample sponges from two geographically distinct regions (Canary Islands and Mediterranean, over 2500 km), with two zones within each region (less than 50 km), two locations within each zone (less than 5 km), and two sites within each location (less than 500 m). We used high-performance liquid chromatography to quantify multiple BAs and a spectrophotometer to quantify chlorophyll a (Chl a). Our results show a striking degree of variation in both natural products and Chl a content. Significant variation in Chl a content occurred at the largest and smallest geographic scales. The variation patterns of BAs also occurred at the largest and smallest scales, but varied depending on which BA was analyzed. Concentrations of Chl a and isofistularin-3 were negatively correlated, suggesting that symbionts may impact the concentration of some of these compounds. Our results underline the complex control of the production of secondary metabolites, with factors acting at both small and large geographic scales affecting the production of multiple secondary metabolites.
Collapse
|
37
|
Noyer C, Thomas OP, Becerro MA. Patterns of chemical diversity in the Mediterranean sponge Spongia lamella. PLoS One 2011; 6:e20844. [PMID: 21698108 PMCID: PMC3117848 DOI: 10.1371/journal.pone.0020844] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 05/14/2011] [Indexed: 11/18/2022] Open
Abstract
The intra-specific diversity in secondary metabolites can provide crucial information for understanding species ecology and evolution but has received limited attention in marine chemical ecology. The complex nature of diversity is partially responsible for the lack of studies, which often target a narrow number of major compounds. Here, we investigated the intra-specific chemical diversity of the Mediterranean sponge Spongia lamella. The chemical profiles of seven populations spreading over 1200 km in the Western Mediterranean were obtained by a straightforward SPE-HPLC-DAD-ELSD process whereas the identity of compounds was assessed by comparison between HPLC-MS spectra and literature data. Chemical diversity calculated by richness and Shannon indexes differed significantly between sponge populations but not at a larger regional scale. We used factor analysis, analysis of variance, and regression analysis to examine the chemical variability of this sponge at local and regional scales, to establish general patterns of variation in chemical diversity. The abundance of some metabolites varied significantly between sponge populations. Despite these significant differences between populations, we found a clear pattern of increasing chemical dissimilarity with increasing geographic distance. Additional large spatial scale studies on the chemical diversity of marine organisms will validate the universality or exclusivity of this pattern.
Collapse
Affiliation(s)
- Charlotte Noyer
- Center for Advanced Studies of Blanes (CEAB, CSIC), Blanes, Spain
| | - Olivier P. Thomas
- Université de Nice - Sophia Antipolis, Laboratoire de Chimie des Molécules Bioactives et des Arômes, LCMBA-UMR 6001 CNRS, Nice, France
| | - Mikel A. Becerro
- Center for Advanced Studies of Blanes (CEAB, CSIC), Blanes, Spain
- * E-mail:
| |
Collapse
|
38
|
Hurd CL, Pilditch CA. FLOW-INDUCED MORPHOLOGICAL VARIATIONS AFFECT DIFFUSION BOUNDARY-LAYER THICKNESS OF MACROCYSTIS PYRIFERA (HETEROKONTOPHYTA, LAMINARIALES)(1). JOURNAL OF PHYCOLOGY 2011; 47:341-351. [PMID: 27021866 DOI: 10.1111/j.1529-8817.2011.00958.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In slow mainstream flows (<4-6 cm · s(-1) ), the transport of dissolved nutrients to seaweed blade surfaces is reduced due to the formation of thicker diffusion boundary layers (DBLs). The blade morphology of Macrocystis pyrifera (L.) C. Agardh varies with the hydrodynamic environment in which it grows; wave-exposed blades are narrow and thick with small surface corrugations (1 mm tall), whereas wave-sheltered blades are wider and thinner with large (2-5 cm) edge undulations. Within the surface corrugations of wave-exposed blades, the DBL thickness, measured using an O2 micro-optode, ranged from 0.67 to 0.80 mm and did not vary with mainstream velocities between 0.8 and 4.5 cm · s(-1) . At the corrugation apex, DBL thickness decreased with increasing seawater velocity, from 0.4 mm at 0.8 cm · s(-1) to being undetectable at 4.5 cm · s(-1) . Results show how the wave-exposed blades trap fluid within the corrugations at their surface. For wave-sheltered blades at 0.8 cm · s(-1) , a DBL thickness of 0.73 ± 0.31 mm within the edge undulation was 10-fold greater than at the undulation apex, while at 2.1 cm · s(-1) , DBL thicknesses were similar at <0.07 mm. Relative turbulence intensity was measured using an acoustic Doppler velocimeter (ADV), and overall, there was little evidence to support our hypothesis that the edge undulations of wave-sheltered blades increased turbulence intensity compared to wave-exposed blades. We discuss the positive and negative effects of thick DBLs at seaweed surfaces.
Collapse
Affiliation(s)
- Catriona L Hurd
- Department of Botany, University of Otago, PO Box 56, Dunedin, New ZealandDepartment of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand
| | - Conrad A Pilditch
- Department of Botany, University of Otago, PO Box 56, Dunedin, New ZealandDepartment of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand
| |
Collapse
|
39
|
Lachnit T, Meske D, Wahl M, Harder T, Schmitz R. Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ Microbiol 2010; 13:655-65. [DOI: 10.1111/j.1462-2920.2010.02371.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Structures, biological activities and phylogenetic relationships of terpenoids from marine ciliates of the genus Euplotes. Mar Drugs 2010; 8:2080-116. [PMID: 20714425 PMCID: PMC2920544 DOI: 10.3390/md8072080] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/06/2010] [Accepted: 07/06/2010] [Indexed: 11/16/2022] Open
Abstract
In the last two decades, large scale axenic cell cultures of the marine species comprising the family Euplotidae have resulted in the isolation of several new classes of terpenoids with unprecedented carbon skeletons including the (i) euplotins, highly strained acetylated sesquiterpene hemiacetals; (ii) raikovenals, built on the bicyclo[3.2.0]heptane ring system; (iii) rarisetenolides and focardins containing an octahydroazulene moiety; and (iv) vannusals, with a unique C30 backbone. Their complex structures have been elucidated through a combination of nuclear magnetic resonance spectroscopy, mass spectrometry, molecular mechanics and quantum chemical calculations. Despite the limited number of biosynthetic experiments having been performed, the large diversity of ciliate terpenoids has facilitated the proposal of biosynthetic pathways whereby they are produced from classical linear precursors. Herein, the similarities and differences emerging from the comparison of the classical chemotaxonomy approach based on secondary metabolites, with species phylogenesis based on genetic descriptors (SSU-rDNA), will be discussed. Results on the interesting ecological and biological properties of ciliate terpenoids are also reported.
Collapse
|
41
|
McClintock JB, Amsler CD, Baker BJ. Overview of the chemical ecology of benthic marine invertebrates along the western Antarctic peninsula. Integr Comp Biol 2010; 50:967-80. [PMID: 21558253 DOI: 10.1093/icb/icq035] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thirteen years ago in a review that appeared in the American Zoologist, we presented the first survey of the chemical and ecological bioactivity of Antarctic shallow-water marine invertebrates. In essence, we reported that despite theoretical predictions to the contrary the incidence of chemical defenses among sessile and sluggish Antarctic marine invertebrates was widespread. Since that time we and others have significantly expanded upon the base of knowledge of Antarctic marine invertebrates' chemical ecology, both from the perspective of examining marine invertebrates in new, distinct geographic provinces, as well as broadening the evaluation of the ecological significance of secondary metabolites. Importantly, many of these studies have been framed within established theoretical constructs, particularly the Optimal Defense Theory. In the present article, we review the current knowledge of chemical ecology of benthic marine invertebrates comprising communities along the Western Antarctic Peninsula (WAP), a region of Antarctica that is both physically and biologically distinct from the rest of the continent. Our overview indicates that, similar to other regions of Antarctica, anti-predator chemical defenses are widespread among species occurring along the WAP. In some groups, such as the sponges, the incidence of chemical defenses against predation is comparable to, or even slightly higher than, that found in tropical marine systems. While there is substantial knowledge of the chemical defenses of benthic marine invertebrates against predators, much less is known about chemical anti-foulants. The sole survey conducted to date suggests that secondary metabolites in benthic sponges are likely to be important in the prevention of fouling by benthic diatoms, yet generally lack activity against marine bacteria. Our understanding of the sensory ecology of Antarctic benthic marine invertebrates, despite its great potential, remains in its infancy. For example, along the WAP, community-level non-consumptive effects occur when amphipods chemically sense fish predators and respond by seeking refuge in chemically-defended macroalgae. Such interactions may be important in releasing amphipods from predation pressure and facilitating their unusually high abundances along the WAP. Moreover, recent studies on the sensory biology of the Antarctic keystone sea star Odontaster validus indicate that chemotactile-mediated interactions between conspecifics and other sympatric predatory sea stars may have significant ramifications in structuring community dynamics. Finally, from a global environmental perspective, understanding how chemical ecology structures marine benthic communities along the WAP must increasingly be viewed in the context of the dramatic impacts of rapid climatic change now occurring in this biogeographic region.
Collapse
Affiliation(s)
- James B McClintock
- Department of Biology, University of Alabama, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
42
|
|
43
|
Wang MZ, Xu H, Yu SJ, Feng Q, Wang SH, Li ZM. Synthesis and fungicidal activity of novel aminophenazine-1-carboxylate derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3651-3660. [PMID: 20166721 DOI: 10.1021/jf904408c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A series of novel 6-aminophenazine-1-, 7-aminophenazine-1- and 8-aminophenazine-1-carboxylate derivatives were synthesized by a facile method, and their structures were characterized by (1)H NMR, (13)C NMR and high-resolution mass spectrometry. Some unexpected byproducts V-7b-V-8d were noticed and isolated, and their structures were identified by 2D NMR spectra including heteronuclear multiple-quantum coherence (HMQC), heteronuclear multiple-bond correlation (Hmbc) and H-H correlation spectrometry (H-H COSY) approach. Their fungicidal activities against five fungi were evaluated, which indicated that most of the title compounds showed low fungicidal activities in vitro against Alternaria solani, Cercospora arachidicola, Fusarium omysporum, Gibberella zeae, and Physalospora piricola at a dosage of 50 microg mL(-1), while compounds IV-6a and IV-6b exhibited excellent activities against P. piricola at that dosage. Compound IV-6a could be considered as a leading structure for further design of fungicides.
Collapse
Affiliation(s)
- Ming-Zhong Wang
- State Key Laboratory of Elemento-organic Chemistry, Research Institute of Elemento-organic Chemistry, Nankai University, Tianjin, China
| | | | | | | | | | | |
Collapse
|
44
|
Fattorini D, Notti A, Nigro M, Regoli F. Hyperaccumulation of vanadium in the Antarctic polychaete Perkinsiana littoralis as a natural chemical defense against predation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:220-228. [PMID: 19820975 DOI: 10.1007/s11356-009-0243-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 09/10/2009] [Indexed: 05/28/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Exceptionally high levels of trace metals have been reported in specific tissues of certain polychaetes. In the present study, the Antarctic fan worm Perkinsiana littoralis was shown to hyperaccumulate vanadium in the branchial tissues, and the hypothesis of an antipredatory strategy has been investigated. MATERIALS AND METHODS Trace metals (Ag, Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, Zn) were measured by atomic absorption spectrophotometry in tissues of P. littoralis and, only for V, in two Antarctic bivalves and in various Mediterranean polychaetes. Subcellular distribution of vanadium was investigated in P. littoralis after differential centrifugations; feeding trials with the Antarctic rock cod Trematomus berancchii were performed to test the palatability of P. littoralis. RESULTS AND DISCUSSION Analyses of trace metals in tissues of P. littoralis confirmed the naturally high bioavailability of cadmium due to upwelling phenomena in the investigated area and revealed extremely high concentrations of vanadium up to 10,000 microg/g, in the branchial crowns; much lower concentrations were measured in the body portions and even less in the Antarctic bivalves and in Mediterranean polychaetes. The subcellular distribution indicated that this metal was associated in branchial crowns with both heavy components and vanadium binding proteins; the latter predominated in body tissues, although with a different pattern of molecular weight. Feeding trials suggested that the elevated levels of vanadium in branchial crown of P. littoralis act as chemical deterrents against predation in more exposed tissues. RECOMMENDATIONS AND PERSPECTIVES The hyperaccumulation of toxic metals might represent a common antipredatory strategy for unpalatable branchial crowns of sabellid polychaetes, as recently hypothesized also for the high concentrations of arsenic in the Mediterranean Sabella spallanzanii. The evolution of such adaptation and the reasons behind the possibility for different species to accumulate different metals represent a stimulating field of investigation for future studies.
Collapse
Affiliation(s)
- Daniele Fattorini
- Dipartimento di Biochimica, Biologia e Genetica, Università Politecnica delle Marche, Via Ranieri (Montedago) 65, 60131 Ancona, Italy
| | | | | | | |
Collapse
|
45
|
Lan HQ, Ruan YP, Huang PQ. The first enantioselective synthesis of cytotoxic marine natural product palau’imide and assignment of its C-20 stereochemistry. Chem Commun (Camb) 2010; 46:5319-21. [DOI: 10.1039/c0cc00452a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Putz A, König GM, Wägele H. Defensive strategies of Cladobranchia (Gastropoda, Opisthobranchia). Nat Prod Rep 2010; 27:1386-402. [DOI: 10.1039/b923849m] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Chen J, Huang PQ, Queneau Y. Enantioselective synthesis of the R-enantiomer of the feeding deterrent (S)-ypaoamide. J Org Chem 2009; 74:7457-63. [PMID: 19746925 DOI: 10.1021/jo901557h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enantioselective synthesis of the R-enantiomer of the marine natural product (S)-ypaoamide (5) is reported. The synthesis features both a flexible racemization-free approach to the 5-substituted 3-pyrrolin-2-one segment, and a lipase (CCL)-promoted deacetylation reaction to reach the orthogonal deprotection. Through this work the absolute configuration of the natural ypaoamide was determined as S.
Collapse
Affiliation(s)
- Jie Chen
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | | | | |
Collapse
|
48
|
Feng D, Ke C, Li S, Lu C, Guo F. Pyrethroids as promising marine antifoulants: laboratory and field studies. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:153-160. [PMID: 18654821 DOI: 10.1007/s10126-008-9130-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 06/20/2008] [Indexed: 05/26/2023]
Abstract
Due to the regulations and bans regarding the use of traditional toxic chemicals against marine fouling organisms and the practical impediments to the commercialization of natural product antifoulants, there is an urgent need for compounds that are antifouling-active, environmentally friendly, and have a potential for commercial application. In this study, a series of common, commercially available pyrethroid products, which are generally used as environmentally safe insecticides, was evaluated for antifouling activity in the laboratory using an anti-settlement test with cyprids of the barnacle Balanus albicostatus and also in a field experiment. Laboratory assay showed that all eleven pyrethroids (namely, rich d-trans-allethrin, Es-biothrin, rich d-prallethrin, S-prallethrin, tetramethrin, rich d-tetramethrin, phenothrin, cyphenothrin, permethrin, cypermethrin, and high active cypermethrin) were able to inhibit barnacle settlement (EC(50) range of 0.0316 to 87.00 microg/ml) without significant toxicity. Analysis of structure-activity relationships suggested that the cyano group at the alpha-carbon position had a significant influence on the expression of antifouling activity in pyrethroids. In the field, the antifouling activity of pyrethroids was further confirmed, with the most potent pyrethroids being cypermethrin and high active cypermethrin, which displayed efficiency comparable with that of tributyltin. In summary, our investigation indicated that these pyrethroids have a great and practical commercial potential as antifouling agents.
Collapse
Affiliation(s)
- Danqing Feng
- Key State Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
Roper KE, Beamish H, Garson MJ, Skilleter GA, Degnan BM. Convergent antifouling activities of structurally distinct bioactive compounds synthesized within two sympatric Haliclona demosponges. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:188-198. [PMID: 18690486 DOI: 10.1007/s10126-008-9132-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 05/26/2008] [Accepted: 07/15/2008] [Indexed: 05/26/2023]
Abstract
A wide range of sessile and sedentary marine invertebrates synthesize secondary metabolites that have potential as industrial antifoulants. These antifoulants tend to differ in structure, even between closely related species. Here, we determine if structurally divergent secondary metabolites produced within two sympatric haliclonid demosponges have similar effects on the larvae of a wide range of benthic competitors and potential fouling metazoans (ascidians, molluscs, bryozoans, polychaetes, and sponges). The sponges Haliclona sp. 628 and sp. 1031 synthesize the tetracyclic alkaloid, haliclonacyclamine A (HA), and the long chain alkyl amino alcohol, halaminol A (LA), respectively. Despite structural differences, HA and LA have identical effects on phylogenetically disparate ascidian larvae, inducing rapid larval settlement but preventing subsequent metamorphosis at precisely the same stage. HA and LA also have similar effects on sponge, polychaete, gastropod and bryozoan larvae, inhibiting both settlement and metamorphosis. Despite having identical roles in preventing fouling and colonisation, HA and LA differentially affect the physiology of cultured HeLa human cells, indicating they have different molecular targets. From these data, we infer that the secondary metabolites within marine sponges may emerge by varying evolutionary and biosynthetic trajectories that converge on specific ecological roles.
Collapse
Affiliation(s)
- K E Roper
- School of Integrative Biology, University of Queensland, Brisbane, 4072, Queensland, Australia
| | | | | | | | | |
Collapse
|
50
|
Feng DQ, Ke CH, Lu CY, Li SJ. Herbal plants as a promising source of natural antifoulants: evidence from barnacle settlement inhibition. BIOFOULING 2009; 25:181-190. [PMID: 19169950 DOI: 10.1080/08927010802669210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A series comprising hexane, ethyl acetate, ethanol and aqueous extracts from six common Chinese herbs (Carpesium abrotanoides, Melia toosendan, Cnidium monnieri, Vitex negundo, Stemona sp. and Sophora flavescens) was investigated for antifouling (AF) activity against cypris (cyprids) larvae of the barnacle Balanus albicostatus. All extracts tested except the aqueous extract from Stemona sp. significantly inhibited the settlement of cyprids, the most potent being the ethyl acetate extract of S. flavescens (EC(50) value 2.08 microg ml(-1)), from which an AF compound, identified as 2'-methoxykurarinone, was isolated using bioassay-guided procedures. Furthermore, the AF activity of this compound was found to be highly reversible and greater than that of the three other natural products from S. flavescens, namely matrine, oxymatrine and oxysophocarpine. These compounds have been used commercially in China for their pharmaceutical activities, but their AF activities have not previously been evaluated. Analysis of structure-activity relationships suggested that the N-1 nitrogen atom in matrine plays a crucial role in AF activity. Overall, the present findings indicate that herbal plants are a valuable source of novel AF agents.
Collapse
Affiliation(s)
- D Q Feng
- Key State Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen, PR China
| | | | | | | |
Collapse
|