1
|
Mojadadi A, Au A, Ortiz Cerda T, Shao JY, O’Neil T, Bell-Anderson K, Andersen JW, Webb J, Salah W, Ahmad G, Harris HH, Witting PK. Dietary supplementation of male mice with inorganic, organic or nanoparticle selenium preparations: evidence supporting a putative gut-thyroid-male fertility axis. Redox Rep 2025; 30:2495367. [PMID: 40277453 PMCID: PMC12035940 DOI: 10.1080/13510002.2025.2495367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Selenium (Se) is linked to physiological homeostasis. Male mice (n = 8/group) were fed control (AIN93G) or diets enriched in sodium selenite (NaSe, 5.6 ppm), methylselenocysteine (Met, 4.7 ppm), diphenyl diselenide (DPDS, 14.2 ppm), or nanoselenium (NanoSe, 2.7 ppm); dietary Se ascertained by inductively-coupled plasma mass spectrometry. At 4 weeks testes, sperm, thyroids, blood and stool were collected to assess histoarchitecture, circulating hormones (thyroxine, T4; triiodothyronine, T3; thyroid stimulating hormone, TSH) and gut microbiome (16S rRNAV3-V4 amplicon sequencing). Supplemented NaSe, Met, and NanoSe increased plasma testosterone and testis glutathione peroxidases (GPx-1/4) while testicular superoxide dismutase and catalase increased slightly in the NanoSe group indicating a selective antioxidant response. Overall, NanoSe and NaSe enhanced male reproductive factors. All thyroids isolated from Se-supplemented mice contained marginal vacuoles and a lower follicle area vs control. Nano-Se enhanced thyroidiodothyronine deiodinase-1 (DIO1) expression however, thyroid GPx-1/4 remained unchanged. Supplemented NaSe and DPDSl increased plasma T3/T4 ratio, while plasma TSH was unchanged. Microbiome analyses showed that NanoSe was most efficacious in altering composition (judged by α-diversity, Shannon index and taxon richness) while the NaSe diet showed the greatest overall change in α-diversity. Dietary Se supplementation, particularly encapsulated NanoSe, may improve male fertility factors by enhancing the gut-thyroid-fertility axis.
Collapse
Affiliation(s)
- A. Mojadadi
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - A. Au
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - T. Ortiz Cerda
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
| | - J.-Y. Shao
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - T. O’Neil
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - K. Bell-Anderson
- Discipline of Nutrition, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - J. W. Andersen
- School of Chemistry and Physics, The University of Adelaide, Adelaide, Australia
| | - J. Webb
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | - W. Salah
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - G. Ahmad
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - H. H. Harris
- Discipline of Nutrition, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - P. K. Witting
- Redox Biology Group, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Chen C, Ma J, Duan S, Xue M, Yang Z, Ma Z, Ji J, Ma Y, Qing G, Guo K, Wu W, Chen T, Wang Z, Luo Y. Mitigation of ischemia/reperfusion injury via selenium nanoparticles: Suppression of STAT1 to inhibit cardiomyocyte oxidative stress and inflammation. Biomaterials 2025; 318:123119. [PMID: 39879840 DOI: 10.1016/j.biomaterials.2025.123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/26/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Ischemia/reperfusion injury (I/RI) following myocardial infarction, a leading cause of global morbidity and mortality, is characterized by detrimental oxidative stress and inflammation. In response, we proposed an I/RI alleviation strategy using the intravenous injection of spherical selenium nanoparticles (SeNPs) synthesized by a template method. Single-cell sequencing revealed these proposed SeNPs exhibited exceptional antioxidant and anti-inflammatory properties, disrupting the STAT1-ROS cycle, therefore preserving mitochondrial respiration and inhibiting caspase-mediated cardiomyocyte apoptosis. Additionally, SeNPs reduced macrophage infiltration and diminished the subsequent release of inflammatory mediators during I/RI. In vivo, SeNPs significantly improved myocardial function while decreasing myocardial apoptosis and fibrosis. These results collectively demonstrated that template method synthesized spherical SeNPs may serve as a promising candidate for enhancing myocardial infarction treatments, while the suppression of STAT1 could be a pivotal mechanism for alleviating ischemia/reperfusion injury following myocardial infarction.
Collapse
Affiliation(s)
- Chunxia Chen
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jingjing Ma
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Shujie Duan
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Menghan Xue
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zhan Yang
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Ziwei Ma
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jianing Ji
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Guangchao Qing
- Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Keying Guo
- Department of Biotechnology and Food Engineering (BFE), Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, 515063, People's Republic of China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, People's Republic of China.
| | - Tianfeng Chen
- Department of Oncology, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China; Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Yang Luo
- Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People's Republic of China; College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650050, People's Republic of China.
| |
Collapse
|
3
|
Liu X, Wang W, Wang Y, Duan W, Liu C, Quan P, Xiao J, Zhang Y, Hao Y, Fang L, Song Y, Zhang W. Biochemical strategy-based hybrid hydrogel dressing-mediated in situ synthesis of selenoproteins for DFU immunity-microbiota homeostasis regulation. Biomaterials 2025; 317:123114. [PMID: 39854881 DOI: 10.1016/j.biomaterials.2025.123114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Chronic consequences of diabetes that are most commonly encountered are diabetic foot ulcers (DFUs), driven by microbiota-immune system dyshomeostasis, eventually leading to delayed wound healing. Available therapies, such as systemic or topical administration of anti-inflammatory or antimicrobial agents, are limited due to antibiotic resistance and immune dysfunction. Herein, a hybrid hydrogel dressing is developed as the artificial bioadhesive barrier at wound sites to maintain microbial and immunological homeostasis locally and have potent anti-inflammatory effects. Specifically, Zero-valent selenium nanoparticles are synthesized and encapsulated into the alginate-polyacrylamide interpenetrating hydrogel networks, during which trehalose is adopted to modify the network defects. Besides, as an anti-adhesion agent, trehalose has shown the ability to prevent immune degradation by reducing bacteria binding to HUVECs. The obtained hybrid hydrogel dressing serves as a physical barrier against microbiome invasion, further regulates the composition of the wound microbiome to restore microbial immune homeostasis at the wound site, and cooperatively relieves DFU-associated symptoms. Meanwhile, the hydrogel dressing can synthesize selenoproteins in situ based on biochemical strategies and significantly reduce the secretion of proinflammatory cytokines. The proposed biochemical strategy based on the hybrid hydrogel dressings can efficiently restore microbiota-immune homeostasis in the wounds, presenting a promising approach for DFU therapy in clinics.
Collapse
Affiliation(s)
- Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Weidi Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yali Wang
- Department of Chemistry, College of Pharmacy, North China University of Science and Technology, Tangshan, 063000, China
| | - Wenyuan Duan
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jiali Xiao
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yunning Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yu Hao
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yilin Song
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
4
|
Zhuang Y, Jian M, Yan H, Lv X, Zhang Y. Selenium as a brightening agent for peroxidase-like activity regulation of MXene@CeO 2 sensing platform. Talanta 2025; 288:127701. [PMID: 39938423 DOI: 10.1016/j.talanta.2025.127701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/31/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Selenium is a nutritionally essential trace element for human health, but efficient or excessive intake both causes physiological diseases. Here, we propose that selenium as a brightening agent significantly increase the peroxidase (POD)-like activity of MXene@CeO2, which CeO2 nanoparticles in-situ grow on MXene as the sensing platform. Based on the selenium-stimulated POD-like activity of MXene@CeO2, a simple, low-cost, and reliable colorimetric method is constructed for quantitative analysis of selenium. The great advantage of MXene@CeO2 platform selecting selenium as brightening agent exhibits good selectivity for other 23 interfering ions, allowing the discrimination of selenium in practical samples rapidly and precisely even at 3.5 nM. Moreover, MXene@CeO2 platform selectively catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) instead of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS) under the same condition. This study not only offers a utility sensing platform for quick detection of selenium but also opens an avenue for the rational design of element sensors for point-of-care application.
Collapse
Affiliation(s)
- Yuting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Mengqi Jian
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiqi Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Baker AT, Kidman CJ, Vogt LI, George GN, Sokaras D, Howard DL, Pape VFS, Kulik K, Yoshida S, Harris HH. Selenium Distribution and Speciation in Tissues from Rats Administered with Non-Native Selenotrisulfides. Inorg Chem 2025; 64:9961-9983. [PMID: 40358531 DOI: 10.1021/acs.inorgchem.5c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Selenotrisulfides (STS, R-S-Se-S-R) are metabolic intermediates in the bioconversion of inorganic Se species to organoselenium compounds. These Se species are reactive with a variety of endogenous molecules, particularly thiol-containing proteins, with this reactivity facilitating Se transport and subsequent utilization within the body. In this study, X-ray fluorescence microscopy (XFM) and high energy resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) were applied to investigate Se distribution and speciation in vivo. Male rats administered with 1 mg Se/kg b.w. as selenious acid (SA), L-penicillamine selenotrisulfide (PenSSeSPen) or selenenyl penicillamine bound to rat serum albumin (RSA-SSeSPen) showed statistically significant elevations in Se concentrations in the kidney, liver, and blood after 48 h treatment; however, no change in Se concentration was observed in the testes. Notably, XFM revealed a strong colocalization of Se and Cu in the renal cortex, a phenomenon previously observed in cultured cells and in rats fed diets supplemented with 5 mg Se/kg as selenite. Linear combination and principal component analyses of Se Kα1 HERFD-XAS spectra revealed marked differences in Se speciation between the renal cortex and medulla and between red blood cells and plasma for all groups, including the control. STS were identified in linear combination fits of spectra from all tissues, except the testes. These results highlight the vital roles of STS in the intracellular reduction and transport of Se throughout the bloodstream and various tissues.
Collapse
Affiliation(s)
- Ani T Baker
- Discipline of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Clinton J Kidman
- Discipline of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Linda I Vogt
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Graham N George
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Daryl L Howard
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Veronika F S Pape
- Discipline of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Katarzyna Kulik
- Centre of Molecular and Macromolecular Studies, Department of Bioorganic Chemistry, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Sakura Yoshida
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan
| | - Hugh H Harris
- Discipline of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| |
Collapse
|
6
|
Dharmasivam M, Zhang S, Zhao X, Richardson V, Wijesinghe TP, Suleymanoglu M, Gholam Azad M, Bernhardt PV, Kaya B, Richardson DR. Advantages of Novel Anti-cancer Selenosemicarbazones: Preferential Reactivity of Their Fe(III), Cu(II), and Zn(II) Complexes with Key Physiological Reductants/Ligands Versus Isosteric Thiosemicarbazones. J Med Chem 2025; 68:9594-9622. [PMID: 40265585 DOI: 10.1021/acs.jmedchem.5c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fe(III) complexes of clinically trialed thiosemicarbazones demonstrate deleterious oxy-myoglobin and oxy-hemoglobin oxidation. Therefore, the PPP4pSe selenosemicarbazone analogues were designed with several PPP4pSe Fe(III) complexes completely preventing deleterious oxy-myoglobin oxidation. This was ascribed to the decreased potentials of their Fe(III) complexes and steric hindrance effects. The Fe(III), Cu(II), and Zn(II) complexes of PPP4pSe demonstrated greater reactivity with physiological reductants/ligands (glutathione, l-cysteine, or l-ascorbate), than respective complexes of the isosteric thiosemicarbazone, PPP4pT. Considering this: (1) [Fe(PPP4pSe)2]+ demonstrated increased reduction relative to [Fe(PPP4pT)2]+ with glutathione and l-cysteine, while l-ascorbate led to comparable reduction; (2) glutathione led to complete dissociation of [Zn(PPP4pSe)2], while incomplete dissociation of [Zn(PPP4pT)2] occurred; and (3) [Cu(PPP4pSe)Cl] demonstrated complete coordinate sphere substitution with glutathione, l-cysteine, and l-ascorbate, whereas [Cu(PPP4pT)Cl] demonstrated partial substitution. The role of glutathione in all three latter reactions is significant, given the greater reactivity of the selenosemicarbazone, and glutathione's key role in selenosemicarbazone and thiosemicarbazone anticancer activity.
Collapse
Affiliation(s)
- Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Institute for Biomedicine and Glycomics, Griffith University, Southport 4215 Queensland, Australia
| | - Stanley Zhang
- Centre for Cancer Cell Biology and Drug Discovery, Institute for Biomedicine and Glycomics, Griffith University, Southport 4215 Queensland, Australia
| | - Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Institute for Biomedicine and Glycomics, Griffith University, Southport 4215 Queensland, Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Institute for Biomedicine and Glycomics, Griffith University, Southport 4215 Queensland, Australia
| | - Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Institute for Biomedicine and Glycomics, Griffith University, Southport 4215 Queensland, Australia
| | - Mediha Suleymanoglu
- Centre for Cancer Cell Biology and Drug Discovery, Institute for Biomedicine and Glycomics, Griffith University, Southport 4215 Queensland, Australia
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Institute for Biomedicine and Glycomics, Griffith University, Southport 4215 Queensland, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Institute for Biomedicine and Glycomics, Griffith University, Southport 4215 Queensland, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Institute for Biomedicine and Glycomics, Griffith University, Southport 4215 Queensland, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
7
|
Kong J, Liu AA, Xu X, Tang B, Chen YY, Zhao W, Jia J, Yang LL, Li G, Pang DW. Making Cells as a "Nirvana Phoenix": Precise Coupling of Precursors Prior to ROS Bursts for Intracellular Synthesis of Quantum Dots. J Am Chem Soc 2025; 147:15645-15653. [PMID: 40259718 DOI: 10.1021/jacs.5c02861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Rationally coupling natural biochemical reactions for live-cell synthesis of inorganic nanocrystals with fluorescence, such as quantum dots (QDs) especially near-infrared (NIR), holds significant potential for in situ labeling and bioimaging. However, the introduced exogenous reactants and intracellularly produced species, e.g., reactive oxygen species (ROS), often cause cell damage, decreasing the fluorescence of the QDs. Herein, we have found that cell-adaptable selenocystine ((Cys-Se)2) can be reduced to biocompatible low-valence Se precursors, which could be subsequently hijacked by timely added Ag-glutathione (AgSG) to be transformed into NIR Ag2Se QDs. Such a comprehensive control strategy can inhibit the production of cytotoxic Se species and ROS bursts, significantly increasing the cell viability from 4 to 80% and enhancing the fluorescence of intracellularly synthesized Ag2Se QDs by over 8.7 times. Notably, the proliferative and in vivo tumorigenic capacities of the cells with strong NIR fluorescence-emitting functions could be maintained, enabling long-term tracking of cell division and disease progression. This work has provided new insights into fully excavating the potential of cells for the synthesis of inorganic nanocrystals by designing biocompatible precursors and also opened a new window for conventional synthetic biology from organic to inorganic.
Collapse
Affiliation(s)
- Juan Kong
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Xia Xu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Yan-Yan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Jianhong Jia
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Ling-Ling Yang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Gongyu Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
8
|
Dai Z, Yu Y, Chen R, Zhu H, Fong H, Kuang J, Jiang Y, Chen Y, Niu Y, Chen T, Shi L. Selenium promotes neural development through the regulation of GPX4 and SEPP1 in an iPSC-derived neuronal model. Biomaterials 2025; 316:123011. [PMID: 39708777 DOI: 10.1016/j.biomaterials.2024.123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Selenium (Se) is incorporated into selenoproteins in the form of selenocysteine, which has biological functions associated with neural development. Unfortunately, the specific roles and mechanisms of selenoproteins at different stages of neuronal development are still unclear. Therefore, in this study, we successfully established a neuronal model derived from induced pluripotent stem cells (iPSC-iNeuron) and used Se nanoparticles (SeNPs@LNT) with high bioavailability to intervene at different stages of neural development in iPSC-iNeuron model. Interestingly, our results showed that SeNPs@LNT could not only accelerate the proliferation of neural progenitor cells (NPCs) by upregulating glutathione peroxidase 4 (GPX4) during the NPC stage, but also can promote neuronal differentiation by increasing selenoprotein P (SEPP1) during the neuronal stage, resulting in efficient and rapid neural development. In addition, further mechanistic studies showed that SeNPs@LNT can regulate selenoproteins by activating the PI3K/Akt/Nrf2 signaling pathway, thereby affecting neuronal development. Notably, Further analysis of ASD patients in National Center for Biotechnology Information single-cell RNA-seq datasets also revealed significantly lower GPX4 expression within NRGN-expressing neurons in ASD patients, and GO enrichment analysis of genes in NRGN-expressing neurons from ASD patients showed that the downregulation of selenoproteins due to aberrant selenoprotein synthesis may be closely associated with decreased ATP synthesis resulting from abnormal mitochondrial and respiratory chain signaling pathways. Taken together, this study provides evidence that SeNPs@LNT exerts a beneficial effect on early neural development through the regulation of selenoproteins.
Collapse
Affiliation(s)
- Zhenzhu Dai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yanzi Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ruhai Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Hongyao Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Hin Fong
- Faculty of Medicine, International School, Jinan University, Guangzhou, 510632, China
| | - Junxin Kuang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Yunbo Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yalan Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yimei Niu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China; Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Lingling Shi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Department of Chemistry, Jinan University, Guangzhou, 510632, China; Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China; Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570100, China.
| |
Collapse
|
9
|
Kuwano S, Kikushima J, Nakada T, Sase S, Goto K. Reusable Selenenyl Iodide-Initiated Cascade Cyclization of Polyenes with N-terminating Groups. Chem Asian J 2025:e202500347. [PMID: 40223572 DOI: 10.1002/asia.202500347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Although cascade cyclization of polyenes has advanced remarkably, most reported examples are limited to carbon- or oxygen-terminating groups, with nitrogen-terminating cyclizations remaining rare. In this work, we developed a cascade cyclization of polyenes with N-terminating groups, initiated by an isolable selenenyl iodide (RSeI) bearing a cavity-shaped substituent. Acid-labile substrates were successfully employed in the cascade cyclization. Compared with commonly used organoselenium reagents, a selenenyl iodide, characterized by its unique soft electrophilic nature, proved to be the most effective in promoting the cascade reaction. Furthermore, the stabilizing effect of the cavity-shaped substituent enabled the isolation of a selenenic acid (RSeOH), which was generated via oxidative β-selenoxide elimination from the cyclized product during its derivatization to an olefin, as a stable compound. We also developed a method for regenerating the starting selenenyl iodide from the selenenic acid. The reusability of the selenenyl iodide renders the series of molecular transformations environmentally benign by reducing unwanted organoselenium waste.
Collapse
Affiliation(s)
- Satoru Kuwano
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Jun Kikushima
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Takaaki Nakada
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Shohei Sase
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kei Goto
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
10
|
Hou W, Zhou X, Yang Z, Xia H, Wang Y, Xu K, Hou S, Zhang S, Cui D, Ma P, Zhou W, Xu H. Multicomponent Reaction Integrating Selenium(II)-Nitrogen Exchange (SeNEx) Chemistry and Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC). Angew Chem Int Ed Engl 2025; 64:e202500942. [PMID: 40000436 DOI: 10.1002/anie.202500942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 02/27/2025]
Abstract
Multicomponent reactions (MCRs) are powerful tools for rapidly constructing compound libraries with sufficient molecular diversity and complexity. Herein, to fully leverage a third aspect of molecular diversity enabled by the selenium-nitrogen exchange (SeNEx) reaction between alkynes and benzoselenazolones, a novel CuI-catalyzed three-component reaction has been successfully developed. This reaction integrates SeNEx with CuAAC click chemistry, enabling rapid and regioselective synthesis of 1,4,5-trisubstituted 5-seleno-1,2,3-triazoles with high atom economy and good to excellent yields (65 examples, 50%-95%). Notably, this MCR demonstrates excellent functional group tolerance and features modular, predictable, robust, mild reaction conditions, and operational simplicity (air and water compatibility). Extensive mechanism studies have revealed that this reaction proceeds by a unique SeNEx-CuAAC tandem reaction pathway, distinguishing it from conventional copper(I)-catalyzed interrupted click reactions. Importantly, a mononuclear σ-bound copper(I)-acetylide Cu1 was synthesized and confirmed to be an efficient catalyst for the SeNEx reaction. This discovery provides crucial mechanistic insights into the preferential reactivity of alkynyl groups toward SeNEx over CuAAC. Furthermore, preliminary biological activity screening identified compound 14 as a potent inhibitor of Escherichia coli β $\upbeta$ -glucuronidase (EcGUS), with an IC50 value of 3.16 µM. These findings underscore the significant potential of this MCR in synthetic chemistry, medical chemistry, and chemical biology.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaohui Zhou
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhikun Yang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huhui Xia
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Keren Xu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shaoneng Hou
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 201210, China
| | - Dongmei Cui
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 201210, China
| | - Wei Zhou
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
11
|
Zhang Z, Zhu L, Zhang H, Yu D, Yin Z, Zhan X. Comparative Study on the Effects of Selenium-Enriched Yeasts with Different Selenomethionine Contents on Gut Microbiota and Metabolites. Int J Mol Sci 2025; 26:3315. [PMID: 40244176 PMCID: PMC11989349 DOI: 10.3390/ijms26073315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Selenium is an essential trace element for human health, but it mainly exists in an inorganic form that cannot be directly absorbed by the body. Brewer's yeast efficiently converts inorganic selenium into bioavailable organic selenium, making selenium-enriched yeast highly significant for human health research. Selenomethionine (SeM) is an important indicator for evaluating the quality of selenium-enriched yeast. Brewer's yeast was selected as the experimental subject, and the digestion of this yeast (Brewer's yeast) was simulated using an in vitro biomimetic gastrointestinal reactor to evaluate the effects of selenium-enriched yeast with various SeM levels on the gut flora of a healthy population. The experimental design comprised normal yeast (control group, OR), yeast containing moderate SeM levels (selenium-enriched group, SE), yeast containing high SeM levels (high-selenium group, MU), and a commercially available group comprising selenium-enriched yeast tablets (MA). The MU group exhibited a significantly higher concentration of short-chain fatty acids than the OR and MA groups during 48 h of fermentation, with significant differences observed (p < 0.05). Sequencing results revealed that the MU group showed significantly increased relative abundances of Bacteroidetes and Actinobacteria, while exhibiting a decreased ratio of Firmicutes to Bacteroidetes, which may simultaneously affect multiple metabolic pathways in vivo. These findings support the theory that selenium-enriched yeast with a high SeM has a more positive effect on human health compared with traditional yeast and offer new ideas for the development and application of selenium-enriched yeast.
Collapse
Affiliation(s)
- Zijian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Li Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
- A & F Biotech. Ltd., Burnaby, BC V5A 3P6, Canada
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Dan Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Zhongwei Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.Z.); (H.Z.); (D.Y.); (Z.Y.)
| |
Collapse
|
12
|
Yu Y, Xie B, Wang J, Luo W, Yang M, Xiong Z, Huang G, Yang J, Tang Z, Qiao R, Yuan Z, He L, Chen T. Translational Selenium Nanoparticles Promotes Clinical Non-small-cell Lung Cancer Chemotherapy via Activating Selenoprotein-driven Immune Manipulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415818. [PMID: 40095246 DOI: 10.1002/adma.202415818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Reconstructing the tumor immune microenvironment is an effective strategy to enhance therapeutic efficacy limited by immunosuppression in non-small-cell lung cancer (NSCLC). In this study, it is found that selenium (Se) depletion and immune dysfunction are present in patients with advanced NSCLC compared with healthy volunteers. Surprisingly, Se deficiency resulted in decreased immunity and accelerated rapid tumor growth in the mice model, which further reveals that the correlation between micronutrient Se and lung cancer progression. This pioneering work achieves 500-L scale production of Se nanoparticles (SeNPs) at GMP level and utilizes it to reveal how and why the trace element Se can enhance clinical immune-mediated treatment efficacy against NSCLC. The results found that translational SeNPs can promote the proliferation of NK cells and enhance its cytotoxicity against cancer cells by activating mTOR signaling pathway driven by GPXs to regulate the secretion of cytokines to achieve an antitumor response. Moreover, a clinical study of an Investigator-initiated Trial shows that translational SeNPs supplementation in combination with bevacizumab/cisplatin/pemetrexed exhibits enhanced therapeutic efficacy with an objective response rate of 83.3% and a disease control rate of 100%, through potentiating selenoprotein-driven antitumor immunity. Taken together, this study, for the first time, highlights the translational SeNPs-enhanced therapeutic efficacy against clinical advanced NSCLC.
Collapse
Affiliation(s)
- Yanzi Yu
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Bin Xie
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jinlin Wang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weizhan Luo
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Meijin Yang
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zushuang Xiong
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Guanning Huang
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jianwei Yang
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhiying Tang
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Rui Qiao
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhongwen Yuan
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Lizhen He
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Department of Oncology and Nano-therapeutics Institute of The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
13
|
Liu AA, Cui R, Zong X, Jia J, Hu Y, Zhao JY, Pang DW. Live-cell synthesis of biocompatible quantum dots. Nat Protoc 2025:10.1038/s41596-024-01133-5. [PMID: 40097832 DOI: 10.1038/s41596-024-01133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/11/2024] [Indexed: 03/19/2025]
Abstract
Quantum dots (QDs) exhibit fluorescence properties with promising prospects for biomedical applications; however, the QDs synthesized in organic solvents shows poor biocompatibility, limiting their use in biological systems. We developed an approach for synthesizing QDs in live cells by coupling a series of intracellular metabolic pathways in a precise spatial and temporal sequence. We have validated this approach in yeast (Saccharomyces cerevisiae), Staphylococcus aureus, Michigan Cancer Foundation-7 (MCF-7) and Madin-Darby canine kidney (MDCK) cells. The intracellularly synthesized QDs are inherently stable and biocompatible, making them suitable for the direct in situ labeling of cells and cell-derived vesicles. Here, we provide an optimized workflow for the live-cell synthesis of QDs by using S. cerevisiae, S. aureus or MCF-7 cells. In addition, we detail a cell-free aqueous synthetic system (quasi-biosynthesis) containing enzymes, electrolytes, peptides and coenzymes, which closely mimics the intracellular synthetic conditions used in our cell culture system. In this solution, we synthesize biocompatible ultrasmall QDs that are easier to purify and characterize than those synthesized in cells. The live-cell-synthesized QDs can be used for bioimaging and microvesicle detection, whereas the quasi-biosynthesized QDs are suitable for applications such as biodetection, biolabeling and real-time imaging. The procedure can be completed in 3-4 d for live-cell QD synthesis and 2 h for the quasi-biosynthesis of QDs. The procedure is suitable for users with expertise in chemistry, biology, materials science and synthetic biology. This approach encourages interested researchers to engage in the field of QDs and develop further biomedical applications.
Collapse
Affiliation(s)
- An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, People's Republic of China
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Xia Zong
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, People's Republic of China
| | - Jianhong Jia
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, People's Republic of China
| | - Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, People's Republic of China
| | - Jing-Ya Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
14
|
Urbančič D, Jukič M, Šmid A, Gobec S, Jazbec J, Mlinarič-Raščan I. Thiopurine S-methyltransferase - An important intersection of drug-drug interactions in thiopurine treatment. Biomed Pharmacother 2025; 184:117893. [PMID: 39923408 DOI: 10.1016/j.biopha.2025.117893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Understanding the molecular mechanisms of medicines is crucial for developing novel drugs, for repurposing existing medicines, and for predicting toxicities. Thiopurine S-methyltransferase (TPMT) serves as an exemplary case in personalized medicine, as its activity is influenced by genetic variants, co-factors, substrates, and inhibitors, which lead to diverse outcomes in thiopurine therapy. This comprehensive review explores the role of TPMT in drug-drug interactions by investigating its interactions with co-factors, substrates, and inhibitors. We focus on the principal interactions of TPMT with clinically relevant inhibitors, and add to this information with molecular docking analyses for the substrate and co-factor binding sites of TPMT. Notably, methotrexate and sulfasalazine emerged as the top-ranked compounds with favorable docking scores for the co-factor binding site, while furosemide is presented as the highest ranked inhibitor for the substrate binding site. Furthermore, we highlight the chemical and structural properties governing ligand binding to TPMT. We support the molecular characteristics by using a summary of clinical implications. Examining the molecular interactions between substrates or inhibitors and TPMT not only addresses therapeutic consequences, but also reveals potential novel indications of interacting compounds. These insights are also invaluable for identifying endogenous ligands and enhancing our understanding of TPMT's biological function.
Collapse
Affiliation(s)
- Dunja Urbančič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| | - Marko Jukič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, Maribor 2000, Slovenia; Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, Koper SI-6000, Slovenia.
| | - Alenka Šmid
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| | - Janez Jazbec
- Division of Pediatrics, Hematology and Oncology, University Medical Center Ljubljana, Ljubljana SI-1000, Slovenia.
| | - Irena Mlinarič-Raščan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
15
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
16
|
Vinceti M, Mazzoli R, Wise LA, Veneri F, Filippini T. Calling for a comprehensive risk assessment of selenium in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178700. [PMID: 39923476 DOI: 10.1016/j.scitotenv.2025.178700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
In the last two decades, research has elucidated that selenium, a trace element, has both nutritional and toxicological effects on human health, depending on its dose and chemical form. Recent animal, laboratory, and human studies have shown harmful effects of certain selenium species at specific exposure levels, prompting the need to reassess overall exposure to this element, including that occurring through drinking water, a primary source of inorganic selenium. Drinking water selenium standards worldwide are scarce and existing standards are inconsistent, likely because they have been informed by an incomplete and outdated assessment of the scientific evidence. Incorporating all the available human and laboratory evidence into a precautionary regulatory framework indicates that a drinking water limit of around 5 μg/L of selenium is needed to protect human health, i.e. with an uncertainty factor of 2 versus the lowest adverse effect level observed in human studies, and that higher values may pose unacceptable risks to humans. Despite the rarity of such high levels of selenium in underground and potable waters, coal mining and other sources of environmental pollution as well as geological factors may raise drinking water selenium content above a safe threshold, triggering the need to protect consumers, and to face challenging technological issues for selenium removal, currently under active investigation.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy; Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States of America.
| | - Riccardo Mazzoli
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States of America
| | - Federica Veneri
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy; Unit of Dentistry and Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy; Department of Epidemiology, School of Public Health, University of California Berkeley, Berkeley, CA, United States of America
| |
Collapse
|
17
|
Qu P, Liu GQ. Recent progress in the organoselenium-catalyzed difunctionalization of alkenes. Org Biomol Chem 2025; 23:1552-1568. [PMID: 39810650 DOI: 10.1039/d4ob01553c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Selenium-based catalysts have recently been utilized to facilitate a variety of new organic transformations, owing to their intrinsic advantages, including low cost, low toxicity, stability in both air and water, and strong compatibility with diverse functional groups. The difunctionalization of alkenes-the process of incorporating two functional groups onto a carbon-carbon double bond-has garnered particular interest within the chemical community owing to its significant applications in organic synthesis. Recently, organoselenium-catalyzed difunctionalization of alkenes has emerged as an ideal and powerful route to obtain high-value vicinal difunctionalized molecules. This review emphasizes recent advancements in this rapidly evolving field, focusing on the scope, limitations, and mechanisms of various reactions.
Collapse
Affiliation(s)
- Pei Qu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Gong-Qing Liu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| |
Collapse
|
18
|
Grman M, Balis P, Berenyiova A, Svajdlenkova H, Tomasova L, Cacanyiova S, Rostakova Z, Waczulikova I, Chovanec M, Domínguez-Álvarez E, Ondrias K, Misak A. Products of Selenite/Thiols Interaction Have Reducing Properties, Cleave Plasmid DNA and Decrease Rat Blood Pressure and Tension of Rat Mesenteric Artery. Biol Trace Elem Res 2025; 203:903-929. [PMID: 38676879 PMCID: PMC11750908 DOI: 10.1007/s12011-024-04196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Selenium compounds exert their antioxidant activity mostly when the selenium atom is incorporated into selenoproteins. In our work, we tested the possibility that selenite itself interacts with thiols to form active species that have reducing properties. Therefore, we studied the reduction of 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazol-1-yloxy-3-oxide radical (•cPTIO), damage of plasmid DNA (pDNA), modulation of rat hemodynamic parameters and tension of isolated arteries induced by products of interaction of selenite with thiols. We found that the products of selenite interaction with thiols had significant reducing properties that could be attributed mainly to the selenide and that selenite had catalytic properties in the access of thiols. The potency of thiols to reduce •cPTIO in the interaction with selenite was cysteine > homocysteine > glutathione reduced > N-acetylcysteine. Thiol/selenite products cleaved pDNA, with superoxide dismutase enhancing these effects suggesting a positive involvement of superoxide anion in the process. The observed •cPTIO reduction and pDNA cleavage were significantly lower when selenomethionine was used instead of selenite. The products of glutathione/selenite interaction affected several hemodynamic parameters including rat blood pressure decrease. Notably, the products relaxed isolated mesenteric artery, which may explain the observed decrease in rat blood pressure. In conclusion, we found that the thiol/selenite interaction products exhibited significant reducing properties which can be used in further studies of the treatment of pathological conditions caused by oxidative stress. The results of decreased rat blood pressure and the tension of mesenteric artery may be perspective in studies focused on cardiovascular disease and their prevention.
Collapse
Affiliation(s)
- Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | - Peter Balis
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovak Republic
| | - Andrea Berenyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovak Republic
| | - Helena Svajdlenkova
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41, Bratislava, Slovak Republic
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15, Bratislava, Slovak Republic
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | - Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovak Republic
| | - Zuzana Rostakova
- Institute of Measurement Science, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04, Bratislava, Slovak Republic
| | - Iveta Waczulikova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, 842 48, Bratislava, Slovak Republic
| | - Miroslav Chovanec
- Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | | | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | - Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic.
| |
Collapse
|
19
|
Maiti D, Halder A, Saha A, De Sarkar S. Regioselective Access to Substituted Benzothiophenes/furans through Electrochemical Selenium-Promoted Skeletal Rearrangement. Org Lett 2025; 27:961-966. [PMID: 39836057 DOI: 10.1021/acs.orglett.4c04430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
An electrochemical strategy for the regioselective construction of seleno-benzothiophenes/furans is reported through electrochemical selenocyclization, followed by Wagner-Meerwein rearrangement. This electro-oxidative tandem process operates under metal-free and external chemical oxidant-free conditions. Advantageously, unprotected homopropargyl alcohols were found to be compatible under the reaction conditions, releasing water and dihydrogen as the biproduct. This methodology reveals good functional group tolerance, allowing a broad spectrum of substrate scopes of up to 87% isolated yield.
Collapse
Affiliation(s)
- Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Atreyee Halder
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Aritri Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
20
|
Liu G, Cao S, Huang L, Lin X, Sun Z, Lin G, Zhang L, Lu L, Luo X, Liao X. Relative bioavailability of selenium yeast, selenomethionine, hydroxyl-selenomethionine and nano-selenium for broilers. Front Vet Sci 2025; 11:1542557. [PMID: 39897155 PMCID: PMC11782124 DOI: 10.3389/fvets.2024.1542557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Selenium (Se) is an essential trace element for humans and animals. Development and application of new forms of Se sources with lower toxicity and higher bioavailability has been attracting more attention. However, the bioavailabilities of Se from several new Se sources for broilers remain unclear. Therefore, the aim of this study was to assess the relative bioavailabilities of Se from Se yeast (SY), selenomethionine (SM), hydroxyl-selenomethionine (SO) and nano-Se (NS) relative to sodium selenite (SS) for broilers fed a conventional corn-soybean meal diet. A total of 576 one-day-old Arbor Acres commercial male broilers were randomly assigned to 16 treatments with 6 replicate cages per treatment in a completely randomized design involving a 5 (Se sources: SY, SM, SO, NS and SS) × 3 (added Se levels: 0.15, 0.30 and 0.45 mg Se/kg) factorial design of treatments plus 1 (a Se-unsupplemented control) for 21 d. The relative bioavailabilities of Se sources were estimated based on plasma or tissue Se concentrations as well as selenoprotein mRNA expressions and activities in broilers. The results showed that the Se concentrations and glutathione peroxidase (GPX) activities in plasma, liver, breast muscle, pancreas and kidney as well as Se concentration in erythrocytes of broilers, and Gpx1 and Selenop mRNA expressions in pancreas increased linearly (p < 0.03) as added Se level increased. Furthermore, the differences (p < 0.05) among different Se sources were detected for the Se concentrations in liver, breast muscle, pancreas and erythrocytes, GPX activities in pancreas and kidney. Based on slope ratios from the multiple linear regressions of the above indices, the Se bioavailabilities of SY, SM, SO, NS relative to SS (100%) were 78 to 367%, 67.8 to 471%, 57 to 372%, and 45 to 92%, respectively. The results from this study indicated that the Se from SM, SY and SO are more available to broilers than the Se from SS in enhancing the Se concentrations in liver, breast muscle, pancreas and erythrocytes and GPX activity in pancreas, and the Se from SM had the highest while the Se from NS had the lowest relative bioavailability.
Collapse
Affiliation(s)
- Guoqing Liu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Sumei Cao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Huang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuanxu Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Sun
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gang Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Liu H, Zhang W, Wang S, Zhou Q, Xu N, Zhang W, Ren H, Yang M, Lu H, Zheng X, Tian J. Selenocysteine-Activatable Near-Infrared Fluorescent Probe for Screening of Anti-inflammatory Components in Herbs. Anal Chem 2025; 97:75-85. [PMID: 39754546 DOI: 10.1021/acs.analchem.4c02157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Inflammation, a central process in numerous diseases, plays a crucial role in hepatic disorders, arthritis, cardiac conditions, and neurodegenerative ailments. Given the lack of effective anti-inflammatory drugs, it is imperative to assess inflammation severity and explore novel therapeutics. Selenocysteine (Sec), a key mediator of selenium's biological function, is closely involved in anti-inflammatory responses. We have synthesized a novel near-infrared fluorescent probe, Sec-BDP, which can image Sec dynamics in vivo with high selectivity and sensitivity. Sec-BDP detects Sec at concentrations as low as 0.085 μM. Utilizing this probe, we visualized Sec levels in cell, zebrafish, and mouse inflammation models, enabling a clear assessment of inflammation severity. To screen for drug candidates, Sec-BDP was integrated with ultrahigh performance liquid chromatography quadrupole time-of-flight mass spectrometry to identify potent anti-inflammatory compounds in Astragalus membranaceus, such as 5-O-methylvisammioside. Imaging of Sec with Sec-BDP provides insights into Sec-related diseases and aids in discovering new treatments. This probe advances selenium biology and promises more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Hao Liu
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wangning Zhang
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Sisi Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Qilin Zhou
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Na Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenze Zhang
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haojiang Ren
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Min Yang
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Jiangwei Tian
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
22
|
Yang F, Shu R, Dai W, Li B, Liu C, Yang H, Johnson HM, Yu S, Bai D, Yang W, Deng Y. H 2Se-evolving bio-heterojunctions promote cutaneous regeneration in infected wounds by inhibiting excessive cellular senescence. Biomaterials 2024; 311:122659. [PMID: 38861831 DOI: 10.1016/j.biomaterials.2024.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Pathogenic infection leads to excessive senescent cell accumulation and stagnation of wound healing. To address these issues, we devise and develop a hydrogen selenide (H2Se)-evolving bio-heterojunction (bio-HJ) composed of graphene oxide (GO) and FeSe2 to deracinate bacterial infection, suppress cellular senescence and remedy recalcitrant infected wounds. Excited by near-infrared (NIR) laser, the bio-HJ exerts desired photothermal and photodynamic effects, resulting in rapid disinfection. The crafted bio-HJ could also evolve gaseous H2Se to inhibit cellular senescence and dampen inflammation. Mechanism studies reveal the anti-senescence effects of H2Se-evolving bio-HJ are mediated by selenium pathway and glutathione peroxidase 1 (GPX1). More critically, in vivo experiments authenticate that the H2Se-evolving bio-HJ could inhibit cellular senescence and potentiate wound regeneration in rats. As envisioned, our work not only furnishes the novel gasotransmitter-delivering bio-HJ for chronic infected wounds, but also gets insight into the development of anti-senescence biomaterials.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuang Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hang Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Washington, USA
| | - Sheng Yu
- Department of Chemistry, Washington State University, Washington, USA
| | - Ding Bai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weizhong Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China.
| | - Yi Deng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Li X, Li J, Lu K, Li X, Song K, Wang L, Zhang C. Effect of dietary supplementation of selenium-L-methionine on growth, antioxidant capacity and resistance to nitrite stress of spotted seabass ( Lateolabrax maculatus) under two rearing water temperatures. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:166-179. [PMID: 39635417 PMCID: PMC11615926 DOI: 10.1016/j.aninu.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/07/2024]
Abstract
A 10-week feeding trial, followed by 24-h nitrite stress, was performed to evaluate the effects of dietary selenium-L-methionine (Se-Met) on growth, Se accumulation, antioxidant capacity, transcripts of selenoproteins and histological changes of muscle as well as resistance to nitrite stress in spotted seabass (Lateolabrax maculatus) reared at optimal (27 °C) and high (33 °C) temperatures. Five experimental diets were formulated to contain 0, 0.9, 1.8, 3.5, and 7.0 mg Se-Met/kg. Each diet was fed to fish (2.60 ± 0.2 g) in two parallel treatments at 27 or 33 °C. The results showed that elevated temperature (33 °C) induced thermal stress in fish, and fish under thermal stress exhibited lower weight gain and hepatosomatic index but a higher condition factor compared to those reared at 27 °C. However, the growth and feed utilisation were promoted in L. maculatus with 0.9 to 3.5 mg/kg Se-Met treatments. The protein and lipid content in the muscle increased with the dietary Se-Met level, and the total Se level in the whole body and muscle showed a linear increase with dietary Se-Met supplementation. Thermal stress changed the histology of the muscle, leading to raised levels of malondialdehyde (MDA), reduced antioxidant parameters in the serum and liver, and a decrease in the transcripts of selenoprotein genes in the muscle. Meanwhile, increased antioxidant capacity of serum and liver and up-regulated transcripts of selenoprotein of muscle were observed in L. maculatus reaching a maximum with 3.5 mg Se-Met/kg treatment. After 24 h of nitrite stress, thermal stress exacerbated oxidative damage caused by nitrite stress in L. maculatus. In contrast, dietary Se-Met enhanced the resistance to nitrite stress of L. maculatus fed with Se-Met enriched diets containing 0.9 to 1.8 mg Se-Met/kg. Based on the effects of dietary Se-Met on the growth, antioxidant capacity and resistance to nitrite stress of L. maculatus, this study suggests that the optimal range of Se-Met supplementation in L. maculatus diets is 1.80 to 2.39 mg Se-Met/kg of diet at 27 °C and 1.80 to 4.46 mg Se-Met/kg of diet at 33 °C.
Collapse
Affiliation(s)
- Xiao Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jing Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xueshan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
24
|
Sarkar UD, Rana M, Chakrapani H. Phenacylselenoesters allow facile selenium transfer and hydrogen selenide generation. Chem Sci 2024; 15:19315-19321. [PMID: 39568918 PMCID: PMC11575540 DOI: 10.1039/d4sc05788k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024] Open
Abstract
Hydrogen selenide (H2Se) is a precursor to several selenium-containing biomolecules and is emerging as an important redox-active species in biology, with yet to be completely characterized roles. Tools that reliably generate H2Se are key to achieving a better understanding of selenium biology. Here, we report the design, synthesis and evaluation of phenacylselenoesters as sources of H2Se. These compounds are prepared in two steps from commercial compounds, some are crystalline solids, and all are stable during storage. In the presence of esterase and a thiol in pH 7.4 buffer, these compounds produce H2Se, with half-lives of 5-20 min. We developed a colorimetric assay for the detection of gaseous H2Se by trapping it as zinc selenide (ZnSe), which is then converted to lead selenide (PbSe), which serves as a convenient visual indicator for this gas. The major organic products that are formed in nearly quantitative yields are relatively benign ketones and carboxylic acids. We provide evidence for these donors producing a thioselenide, a key intermediate in biological selenium metabolism. Finally, we compared sulfur and selenium transfer, both critical processes in cells. Phenacylthiol is relatively stable to cleavage by a thiol, and requires a sulfurtransferase enzyme to produce a persulfide and H2S. By contrast, the selenium analogue reacted with a thiol in the absence of this enzyme to produce H2Se. This result underscores the greater lability of the C-Se bond as compared with a C-S bond, and may have implications in biological selenium transfer. Together, phenacylselenoesters are easy to prepare, stable and generate H2Se under mild and biocompatible conditions. We anticipate that these will be valuable additions to the growing selenium redox toolbox.
Collapse
Affiliation(s)
- Utsav Dey Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Maharashtra India
| | - Mahima Rana
- Department of Chemistry, Indian Institute of Science Education and Research Pune Maharashtra India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune Maharashtra India
| |
Collapse
|
25
|
Chen X, Yue J, Xu X, Chen J, Huang X, Huang Y, Yang Y, Li F, Li T. Surface different charge ligands for modulating selenium nanoparticles formation and activating the interaction with proteins for effective anti-Herpes simplex virus l infection. NANOTECHNOLOGY 2024; 36:065101. [PMID: 39514902 DOI: 10.1088/1361-6528/ad902b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Selenium-based nanoparticles exhibit antiviral activity by directly modulating immune function. Despite recent promising developments in utilizing selenium nanoparticles (Se NPs) against viral infections, the impact of surface ligand charge on the conformation and interaction with viral proteins, as well as the effectiveness of Se NPs in anti-Herpes simplex virus 1 (HSV-1) infection remains unexplored. In this study, three types of selenium nanoparticles (CTAB-Se, PVP-Se, SDS-Se) with distinct surface charges were synthesized by modifying the surface ligands. We found that apart from differences in surface charge, the size, morphology, and crystal structure of the three types of Se NPs were similar. Notably, although the lipophilicity and cellular uptake of SDS-Se with a negative charge were lower compared to positively charged CTAB-Se and neutrally charged PVP-Se, SDS-Se exhibited the strongest protein binding force during interaction with HSV-1. Consequently, SDS-Se demonstrated the most potent anti-HSV-1 activity and safeguarded normal cells from damage. The mechanistic investigation further revealed that SDS-Se NPs effectively inhibited the proliferation and assembly of HSV-1 by powerfully suppressing the key genes and proteins of HSV-1 at various stages of viral development. Hence, this study highlights the significant role of surface ligand engineering in the antiviral activity of Se NPs, presenting a viable approach for synthesizing Se NPs with tailored antiviral properties by modulating surface charge. This method holds promise for advancing research on the antiviral capabilities of Se NPs.
Collapse
Affiliation(s)
- Xu Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Jian Yue
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Xiongjun Xu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Jiajun Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xuechan Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Yukai Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, People's Republic of China
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, People's Republic of China
- Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing 526000, People's Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
26
|
Bai X, Chen J, Du H, Zhao C, Li Y, Li Y, Dixneuf PH, Zhang M, Chen L. Silver-Mediated Acetoxyselenylation of Alkynes: Mild Stereoselective Access to Bifunctional Alkenes. Org Lett 2024. [PMID: 39535246 DOI: 10.1021/acs.orglett.4c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report a AgF-mediated regio- and stereoselective acetoxyselenylation of terminal/internal alkynes from iodobenzene dicarboxylate [PhI(OCOR)2] and diorganyl diselenides via multiple-site functionalization to afford β-selenyl enol esters in good yields. Alkynes derived from bioactive molecules, such as l(-)-borneol, l-menthol, and acyne oxalate, are also suitable for this transformation and afford the expected compounds.
Collapse
Affiliation(s)
- Xiaoyan Bai
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jiabin Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Hongxuan Du
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Cong Zhao
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ya Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Yibiao Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | | | - Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, People's Republic of China
| | - Lu Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
27
|
Zheng C, Man YB, Wong MH, Cheng Z. Optimizing food waste bioconversion with sodium selenite-enhanced Lucilia sericata maggots: a sustainable approach for chicken feed production and heavy metal mitigation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:508. [PMID: 39520635 DOI: 10.1007/s10653-024-02277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Recycling food waste by feeding it to insects can result in the continuous production of high-quality animal feed protein and organic fertilizer. However, the bioconversion efficiency and safety of using insects as feed protein for animal breeding are important factors limiting the development of this technology. Therefore, we aimed to optimize the efficiency of bioconversion of food waste using Lucilia sericata maggot (LSM). Sodium selenite (SS) was used to improve the quality and safety of each trophic-level organism. The results showed that an SS concentration of 15 mg kg-1 w.w. in the food waste culture substrate (SS15), the yield and quality of the obtained LSMs were optimal. The total selenium (Se) content of LSMs was 82.4 ± 1.16 mg kg-1 d.w., and non-inorganic Se accounted for 96.4% ± 2.01% of the total Se content. Additionally, the conversion efficiency of food waste was 18.7% higher than that in the control group (p < 0.05). When SS15 was used to raise maggots as a protein substitute for fish meal (commercial feed), the weight of the chickens and the crude protein content were 1.09-1.26 times and 1.09-1.13 times, respectively (p < 0.05), in comparison with the corresponding findings obtained with the use of ordinary maggots and commercial feed. In this group, glutathione peroxidase, superoxide dismutase, catalase, and immunoglobulin A and G activities were significantly higher than those obtained with the other feeds (p < 0.05). During this cyclic utilization process, the total Se content in chickens (0.31 ± 0.05 mg kg-1 w.w. in the breast, 0.19 ± 0.01 mg kg-1 w.w. in the leg, and 0.57 ± 0.01 mg kg-1 w.w. in the liver) significantly increased (p < 0.05). Meanwhile, the Cu and Zn contents in the LSMs and chickens increased, whereas cadmium, lead, chromium, and nickel absorption was inhibited (p < 0.05). Health risk assessment based on the levels of Se and heavy metals showed that Se-enriched chickens produced using this method can be safely consumed.
Collapse
Affiliation(s)
- Chao Zheng
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Yu Bon Man
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
28
|
Zhang G, Huang J, Sun Z, Guo Y, Lin G, Zhang Z, Zhao J. Effects of Trace Mineral Source on Growth Performance, Antioxidant Activity, and Meat Quality of Pigs Fed an Oxidized Soy Oil Supplemented Diet. Antioxidants (Basel) 2024; 13:1227. [PMID: 39456480 PMCID: PMC11505604 DOI: 10.3390/antiox13101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigates the effects of oil quality and trace mineral source on the growth performance, antioxidant activity, and meat quality of growing-finishing pigs. A total of 180 crossbred pigs (Duroc × Landrace × Large White [64.4 ± 1.95]) were randomly allocated five dietary treatments based on body weight (BW) and sex in a 30 d trial. Pigs were fed five diets: (i) fresh soy oil + inorganic trace minerals (ITMs) + inorganic selenium (FISI), (ii) oxidized soy oil + ITMs + inorganic selenium (OISI), (iii) fresh soy oil + ITMs + selenium yeast (FISY), (iv) oxidized soy oil + ITMs + selenium yeast (OISY), and (v) oxidized soy oil + organic trace minerals (OTMs) + selenium yeast (OOSY). Each dietary treatment included six replicates and six pigs per replicate (three barrows and three gilts). Feeding OISI resulted in lower average daily gain (ADG) and dressing percentage (p < 0.05). The OOSY group had a higher dressing percentage and activities of serum CAT and GSH-Px in growing-finishing pigs (p < 0.05). In addition, the relative abundance of Campylobacterota in the colonic digesta varied with the quality of soy oil and source of trace minerals (p < 0.05), but no significant differences in short-chain fatty acid concentrations were observed among all dietary groups. In conclusion, adding oxidized soy oil to the diet negatively impacted the ADG and dressing percentage of growing-finishing pigs, and replacing ITMs with OTMs and SY alleviated these negative impacts. A combination of OTMs and SY can support antioxidant capacity to mitigate the negative impacts of oxidized oil on the growth performance and dressing percentage of growing-finishing pigs.
Collapse
Affiliation(s)
- Ge Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| | - Jingyi Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| | - Zhiqiang Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| | - Yuhan Guo
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing 100600, China; (Y.G.); (G.L.)
| | - Gang Lin
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing 100600, China; (Y.G.); (G.L.)
| | - Zeyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| |
Collapse
|
29
|
Batabyal M, Chaurasia D, Panda PR, Jha RK, Kadu R, Kumar S. Benzoimidazolyl Organoseleniums: Antioxidant Activity and Catalysts for Selective Iodination of Arenes and Nitro-Michael Reaction. J Org Chem 2024; 89:14328-14340. [PMID: 39283162 DOI: 10.1021/acs.joc.4c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Here, the synthesis and catalytic activities of benzoimidazole-derived organoselenium compounds have been explored. The synthesized bis(2-benzoimidazolyl) diselenide, having increased Lewis acidity on the selenium center, outperforms simple phenyl and N-phenyl benzamide-based diselenides when compared for thiol peroxidase hydrogen peroxide decomposing antioxidant activity with a reduction rate of 18.6 ± 1.9 μM/s. The synthesized diselenide also acted as an efficient catalyst for the activation of N-iodo-succinimide toward the regioselective, monoiodination of electron-rich arenes and activation of nitro-alkene for nitro-Michael reactions for the first time.
Collapse
Affiliation(s)
- Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Deeksha Chaurasia
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Priyanka Rani Panda
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Rahul Kadu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
- MIT School of Engineering, MIT Art, Design and Technology University, Pune, Maharashtra 412201, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal by-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
30
|
Shi C, Cao H, Zeng G, Wu H, Wang Y. Mendelian randomization analyses explore the effects of micronutrients on different kidney diseases. Front Nutr 2024; 11:1440800. [PMID: 39346645 PMCID: PMC11428537 DOI: 10.3389/fnut.2024.1440800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Background The impact of micronutrients, including vitamins and minerals, on different kidney diseases has been reported in some observational studies; however, their causal relationship remains uncertain. We aimed to ascertain the causal genetic relationships between micronutrients and different kidney diseases using the Mendelian randomization (MR) method. Methods Instrumental variables (IVs) for genetically predicting calcium (Ca), iron (Ir), Zinc (Zn), selenium (Se), copper (Cu), vitamin D (Vit D), and vitamin C (Vit C) levels in humans were obtained, and a bidirectional two-sample MR was used to examine potential associations between the levels of these seven micronutrients and the risk of seven different kidney diseases including hypertensive renal disease, diabetic nephropathy, IgA nephropathy, membranous nephropathy, cystic nephropathy, chronic kidney disease (CKD), and chronic tubulo-interstitial nephritis. Five different MR analyses were conducted, with the main method being the inverse variance-weighted (IVW) method. Moreover, sensitivity analyses were performed to assess heterogeneity and potential pleiotropy. Results The IVW method revealed that Ca levels were associated with a decreased risk of hypertensive renal disease (OR = 0.61, 95% CI: 0.40-0.93, p-value = 0.022), and Se levels were associated with a decreased risk of hypertensive renal disease (OR = 0.72, 95% CI: 0.53-0.99, p-value = 0.040), diabetic nephropathy (OR = 0.83, 95% CI: 0.73-0.93, p-value = 0.002), and CKD (OR = 0.87, 95% CI: 0.77-0.99, p-value = 0.028). Conversely, Vit D levels were associated with an increased risk of polycystic kidney disease (OR = 1.76, 95% CI: 1.15-2.69, p-value = 0.0095). In addition, no potential causal relationship was found between vitamin C levels, iron levels, zinc levels, and copper levels and different kidney diseases. Meanwhile, inverse Mendelian randomization showed no potential causal relationship between different chronic kidney diseases and micronutrients. The Cochrane's Q test, MR-Egger regression, and MR-PRESSO did not suggest heterogeneity and pleiotropy, providing evidence of the validity of the MR estimates. Conclusion Our results indicate a cause-and-effect connection between micronutrients and certain kidney diseases, but additional study is required to provide more conclusive evidence. This research has the potential to assist clinicians in managing the consumption of specific micronutrients among individuals with chronic kidney diseases, as well as in promoting disease prevention among both healthy populations and those who are susceptible to chronic underlying conditions.
Collapse
Affiliation(s)
- Chengdong Shi
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Hongliang Cao
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Guoqiang Zeng
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Yuantao Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Wang J, Zhao X, Wang Y, Wang Z, Zhang C, Zong L, Li W, Li T, Chen M. Electrochemically chalcogenative annulation enabled construction of functionalized saturated N-heterocycles. Chem Commun (Camb) 2024; 60:10156-10159. [PMID: 39189692 DOI: 10.1039/d4cc03432e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
An efficient chalcogenative annulation strategy for constructing functionalized saturated N-heterocycles from unactivated alkenes with dichalcogenides under electrochemical conditions has been presented. This protocol is applicable to mono-, di- or tri-substituted alkenes, providing a straightforward pathway to aziridines, azetidines, pyrrolidines, and piperidines with high regioselectivity. Moreover, the strategy is qualified to realize the oxychalcogenation of alkenes as well.
Collapse
Affiliation(s)
- Jian Wang
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Xinxin Zhao
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Yijia Wang
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Zhihui Wang
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Chunyan Zhang
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Luyi Zong
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
- Henan Tianguan Group Co., Ltd., Nanyang, China, 473061
| | - Wenguang Li
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Ting Li
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Ming Chen
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
32
|
Dong Y, Liang W, Yi L. Fast Intramolecular Thiol-Activated Arylselenoamides Provide Access to Triggered, Fluorogenic H 2Se Donors. J Am Chem Soc 2024; 146:24776-24781. [PMID: 39185866 DOI: 10.1021/jacs.4c09215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
H2Se is the precursor for the biosynthesis of selenocompounds and is a potential gasotransmitter. Chemical tools for H2Se delivery and detection are important for Se-related biology research. Key challenges in the field include developing compound platforms that are triggered to release H2Se under various stimuli and developing fluorogenic donors that allow for real-time tracking of H2Se delivery. Here we report a new general platform for triggered H2Se donors based on controllable deprotection of a thiol, which can quickly activate an intramolecular arylselenoamide (t1/2 < 1 min) to release H2Se efficiently. Furthermore, we leverage this platform to develop the first examples of fluorogenic H2Se donors, which can be used to monitor H2Se release by fluorescence in real time. We anticipate that the well-defined donation chemistries will significantly advance the development of H2Se donors and stimulate further in-depth studies of H2Se biomedicine.
Collapse
Affiliation(s)
- Yalun Dong
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenfang Liang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
33
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
34
|
Atta S, Mandal A, Majumdar A. Generation of Thiosulfate, Selenite, Dithiosulfite, Perthionitrite, Nitric Oxide, and Reactive Chalcogen Species by Binuclear Zinc(II)-Chalcogenolato/-Polychalcogenido Complexes. Inorg Chem 2024; 63:15161-15176. [PMID: 39084849 DOI: 10.1021/acs.inorgchem.4c02527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A comparative bioinspired reactivity study of new binuclear Zn(II) complexes featuring coordinated thiolate, selenolate, trisulfide and diselenide in relation with (i) the generation of reactive sulfur/selenium species (RSS/RSeS), (ii) the oxygen dependent oxidation and disproportionation of polysulfide (Sn2-) to produce sulfite (SO32-), thiosulfate (S2O32-) and sulfide (S2-) by sulfur oxygenase reductase (SOR), and (iii) the reaction of Sn2- with nitrite (NO2-) to generate thionitrite (SNO-), perthionitrite (SSNO-) and nitric oxide (NO), is presented. The binuclear Zn(II)-thiolate/selenolate complexes could react with elemental sulfur to generate RSS/RSeS while similar reactions involving elemental selenium could not generate RSeS. The dizinc(II)-S3 and the dizinc(II)-Se2 complexes could react with dioxygen (O2) to generate binuclear Zn(II) complexes featuring coordinated thiosulfate (S2O32-) and selenite (SeO32-), respectively. Finally, unlike the nonreactive nature of the dizinc(II)-Se2 complex toward NO2-, reaction of the dizinc(II)-S3 complex with NO2- produced a new binuclear Zn(II) complex featuring a coordinated dithiosulfite (S3O2-) along with the formation of perthionitrite (SSNO-), of which the latter subsequently produced nitric oxide (NO) and S42-. The present work, thus, demonstrates the comparative reactivity of a series of binuclear Zn(II)-chalcogenolato/-polychalcogenido complexes for the generation of S2O32-, SeO32-, S3O2-, SSNO-, NO and RSS/RSeS.
Collapse
Affiliation(s)
- Sayan Atta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Amit Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
35
|
Viltres-Portales M, Sánchez-Martín MJ, Boada R, Llugany M, Valiente M. Liposomes as selenium nanocarriers for foliar application to wheat plants: A biofortification strategy. Food Chem 2024; 448:139123. [PMID: 38552461 DOI: 10.1016/j.foodchem.2024.139123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
In the present work, liposomes have been used as nanocarriers in the biofortification of wheat plants with selenium (Se) through foliar application. Liposomal formulations were prepared using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and Phospholipon®90H (P90H) (average size <100 nm), loaded with different concentrations of inorganic Se (selenite and selenate) and applied twice to the plants in the stage of vegetative growth. Liposomes enhanced Se uptake by wheat plants compared to direct application. The highest Se enrichment was achieved using the phospholipid DPPC and a concentration of 1000 μmol·L-1 of Se without affecting the biomass, chlorophylls, carotenoids, and the concentration of mineral nutrients of the plants. The chemical speciation of Se in the plants was further investigated by X-ray absorption spectroscopy (XAS). The results from XAS spectra revealed that most of the inorganic Se was transformed to organic Se and that the use of liposomes influenced the proportion of C-Se-C over C-Se-Se-C species.
Collapse
Affiliation(s)
- Marcia Viltres-Portales
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institute of Materials Science and Technology, Universidad de La Habana, Zapata y G, Vedado, Plaza, 10400 La Habana, Cuba
| | - María-Jesús Sánchez-Martín
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Roberto Boada
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mercè Llugany
- Plant Physiology Group (BABVE), Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Manuel Valiente
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
36
|
Kaya B, Gholam Azad M, Suleymanoglu M, Harmer JR, Wijesinghe TP, Richardson V, Zhao X, Bernhardt PV, Dharmasivam M, Richardson DR. Isosteric Replacement of Sulfur to Selenium in a Thiosemicarbazone: Promotion of Zn(II) Complex Dissociation and Transmetalation to Augment Anticancer Efficacy. J Med Chem 2024; 67:12155-12183. [PMID: 38967641 DOI: 10.1021/acs.jmedchem.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
We implemented isosteric replacement of sulfur to selenium in a novel thiosemicarbazone (PPTP4c4mT) to create a selenosemicarbazone (PPTP4c4mSe) that demonstrates potentiated anticancer efficacy and selectivity. Their design specifically incorporated cyclohexyl and styryl moieties to sterically inhibit the approach of their Fe(III) complexes to the oxy-myoglobin heme plane. Importantly, in contrast to the Fe(III) complexes of the clinically trialed thiosemicarbazones Triapine, COTI-2, and DpC, the Fe(III) complexes of PPTP4c4mT and PPTP4c4mSe did not induce detrimental oxy-myoglobin oxidation. Furthermore, PPTP4c4mSe demonstrated more potent antiproliferative activity than the homologous thiosemicarbazone, PPTP4c4mT, with their selectivity being superior or similar, respectively, to the clinically trialed thiosemicarbazone, COTI-2. An advantageous property of the selenosemicarbazone Zn(II) complexes relative to their thiosemicarbazone analogues was their greater transmetalation to Cu(II) complexes in lysosomes. This latter effect probably promoted their antiproliferative activity. Both ligands down-regulated multiple key receptors that display inter-receptor cooperation that leads to aggressive and resistant breast cancer.
Collapse
Affiliation(s)
- Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Mediha Suleymanoglu
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Fatih, Istanbul 34093, Turkey
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
37
|
Zhang X, Li G, Yin J, Pan W, Li Y, Li N, Tang B. Reprogramming Tumor-Associated Macrophages with a Se-Based Core-Satellite Nanoassembly to Enhance Cancer Immunotherapy. NANO LETTERS 2024; 24:9104-9114. [PMID: 39007505 DOI: 10.1021/acs.nanolett.4c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Tumor-associated macrophages (TAMs), as the most prevalent immune cells in the tumor microenvironment, play a pivotal role in promoting tumor development through various signaling pathways. Herein, we have engineered a Se@ZIF-8 core-satellite nanoassembly to reprogram TAMs, thereby enhancing immunotherapy outcomes. When the nanoassembly reaches the tumor tissue, selenium nanoparticles and Zn2+ are released in response to the acidic tumor microenvironment, resulting in a collaborative effort to promote the production of reactive oxygen species (ROS). The generated ROS, in turn, activate the nuclear factor κB (NF-κB) signaling pathway, driving the repolarization of TAMs from M2-type to M1-type, effectively eliminating cancer cells. Moreover, the nanoassembly can induce the immunogenic death of cancer cells through excess ROS to expose calreticulin and boost macrophage phagocytosis. The Se@ZIF-8 core-satellite nanoassembly provides a potential paradigm for cancer immunotherapy by reversing the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Guocheng Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jiaqi Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
38
|
Huang B, Tang X, Yuan J, Zhang M, Luo Z, Wang J, Lu C. Visible-light induced selenocyclization of 2-ethynylanilines under ambient conditions: simple FeBr 3 as a dual-functional catalyst. Org Biomol Chem 2024. [PMID: 39028029 DOI: 10.1039/d4ob01062k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We report herein a visible-light induced, Fe-catalyzed selenocyclization of 2-ethynylanilines with diselenides under ambient conditions, employing ethyl acetate as a benign solvent with no stoichiometric additive required. The simple iron salt FeBr3 serves as both a photo-induced LMCT (Ligand-to-Metal Charge Transfer) catalyst and a Lewis acid catalyst to promote the desired transformation in a sustainable manner, enabling the facile synthesis of diverse 3-selenylindoles with extended substitution patterns. Moreover, gram-scale reactions and late-stage functionalization of bioactive molecules further highlight the synthetic practicality of this method.
Collapse
Affiliation(s)
- Binbin Huang
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Xinye Tang
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Jiawei Yuan
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Mingyu Zhang
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Zhenyu Luo
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Junlei Wang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.
| | - Caicai Lu
- Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
39
|
Pyrzynska K, Sentkowska A. Selenium Species in Diabetes Mellitus Type 2. Biol Trace Elem Res 2024; 202:2993-3004. [PMID: 37880477 PMCID: PMC11074226 DOI: 10.1007/s12011-023-03900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
Selenium is an important trace element for humans and animals as it plays a key role in several major metabolic pathways. Several studies were conducted to better understand the role of selenium against diabetes mellitus (DM), particularly type 2 (T2DM), but the obtained conclusions are contradictory. A simple linear relationship does not exist between the risk of T2DM and selenium levels but is best represented in a dose-dependent manner, getting often the U-graph. This relation also depends on selenium chemical forms that are present in a diet or supplements. Both too low and too high selenium intakes could increase the risk of diabetes. Moreover, the baseline status of Se should be taken into consideration to avoid over-supplementation. The focus of this brief overview is to report the recent updates concerning selenium participation in diabetes mellitus.
Collapse
Affiliation(s)
- Krystyna Pyrzynska
- Faculty of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093, Warsaw, Poland.
| | | |
Collapse
|
40
|
Whitcomb A, Li X, Lawson J, Christensen M. Response surface methodology optimizes selenium inhibition of prostate cancer PC-3 cell viability. J Trace Elem Med Biol 2024; 84:127414. [PMID: 38489924 DOI: 10.1016/j.jtemb.2024.127414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The rising incidence of prostate cancer in the U.S. necessitates innovative therapeutic approaches to this disease. Though extensive research has studied Selenium as an anticarcinogen against prostate cancer, results have varied due to overlooked experimental confounds. Recent studies have identified differential effects of various selenium compounds on prostate cancer cells. This study leverages Mixture Design Response Surface Methodology to characterize the ideal combination of select Se forms against the PC-3 prostate cancer cell line. METHODS The PC-3 cell line was chosen as a model for its representation of advanced-stage malignancy. Three Se compounds-sodium selenite, methylseleninic acid, and nano-selenium-were selected for their promising antineoplastic potential. Nano-Se particles were synthesized and subsequently characterized by transmission electron microscopy. Cells were cultured, treated with Se compounds, and assessed for viability using an Alamar Blue Assay. IC50 values of individual Se compounds were determined, and treatment combinations evaluated. In collaboration with statical modeling experts, MDRSM was utilized to optimize Se compound combinations. RESULTS Absolute IC50 values were identified for methylseleninic acid (5.01 μmol/L), sodium selenite (13.8 μmol/L), and nano-selenium (14.6 μmol/L). Combining methylseleninic acid and sodium selenite resulted in only 5% PC-3 cell viability, whereas individual treatments reduced viability by approximately 45%. Among the tested mixtures, the 50:50 combination of MSA and sodium selenite most effectively decreased PC-3 cell viability. Regression analysis indicated the special cubic model had a strong fit (multiple r² = 0.9853), predicting maximum cell viability reduction from the methylseleninic acid and selenite mixture. CONCLUSION The specific form of Selenium plays a pivotal role in determining its physiological effects and therapeutic potential against prostate cancer. All three selenium compounds showed variable antineoplastic effects, with a 50:50 mixture of methylseleninic acid and selenite exhibiting optimal results. Nano-selenium, when combined with selenite, showed no additive effect, implying a shared mechanism of action. Our research underscores the critical need to consider Se compound forms as distinct entities in prostate cancer treatment and encourages further exploration of Se compounds against prostate cancer.
Collapse
Affiliation(s)
- Andrew Whitcomb
- Department of Nutrition, Dietetics, and Food Science, Simmons Center for Cancer Research, Brigham Young University, E-181 BNSN, Provo, UT 84602, United States.
| | - Xiuqi Li
- Harvard Medical School, Cambridge, MA 02138, United States
| | - John Lawson
- Statistics Department at Brigham Young University, United States
| | - Merrill Christensen
- Department of Nutrition, Dietetics, and Food Science, Simmons Center for Cancer Research, Brigham Young University, E-181 BNSN, Provo, UT 84602, United States
| |
Collapse
|
41
|
Gandhi VV, Pal MK, Singh BG, Das RP, Wadawale AP, Dey S, Kunwar A. Deuterium labeling improves the therapeutic index of 3,3'-diselenodipropionic acid as an anticancer agent: insights from redox reactions. RSC Med Chem 2024; 15:2165-2178. [PMID: 38911162 PMCID: PMC11187547 DOI: 10.1039/d4md00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/02/2024] [Indexed: 06/25/2024] Open
Abstract
3,3'-Diselenodipropionic acid (DSePA), a selenocystine derivative, has been previously reported as an oral supplement for anticancer/radio-modulation activities. The present study is focused on devising a strategy to synthesize and characterize the deuterated derivative of DSePA and on understanding the effect of deuteration on its therapeutic index by comparing its cytotoxicity in cancerous versus non-cancerous cell types. In this context, the synthesis of 3,3'-diselenodipropionic acid-D8 (D-DSePA) was accomplished in ∼42% yield. Further, the results clearly established that the deuteration of DSePA significantly reduced its cytotoxicity in non-cancerous cell types while retaining its cytotoxicity in cancerous cell lines. Together, D-DSePA displayed a ∼5-fold higher therapeutic index than the non-deuterated derivative for anticancer activity. The biochemical and NMR studies confirmed that the better biocompatibility of D-DSePA than its non-deuterated derivative in non-cancerous cells was due to its ability to undergo slower redox reactions and to cause lesser inhibition of intracellular redox enzymes.
Collapse
Affiliation(s)
- V V Gandhi
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| | - M K Pal
- Chemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25592589
| | - B G Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| | - R P Das
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25592589
| | - S Dey
- Chemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25592589
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| | - A Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre Mumbai - 400085 India 91 22 25505151 91 22 25592352/25595399
- Homi Bhabha National Institute Anushaktinagar Mumbai - 400 094 India
| |
Collapse
|
42
|
Hossain K, Atta S, Chakraborty AB, Karmakar S, Majumdar A. Nonheme binuclear transition metal complexes with hydrosulfide and polychalcogenides. Chem Commun (Camb) 2024; 60:4979-4998. [PMID: 38654604 DOI: 10.1039/d4cc00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The intriguing chemistry of chalcogen (S, Se)-containing ligands and their capability to bridge multiple metal centres have resulted in a plethora of reports on transition metal complexes featuring hydrosulfide (HS-) and polychalcogenides (En2-, E = S, Se). While a large number of such molecules are strictly organometallic complexes, examples of non-organometallic complexes featuring HS- and En2- with N-/O-donor ligands are relatively rare. The general synthetic procedure for the transition metal-hydrosulfido complexes involves the reaction of the corresponding metal salts with HS-/H2S and this is prone to generate sulfido bridged oligomers in the absence of sterically demanding ligands. On the other hand, the synthetic methods for the preparation of transition metal-polychalcogenido complexes include the reaction of the corresponding metal salts with En2- or the two electron oxidation of low-valent metals with elemental chalcogen, often at an elevated temperature and/or for a long time. Recently, we have developed new synthetic methods for the preparation of two new classes of binuclear transition metal complexes featuring either HS-, or Sn2- and Sen2- ligands. The new method for the synthesis of transition metal-hydrosulfido complexes involved transition metal-mediated hydrolysis of thiolates at room temperature (RT), while the method for the synthesis of transition metal-polychalcogenido complexes involved redox reaction of coordinated thiolates and exogenous elemental chalcogens at RT. An overview of the synthetic aspects, structural properties and intriguing reactivity of these two new classes of transition metal complexes is presented.
Collapse
Affiliation(s)
- Kamal Hossain
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Sayan Atta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Anuj Baran Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
43
|
Hou W, Zhang Y, Huang F, Chen W, Gu Y, Wang Y, Pang J, Dong H, Pan K, Zhang S, Ma P, Xu H. Bioinspired Selenium-Nitrogen Exchange (SeNEx) Click Chemistry Suitable for Nanomole-Scale Medicinal Chemistry and Bioconjugation. Angew Chem Int Ed Engl 2024; 63:e202318534. [PMID: 38343199 DOI: 10.1002/anie.202318534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Click chemistry is a powerful molecular assembly strategy for rapid functional discovery. The development of click reactions with new connecting linkage is of great importance for expanding the click chemistry toolbox. We report the first selenium-nitrogen exchange (SeNEx) click reaction between benzoselenazolones and terminal alkynes (Se-N to Se-C), which is inspired by the biochemical SeNEx between Ebselen and cysteine (Cys) residue (Se-N to Se-S). The formed selenoalkyne connection is readily elaborated, thus endowing this chemistry with multidimensional molecular diversity. Besides, this reaction is modular, predictable, and high-yielding, features fast kinetics (k2≥14.43 M-1 s-1), excellent functional group compatibility, and works well at miniaturization (nanomole-scale), opening up many interesting opportunities for organo-Se synthesis and bioconjugation, as exemplified by sequential click chemistry (coupled with ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) and sulfur-fluoride exchange (SuFEx)), selenomacrocycle synthesis, nanomole-scale synthesis of Se-containing natural product library and DNA-encoded library (DEL), late-stage peptide modification and ligation, and multiple functionalization of proteins. These results indicated that SeNEx is a useful strategy for new click chemistry developments, and the established SeNEx chemistry will serve as a transformative platform in multidisciplinary fields such as synthetic chemistry, material science, chemical biology, medical chemistry, and drug discovery.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Fuchao Huang
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Jiacheng Pang
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kangyin Pan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 201210, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 201210, Shanghai, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
44
|
Zhu C, Liu Q, Wang Y, Wang X, Ma Y, Yang F, Dong W, Ji H. A screening for optimal selenium enrichment additives for selenium-enriched fish production: Application of a HPLC-ICP-MS method. Food Chem X 2024; 21:101088. [PMID: 38226325 PMCID: PMC10788228 DOI: 10.1016/j.fochx.2023.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
The production of selenium-enriched fish contributes to alleviating selenium deficiency for humans. In this study, selenium nanoparticles (SeNPs) comparable in bioavailability to selenomethionine (SeMet), increased SeMet content in O. macrolepis (Onychostoma macrolepis) muscle. Additionally, dietary SeNPs significantly enhanced selenocysteine (SeCys2) and methylselenocysteine (MeSeCys) levels in O. macrolepis muscle. The effect of SeNPs on selenium speciation in grass carp muscle was consistent with O. macrolepis results. SeCys2 and MeSeCys showed antioxidant capacity in HEK293T cells, indicating enhanced health benefits of Se-enriched fish produced using SeNPs. Furthermore, the addition of 0.3 mg/kg SeNPs significantly improved the flesh quality of O. macrolepis by reducing the content of crude fat and heavy metals, as well as increasing the levels of crude protein, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and the ratio of n-3/n-6 polyunsaturated fatty acids (PUFAs). Therefore, selenium-enriched fish produced from SeNPs is a good source for improving human dietary selenium intake.
Collapse
Affiliation(s)
- Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxuan Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
45
|
Fu G, Bai S. Preoperative serum selenium predicts acute kidney injury after adult cardiac surgery. BMC Cardiovasc Disord 2024; 24:159. [PMID: 38486133 PMCID: PMC10941384 DOI: 10.1186/s12872-024-03825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The relationship between serum selenium (Se) and acute kidney injury after adult cardiac surgery (CSA-AKI) remains controversial. This study aimed to investigate the association of preoperative Se level with incident CSA-AKI. METHOD AND RESULTS A retrospective cohort study was conducted on patients who underwent cardiac surgery. The primary outcome was incident CSA-AKI. Multivariable logistic regression models and natural cubic splines were used to estimate the association of Se levels and primary outcome. A total of 453 patient with a mean age of 62.97 years were included. Among all patients, 159 (35.1%) incident cases of CSA-AKI were identified. The level of preoperative Se concentration in patients with CSA-AKI was significant lower than that in patients without CSA-AKI. The higher preoperative Se level was significantly associated with decreased risk of CSA-AKI (adjusted OR 0.91, 95% CI: 0.87-0.99). Dose-response relationship curve revealed a nearly L-shape correlation between serum Se selenium levels and incident CSA-AKI. CONCLUSION Our study suggested that a higher level of serum Se was significantly associated with lower risk of CSA-AKI. Further prospective studies are needed to clarify the causal relationship between serum Se level and incident CSA-AKI.
Collapse
Affiliation(s)
- Guowei Fu
- Department of Anesthesiology, Changzhou Second People's Hospital, No.29, Xinglong Lane, Changzhou, 213003, China
| | - Shuying Bai
- Department of Anesthesiology, Changzhou Second People's Hospital, No.29, Xinglong Lane, Changzhou, 213003, China.
| |
Collapse
|
46
|
Hu Y, Wang ZG, Fu H, Zhou C, Cai W, Shao X, Liu SL, Pang DW. In-situ synthesis of quantum dots in the nucleus of live cells. Natl Sci Rev 2024; 11:nwae021. [PMID: 38410827 PMCID: PMC10896589 DOI: 10.1093/nsr/nwae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 02/28/2024] Open
Abstract
The cell nucleus is the main site for the storage and replication of genetic material, and the synthesis of substances in the nucleus is rhythmic, regular and strictly regulated by physiological processes. However, whether exogenous substances, such as nanoparticles, can be synthesized in situ in the nucleus of live cells has not been reported. Here, we have achieved in-situ synthesis of CdSxSe1-x quantum dots (QDs) in the nucleus by regulation of the glutathione (GSH) metabolic pathway. High enrichment of GSH in the nucleus can be accomplished by the addition of GSH with the help of the Bcl-2 protein. Then, high-valence Se is reduced to low-valence Se by glutathione-reductase-catalyzed GSH, and interacts with the Cd precursor formed through Cd and thiol-rich proteins, eventually generating QDs in the nucleus. Our work contributes to a new understanding of the syntheses of substances in the cell nucleus and will pave the way for the development of advanced 'supercells'.
Collapse
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haohao Fu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Chuanzheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
| | - Wensheng Cai
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
47
|
Zhu C, Wu Z, Liu Q, Wang X, Zheng L, He S, Yang F, Ji H, Dong W. Selenium nanoparticles in aquaculture: Unique advantages in the production of Se-enriched grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:189-201. [PMID: 38357572 PMCID: PMC10864761 DOI: 10.1016/j.aninu.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 02/16/2024]
Abstract
The production of selenium-enriched fish can contribute to alleviating selenium deficiency in human diets. However, it is still unclear which selenium source, as an additive, can efficiently and cost-effectively produce high-quality selenium-enriched fish. This study evaluated the effects of selenium nanoparticles (SeNP), selenite, and selenomethionine (SeMet) on the growth, antioxidant capacity, selenium content, selenium speciation, and meat quality of grass carp. Ten diets were prepared, including a basal diet (BD) and three concentrations (0.1, 0.3, and 0.9 mg/kg) of SeNP, selenite, and SeMet. A total of 600 fish (250.79 ± 1.57 g) were randomly assigned to 30 tanks (3 tanks/group). Fish were fed the experimental diet three times daily for 60 d. In this study, SeNP most significantly promoted the growth and antioxidant capacity of grass carp, with 0.3 mg/kg SeNP identified as the optimal additive concentration. Additionally, SeNP demonstrated equally excellent bioavailability as SeMet and significantly increased the content of SeMet in grass carp (Ctenopharyngodon idella) muscle. Furthermore, compared to SeMet and selenite, dietary SeNP could more significantly enhance the content of selenocysteine (SeCys2) and methylselenocysteine (MeSeCys) in grass carp muscle tissue. In addition, we have demonstrated that SeCys2 and MeSeCys promote apoptosis of cancer cells (HeLa) through the mitochondrial apoptotic pathway (involving Bax and Bcl-2). Furthermore, as an additive, 0.3 mg/kg SeNP significantly improved the flesh quality of grass carp by reducing crude fat and heavy metal content, as well as increasing the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the ratio of n-3/n-6 polyunsaturated fatty acid (PUFA). In summary, SeNP is the most suitable additive for producing selenium-enriched fish.
Collapse
Affiliation(s)
- Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaolin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lijuan Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuyang He
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
48
|
Laskowska A, Pacuła-Miszewska AJ, Obieziurska-Fabisiak M, Jastrzębska A, Długosz-Pokorska A, Gach-Janczak K, Ścianowski J. Synthesis of New Chiral β-Carbonyl Selenides with Antioxidant and Anticancer Activity Evaluation-Part I. MATERIALS (BASEL, SWITZERLAND) 2024; 17:899. [PMID: 38399148 PMCID: PMC10890689 DOI: 10.3390/ma17040899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
A series of unsymmetrical phenyl β-carbonyl selenides with o-amido function substituted on the nitrogen atom with chiral alkyl groups was obtained. The compounds form a series of enantiomeric and diastereomeric pairs and present the first examples of this type of chiral Se derivatives. All obtained selenides were further evaluated as antioxidants and anticancer agents to define the influence of the particular stereochemistry of the attached functional groups on the bioactivity of the molecules. The highest H2O2 reduction potential was observed for N-(cis-2-hydroxy-1-indanyl)-2-((2-oxopropyl)selanyl)benzamide, and the best radical scavenging properties for N-(-1-hydroxy-2-butanyl)-2-((2-oxopropyl)selanyl)benzamide. Also, both enantiomers of the N-(1-hydroxy-2-butanyl) selenide expressed the highest cytotoxic potential towards human promyelocytic leukemia HL-60 cell line with similar IC50 values 14.4 ± 0.5 and 16.2 ± 1.1 µM, respectively. On the other hand, breast cancer cell line MCF-7 was most sensitive to N-((R)-(-)-1-hydroxy-2-butanyl)- 2-((2-oxopropyl)selanyl)benzamide (IC50 of 35.7 ± 0.6 µM). The structure-activity dependence of the obtained Se derivatives was discussed, and the most potent compounds were selected.
Collapse
Affiliation(s)
- Anna Laskowska
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| | - Agata J. Pacuła-Miszewska
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| | - Magdalena Obieziurska-Fabisiak
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| | - Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland;
| | - Angelika Długosz-Pokorska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.D.-P.); (K.G.-J.)
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.D.-P.); (K.G.-J.)
| | - Jacek Ścianowski
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| |
Collapse
|
49
|
Urbano T, Filippini T, Malavolti M, Fustinoni S, Michalke B, Wise LA, Vinceti M. Adherence to the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet and exposure to selenium species: A cross-sectional study. Nutr Res 2024; 122:44-54. [PMID: 38150803 DOI: 10.1016/j.nutres.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
Selenium is a trace element found in many chemical forms. Selenium and its species have nutritional and toxicologic properties, some of which may play a role in the etiology of neurological disease. We hypothesized that adherence to the Mediterranean-Dietary Approach to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) diet could influence intake and endogenous concentrations of selenium and selenium species, thus contributing to the beneficial effects of this dietary pattern. We carried out a cross-sectional study of 137 non-smoking blood donors (75 females and 62 males) from the Reggio Emilia province, Northern Italy. We assessed MIND diet adherence using a semiquantitative food frequency questionnaire. We assessed selenium exposure through dietary intake and measurement of urinary and serum concentrations, including speciation of selenium compound in serum. We fitted non-linear spline-based regression models to investigate the association between MIND diet adherence and selenium exposure concentrations. Adherence to the MIND diet was positively associated with dietary selenium intake and urinary selenium excretion, whereas it was inversely associated with serum concentrations of overall selenium and organic selenium, including serum selenoprotein P-bound selenium, the most abundant circulating chemical form of the metalloid. MIND diet adherence also showed an inverted U-shaped relation with inorganic selenium and particularly with its hexavalent form, selenate. Our results suggest that greater adherence to the MIND diet is non-linearly associated with lower circulating concentrations of selenium and of 2 potentially neurotoxic species of this element, selenoprotein P and selenate. This may explain why adherence to the MIND dietary pattern may reduce cognitive decline.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Marcella Malavolti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; IRCCS Ca' Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
50
|
Pyka P, Haberek W, Więcek M, Szymanska E, Ali W, Cios A, Jastrzębska-Więsek M, Satała G, Podlewska S, Di Giacomo S, Di Sotto A, Garbo S, Karcz T, Lambona C, Marocco F, Latacz G, Sudoł-Tałaj S, Mordyl B, Głuch-Lutwin M, Siwek A, Czarnota-Łydka K, Gogola D, Olejarz-Maciej A, Wilczyńska-Zawal N, Honkisz-Orzechowska E, Starek M, Dąbrowska M, Kucwaj-Brysz K, Fioravanti R, Nasim MJ, Hittinger M, Partyka A, Wesołowska A, Battistelli C, Zwergel C, Handzlik J. First-in-Class Selenium-Containing Potent Serotonin Receptor 5-HT 6 Agents with a Beneficial Neuroprotective Profile against Alzheimer's Disease. J Med Chem 2024; 67:1580-1610. [PMID: 38190615 PMCID: PMC10823479 DOI: 10.1021/acs.jmedchem.3c02148] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Alzheimer's disease (AD) has a complex and not-fully-understood etiology. Recently, the serotonin receptor 5-HT6 emerged as a promising target for AD treatment; thus, here a new series of 5-HT6R ligands with a 1,3,5-triazine core and selenoether linkers was explored. Among them, the 2-naphthyl derivatives exhibited strong 5-HT6R affinity and selectivity over 5-HT1AR (13-15), 5-HT7R (14 and 15), and 5-HT2AR (13). Compound 15 displayed high selectivity for 5-HT6R over other central nervous system receptors and exhibited low risk of cardio-, hepato-, and nephrotoxicity and no mutagenicity, indicating its "drug-like" potential. Compound 15 also demonstrated neuroprotection against rotenone-induced neurotoxicity as well as antioxidant and glutathione peroxidase (GPx)-like activity and regulated antioxidant and pro-inflammatory genes and NRF2 nuclear translocation. In rats, 15 showed satisfying pharmacokinetics, penetrated the blood-brain barrier, reversed MK-801-induced memory impairment, and exhibited anxiolytic-like properties. 15's neuroprotective and procognitive-like effects, stronger than those of the approved drug donepezil, may pave the way for the use of selenotriazines to inhibit both causes and symptoms in AD therapy.
Collapse
Affiliation(s)
- Patryk Pyka
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Wawrzyniec Haberek
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Małgorzata Więcek
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Ewa Szymanska
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Wesam Ali
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Agnieszka Cios
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Magdalena Jastrzębska-Więsek
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Grzegorz Satała
- Department
of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Sabina Podlewska
- Department
of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Silvia Di Giacomo
- Department
of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Italian
National Institute of Health (ISS), Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonella Di Sotto
- Department
of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sabrina Garbo
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tadeusz Karcz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Chiara Lambona
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Marocco
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Sylwia Sudoł-Tałaj
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Barbara Mordyl
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Siwek
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Kinga Czarnota-Łydka
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Dawid Gogola
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Agnieszka Olejarz-Maciej
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Natalia Wilczyńska-Zawal
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Starek
- Department
of Inorganic and Analytical Chemistry, Jagiellonian
University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Dąbrowska
- Department
of Inorganic and Analytical Chemistry, Jagiellonian
University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Rossella Fioravanti
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Muhammad Jawad Nasim
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Marius Hittinger
- Department
of Drug Discovery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
- Department
of Drug Delivery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Anna Partyka
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Wesołowska
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Cecilia Battistelli
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Clemens Zwergel
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department
of Drug Discovery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Jadwiga Handzlik
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|