1
|
Shrestha S, Giri A, Shrestha P, Kweon S, Hong IS, Kwon TK, Kang JS, Jeong JH, Kim HR, Yook S. CD44-targeted nanoparticles for remodeling the tumor microenvironment in a 3D macrophage-embedded ovarian cancer model with stem cell-like features. Int J Pharm 2025; 674:125483. [PMID: 40101874 DOI: 10.1016/j.ijpharm.2025.125483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Ovarian cancer frequently develops resistance to chemotherapy, which is driven by cancer stem cells (CSCs) and an immunosuppressive tumor microenvironment (TME) shaped by tumor-associated macrophages (TAMs). This study explored the therapeutic potential of CD44-targeted, docetaxel (DTX)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CD44-PLGA-DTX NPs) in overcoming chemoresistance in ovarian cancer. A 3D spheroidal model incorporating SKOV3 ovarian cancer cells and TAMs was developed to mimic the TME for in vitro investigations. CD44-PLGA-DTX NPs exhibited significantly enhanced cellular uptake within the macrophage-embedded SKOV3 spheroids, which resulted in reduced cell viability and a reversal of chemoresistance. Cytokine profiling further revealed that the NPs promoted TAM polarization from the protumor M2 phenotype to the antitumor M1 phenotype, thus fostering an antitumor immune environment. These findings highlight the potential of CD44-targeted NPs as a dual-targeted therapeutic strategy, targeting both CSCs-driven tumor growth and TME reprogramming, thereby improving ovarian cancer treatment outcomes.
Collapse
Affiliation(s)
- Samjhana Shrestha
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Anil Giri
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prabhat Shrestha
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seho Kweon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ha Rin Kim
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul, Republic of Korea; Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Zhong K, Song W, Li Z, Zhao P, Zhong Y, Hu L, Huang H, Mo J, Xia X. Cationizable transcytosis manganese nano-oxygenator for enhanced chemo-dynamic immunotherapy in deep tumour tissue. J Mater Chem B 2025; 13:2091-2099. [PMID: 39775703 DOI: 10.1039/d4tb02303j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Effective delivery of therapeutic agents for solid tumour treatment is impeded by multiple obstacles, such as aberrant interstitial fluid pressure and high density of the extracellular matrix, which causes impaired penetration to deep avascular tumour tissue that exists in a hypoxic immune cold environment. Only limited tumoricidal effects have been achieved with traditional nanomedicine due to its inefficient penetration and the multiple resistant effects that exist in the tumour microenvironment. Herein, a new chemo-dynamic immunotherapy (CDIT) is proposed based on a transcytosis tumour oxygenator (MnPO2/MC3) with effective chemo-dynamic effects. As a CDIT agent, MnPO2/MC3 is designed and synthesized to enhance deep tumour tissue penetration as well as provide relief of hypoxia to decrease immunosuppression. MnPO2/MC3 is orchestrated by an inner manganese core and double lipid outer layer. The outer layer is constructed by a tumour pH-cationizable outer lipid (D-Lin-MC3-DMA, MC3) layer and O2-loading inner layer. The MC3 lipid endows MnPO2/MC3 with tumour-responsive transcytosis potential, which instead delivers oxygen and Mn deep into tumour tissues. MnPO2/MC3 catalyses hydrogen peroxide to hydroxyl radicals by Mn2+ and increases CD8+ T cell infiltration. The oxygenation and ROS burst by MnPO2/MC3 effectively altered the tumour cold immune microenvironment so that adaptive anti-tumoral immunity was enhanced. MnPO2/MC3-mediated CDIT serving as an effective tumour oxygenator and ROS initiator, effectively suppressed tumour growth while enhancing adaptive anti-tumour immunity.
Collapse
Affiliation(s)
- Kai Zhong
- Department of Oncology, Yunfu People's Hospital, Yunfu 527300, Guang Dong, China.
- Central Laboratory of YunFu People's Hospital, YunFu Key Laboratory of Brain Diseases Research, Yunfu 527300, China
| | - Wenqi Song
- Department of Gerontology, Shenzhen Longgang Central Hospital, Shenzhen Longgang Central Hospital, Shenzhen 518190, Guang Dong, China
| | - Zhisheng Li
- Department of Oncology, Yunfu People's Hospital, Yunfu 527300, Guang Dong, China.
| | - Peng Zhao
- Department of Oncology, Yunfu People's Hospital, Yunfu 527300, Guang Dong, China.
| | - Yanling Zhong
- Department of Oncology, Yunfu People's Hospital, Yunfu 527300, Guang Dong, China.
| | - Lei Hu
- Department of Oncology, Yunfu People's Hospital, Yunfu 527300, Guang Dong, China.
| | - Hanwen Huang
- Department of Oncology, Yunfu People's Hospital, Yunfu 527300, Guang Dong, China.
| | - Jianwen Mo
- Department of Oncology, Yunfu People's Hospital, Yunfu 527300, Guang Dong, China.
| | - Xiaolin Xia
- Department of Oncology, Yunfu People's Hospital, Yunfu 527300, Guang Dong, China.
- Department of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou 510515, Guang Dong, China
| |
Collapse
|
3
|
Zhang Q, Wang J, Chen Z, Qin H, Zhang Q, Tian B, Li X. Transcytosis: an effective mechanism to enhance nanoparticle extravasation and infiltration through biological barriers. Biomed Mater 2025; 20:022003. [PMID: 39788078 DOI: 10.1088/1748-605x/ada85e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Nanoparticles (NPs)1have been explored as drugs carriers for treating tumors and central nervous system (CNS)2diseases and for oral administration. However, they lack satisfactory clinical efficacy due to poor extravasation and infiltration through biological barriers to target tissues. Most clinical antitumor NPs have been designed based on enhanced permeability and retention effects which are insufficient and heterogeneous in human tumors. The tight junctions33TJs: tight junctionsof the blood-brain barrier44BBB: blood-brain barrierand the small intestinal epithelium severely impede NPs from being transported into the CNS and blood circulation, respectively. By contrast, transcytosis enables NPs to bypass these physiological barriers and enhances their infiltration into target tissues by active transport. Here, we systematically review the mechanisms and putative application of NP transcytosis for targeting tumor and CNS tissues, explore oral NP administration, and propose future research directions in the field of NP transcytosis.
Collapse
Affiliation(s)
- Qianyi Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Jiamian Wang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, People's Republic of China
| | - Zhiyang Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Hao Qin
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Qichen Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Bo Tian
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Xilei Li
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
4
|
Tian D, Mao Z, Wang L, Huang X, Wang W, Luo H, Peng J, Chen Y. Rocking- and diffusion-based culture of tumor spheroids-on-a-chip. LAB ON A CHIP 2024; 24:2561-2574. [PMID: 38629978 DOI: 10.1039/d3lc01116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Tumor spheroids are now intensively investigated toward preclinical and clinical applications, necessitating the establishment of accessible and cost-effective methods for routine operations. Without losing the advantage of organ-chip technologies, we developed a rocking system for facile formation and culture of tumor spheroids in hydrogel microwells of a suspended membrane under microfluidic conditions. While the rocking is controlled with a step motor, the microfluidic device is made of two plastic plates, allowing plugging directly syringe tubes with Luer connectors. Upon injection of the culture medium into the tubes and subsequent rocking of the chip, the medium flows back and forth in the channel underneath the membrane, ensuring a diffusion-based culture. Our results showed that such a rocking- and diffusion-based culture method significantly improved the quality of the tumor spheroids when compared to the static culture, particularly in terms of growth rate, roundness, junction formation and compactness of the spheroids. Notably, dynamically cultured tumor spheroids showed increased drug resistance, suggesting alternative assay conditions. Overall, the present method is pumpless, connectionless, and user-friendly, thereby facilitating the advancement of tumor-spheroid-based applications.
Collapse
Affiliation(s)
- Duomei Tian
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Zheng Mao
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Li Wang
- MesoBioTech, 231 Rue Saint-Honoré, 75001 Paris, France
| | - Xiaochen Huang
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Wei Wang
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Haoyue Luo
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Juan Peng
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Yong Chen
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| |
Collapse
|
5
|
Lee H, Park B, Lee J, Kang Y, Han M, Lee J, Kim C, Kim WJ. Transcytosis-Inducing Multifunctional Albumin Nanomedicines with Deep Penetration Ability for Image-Guided Solid Tumor Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303668. [PMID: 37612796 DOI: 10.1002/smll.202303668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Transcytosis is an active transcellular transportation pathway that has garnered interest for overcoming the limited deep penetration of nanomedicines in solid tumors. In this study, a charge-convertible nanomedicine that facilitates deep penetration into solid tumors via transcytosis is designed. It is an albumin-based calcium phosphate nanomedicine loaded with IR820 (mAlb-820@CaP) for high-resolution photoacoustic imaging and enhanced photothermal therapy. Biomineralization on the surface stabilizes the albumin-IR820 complex during circulation and provides calcium ions (Ca2+ ) for tissue penetration on degradation in an acidic environment. pH-triggered transcytosis of the nanomedicine enabled by caveolae-mediated endocytosis and calcium ion-induced exocytosis in 2D cellular, 3D spheroid, and in vivo tumor models is demonstrated. Notably, the extravasation and penetration ability of the nanomedicine is observed in vivo using a high-resolution photoacoustic system, and nanomedicine shows the most potent photothermal antitumor effect in vivo. Overall, the strategy provides a versatile theragnosis platform for both noninvasive photoacoustic imaging and high therapeutic efficiency resulting from deep penetration of nanomedicine.
Collapse
Affiliation(s)
- Hyori Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihye Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeoul Kang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Moongyu Han
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junseok Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
6
|
Dartora VFC, Salata GC, Passos JS, Branco PC, Silveira E, Steiner AA, Costa-Lotufo LV, Lopes LB. Hyaluronic acid nanoemulsions improve piplartine cytotoxicity in 2D and 3D breast cancer models and reduce tumor development after intraductal administration. Int J Biol Macromol 2022; 219:84-95. [PMID: 35907458 DOI: 10.1016/j.ijbiomac.2022.07.162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022]
Abstract
Nanoemulsions modified with chitosan (NE-Q) or hyaluronic acid (NE-HA), developed for intraductal administration of piplartine (piperlongumine) and local breast cancer treatment, were evaluated for cytotoxic effects in vitro in 2D and 3D breast cancer models and in vivo in a chemically induced carcinogenesis model. Droplet size was lower than 100 nm, and zeta potential varied from +17.9 to -25.5 mV for NE-Q and NE-HA, respectively. Piplartine nanoencapsulation reduced its IC50 up to 3.6-fold in T-47D and MCF-7 monolayers without differences between NE-Q and NE-HA, and up to 6.6-fold in cancer spheroids. Cytotoxicity improvement may result from a more efficient NE-mediated delivery, as suggested by stronger fluorescent staining of cells and spheroids. In 1-methyl-1-nitrosourea -induced breast cancer models, intraductal administration of piplartine-loaded NE-HA inhibited breast tumor development and histological alterations. These results support the potential applicability of piplartine-loaded NE-HA for intraductal treatment of breast cancer.
Collapse
Affiliation(s)
- Vanessa F C Dartora
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Imunologia, Instituto de Ciências Biomédicas IV, São Paulo, SP, Brazil
| | - Giovanna C Salata
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Julia S Passos
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paola C Branco
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Leticia V Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luciana B Lopes
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Zi Y, Yang K, He J, Wu Z, Liu J, Zhang W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Deliv Rev 2022; 188:114449. [PMID: 35835353 DOI: 10.1016/j.addr.2022.114449] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/03/2022] [Accepted: 07/06/2022] [Indexed: 12/20/2022]
Abstract
The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape.
Collapse
Affiliation(s)
- Yixuan Zi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Kaiyun Yang
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
8
|
Tumor Tropic Delivery of Hyaluronic Acid-Poly (D,L-lactide-co-glycolide) Polymeric Micelles Using Mesenchymal Stem Cells for Glioma Therapy. Molecules 2022; 27:molecules27082419. [PMID: 35458619 PMCID: PMC9027425 DOI: 10.3390/molecules27082419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/13/2023] Open
Abstract
Tumor penetration and the accumulation of nanomedicines are crucial challenges in solid tumor therapy. By taking advantage of the MSC tumor-tropic property, we developed a mesenchymal stem cell (MSC)-based drug delivery system in which paclitaxel (PTX)-encapsulating hyaluronic acid-poly (D,L-lactide-co-glycolide) polymeric micelles (PTX/HA-PLGA micelles) were loaded for glioma therapy. The results indicated that CD44 overexpressed on the surface of both MSCs and tumor cells not only improved PTX/HA-PLGA micelle loading in MSCs, but also promoted the drug transfer between MSCs and adjacent cancer cells. It was hypothesized that CD44-mediated transcytosis played a crucial role and allowed deep glioma penetration depending on sequential intra–intercellular delivery via endocytosis–exocytosis. MSC-micelles were able to infiltrate from normal brain parenchyma towards contralateral tumors and led to the eradication of glioma. The survival of orthotopic glioma-bearing rats was significantly extended. In conclusion, the MSC-based delivery of HA-PLGA micelles is a potential strategy for tumor-targeting drug delivery.
Collapse
|
9
|
Lin B, Xu X, Zhang X, Yu Y, Wang X. Photodynamic Treatment of Colorectal Cancer Using Chlorin e6-Loaded Poly(lactide-co-glycolide)- Based Nanoparticles. J Biomed Nanotechnol 2021; 17:1939-1950. [PMID: 34706794 DOI: 10.1166/jbn.2021.3170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We prepared poly(lactide-co-glycolide) (PLGA) encapsulated with chlorin e6 (Ce6) in an effort to increase the stability and efficiency of photosensitizers for photodynamic therapy (PDT). We determined that Ce6-loaded PLGA nanoparticles (PLGA-Ce6 NPs) had drug-loading efficiency of 5%. The efficiency of encapsulation was 82%, the zeta potential was- 25 mV, and the average diameter was 130 nm. The encapsulation of Ce6 in PLGA nanoparticles showed excellent stability. The nanoparticles exhibited sustained Ce6 release profiles with 50% released at the end of 3 days, whereas free Ce6 showed rapid release within 1 day. Ce6 release patterns were controlled by encapsulation into PLGA. The uptake of PLGA-Ce6 NPs was significantly enhanced by endocytosis in the first 8 hours in the HCT-116 cell line. An intracellular reactive oxygen species assay revealed the enhanced uptake of the nanoparticles. An in vitro anti-tumor activity assay showed that the PLGA-Ce6 NPs exhibited enhanced phototoxicity toward HCT-116 cells and a slightly lower IC50 value in HCT-116 cells than Ce6 solution alone. Exposure of HCT-116 cell spheroids to PLGA-Ce6 NPs penetrated more profoundly and had better phototoxicity than pure drugs. These findings suggest that PLGA-Ce6 NPs might serve as PDT for colorectal cancer.
Collapse
Affiliation(s)
- Beibei Lin
- Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuegu Xu
- Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaobi Zhang
- Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yinfei Yu
- Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaoling Wang
- Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
10
|
Ma Y, Yu S, Ni S, Zhang B, Kung ACF, Gao J, Lu A, Zhang G. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy. Front Cell Dev Biol 2021; 9:626910. [PMID: 33855017 PMCID: PMC8039396 DOI: 10.3389/fcell.2021.626910] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022] Open
Abstract
Paclitaxel (PTX) has been used for cancer treatment for decades and has become one of the most successful chemotherapeutics in the clinic and financially. However, serious problems with its use still exist, owing to its poor solubility and non-selective toxicity. With respect to these issues, recent advances have addressed the water solubility and tumor specificity related to PTX application. Many measures have been proposed to remedy these limitations by enhancing tumor recognition via ligand-receptor-mediated targeting as well as other associated strategies. In this review, we investigated various kinds of ligands that have emerged as PTX tumor-targeting tools. In particular, this article highlights small molecule-, protein-, and aptamer-functionalized conjugates and nanoparticles (NPs), providing a promising approach for PTX-based individualized treatment prospects.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Shuaijian Ni
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Baoxian Zhang
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Angela Chun Fai Kung
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Jin Gao
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong.,Increasepharm (Hengqin) Institute Co. Limited, Zhuhai, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China.,Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| |
Collapse
|
11
|
Ma Y, Yu S, Ni S, Zhang B, Kung ACF, Gao J, Lu A, Zhang G. Targeting Strategies for Enhancing Paclitaxel Specificity in Chemotherapy. Front Cell Dev Biol 2021. [PMID: 33855017 DOI: 10.3389/fcell.2021.626910/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Paclitaxel (PTX) has been used for cancer treatment for decades and has become one of the most successful chemotherapeutics in the clinic and financially. However, serious problems with its use still exist, owing to its poor solubility and non-selective toxicity. With respect to these issues, recent advances have addressed the water solubility and tumor specificity related to PTX application. Many measures have been proposed to remedy these limitations by enhancing tumor recognition via ligand-receptor-mediated targeting as well as other associated strategies. In this review, we investigated various kinds of ligands that have emerged as PTX tumor-targeting tools. In particular, this article highlights small molecule-, protein-, and aptamer-functionalized conjugates and nanoparticles (NPs), providing a promising approach for PTX-based individualized treatment prospects.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Shuaijian Ni
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Baoxian Zhang
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Angela Chun Fai Kung
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hong Kong) Limited, Hong Kong Science Park, Shatin, Hong Kong
| | - Jin Gao
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
- Increasepharm (Hengqin) Institute Co. Limited, Zhuhai, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
- Increasepharm and Hong Kong Baptist University Joint Centre for Nucleic Acid Drug Discovery, Hong Kong Science Park, New Territories, Hong Kong
| |
Collapse
|
12
|
Yan J, Zhang N, Zhang Z, Zhu W, Li B, Li L, Pu Y, He B. Redox-responsive polyethyleneimine/tetrahedron DNA/doxorubicin nanocomplexes for deep cell/tissue penetration to overcome multidrug resistance. J Control Release 2020; 329:36-49. [PMID: 33259850 DOI: 10.1016/j.jconrel.2020.11.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 11/28/2022]
Abstract
Deep penetration of nanomedicines to cancer cells and tissues is a main obstacle to conquering multidrug resistant (MDR) cancer. Here, we presented redox-responsive polyethyleneimine (disulfide cross-linked PEI, PSP)/tetrahedral DNA (TDNs)/doxorubicin (DOX) nanocomplexes (NCs), PSP/TDNs@DOX NCs, to accomplish tumor cell/tissue penetration for overcoming MDR. The NCs can respond to glutathione and DNase I to disassociate and release DOX. In vitro study revealed that the NCs (N/P = 30) with positive charge could be associated to cell membranes and "dig holes" on them, evoking the membrane-breaking for enhanced cellular internalization and bypassing endocytosis regardless of drug-resistant mechanism. Transwell and 3D tumor models study established that NCs can efficiently depart from cells through "holes leakage" and "infected" surrounding cells to penetrate into deep tumor tissues. In vivo study showed that the PSP/TDNs@DOX NCs exhibited superior tumor penetration and therapeutic efficiency in xenografted drug-resistant tumor mouse models including human breast (MCF-7/R) and ovarian (SKOV3/R) cancer, which represent MDR with characteristics of DOX efflux and impermeability, respectively.
Collapse
Affiliation(s)
- Jianqin Yan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Nan Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Wangwei Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Bing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Li Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
13
|
Akhter MH, Beg S, Tarique M, Malik A, Afaq S, Choudhry H, Hosawi S. Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead. Biochim Biophys Acta Gen Subj 2020; 1865:129777. [PMID: 33130062 DOI: 10.1016/j.bbagen.2020.129777] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment. General significance This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.
Collapse
Affiliation(s)
- Md Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Mohammed Tarique
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Arshi Malik
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Sarah Afaq
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Niora M, Pedersbæk D, Münter R, Weywadt MFDV, Farhangibarooji Y, Andresen TL, Simonsen JB, Jauffred L. Head-to-Head Comparison of the Penetration Efficiency of Lipid-Based Nanoparticles into Tumor Spheroids. ACS OMEGA 2020; 5:21162-21171. [PMID: 32875252 PMCID: PMC7450641 DOI: 10.1021/acsomega.0c02879] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/30/2020] [Indexed: 05/06/2023]
Abstract
Most tumor-targeted drug delivery systems must overcome a large variety of physiological barriers before reaching the tumor site and diffuse through the tight network of tumor cells. Many studies focus on optimizing the first part, the accumulation of drug carriers at the tumor site, ignoring the penetration efficiency, i.e., a measure of the ability of a drug delivery system to overcome tumor surface adherence and uptake. We used three-dimensional (3D) tumor spheroids in combination with light-sheet fluorescence microscopy in a head-to-head comparison of a variety of commonly used lipid-based nanoparticles, including liposomes, PEGylated liposomes, lipoplexes, and reconstituted high-density lipoproteins (rHDL). Whilst PEGylation of liposomes only had minor effects on the penetration efficiency, we show that lipoplexes are mainly associated with the periphery of tumor spheroids, possibly due to their positive surface charge, leading to fusion with the cells at the spheroid surface or aggregation. Surprisingly, the rHDL showed significantly higher penetration efficiency and high accumulation inside the spheroid. While these findings indeed could be relevant when designing novel drug delivery systems based on lipid-based nanoparticles, we stress that the used platform and the detailed image analysis are a versatile tool for in vitro studies of the penetration efficiency of nanoparticles in tumors.
Collapse
Affiliation(s)
- Maria Niora
- The
Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark
| | - Dennis Pedersbæk
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rasmus Münter
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | - Thomas L. Andresen
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jens B. Simonsen
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Liselotte Jauffred
- The
Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark
| |
Collapse
|
15
|
Hossaini Nasr S, Rashidijahanabad Z, Ramadan S, Kauffman N, Parameswaran N, Zinn KR, Qian C, Arora R, Agnew D, Huang X. Effective atherosclerotic plaque inflammation inhibition with targeted drug delivery by hyaluronan conjugated atorvastatin nanoparticles. NANOSCALE 2020; 12:9541-9556. [PMID: 32314997 PMCID: PMC7234819 DOI: 10.1039/d0nr00308e] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Atherosclerosis is associated with inflammation in the arteries, which is a major cause of heart attacks and strokes. Reducing the extent of local inflammation at atherosclerotic plaques can be an attractive strategy to combat atherosclerosis. While statins can exhibit direct anti-inflammatory activities, the high dose required for such a therapy renders it unrealistic due to their low systemic bioavailabilities and potential side effects. To overcome this, a new hyaluronan (HA)-atorvastatin (ATV) conjugate was designed with the hydrophobic statin ATV forming the core of the nanoparticle (HA-ATV-NP). The HA on the NPs can selectively bind with CD44, a cell surface receptor overexpressed on cells residing in atherosclerotic plaques and known to play important roles in plaque development. HA-ATV-NPs exhibited significantly higher anti-inflammatory effects on macrophages compared to ATV alone in vitro. Furthermore, when administered in an apolipoprotein E (ApoE)-knockout mouse model of atherosclerosis following a 1-week treatment regimen, HA-ATV-NPs markedly decreased inflammation in advanced atherosclerotic plaques, which were monitored through contrast agent aided magnetic resonance imaging. These results suggest CD44 targeting with HA-ATV-NPs is an attractive strategy to reduce harmful inflammation in atherosclerotic plaques.
Collapse
Affiliation(s)
- Seyedmehdi Hossaini Nasr
- Department of Chemistry Michigan State University, East Lansing, Michigan 48824, USA. and Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA
| | - Zahra Rashidijahanabad
- Department of Chemistry Michigan State University, East Lansing, Michigan 48824, USA. and Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA
| | - Sherif Ramadan
- Department of Chemistry Michigan State University, East Lansing, Michigan 48824, USA. and Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA and Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | - Nate Kauffman
- Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA and Department of Biomedical Engineering Michigan State University, East Lansing, Michigan 48824, USA
| | | | - Kurt R Zinn
- Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA and Department of Biomedical Engineering Michigan State University, East Lansing, Michigan 48824, USA and Department of Radiology Michigan State University, East Lansing, Michigan 48824, USA
| | - Chunqi Qian
- Department of Radiology Michigan State University, East Lansing, Michigan 48824, USA
| | - Ripla Arora
- Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA and Department of Obstetrics, Gynecology and Reproductive Biology Michigan State University, East Lansing, Michigan 48824, USA
| | - Dalen Agnew
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824, USA
| | - Xuefei Huang
- Department of Chemistry Michigan State University, East Lansing, Michigan 48824, USA. and Institute for Quantitative Health Science and Engineering Michigan State University, East Lansing, Michigan 48824, USA and Department of Biomedical Engineering Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
16
|
Darrigues E, Nima ZA, Griffin RJ, Anderson JM, Biris AS, Rodriguez A. 3D cultures for modeling nanomaterial-based photothermal therapy. NANOSCALE HORIZONS 2020; 5:400-430. [PMID: 32118219 DOI: 10.1039/c9nh00628a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Photothermal therapy (PTT) is one of the most promising techniques for cancer tumor ablation. Nanoparticles are increasingly being investigated for use with PTT and can serve as theranostic agents. Based on the ability of near-infrared nano-photo-absorbers to generate heat under laser irradiation, PTT could prove advantageous in certain situations over more classical cancer therapies. To analyze the efficacy of nanoparticle-based PTT, preclinical in vitro studies typically use 2D cultures, but this method cannot completely mimic the complex tumor organization, bioactivity, and physiology that all control the complex penetration depth, biodistribution, and tissue diffusion parameters of nanomaterials in vivo. To fill this knowledge gap, 3D culture systems have been explored for PTT analysis. These models provide more realistic microenvironments that allow spatiotemporal oxygen gradients and cancer cell adaptations to be considered. This review highlights the work that has been done to advance 3D models for cancer microenvironment modeling, specifically in the context of advanced, functionalized nanoparticle-directed PTT.
Collapse
Affiliation(s)
- Emilie Darrigues
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR 72204, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Cong Z, Zhang L, Ma SQ, Lam KS, Yang FF, Liao YH. Size-Transformable Hyaluronan Stacked Self-Assembling Peptide Nanoparticles for Improved Transcellular Tumor Penetration and Photo-Chemo Combination Therapy. ACS NANO 2020; 14:1958-1970. [PMID: 32023048 DOI: 10.1021/acsnano.9b08434] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Size-transformable nanomedicine has the potential to overcome systemic and local barriers, leading to efficient accumulation and penetration throughout the tumor tissue. However, the design of this type of nanomedicine was seldom based on active targeting and intracellular size transformation. Here, we report an intracellular size-transformable nanosystem, in which small and positively charged nanoparticles (<30 nm) prepared from the self-assembly of an amphiphilic hexadecapeptide derivative was coated by folic acid- and dopamine-decorated hyaluronan (HA) to form large and negatively charged nanoparticles (∼130 nm). This nanosystem has been proven to improve the blood circulation half-life of the drug and prevent premature intravascular drug leakage from the nanocarrier. Once accumulated in the tumor, the nanoparticles were prone to HA- and folic acid-mediated cellular uptake, followed by intracellular size transformation and discharge of transformed small nanoparticles. The size-transformable nanosystem facilitated the transcytosis-mediated tumor penetration and improved the internalization of nanoparticles by cells and the intracellular release of 7-ethyl-10 hydroxycamptothecin. With an indocyanine green derivative as the intrinsic component of the amphiphilic polymer, the nanosystem has exhibited additional theranostic functions: photoacoustic imaging, NIR-laser-induced drug release, and synergistic chemotherapy and phototherapy, leading to a 50% complete cure rate in a subcutaneous B16 melanoma model. This nanosystem with multimodalities and efficient tumor penetration has shown potentials in improving anticancer efficacy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Cell Survival
- Combined Modality Therapy
- Disease Models, Animal
- Dopamine/chemistry
- Female
- Folic Acid/chemistry
- Hyaluronic Acid/chemistry
- Indocyanine Green/administration & dosage
- Indocyanine Green/chemistry
- Injections, Intravenous
- Irinotecan/administration & dosage
- Irinotecan/chemistry
- Irinotecan/pharmacology
- Male
- Melanoma, Experimental/diagnostic imaging
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Nanoparticles/chemistry
- Optical Imaging
- Particle Size
- Peptides/chemical synthesis
- Peptides/chemistry
- Rats
- Rats, Wistar
- Surface Properties
Collapse
Affiliation(s)
- Zhaoqing Cong
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , 151 Malianwa North Road, Haidian District , Beijing 100193 , China
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| | - Lu Zhang
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| | - Si-Qi Ma
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , 151 Malianwa North Road, Haidian District , Beijing 100193 , China
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| | - Fei-Fei Yang
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , 151 Malianwa North Road, Haidian District , Beijing 100193 , China
| | - Yong-Hong Liao
- Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences & Peking Union Medical College , 151 Malianwa North Road, Haidian District , Beijing 100193 , China
| |
Collapse
|
18
|
Ouyang X, Wang X, Kraatz HB, Ahmadi S, Gao J, Lv Y, Sun X, Huang Y. A Trojan horse biomimetic delivery strategy using mesenchymal stem cells for PDT/PTT therapy against lung melanoma metastasis. Biomater Sci 2019; 8:1160-1170. [PMID: 31848537 DOI: 10.1039/c9bm01401b] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cell (MSC)-based biomimetic delivery has been actively explored for drug accumulation and penetration into tumors by taking advantage of the tumor-tropic and penetration properties of MSCs. In this work, we further demonstrated the feasibility of MSC-mediated nano drug delivery, which was characterized by the "Trojan horse"-like transport via an endocytosis-exocytosis-endocytosis process between MSCs and cancer cells. Chlorin e6 (Ce6)-conjugated polydopamine nanoparticles (PDA-Ce6) were developed and loaded into the MSCs. Phototherapeutic agents are safe to the MSCs, and their very low dark toxicity causes no impairment of the inherent properties of MSCs, including tumor-homing ability. The MSCs loaded with PDA-Ce6 (MSC-PDA-Ce6) were able to target and penetrate into tumors and exocytose 60% of the payloads in 72 h. The released PDA-Ce6 NPs could penetrate deep and be re-endocytosed by the cancer cells. MSC-PDA-Ce6 tended to accumulate in the lungs and delivered PDA-Ce6 into the tumors after intravenous injection in the mouse model with lung melanoma metastasis. Phototoxicity can be selectively triggered in the tumors by sequentially treating with near-infrared irradiation to induce photodynamic therapy (PDT) and photothermal therapy (PTT). The MSC-based biomimetic delivery of PDA-Ce6 nanoparticles is a potential method for dual phototherapy against lung melanoma metastasis.
Collapse
Affiliation(s)
- Xumei Ouyang
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China. and Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, China and Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoling Wang
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China. and Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Soha Ahmadi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Jianqing Gao
- Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanyuan Lv
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China.
| | - Xiaoyi Sun
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.
| |
Collapse
|
19
|
Cutrona MB, Simpson JC. A High-Throughput Automated Confocal Microscopy Platform for Quantitative Phenotyping of Nanoparticle Uptake and Transport in Spheroids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902033. [PMID: 31334922 DOI: 10.1002/smll.201902033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/24/2019] [Indexed: 05/23/2023]
Abstract
There is a high demand for advanced, image-based, automated high-content screening (HCS) approaches to facilitate phenotypic screening in 3D cell culture models. A major challenge lies in retaining the resolution of fine cellular detail but at the same time imaging multicellular structures at a large scale. In this study, a confocal microscopy-based HCS platform in optical multiwell plates that enables the quantitative morphological profiling of populations of nonuniform spheroids obtained from HT-29 human colorectal cancer cells is described. This platform is then utilized to demonstrate a quantitative dissection of the penetration of synthetic nanoparticles (NP) in multicellular 3D spheroids at multiple levels of scale. A pilot RNA interference-based screening validates this methodology and identifies a subset of RAB GTPases that regulate NP trafficking in these spheroids. This technology is suitable for high-content phenotyping in 3D cell-based screening, providing a framework for nanomedicine drug development as applied to translational oncology.
Collapse
Affiliation(s)
- Meritxell B Cutrona
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), Galway, H91 W2TY, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), Galway, H91 W2TY, Ireland
| |
Collapse
|
20
|
Wang D, Zhao Q, Jiang T, Sha L, Wang S, Song Y. Large amino acid transporter 1 mediated glutamate modified mesoporous silica nanoparticles for chemophotothermal therapy. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Zhang L, Wang Y, Yang D, Huang W, Hao P, Feng S, Appelhans D, Zhang T, Zan X. Shape Effect of Nanoparticles on Tumor Penetration in Monolayers Versus Spheroids. Mol Pharm 2019; 16:2902-2911. [PMID: 31184906 DOI: 10.1021/acs.molpharmaceut.9b00107] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The physical properties of nanoparticles (NPs), such as size, surface chemistry, elasticity, and shape, have exerted a profound influence on tumor penetration. However, the effect of shape on cellular uptake and tumor penetration is still unclear because of the different chemical compositions and shapes of tested particles and the use of inapposite cellular models. To discover the effect of NP shapes on cellular uptake and tumor penetration and bridge the gap between models in vivo and in vitro, elongated polystyrene (PS) NPs with a fixed volume, an identical chemical composition, and the same zeta potential, but with different aspect ratios (ARs), were generated. The physical properties, cellular uptake, tumor penetration, and corresponding mechanisms of these NPs were thoroughly investigated. We discovered that the elongated PS particles with higher ARs had lower uptake rates in the 2-dimensional cell monolayer culture model in vitro, but they showed optimal ARs in the evaluated three-dimensional spheroid model. Although the elongated PS particles had a similar tumor penetration mechanism (mainly through extracellular pathways), the percentage of penetration using these mechanisms was strongly dependent on the ARs. As an alternative model for studies in vivo, spheroids were used instead of the cell monolayer for the development of drug delivery systems. In addition, the physicochemical properties of NPs must be delicately balanced and adjusted to achieve the best therapeutic outcomes.
Collapse
Affiliation(s)
- Long Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang Province 325035 , PR China.,Wenzhou Institute of Biomaterials and Engineering, CNITECH , Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering , CAS , Wenzhou , Zhejiang Province 325001 , PR China
| | - Yong Wang
- Institute of Materials Research and Engineering , Fusionopolis Way , Innovis 138634 , Singapore
| | - Dejun Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang Province 325035 , PR China.,Wenzhou Institute of Biomaterials and Engineering, CNITECH , Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , PR China
| | - Wenjuan Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang Province 325035 , PR China.,Wenzhou Institute of Biomaterials and Engineering, CNITECH , Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering , CAS , Wenzhou , Zhejiang Province 325001 , PR China
| | - Pengyan Hao
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang Province 325035 , PR China.,Wenzhou Institute of Biomaterials and Engineering, CNITECH , Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering , CAS , Wenzhou , Zhejiang Province 325001 , PR China
| | - Sheng Feng
- Department of Pathology and Laboratory Medicine , Hospital of the University of Pennsylvania , Philadelphia , Pennsylvania 19107 , United States
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden , Hohe Straße 6 , Dresden 01069 , Germany
| | - Tinghong Zhang
- Wenzhou Institute of Biomaterials and Engineering, CNITECH , Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering , CAS , Wenzhou , Zhejiang Province 325001 , PR China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang Province 325035 , PR China.,Wenzhou Institute of Biomaterials and Engineering, CNITECH , Chinese Academy of Sciences , Wenzhou , Zhejiang Province 325001 , PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering , CAS , Wenzhou , Zhejiang Province 325001 , PR China
| |
Collapse
|
22
|
Exocytosis - a putative road-block in nanoparticle and nanocomplex mediated gene delivery. J Control Release 2019; 303:67-76. [DOI: 10.1016/j.jconrel.2019.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
|
23
|
Fortuni B, Inose T, Ricci M, Fujita Y, Van Zundert I, Masuhara A, Fron E, Mizuno H, Latterini L, Rocha S, Uji-I H. Polymeric Engineering of Nanoparticles for Highly Efficient Multifunctional Drug Delivery Systems. Sci Rep 2019; 9:2666. [PMID: 30804375 PMCID: PMC6389875 DOI: 10.1038/s41598-019-39107-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022] Open
Abstract
Most targeting strategies of anticancer drug delivery systems (DDSs) rely on the surface functionalization of nanocarriers with specific ligands, which trigger the internalization in cancer cells via receptor-mediated endocytosis. The endocytosis implies the entrapment of DDSs in acidic vesicles (endosomes and lysosomes) and their eventual ejection by exocytosis. This process, intrinsic to eukaryotic cells, is one of the main drawbacks of DDSs because it reduces the drug bioavailability in the intracellular environment. The escape of DDSs from the acidic vesicles is, therefore, crucial to enhance the therapeutic performance at low drug dose. To this end, we developed a multifunctionalized DDS that combines high specificity towards cancer cells with endosomal escape capabilities. Doxorubicin-loaded mesoporous silica nanoparticles were functionalized with polyethylenimine, a polymer commonly used to induce endosomal rupture, and hyaluronic acid, which binds to CD44 receptors, overexpressed in cancer cells. We show irrefutable proof that the developed DDS can escape the endosomal pathway upon polymeric functionalization. Interestingly, the combination of the two polymers resulted in higher endosomal escape efficiency than the polyethylenimine coating alone. Hyaluronic acid additionally provides the system with cancer targeting capability and enzymatically controlled drug release. Thanks to this multifunctionality, the engineered DDS had cytotoxicity comparable to the pure drug whilst displaying high specificity towards cancer cells. The polymeric engineering here developed enhances the performance of DDS at low drug dose, holding great potential for anticancer therapeutic applications.
Collapse
Affiliation(s)
- Beatrice Fortuni
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium.
| | - Tomoko Inose
- RIES Hokkaido University, Research Institute for Electronic Science, N20W10, Kita-Ward Sapporo, 0010020, Japan
| | - Monica Ricci
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium
| | - Yasuhiko Fujita
- Toray Research Center, Inc., 3-3-7, Sonoyama, Otsu, Shiga, 520-8567, Japan
| | - Indra Van Zundert
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium
| | - Akito Masuhara
- Yamagata University, department of Engineering, Yonezawa, Yamagata, 992-8510, Japan
| | - Eduard Fron
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium
| | - Hideaki Mizuno
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium
| | - Loredana Latterini
- University of Perugia, department of Chemistry, Biology and Biotechnology, via Elce di sotto 8, Perugia, Italy
| | - Susana Rocha
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium.
| | - Hiroshi Uji-I
- KU Leuven, department of Chemistry, Celestijnenlaan 200G-F, Heverlee, 3001, Belgium.
- RIES Hokkaido University, Research Institute for Electronic Science, N20W10, Kita-Ward Sapporo, 0010020, Japan.
| |
Collapse
|
24
|
Wang X, Ouyang X, Chen J, Hu Y, Sun X, Yu Z. Nanoparticulate photosensitizer decorated with hyaluronic acid for photodynamic/photothermal cancer targeting therapy. Nanomedicine (Lond) 2018; 14:151-167. [PMID: 30511886 DOI: 10.2217/nnm-2018-0204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM A photomedicine consisting of a core for photothermal therapy, a photosensitizer for photodynamic therapy, and a cancer-targeting moiety was fabricated to improve photosensitizer selectivity and antitumor efficiency. MATERIALS & METHODS Hyaluronic acid-decorated polydopamine nanoparticles with conjugated chlorin e6 (HA-PDA-Ce6) were synthesized and characterized. Cell uptake, phototoxicity, penetration, distribution and therapeutic effects were evaluated. RESULTS HA-PDA-Ce6 had high photoactivities for photodynamic therapy/photothermal therapy and was readily internalized via CD44-mediated endocytosis. Enhanced accumulation and deeper penetration into tumors were achieved by the diffusion molecular retention tumor targeting effect following peritumoral injection. In the combination therapy, HA-PDA-Ce6 displayed the highest tumor growth inhibition in HCT-116 tumor-bearing mice. CONCLUSION HA-PDA-Ce6 is promising for targeted colorectal cancer therapy.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China.,Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xumei Ouyang
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China.,Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinliang Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Ying Hu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo 315000, China
| | - Xiaoyi Sun
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China
| | - Zhenwei Yu
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
25
|
Wang X, Wang J, Li J, Huang H, Sun X, Lv Y. Development and evaluation of hyaluronic acid-based polymeric micelles for targeted delivery of photosensitizer for photodynamic therapy in vitro. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Zhang X, Xu X, Li Y, Hu C, Zhang Z, Gu Z. Virion-Like Membrane-Breaking Nanoparticles with Tumor-Activated Cell-and-Tissue Dual-Penetration Conquer Impermeable Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707240. [PMID: 29774608 DOI: 10.1002/adma.201707240] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Poor drug penetration into tumor cells and tissues is a worldwide difficulty in cancer therapy. A strategy is developed for virion-like membrane-breaking nanoparticles (MBNs) to smoothly accomplish tumor-activated cell-and-tissue dual-penetration for surmounting impermeable drug-resistant cancer. Tailor-made dendritic arginine-rich peptide prodrugs are designed to mimic viral protein transduction domains and globular protein architectures. Attractively, these protein mimics self-assemble into virion-like nanoparticles in aqueous solution, having highly ordered secondary structure. Tumor-specific acidity conditions would activate the membrane-breaking ability of these virion-like nanoparticles to perforate artificial and natural membrane systems. As expected, MBNs achieve highly efficient drug penetration into drug-resistant human ovarian (SKOV3/R) cancer cells. Most importantly, the well-organized MBNs can pass through endothelial/tumor cells and spread from one cell to another one. Intravenous injection of MBNs into nude mice bearing impermeable SKOV3/R tumors suggests that the MBNs can recognize the tumor tissue after prolonged blood circulation, evoke the membrane-breaking function for robust transvascular extravasation, and penetrate into the deep tumor tissue. This work provides the first demonstration of sophisticated molecular and supramolecular engineering of virion-like MBNs to realize the long-awaited cell-and-tissue dual-penetration, contributing to the development of a brand-new avenue for dealing with incurable cancers.
Collapse
Affiliation(s)
- Xiao Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Xianghui Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yachao Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Zhijun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| |
Collapse
|
27
|
Jia Y, Sheng Z, Hu D, Yan F, Zhu M, Gao G, Wang P, Liu X, Wang X, Zheng H. Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy. Biomater Sci 2018; 6:1546-1555. [DOI: 10.1039/c8bm00256h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Biomimetic liposome nanomedicine with deep tumor penetration and specific homotypic targeting ability enhanced cancer chemotherapy.
Collapse
|
28
|
Mebert AM, Baglole CJ, Desimone MF, Maysinger D. Nanoengineered silica: Properties, applications and toxicity. Food Chem Toxicol 2017; 109:753-770. [DOI: 10.1016/j.fct.2017.05.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
|
29
|
Dynamics of nanoparticle diffusion and uptake in three-dimensional cell cultures. Colloids Surf B Biointerfaces 2016; 149:7-15. [PMID: 27710850 DOI: 10.1016/j.colsurfb.2016.09.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/14/2016] [Accepted: 09/29/2016] [Indexed: 11/21/2022]
Abstract
This study aims at elucidating the effect of three-dimensional (3D) extracellular matrix on cell behaviour and nanoparticle (NP) diffusion and its consequences on NP cellular uptake mechansims. For this purpose, human dermal fibroblasts (HDF) and human fibrosarcoma (HT1080) cell lines were grown within a 3D collagen gel and exposed to model polystyrene (PS) NPs of controlled size (44 and 100nm). Results indicate that, in 3D, cell morphology dramatically changes compared to standard 2D cultures and NP diffusion within the matrix is hampered by the interaction with the collagen fibres. As a consequence, NP cellular uptake, modeled with equations describing the stoichiometric exchange between NPs and cell membrane, is significantly slowed down in 3D and in the case of 100 nm NPs, in part due to the hampered diffusion of NPs in collagen gel compared to their transport in standard cell culture medium. Furthermore, our outcomes point at a significant contribution of the cytoskeleton assembly, in particular actin microfilaments, in governing the uptake of PS NPs in a 3D environment, and also that the macropinocytosis process is preserved and is mainly involved in the internalization of PS NPs in a 3D environment. However, depending on cell type and nanoparticle size, other endocytic pathways are also implicated when moving from 2D to 3D culture systems. This work highlights the importance of studying the nano-bio interaction in experimental models that resembles in vivo conditions in order to better predict the therapeutic efficacy of drug delivery systems.
Collapse
|
30
|
El-Boubbou K, Ali R, Bahhari HM, AlSaad KO, Nehdi A, Boudjelal M, AlKushi A. Magnetic Fluorescent Nanoformulation for Intracellular Drug Delivery to Human Breast Cancer, Primary Tumors, and Tumor Biopsies: Beyond Targeting Expectations. Bioconjug Chem 2016; 27:1471-83. [PMID: 27269304 DOI: 10.1021/acs.bioconjchem.6b00257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the development of a chemotherapeutic nanoformulation made of polyvinylpyrrolidone-stabilized magnetofluorescent nanoparticles (Fl-PMNPs) loaded with anticancer drugs as a promising drug carrier homing to human breast cancer cells, primary tumors, and solid tumors. First, nanoparticle uptake and cell death were evaluated in three types of human breast cells: two metastatic cancerous MCF-7 and MDA-MB-231 cells and nontumorigenic MCF-10A cells. While Fl-PMNPs were not toxic to cells even at the highest concentrations used, Dox-loaded Fl-PMNPs showed significant potency, effectively killing the different breast cancer cells, albeit at different affinities. Interestingly and superior to free Dox, Dox-loaded Fl-PMNPs were found to be more effective in killing the metastatic cells (2- to 3-fold enhanced cytotoxicities for MDA-MB-231 compared to MCF-7), compared to the normal noncancerous MCF-10A cells (up to 8-fold), suggesting huge potentials as selective anticancer agents. Electron and live confocal microscopy imaging mechanistically confirmed that the nanoparticles were successfully endocytosed and packaged into vesicles inside the cytoplasm, where Dox is released and then translocated to the nucleus exerting its cytotoxic action and causing apoptotic cell death. Furthermore, commendable and enhanced penetration in 3D multilayered primary tumor cells derived from primary lesions as well as in patient breast tumor biopsies was observed, killing the tumor cells inside. The designed nanocarriers described here can potentially open new opportunities for breast cancer patients, especially in theranostic imaging and hyperthermia. While many prior studies have focused on targeting ligands to specific receptors to improve efficacies, we discovered that even with passive-targeted tailored delivery system enhanced toxic responses can be attained.
Collapse
Affiliation(s)
- Kheireddine El-Boubbou
- King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| | - Rizwan Ali
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| | - Hassan M Bahhari
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| | - Khaled O AlSaad
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| | - Atef Nehdi
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| | - Mohamed Boudjelal
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| | - Abdulmohsen AlKushi
- King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| |
Collapse
|
31
|
Dosio F, Arpicco S, Stella B, Fattal E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev 2016; 97:204-36. [PMID: 26592477 DOI: 10.1016/j.addr.2015.11.011] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/06/2023]
Abstract
Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results.
Collapse
|
32
|
Wang H, Agarwal P, Zhao S, Yu J, Lu X, He X. A Near-Infrared Laser-Activated "Nanobomb" for Breaking the Barriers to MicroRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:347-55. [PMID: 26567892 DOI: 10.1002/adma.201504263] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/30/2015] [Indexed: 05/26/2023]
Abstract
A near-infrared laser-activated "nanobomb" is synthesized using lipid and multiple polymers to break the extra-cellular and intracellular barriers to cytosolic delivery of microRNAs. The nanobomb can be used to effectively destroy tumors and cancer stem-like cells in vitro and in vivo with minimal side effects.
Collapse
Affiliation(s)
- Hai Wang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Pranay Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Shuting Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Jianhua Yu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Division of Hematology, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiongbin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
33
|
Vyas D, Lopez-Hisijos N, Gandhi S, El-Dakdouki M, Basson MD, Walsh MF, Huang X, Vyas AK, Chaturvedi LS. Doxorubicin-Hyaluronan Conjugated Super-Paramagnetic Iron Oxide Nanoparticles (DOX-HA-SPION) Enhanced Cytoplasmic Uptake of Doxorubicin and Modulated Apoptosis, IL-6 Release and NF-kappaB Activity in Human MDA-MB-231 Breast Cancer Cells. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2015; 15:6413-6422. [PMID: 26690867 PMCID: PMC4681409 DOI: 10.1166/jnn.2015.10834] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Triple negative breast cancer exhibit increased IL-6 expression compared with matched healthy breast tissue and a strong link between inflammation and cancer progression and metastasis has been reported. We investigated whether doxorubicin-hyaluronan-super-paramagnetic iron oxide nanoparticles (DOX-HA-SPION) would show greater therapeutic efficacy in human triple negative breast cancer cells (TNBC) MDA-MB-231, as was recently shown in drug-sensitive and multi-drug-resistant ovarian cancer cells. Therefore, we measured cellular DOX uptake via confocal microscopy; observed morphologic changes: mitochondrial and nuclear changes with electron microscopy, and quantitated apoptosis using FACS analysis after Annexin V and PI staining in MDA-MB-231 cells treated with either DOX alone or DOX-HA-SPION. We also measured both proinflammatory and anti-inflammatory cytokines; IL-6, IL-10 respectively and also measured nitrate levels in the conditioned medium by ELISA. Inaddition, NF-κB activity was measured by luciferase assay. Confocal microscopy demonstrated greater cytoplasmic uptake of DOX-HA-SPION than free DOX. We also demonstrated reduction of Vimentin with DOX-HA-SPION which is significantly less than both control and DOX. DOX-HA-SPION enhanced apoptosis and significantly down regulated both pro-inflammatory mediators IL-6 and NF-κB in comparison to DOX alone. The secretion levels of anti-inflammatory mediators IL-10 and nitrate was not decreased in the DOX or DOX-HA-SPION treatment groups. Our data suggest that DOX-HA-SPION nanomedicine-based drug delivery could have promising potential in treating metastasized and chemoresistant breast cancer by enhancing the drug efficacy and minimizing off-target effects.
Collapse
|
34
|
Rao W, Wang H, Han J, Zhao S, Dumbleton J, Agarwal P, Zhang W, Zhao G, Yu J, Zynger DL, Lu X, He X. Chitosan-Decorated Doxorubicin-Encapsulated Nanoparticle Targets and Eliminates Tumor Reinitiating Cancer Stem-like Cells. ACS NANO 2015; 9:5725-40. [PMID: 26004286 DOI: 10.1021/nn506928p] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tumor reinitiating cancer stem-like cells are responsible for cancer recurrence associated with conventional chemotherapy. We developed a doxorubicin-encapsulated polymeric nanoparticle surface-decorated with chitosan that can specifically target the CD44 receptors of these cells. This nanoparticle system was engineered to release the doxorubicin in acidic environments, which occurs when the nanoparticles are localized in the acidic tumor microenvironment and when they are internalized and localized in the cellular endosomes/lysosomes. This nanoparticle design strategy increases the cytotoxicity of the doxorubicin by six times in comparison to the use of free doxorubicin for eliminating CD44(+) cancer stem-like cells residing in 3D mammary tumor spheroids (i.e., mammospheres). We further show these nanoparticles reduced the size of tumors in an orthotopic xenograft tumor model with no evident systemic toxicity. The development of nanoparticle system to target cancer stem-like cells with low systemic toxicity provides a new treatment arsenal for improving the survival of cancer patients.
Collapse
Affiliation(s)
- Wei Rao
- †Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- ‡Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hai Wang
- †Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- ‡Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
- §Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jianfeng Han
- §Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- ∥Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shuting Zhao
- †Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- ‡Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jenna Dumbleton
- †Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- ‡Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pranay Agarwal
- †Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- ‡Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wujie Zhang
- ⊥Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202, United States
| | - Gang Zhao
- #Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jianhua Yu
- §Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- ∥Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Debra L Zynger
- ∇Division of Genitourinary Pathology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiongbin Lu
- ○Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Xiaoming He
- †Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- ‡Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
- §Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
35
|
Maiolino S, Moret F, Conte C, Fraix A, Tirino P, Ungaro F, Sortino S, Reddi E, Quaglia F. Hyaluronan-decorated polymer nanoparticles targeting the CD44 receptor for the combined photo/chemo-therapy of cancer. NANOSCALE 2015; 7:5643-5653. [PMID: 25648974 DOI: 10.1039/c4nr06910b] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the attempt to develop novel concepts in designing targeted nanoparticles for combination therapy of cancer, we propose here CD44-targeted hyaluronan-decorated double-coated nanoparticles (dcNPs) delivering the lipophilic chemotherapeutic docetaxel (DTX) and an anionic porphyrin (TPPS₄). dcNPs are based on electrostatic interactions between a negative DTX-loaded nanoscaffold of poly(lactide-co-glycolide), a polycationic shell of polyethyleneimine entangling negatively-charged TPPS₄ and finally decorated with hyaluronan (HA) to promote internalization through CD44 receptor-mediated endocytosis. DTX/TPPS₄-dcNPs, prepared through layer-by-layer deposition, showed a hydrodynamic diameter of around 180 nm, negative zeta potential and efficient loading of both DTX and TPPS₄. DTX/TPPS₄-dcNPs were freeze-dried with trehalose giving a powder that could be easily dispersed in different media. Excellent stability of dcNPs in specific salt- and protein-containing media was found. Spectroscopic behavior of DTX/TPPS₄-dcNPs demonstrated a face-to-face arrangement of the TPPS₄ units in non-photoresponsive H-type aggregates accounting for an extensive aggregation of the porphyrin embedded in the shell. Experiments in MDA-MB-231 cells overexpressing the CD44 receptor demonstrated a 9.4-fold increase in the intracellular level of TPPS₄ delivered from dcNPs as compared to free TPPS₄. Light-induced death increased tremendously in cells that had been treated with a combination of TPPS₄ and DTX delivered through dcNPs as compared with free drugs, presumably due to efficient uptake and co-localization inside the cells. In perspective, the strategy proposed here to target synergistic drug combinations through HA-decorated nanoparticles seems very attractive to improve the specificity and efficacy of cancer treatment.
Collapse
Affiliation(s)
- Sara Maiolino
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Singh SP, Sharma M, Gupta PK. Cytotoxicity of curcumin silica nanoparticle complexes conjugated with hyaluronic acid on colon cancer cells. Int J Biol Macromol 2015; 74:162-70. [DOI: 10.1016/j.ijbiomac.2014.11.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 12/11/2022]
|
37
|
Miura S, Suzuki H, Bae YH. A Multilayered Cell Culture Model for Transport Study in Solid Tumors: Evaluation of Tissue Penetration of Polyethyleneimine Based Cationic Micelles. NANO TODAY 2014; 9:695-704. [PMID: 25866552 PMCID: PMC4387546 DOI: 10.1016/j.nantod.2014.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Limited drug distribution is partially responsible for the efficacy gap between preclinical and clinical studies of nano-sized drug carriers for cancer therapy. In this study, we examined the transport behavior of cationic micelles formed from a triblock copolymer of poly(D,L-lactide-co-glycolide)-block-branched polyethyleneimine-block-poly(D,L-lactide-co-glycolide) using a unique in vitro tumor model composed of a multilayered cell culture (MCC) and an Ussing chamber system. The Cy3-labeled cationic micelles showed remarkable Cy3 distribution in the MCC whereas charge-shielded micelles with a poly(ethylene glycol) surface accumulated on the surface of the MCC. Penetration occurred against convectional flow caused by a hydraulic pressure gradient. The study using fluorescence resonance energy transfer (FRET) showed that the cationic micelles dissociate at the interface between the culture media and the MCC or possibly inside of the first-layer cells and penetrates into the MCC as unimers. The penetration and distribution were energy-dependent and suppressed by various endocytic inhibitors. These suggest that cationic unimers mainly utilized clathrin-mediated endocytosis and macropinocytosis for cellular entry and a significant fraction were exocytosed by an unknown mechanism.
Collapse
Affiliation(s)
- Seiji Miura
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, United States
- Fuji Research Laboratories, Pharmaceutical Division, Kowa Co. Ltd., 332–1 Ohnoshinden, Fuji, Shizuoka, Japan
| | - Hidenori Suzuki
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, United States
- Fuji Research Laboratories, Pharmaceutical Division, Kowa Co. Ltd., 332–1 Ohnoshinden, Fuji, Shizuoka, Japan
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, United States
| |
Collapse
|
38
|
Wang X, Li S, Shi Y, Chuan X, Li J, Zhong T, Zhang H, Dai W, He B, Zhang Q. The development of site-specific drug delivery nanocarriers based on receptor mediation. J Control Release 2014; 193:139-53. [DOI: 10.1016/j.jconrel.2014.05.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/13/2014] [Accepted: 05/17/2014] [Indexed: 01/28/2023]
|
39
|
Liu T, Kempson I, de Jonge M, Howard DL, Thierry B. Quantitative synchrotron X-ray fluorescence study of the penetration of transferrin-conjugated gold nanoparticles inside model tumour tissues. NANOSCALE 2014; 6:9774-9782. [PMID: 25008536 DOI: 10.1039/c4nr02100b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The next generation of therapeutic nanoparticles in the treatment of cancer incorporate specific targeting. There is implicit importance in understanding penetration of targeted nanomedicines within tumour tissues via accurate and quantitative temporospatial measurements. In this study we demonstrate the potential of state-of-the-art synchrotron X-ray fluorescence microscopy (XFM) to provide such insights. To this end, quantitative mapping of the distribution of transferrin-conjugated gold nanoparticles inside multicellular tumour spheroids was achieved using XFM and compared with qualitative data obtained using reflectance confocal microscopy. Gold nanoparticles conjugated with human transferrin with a narrow size-distribution and high binding affinity to tumour cells were prepared as confirmed by cellular uptake studies performed on 2D monolayers. Although the prepared 100 nm transferrin-conjugated gold nanoparticles had high targeting capability to cancer cells, penetration inside multicellular spheroids was limited even after 48 hours as shown by the quantitative XFM measurements. The rapid, quantitative and label-free nature of state-of-the-art synchrotron XFM make it an ideal technology to provide the structure-activity relationship understanding urgently required for developing the next generation of immuno-targeted nanomedicines.
Collapse
Affiliation(s)
- Tianqing Liu
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, SA 5095, Australia.
| | | | | | | | | |
Collapse
|
40
|
Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies. NANOMATERIALS 2014; 4:454-484. [PMID: 28344232 PMCID: PMC5304664 DOI: 10.3390/nano4020454] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 12/28/2022]
Abstract
Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures.
Collapse
|
41
|
Arpicco S, Milla P, Stella B, Dosio F. Hyaluronic acid conjugates as vectors for the active targeting of drugs, genes and nanocomposites in cancer treatment. Molecules 2014; 19:3193-230. [PMID: 24642908 PMCID: PMC6271549 DOI: 10.3390/molecules19033193] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid (HA) is a naturally-occurring glycosaminoglycan and a major component of the extracellular matrix. Low levels of the hyaluronic acid receptor CD44 are found on the surface of epithelial, hematopoietic, and neuronal cells; it is overexpressed in many cancer cells, and in particular in tumor-initiating cells. HA has recently attracted considerable interest in the field of developing drug delivery systems, having been used, as such or encapsulated in different types of nanoassembly, as ligand to prepare nano-platforms for actively targeting drugs, genes, and diagnostic agents. This review describes recent progress made with the several chemical strategies adopted to synthesize conjugates and prepare novel delivery systems with improved behaviors.
Collapse
Affiliation(s)
- Silvia Arpicco
- Dipartimento di Scienza e Tecnologia del Farmaco (Department of Drug Science and Technology), University of Torino, Torino, I-10125, Italy
| | - Paola Milla
- Dipartimento di Scienza e Tecnologia del Farmaco (Department of Drug Science and Technology), University of Torino, Torino, I-10125, Italy
| | - Barbara Stella
- Dipartimento di Scienza e Tecnologia del Farmaco (Department of Drug Science and Technology), University of Torino, Torino, I-10125, Italy
| | - Franco Dosio
- Dipartimento di Scienza e Tecnologia del Farmaco (Department of Drug Science and Technology), University of Torino, Torino, I-10125, Italy.
| |
Collapse
|
42
|
El-Dakdouki MH, Xia J, Zhu DC, Kavunja H, Grieshaber J, O’Reilly S, McCormick JJ, Huang X. Assessing the in vivo efficacy of doxorubicin loaded hyaluronan nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:697-705. [PMID: 24308364 PMCID: PMC3912576 DOI: 10.1021/am404946v] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Magnetic nanoparticles are attractive platforms for biomedical applications including diagnosis and treatment of diseases. We have shown previously that hyaluronan-coated superparamagnetic iron oxide nanoparticles (HA-SPIONs) enhanced the efficacy of the conjugated anticancer drug doxorubicin (DOX) in vitro against drug-sensitive and drug-resistant human ovarian cancer cells. In this manuscript, we report our findings on the efficacy of DOX loaded HA-SPIONs in vivo using subcutaneous and intraperitoneal SKOV-3 ovarian tumor models in nude mice. The accumulation of the nanoparticles in subcutaneous tumors following an intravenous nanoparticle administration was confirmed by magnetic resonance imaging, and its distribution in the tumors was evaluated by confocal microscopy and Prussian blue staining. DOX delivered by nanoparticles accumulated at much higher levels and distributed wider in the tumor tissue than intravenously injected free DOX, leading to significant reduction of tumor growth. The IVIS Spectrum for in vivo bioluminescence imaging was used to aid in therapy assessment of the DOX-loaded nanoparticles on intraperitoneal ovarian tumors formed by firefly luciferase expressing human ovarian SKOV-3 cells. DOX-loaded HA-SPIONs significantly reduced tumor growth, delayed tumor development, and extended the survival of mice. Thus, utilizing HA-SPIONs as drug delivery vehicles constitutes a promising approach to tackle CD44 expressing ovarian cancer.
Collapse
Affiliation(s)
- Mohammad H. El-Dakdouki
- Department of Chemistry, Beirut Arab University, Beirut, Lebanon. Tel: +961-7-985858, ext 3320
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, Michigan, 48824 USA. Tel: +1-517-355-9715, ext 329; Fax: +1-517-353-1793
| | - Jingguang Xia
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, Michigan, 48824 USA. Tel: +1-517-355-9715, ext 329; Fax: +1-517-353-1793
| | - David C. Zhu
- Departments of Radiology and Psychology, Michigan State University, East Lansing, Michigan, 48824 USA
| | - Herbert Kavunja
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, Michigan, 48824 USA. Tel: +1-517-355-9715, ext 329; Fax: +1-517-353-1793
| | - Jessica Grieshaber
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, Michigan, 48824 USA. Tel: +1-517-355-9715, ext 329; Fax: +1-517-353-1793
| | - Sandra O’Reilly
- Carcinogenesis Laboratory, Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
- Research Technology and Support Facility, Imaging-IVIS, Biomedical and Physical Sciences Building, Michigan State University, East Lansing, Michigan 48824, USA
| | - J. Justin McCormick
- Carcinogenesis Laboratory, Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, Michigan, 48824 USA. Tel: +1-517-355-9715, ext 329; Fax: +1-517-353-1793
| |
Collapse
|
43
|
El-Dakdouki MH, Puré E, Huang X. Development of drug loaded nanoparticles for tumor targeting. Part 1: Synthesis, characterization, and biological evaluation in 2D cell cultures. NANOSCALE 2013; 5:3895-903. [PMID: 23529646 PMCID: PMC3638024 DOI: 10.1039/c3nr33777d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanoparticles (NPs) are being extensively studied as carriers for drug delivery, but they often have limited penetration inside tumors. We envision that by targeting an endocytic receptor on the cell surface, the uptake of NPs can be significantly enhanced through receptor mediated endocytosis. In addition, if the receptor is recycled to the cell surface, the NP cargo can be transported out of the cells, which is then taken up by neighboring cells thus enhancing solid tumor penetration. To validate our hypothesis, in the first of two articles, we report the synthesis of doxorubicin (DOX)-loaded, hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44, a receptor expressed on the cancer cell surface. HA was conjugated onto amine-functionalized SNPs prepared through an oil-water microemulsion method. The immobilization of the cytotoxic drug DOX was achieved through an acid sensitive hydrazone linkage. The NPs were fully characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements, thermogravimetric analysis (TGA), UV-vis absorbance, and nuclear magnetic resonance (NMR). Initial biological evaluation experiments demonstrated that compared to ligand-free SNPs, the uptake of HA-SNPs by the CD44-expressing SKOV-3 ovarian cancer cells was significantly enhanced when evaluated in the 2D monolayer cell culture. Mechanistic studies suggested that cellular uptake of HA-SNPs was mainly through CD44 mediated endocytosis. HA-SNPs with immobilized DOX were endocytosed efficiently by the SKOV-3 cells as well. The enhanced tumor penetration and drug delivery properties of HA-SNPs will be evaluated in 3D tumor models in the subsequent paper.
Collapse
Affiliation(s)
- Mohammad H El-Dakdouki
- Department of Chemistry, Chemistry Building, Michigan State University, Room 426, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | | | | |
Collapse
|