1
|
Perry CC, Schulte RW, Fuller RN, Wall NR, Nick KE, Wegrzyn M, Milligan JR. Integrating gold nanostars into condensed DNA. Biochim Biophys Acta Gen Subj 2025; 1869:130793. [PMID: 40086767 DOI: 10.1016/j.bbagen.2025.130793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
X-irradiation has extensive applications in therapy and considerable attention has been devoted to the radiosensitizing properties of nanoparticles composed of high atomic number elements, particularly gold. Low energy electrons and/or heterogenous catalysis are widely suspected to be involved in radiosensitization, but there is uncertainty about their contributions. Because of their greater surface area to volume ratio relative to spherical particles per unit mass of gold, nanostars permit more low energy electrons to escape and possess an increased catalytic activity. Condensed DNA represents a highly useful model for mammalian chromatin, particularly with respect to the types and yields of DNA damage produced by ionizing radiation. Here we describe the incorporation of spherical gold nanoparticles and of gold nanostars into a condensed DNA model system. The resulting self-assembled micron-sized co-aggregates involve an intimate association between gold and DNA, maximizing the opportunity for the production of DNA damage. After increasing the ionic strength, the co-condensate becomes disaggregated and the DNA is available for subsequent assays. This model system provides a previously unavailable tool for examining the mechanisms of radiosensitization of DNA damage by gold nanoparticles with implications for possible applications in radiotherapy.
Collapse
Affiliation(s)
- Christopher C Perry
- Department of Basic Science, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA.
| | - Reinhard W Schulte
- Department of Basic Science, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA.
| | - Ryan N Fuller
- Department of Biology, California Baptist University, 8432 Magnolia Avenue, Riverside, CA 92504, USA.
| | - Nathan R Wall
- Department of Basic Science, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA.
| | - Kevin E Nick
- Department of Basic Science, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA.
| | - Magdalena Wegrzyn
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka Street 16, 44-100 Gliwice, Poland.
| | - Jamie R Milligan
- Department of Basic Science, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA.
| |
Collapse
|
2
|
Wang S, Alvarez-Fernandez A, Liu X, Miron-Barroso S, Wong K, Guldin S, Georgiou TK. Effect of Composition on the Thermo-Induced Aggregation of Poloxamer-Analogue Triblock Terpolymers. Macromolecules 2025; 58:2289-2302. [PMID: 40104263 PMCID: PMC11912521 DOI: 10.1021/acs.macromol.4c02217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/19/2024] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Thermoresponsive polymers hold great promise for biomedical applications due to their thermo-induced phase transitions. However, challenges including controlling transition temperatures, aggregate behavior, or complex synthesis, have limited their broader use. In this study, six ABC triblock terpolymers were synthesized via group transfer polymerization, targeting a molar mass of 8000 g/mol with varying compositions. The terpolymers consist of hydrophilic oligo(ethylene glycol) methyl ether methacrylate (average molar mass = 300 g/mol, OEGMA300), hydrophobic di(propylene glycol) methyl ether methacrylate (diPGMA), and less-hydrophilic di(ethylene glycol) methyl ether methacrylate (DEGMA). Systematic characterizations of properties related to thermo-induced aggregation, including cloud point temperature, aggregate morphology, and chain immobilization, identified a unique dual-stage phase transition in the terpolymer containing 45 wt % OEGMA300, 35 wt % diPGMA, and 20 wt % DEGMA. Instead of directly agglomerating into globular aggregates, this terpolymer transitioned from spherical micelles to vesicular species, offering valuable insights for the design of controllable and responsive polymer systems.
Collapse
Affiliation(s)
- Shaobai Wang
- Department of Materials, Royal School of Mines, Imperial College London, London SW7 2AZ, U.K
| | - Alberto Alvarez-Fernandez
- Centro de Fisica de Materiales (CFM) (CSIC-UPV/EHU), Material Physics Centre, Paseo Manuel de Lardizabal 5, San Sebastian 20018, Spain
| | - Xu Liu
- Department of Materials, Royal School of Mines, Imperial College London, London SW7 2AZ, U.K
| | - Sofia Miron-Barroso
- Department of Materials, Royal School of Mines, Imperial College London, London SW7 2AZ, U.K
| | - Kelvin Wong
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, London WC1E 7JE, U.K
- Department of Life Science Engineering, Technical University of Munich, 85354 Freising, Germany
- TUMCREATE, 1 CREATE Way, #10-02 CREATE Tower, 138602, Singapore
| | - Theoni K Georgiou
- Department of Materials, Royal School of Mines, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
3
|
Hlaváček A, Uhrová K, Weisová J, Brožková H, Pizúrová N. Optical Microscopy and Deep Learning for Absolute Quantification of Nanoparticles on a Macroscopic Scale and Estimating Their Number Concentration. Anal Chem 2025; 97:2588-2592. [PMID: 39886935 PMCID: PMC11822731 DOI: 10.1021/acs.analchem.4c05555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/25/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
We present a simplistic and absolute method for estimating the number concentration of nanoparticles. Macroscopic volumes of a nanoparticle dispersion (several μL) are dropped on a glass surface and the solvent is evaporated. The optical microscope scans the entire surface of the dried droplet (several mm2), micrographs are stitched together (several tens), and all nanoparticles are counted (several thousand per droplet) by using an artificial neural network. We call this method evaporated volume analysis (EVA) because nanoparticles are counted after droplet volume evaporation. As a model, the concentration of ∼60 nm Tm3+-doped photon-upconversion nanoparticles coated in carboxylated silica shells is estimated with a combined relative standard uncertainty of 2.7%. Two reference methods provided comparable concentration values. A wider applicability is tested by imaging ∼80 nm Nile red-doped polystyrene and ∼90 nm silver nanoparticles. Theoretical limits of EVA such as the limit of detection, limit of quantification, and optimal working range are discussed.
Collapse
Affiliation(s)
- Antonín Hlaváček
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Kateřina Uhrová
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Julie Weisová
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Hana Brožková
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Brno 602 00, Czech Republic
- Department
of Chemistry, Faculty of Science, Masaryk
University, Brno 602 00, Czech Republic
| | - Naděžda Pizúrová
- Institute
of Physics of Materials of the Czech Academy of Sciences, Brno 616 00, Czech Republic
| |
Collapse
|
4
|
Wu T, Kheiri S, Hickman RJ, Tao H, Wu TC, Yang ZB, Ge X, Zhang W, Abolhasani M, Liu K, Aspuru-Guzik A, Kumacheva E. Self-driving lab for the photochemical synthesis of plasmonic nanoparticles with targeted structural and optical properties. Nat Commun 2025; 16:1473. [PMID: 39922810 PMCID: PMC11807174 DOI: 10.1038/s41467-025-56788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Many applications of plasmonic nanoparticles require precise control of their optical properties that are governed by nanoparticle dimensions, shape, morphology and composition. Finding reaction conditions for the synthesis of nanoparticles with targeted characteristics is a time-consuming and resource-intensive trial-and-error process, however closed-loop nanoparticle synthesis enables the accelerated exploration of large chemical spaces without human intervention. Here, we introduce the Autonomous Fluidic Identification and Optimization Nanochemistry (AFION) self-driving lab that integrates a microfluidic reactor, in-flow spectroscopic nanoparticle characterization, and machine learning for the exploration and optimization of the multidimensional chemical space for the photochemical synthesis of plasmonic nanoparticles. By targeting spectroscopic nanoparticle properties, the AFION lab identifies reaction conditions for the synthesis of different types of nanoparticles with designated shapes, morphologies, and compositions. Data analysis provides insight into the role of reaction conditions for the synthesis of the targeted nanoparticle type. This work shows that the AFION lab is an effective exploration platform for on-demand synthesis of plasmonic nanoparticles.
Collapse
Affiliation(s)
- Tianyi Wu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Riley J Hickman
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
| | - Huachen Tao
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Tony C Wu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Zhi-Bo Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xin Ge
- School of Materials Science & Engineering, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Wei Zhang
- School of Materials Science & Engineering, Electron Microscopy Center, Jilin University, Changchun, 130012, P. R. China
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Alan Aspuru-Guzik
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
- Canadian Institute for Advanced Research (CIFAR), Toronto, ON, M5S 1M1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada.
- Acceleration Consortium, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.
| |
Collapse
|
5
|
Du X, Li H, Shen S, Tian C, Cao X, Xu X, Xu N, Wang S, Tian Q. Labeling tumor-associated extracellular vesicles with antibody-DNA conjugates for quantitative analysis. Front Mol Biosci 2025; 12:1531108. [PMID: 39911266 PMCID: PMC11794122 DOI: 10.3389/fmolb.2025.1531108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction Extracellular vesicles (EVs) shed from tumor cells into peripheral circulation or other body fluids are promising biomarkers for cancer diagnosis with enormously long circulation. Consequently, precise methods for differentiating normal and tumor-associated EVs (TAEs) are required. Methods This study used quantifiable antibody-DNA conjugate-assisted quantitative methods combined with proximity ligation technology to detect TAEs. The antibody-DNA conjugate contained one antibody associated with three oligonucleotides for signal amplification. The antibody in the conjugate can recognize the surface tumor antigens of TAEs. Simultaneously, DNA in the conjugate is attached to the surfaces of TAEs and holds the signal amplification post, converting protein identities to DNA amplification for protein detection, even at the molecular level. Results These findings revealed that TAEs can be quantitatively detected using DNA-mediated quantitative polymerase chain reaction (qPCR). Antibody-DNA conjugates were used to recognize the epithelial cell adhesion molecule (EpCAM) antigen on the TAE surface and quantify the antigen using qPCR for cancer analysis. Discussion This method proposed a new quantitative detection approach for TAEs, which aim to identify specific EV-associated markers for diagnostic or therapeutic, this method could inspire a new idea for tumor diagnosis and detection of other diseases.
Collapse
Affiliation(s)
- Xiao Du
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hongxiu Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shiyi Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chao Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaohuan Cao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xingang Xu
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
| | - Nan Xu
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Fernandes DA. Multifunctional gold nanoparticles for cancer theranostics. 3 Biotech 2024; 14:267. [PMID: 39416669 PMCID: PMC11473483 DOI: 10.1007/s13205-024-04086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
The diagnosis and treatment of cancer can often be challenging requiring more attractive options. Some types of cancers are more aggressive than others and symptoms for many cancers are subtle, especially in the early stages. Nanotechnology provides high sensitivity, specificity and multimodal capability for cancer detection, treatment and monitoring. In particular, metal nanoparticles (NPs) such as gold nanoparticles (AuNPs) are attractive nanosystems for researchers interested in bioimaging and therapy. The size, shape and surface of AuNPs can be modified for improving targeting and accumulation in cancer cells, for example through introduction of ligands and surface charge. The interactions of AuNPs with electromagnetic radiation (e.g., visible-near-infrared, X-rays) can be used for photothermal therapy and radiation therapy, through heat generated from light absorption and emission of Auger electrons, respectively. The subsequent expansion and high X-ray attenuation from AuNPs can be used for enhancing contrast for tumor detection (e.g., using photoacoustic, computed tomography imaging). Multi-functionality can be further extended through covalent/non-covalent functionalization, for loading additional imaging/therapeutic molecules for combination therapy and multimodal imaging. In order to cover the important aspects for designing and using AuNPs for cancer theranostics, this review focuses on the synthesis, functionalization and characterization methods that are important for AuNPs, and presents their unique properties and different applications in cancer theranostics.
Collapse
|
7
|
Zhang F, Lu X, Zhu X, Yu Z, Xia W, Wei X. Real-time monitoring of small extracellular vesicles (sEVs) by in vivo flow cytometry. J Extracell Vesicles 2024; 13:e70003. [PMID: 39441010 PMCID: PMC11497658 DOI: 10.1002/jev2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Extracellular vesicles (EVs) are vesicular structures comprised of a bilayer lipid membrane, released by living cells. There is a growing body of evidence for their functionality, indicating that small EVs (sEVs) can mediate specific forms of intercellular communication. The future applications of sEVs hold great promise, not only as diagnostic markers but also as therapeutic agents. However, the greatest difficulty in the clinical translation of sEVs is that they are currently poorly understood, especially concerning their in vivo behaviour. In this study, we provide a novel method for monitoring sEVs in blood circulation based on in vivo flow cytometry (IVFC). We have demonstrated that the height of the IVFC signal baseline is proportional to the concentration of sEVs. Moreover, we have found out that the peaks in the IVFC signal are generated by the aggregation or cellular uptake of sEVs. In vivo monitoring of sEVs clearance from the blood indicates that PEGylated sEVs have a longer residence time and exhibit less aggregation in circulation compared to non-PEGylated sEVs. These studies reveal that IVFC enables real-time in vivo monitoring of circulating sEVs, which can provide valuable insights into the pharmacokinetics and cellular targeting capabilities of sEVs.
Collapse
Affiliation(s)
- Fuli Zhang
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Lu
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Xi Zhu
- Institute of Biomedical EngineeringKunming Medical UniversityKunmingYunnanChina
| | - Ziwen Yu
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Weiliang Xia
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xunbin Wei
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
- The Department of Biomedical Engineering, Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- International Cancer InstitutePeking UniversityBeijingChina
| |
Collapse
|
8
|
Das R, Dutta R, Yi J, Qiu J, Krishna J, Tzafriri G, Lin Z, Thayumanavan S. Intramolecular Electrostatic Interactions Regulate Reactivity of Zwitterionic Functionalities in Amphiphilic Assemblies. Angew Chem Int Ed Engl 2024; 63:e202405868. [PMID: 38977413 DOI: 10.1002/anie.202405868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
The consequences of intramolecular ionic interactions in determining the reactivity of functional groups are of interest because they provide insights into how nature deploys seemingly reactive functionalities to be rather ubiquitous. Of specific interest are the quaternary ammonium ions in lipids. In this work, we investigate the effect of intramolecular electrostatic interactions in zwitterionic functionalities by judiciously incorporating them as leaving groups at the α-position of α,β-unsaturated ester-based lipid head groups. We find that electrostatic stabilization indeed plays a critical role in both the reaction kinetics with nucleophiles and the thermodynamics of lipid formation. We further leverage these findings to fabricate both triggerable assembly and disassembly of liposomal supramolecular assemblies in the presence of nucleophiles.
Collapse
Affiliation(s)
- Ritam Das
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Jun Yi
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Jingyi Qiu
- Department of Biomedical Engineering and Centre for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Gideon Tzafriri
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Zhou Lin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
- Department of Biomedical Engineering and Centre for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States
| |
Collapse
|
9
|
Schürmann R, Gaál A, Sikora A, Ojeda D, Bartczak D, Goenaga-Infante H, Korpelainen V, Sauvet B, Deumer J, Varga Z, Gollwitzer C. Comparing novel small-angle x-ray scattering approaches for absolute size and number concentration measurements of spherical SiO 2particles to established methods. NANOTECHNOLOGY 2024; 35:385701. [PMID: 38861978 DOI: 10.1088/1361-6528/ad568b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Biomedical analytical applications, as well as the industrial production of high-quality nano- and sub-micrometre particles, require accurate methods to quantify the absolute number concentration of particles. In this context, small-angle x-ray scattering (SAXS) is a powerful tool to determine the particle size and concentration traceable to the Système international d'unités (SI). Therefore, absolute measurements of the scattering cross-section must be performed, which require precise knowledge of all experimental parameters, such as the electron density of solvent and particles, whereas the latter is often unknown. Within the present study, novel SAXS-based approaches to determine the size distribution, density and number concentrations of sub-micron spherical silica particles with narrow size distributions and mean diameters between 160 nm and 430 nm are presented. For the first-time traceable density and number concentration measurements of silica particles are presented and current challenges in SAXS measurements such as beam-smearing, poorly known electron densities and moderately polydisperse samples are addressed. In addition, and for comparison purpose, atomic force microscopy has been used for traceable measurements of the size distribution and single particle inductively coupled plasma mass spectrometry with the dynamic mass flow approach for the accurate quantification of the number concentrations of silica particles. The possibilities and limitations of the current approaches are critically discussed in this study.
Collapse
Affiliation(s)
- Robin Schürmann
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Anikó Gaál
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
| | - Aneta Sikora
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, United Kingdom
| | - David Ojeda
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, United Kingdom
| | - Dorota Bartczak
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, United Kingdom
| | | | - Virpi Korpelainen
- National Metrology Institute VTT MIKES, Tekniikantie 1, FI-02150 Espoo, Finland
| | - Bruno Sauvet
- National Metrology Institute VTT MIKES, Tekniikantie 1, FI-02150 Espoo, Finland
| | - Jérôme Deumer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Zoltán Varga
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Christian Gollwitzer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| |
Collapse
|
10
|
Nogueira SS, Samaridou E, Simon J, Frank S, Beck-Broichsitter M, Mehta A. Analytical techniques for the characterization of nanoparticles for mRNA delivery. Eur J Pharm Biopharm 2024; 198:114235. [PMID: 38401742 DOI: 10.1016/j.ejpb.2024.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanotechnology-assisted RNA delivery has gotten a tremendous boost over the last decade and made a significant impact in the development of life-changing vaccines and therapeutics. With increasing numbers of emerging lipid- and polymer-based RNA nanoparticles progressing towards the clinic, it has become apparent that the safety and efficacy of these medications depend on the comprehensive understanding of their critical quality attributes (CQAs). However, despite the rapid advancements in the field, the identification and reliable quantification of CQAs remain a significant challenge. To support these efforts, this review aims to summarize the present knowledge on CQAs based on the regulatory guidelines and to provide insights into the available analytical characterization techniques for RNA-loaded nanoparticles. In this context, routine and emerging analytical techniques are categorized and discussed, focusing on the operation principle, strengths, and potential limitations. Furthermore, the importance of complementary and orthogonal techniques for the measurement of CQAs is discussed in order to ensure the quality and consistency of analytical methods used, and address potential technique-based differences.
Collapse
|
11
|
Sassa-deepaeng T, Khumpirapang N, Yodthong W, Myat YY, Anuchapreeda S, Okonogi S. Effects of Salts and Other Contaminants on Ciprofloxacin Removal Efficiency of Green Synthesized Copper Nanoparticles. Vet Sci 2024; 11:179. [PMID: 38668446 PMCID: PMC11053963 DOI: 10.3390/vetsci11040179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
Ciprofloxacin (CIP), a broad-spectrum fluoroquinolone antibiotic, is commonly used in aquaculture to prevent and treat bacterial infections in aquatic animals. For this reason, aquatic environments contain CIP and its derivatives, which lead to the development of drug-resistant bacteria. In the present study, copper nanoparticles were prepared using Garcinia mangostana extract (GME-CuNPs) as a reducing agent and evaluated for their CIP removal efficiency (CRE). The results demonstrate that within 20 min, GME-CuNPs at 25 mM possess a CRE of 92.02 ± 0.09% from CIP-containing aqueous media with pH 6-7. The CRE is influenced by both monovalent and divalent salts. A high salt concentration significantly reduces the CRE. Contaminants in fish wastewater can reduce the CRE, but phenolics, flavonoids, tannins, and ammonia do not affect the CRE. Our results reveal that the CRE is controlled by electrostatic attraction between the negatively charged GME-CuNPs and the cationic species of CIP. The CRE is reduced by wastewater with a pH higher than 8.0, in which the CIP molecules have a negative charge, resulting in a repulsive force due to the negative charge of GME-CuNPs. In fish wastewater with a pH lower than 7.0, GME-CuNPs show the potential to achieve a CRE above 80%. Therefore, pH adjustment to a range of 6-7 in fish wastewater before treatment is deemed imperative. It is concluded that the newly developed GME-CuNPs possess excellent activity in CIP elimination from actual fish wastewater samples. Our findings suggest that GME-CuNPs can be a promising tool to effectively eliminate antibiotics from the environment.
Collapse
Affiliation(s)
- Tanongsak Sassa-deepaeng
- Agricultural Biochemistry Research Unit, Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand;
| | - Nattakanwadee Khumpirapang
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand;
| | - Wachira Yodthong
- Lampang Inland Fisheries Research and Development Center, Lampang 52000, Thailand;
| | - Yin Yin Myat
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.Y.M.); (S.A.)
| | - Songyot Anuchapreeda
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.Y.M.); (S.A.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Okonogi
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.Y.M.); (S.A.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
Ren L, Liu S, Zhong J, Zhang L. Revolutionizing targeting precision: microfluidics-enabled smart microcapsules for tailored delivery and controlled release. LAB ON A CHIP 2024; 24:1367-1393. [PMID: 38314845 DOI: 10.1039/d3lc00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As promising delivery systems, smart microcapsules have garnered significant attention owing to their targeted delivery loaded with diverse active materials. By precisely manipulating fluids on the micrometer scale, microfluidic has emerged as a powerful tool for tailoring delivery systems based on potential applications. The desirable characteristics of smart microcapsules are associated with encapsulation capacity, targeted delivery capability, and controlled release of encapsulants. In this review, we briefly describe the principles of droplet-based microfluidics for smart microcapsules. Subsequently, we summarize smart microcapsules as delivery systems for efficient encapsulation and focus on target delivery patterns, including passive targets, active targets, and microfluidics-assisted targets. Additionally, based on release mechanisms, we review controlled release modes adjusted by smart membranes and on/off gates. Finally, we discuss existing challenges and potential implications associated with smart microcapsules.
Collapse
Affiliation(s)
- Lingling Ren
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Shuang Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Junjie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| |
Collapse
|
13
|
Son JW, Nam Y, Kim C. Nanoplastics from disposable paper cups and microwavable food containers. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133014. [PMID: 37984146 DOI: 10.1016/j.jhazmat.2023.133014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Nanoplastics (NPs, <1 µm) pose greater risks due to their increased absorption rates in biological systems. In this study, we investigated the release of NPs from paper cups and microwavable food containers coated with low-density polyethylene (LDPE) and polylactic acid (PLA). For disposable paper cups, we found that LDPE-coated cups released up to 26-fold more NPs (maximum 1.9 × 107 per cup) than PLA-coated ones. The NPs release from LDPE-coated cups was increased at high temperatures above 80 °C, and further increased by physical agitation. However, negligible NP release was observed when the inner coating thickness exceeded 1 mm. For microwavable food containers, those with PLA coatings were more susceptible to the effects of microwave. Depending on the cooking time, we noticed a significant difference (up to 40000 times) in the number of released NPs between LDPE and PLA coatings. Additionally, higher microwave power level led to an increase of NPs, even with constant total energy input. Considering the release of NP, PLA coatings for disposable paper cups and LDPE coatings for microwavable food containers seem more suitable. Furthermore, our results suggest that multi-use cups significantly reduce NPs release due to their material thickness, making them a safer alternative to disposable ones.
Collapse
Affiliation(s)
- Ji-Won Son
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yejin Nam
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Changwoo Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
14
|
Abdali M, Ghasemi F, Seyed Hosseini HM, Mahdavi V. Different sized gold nanoparticles for array-based sensing of pesticides and its application for strawberry pollution monitoring. Talanta 2024; 267:125121. [PMID: 37672984 DOI: 10.1016/j.talanta.2023.125121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
The use of pesticides plays an essential role in improving crop quality and yield, however, it causes air, water, and soil pollution and the residue of these pesticides in agricultural products threatens the ecosystem and human life. Therefore, it is highly desirable to develop rapid, simple, and cost-effective methods for regular monitoring of pesticide residues in agricultural products especially strawberry that is consumed fresh and unpeeled. In this study, gold nanoparticles (AuNPs) of varying sizes have been exploited as sensing units to design a non-enzymatic colorimetric sensor array for the detection and discrimination of various pesticides including; bifenazate (BF), paraquat (PQ), diazinon (DZ), thiometon (TM), and carbendazim (CD) and chlorpyrifos (CP). Because of their strong size- and environmentally-dependent properties, AuNPs with different sizes produced distinguished plasmonic patterns in the presence of pesticides at a vast range of concentrations (25-800 ng mL-1). Plasmonic patterns of sensor units have been analyzed by various data visualization (bar plots and heat maps) and pattern recognition methods (linear discriminant analysis (LDA)). The multivariate calibrations showed linear responses ranging from 50 to 800 ng mL-1 for carbendazim, chlorpyrifos, paraquat, and bifenazate and 25-800 ng mL-1 for diazinon and thiometon. The limit of detection (LOD) was calculated to be 17.7, 22.8, 22.4, 9.7, 7.4, and 23.8 ng mL-1 for carbendazim, chlorpyrifos, paraquat, diazinon, thiometon, and bifenazate respectively. Finally, the applicability of the designed sensor was evaluated in real samples comprising tap water, well water, soil, and fruit, leave, drainage water, and culture substrate of strawberry.
Collapse
Affiliation(s)
- Masoumeh Abdali
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Forough Ghasemi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.
| | - Hossein Mir Seyed Hosseini
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education, and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
15
|
Kwak SH, Jeong DG, Shon HK, Kim DH, Lee TG, Wi JS, Na HK. Dual-Function Janus Nanozymes for Performance Evaluation and Application in a Surrogate Virus Neutralization Test with Vaccinated Samples. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55975-55983. [PMID: 37994824 DOI: 10.1021/acsami.3c12251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The need exists for biosensing technologies capable of sensitively and accurately detecting various biomarkers. In response, the development of nanozymes is actively underway; they have advantages in stability, cost, performance, and functionalization over natural enzymes commonly used for signal amplification in sensing technologies. However, the performance of nanozymes is interdependent with factors such as shape, size, and surface functional moiety, making it challenging to perform quantitative performance comparisons based on the nanozyme material. In this study, we propose a physical synthetic approach to fabricate double-layered bimetallic nanozymes with identical shapes, sizes, and surfaces but different material compositions. These Janus nanozymes consist of a nanozymatic layer responsible for catalytic activity and a gold layer responsible for quantification and efficient surface modification. Based on their identical physicochemical properties, the synthesized double-layered bimetallic nanozymes allow, for the first time, a quantitative comparison of nanozymatic activities in terms of various kinetic parameters. We compared several candidates and found that the Ir-Au nanozyme exhibited the best performance. Subsequently, we applied this nanozyme to detect neutralizing antibodies against SARS-CoV-2 based on a surrogate virus neutralization test. The results demonstrated a limit of detection as low as 2 pg/mL and selectivity specifically toward MERS-CoV. The performance of this assay was further validated using vaccinated samples, demonstrating the potential of our approach as a cost-effective, rapid, and sensitive diagnostic tool for neutralizing antibody detection against viruses such as SARS-CoV-2.
Collapse
Affiliation(s)
- Su-Heon Kwak
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34141, Republic of Korea
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34113, Republic of Korea
| | - Hyun Kyong Shon
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34141, Republic of Korea
| | - Dong-Ho Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul 01812, Republic of Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34141, Republic of Korea
| | - Jung-Sub Wi
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Hee-Kyung Na
- Safety Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Giordani S, Marassi V, Zattoni A, Roda B, Reschiglian P. Liposomes characterization for market approval as pharmaceutical products: Analytical methods, guidelines and standardized protocols. J Pharm Biomed Anal 2023; 236:115751. [PMID: 37778202 DOI: 10.1016/j.jpba.2023.115751] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Liposomes are nano-sized lipid-based vesicles widely studied for their drug delivery capabilities. Compared to standard carries they exhibit better properties such as improved site-targeting and drug release, protection of drugs from degradation and clearance, and lower toxic side effects. At present, scientific literature is rich of studies regarding liposomes-based systems, while 14 types of liposomal products have been authorized to the market by EMA and FDA and many others have been approved by national agencies. Although the interest in nanodevices and nanomedicine has steadily increased in the last two decades the development of documentation regulating and standardizing all the phases of their development and quality control still suffers from major inadequacy due to the intrinsic complexity of nano-systems characterization. Many generic documents (Type 1) discussing guidelines for the study of nano-systems (lipidic and not) have been proposed while there is a lack of robust and standardized methods (Type 2 documents). As a result, a widespread of different techniques, approaches and methodologies are being used, generating results of variable quality and hard to compare with each other. Additionally, such documents are often subject to updates and rewriting further complicating the topic. Within this context the aim of this work is focused on bridging the gap in liposome characterization: the most recent standardized methodologies suitable for liposomes characterization are here reported (with the corresponding Type 2 documents) and revised in a short and pragmatical way focused on providing the reader with a practical background of the state of the art. In particular, this paper will put the accent on the methodologies developed to evaluate the main critical quality attributes (CQAs) necessary for liposomes market approval.
Collapse
Affiliation(s)
- Stefano Giordani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Valentina Marassi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Andrea Zattoni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Pierluigi Reschiglian
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| |
Collapse
|
17
|
Xu W, Chen Y, Yang R, Fu Y, Zhuang W, Wang Y, Liu Y, Zhang H. "Reaction"-Like Shaping of Self-Delivery Supramolecular Nanodrugs in the Nanoprecipitation Process. ACS NANO 2023; 17:18227-18239. [PMID: 37668306 DOI: 10.1021/acsnano.3c05229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Nanoprecipitation, which is achieved through the diffusion and precipitation of drug molecules in blended solvent and antisolvent phases, is a classic route for constructing nanodrugs (NDs) and previously directed by diffusion-controlled theory. However, the diffusion-controlled mechanism is out of date in the recent preparation of self-delivery supramolecular NDs (SDSNDs), characterized by the construction of drug nanoparticles through supramolecular interactions in the absence of carriers and surfactants. Herein, a "reaction"-like complement, contributed from supramolecular interactions, is proposed for the preparation of naphthoquinone SDSNDs. Different from the diffusion-controlled process, the formation rate of SDSNDs via the "reaction"-like process is almost constant and highly dependent on the supramolecular interaction-determined Gibbs free energy of molecular binding. Thus, the formation rate and drug availability of SDSNDs are greatly improved by engineering the supramolecular interactions, which facilitates the preparation of SDSNDs with expected sizes, components, and therapeutic functions. As a deep understanding of supramolecular-interaction-involved nanoprecipitation, the current "reaction"-like protocol not only provides a theoretical supplement for classic nanoprecipitation but also highlights the potential of nanoprecipitation in shaping self-assembled, coassembled, and metal-ion-associated SDSNDs.
Collapse
Affiliation(s)
- Wenzhe Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yang Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ruixu Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yiying Fu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wanxin Zhuang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yonggang Wang
- Department of Cardiovascular Centre, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
18
|
Das P, Pujals S, Ali LMA, Gary-Bobo M, Albertazzi L, Durand JO. Super-resolution imaging of antibody-conjugated biodegradable periodic mesoporous organosilica nanoparticles for targeted chemotherapy of prostate cancer. NANOSCALE 2023; 15:12008-12024. [PMID: 37403617 DOI: 10.1039/d3nr01571h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Biodegradable periodic mesoporous organosilica nanoparticles (nanoPMOs) are widely used as responsive drug delivery platforms for targeted chemotherapy of cancer. However, the evaluation of their properties such as surface functionality and biodegradability is still challenging, which has a significant impact on the efficiency of chemotherapy. In this study, we have applied direct stochastic optical reconstruction microscopy (dSTORM), a single-molecule super-resolution microscopy technique, to quantify the degradation of nanoPMOs triggered by glutathione and the multivalency of antibody-conjugated nanoPMOs. Subsequently, the effect of these properties on cancer cell targeting, drug loading and release capability, and anticancer activity is also studied. Due to the higher spatial resolution at the nanoscale, dSTORM imaging is able to reveal the structural properties (i.e., size and shape) of fluorescent and biodegradable nanoPMOs. The quantification of nanoPMOs' biodegradation using dSTORM imaging demonstrates their excellent structure-dependent degradation behavior at a higher glutathione concentration. The surface functionality of anti-M6PR antibody-conjugated nanoPMOs as quantified by dSTORM imaging plays a key role in prostate cancer cell labeling: oriented antibody is more effective than random ones, while high multivalency is also effective. The higher biodegradability and cancer cell-targeting properties of nanorods conjugated with oriented antibody (EAB4H) effectively deliver the anticancer drug doxorubicin to cancer cells, exhibiting potent anticancer effects.
Collapse
Affiliation(s)
- Pradip Das
- Institute Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier 34293, France.
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08036, Spain
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Lamiaa M A Ali
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08036, Spain
- Department of Biomedical Engineering, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jean-Olivier Durand
- Institute Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier 34293, France.
| |
Collapse
|
19
|
Chen C, Chen C, Li Y, Gu R, Yan X. Characterization of lipid-based nanomedicines at the single-particle level. FUNDAMENTAL RESEARCH 2023; 3:488-504. [PMID: 38933557 PMCID: PMC11197724 DOI: 10.1016/j.fmre.2022.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Lipid-based nanomedicines (LBNMs), including liposomes, lipid nanoparticles (LNPs) and extracellular vesicles (EVs), are recognized as one of the most clinically acceptable nano-formulations. However, the bench-to-bedside translation efficiency is far from satisfactory, mainly due to the lack of in-depth understanding of their physical and biochemical attributes at the single-particle level. In this review, we first give a brief introduction of LBNMs, highlighting some milestones and related scientific and clinical achievements in the past several decades, as well as the grand challenges in the characterization of LBNMs. Next, we present an overview of each category of LBNMs as well as the core properties that largely dictate their biological characteristics and clinical performance, such as size distribution, particle concentration, morphology, drug encapsulation and surface properties. Then, the recent applications of several analytical techniques including electron microscopy, atomic force microscopy, fluorescence microscopy, Raman microscopy, nanoparticle tracking analysis, tunable resistive pulse sensing and flow cytometry on the single-particle characterization of LBNMs are thoroughly discussed. Particularly, the comparative advantages of the newly developed nano-flow cytometry that enables quantitative analysis of both the physical and biochemical characteristics of LBNMs smaller than 40 nm with high throughput and statistical robustness are emphasized. The overall aim of this review article is to illustrate the importance, challenges and achievements associated with single-particle characterization of LBNMs.
Collapse
Affiliation(s)
- Chaoxiang Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Chen Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yurou Li
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ruilan Gu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
20
|
Gagliardi M, Colagiorgio L, Cecchini M. A Fast and Reliable Method Based on QCM-D Instrumentation for the Screening of Nanoparticle/Blood Protein Interactions. BIOSENSORS 2023; 13:607. [PMID: 37366972 DOI: 10.3390/bios13060607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The interactions that nanoparticles have with blood proteins are crucial for their fate in vivo. Such interactions result in the formation of the protein corona around the nanoparticles, and studying them aids in nanoparticle optimization. Quartz crystal microbalance with dissipation monitoring (QCM-D) can be used for this study. The present work proposes a QCM-D method to study the interactions on polymeric nanoparticles with three different human blood proteins (albumin, fibrinogen and γ-globulin) by monitoring the frequency shifts of sensors immobilizing the selected proteins. Bare PEGylated and surfactant-coated poly-(D,L-lactide-co-glycolide) nanoparticles are tested. The QCM-D data are validated with DLS and UV-Vis experiments in which changes in the size and optical density of nanoparticle/protein blends are monitored. We find that the bare nanoparticles have a high affinity towards fibrinogen and γ-globulin, with measured frequency shifts around -210 Hz and -50 Hz, respectively. PEGylation greatly reduces these interactions (frequency shifts around -5 Hz and -10 Hz for fibrinogen and γ-globulin, respectively), while the surfactant appears to increase them (around -240 Hz and -100 Hz and -30 Hz for albumin). The QCM-D data are confirmed by the increase in the nanoparticle size over time (up to 3300% in surfactant-coated nanoparticles), measured by DLS in protein-incubated samples, and by the trends of the optical densities, measured by UV-Vis. The results indicate that the proposed approach is valid for studying the interactions between nanoparticles and blood proteins, and the study paves the way for a more comprehensive analysis of the whole protein corona.
Collapse
Affiliation(s)
- Mariacristina Gagliardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Laura Colagiorgio
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| |
Collapse
|
21
|
Yalamanchili J, Hennigan CJ, Reed BE. Measurement artifacts in the dithiothreitol (DTT) oxidative potential assay caused by interactions between aqueous metals and phosphate buffer. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131693. [PMID: 37245366 DOI: 10.1016/j.jhazmat.2023.131693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Metals in particulate matter (PM) are hypothesized to have enhanced toxicity based on their ability to catalyze reactive oxygen species (ROS) formation. Acellular assays are used to measure the oxidative potential (OP) of PM and its individual components. Many OP assays, including the dithiothreitol (DTT) assay, use a phosphate buffer matrix to simulate biological conditions (pH 7.4 and 37 °C). Prior work from our group observed transition metal precipitation in the DTT assay, consistent with thermodynamic equilibria. In this study, we characterized the effects of metal precipitation on OP measured by the DTT assay. Metal precipitation was affected by aqueous metal concentrations, ionic strength, and phosphate concentrations in ambient PM sampled in Baltimore, MD and a standard PM sample (NIST SRM-1648a, Urban Particulate Matter). Critically, differences in metal precipitation induced differing OP responses of the DTT assay as a function of phosphate concentration in all PM samples analyzed. These results indicate that comparison of DTT assay results obtained at differing phosphate buffer concentrations is highly problematic. Further, these results have implications for other chemical and biological assays that use phosphate buffer for pH control and their use to infer PM toxicity.
Collapse
Affiliation(s)
- Jayashree Yalamanchili
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Christopher J Hennigan
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| | - Brian E Reed
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
22
|
Würth C, Behnke T, Gienger J, Resch-Genger U. Efficiency scale for scattering luminescent particles linked to fundamental and measurable spectroscopic properties. Sci Rep 2023; 13:6254. [PMID: 37069220 PMCID: PMC10110600 DOI: 10.1038/s41598-023-32933-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Comparing the performance of molecular and nanoscale luminophores and luminescent micro- and nanoparticles and estimating achievable signal amplitudes and limits of detection requires a standardizable intensity scale. This initiated the development of the relative MESF (number of molecules of equivalent soluble fluorochromes) and ERF (equivalent reference fluorophores) scales for flow cytometry and fluorescence microscopy. Both intensity scales rely on fluorescence intensity values assigned to fluorescent calibration beads by an intensity comparison to spectrally closely matching fluorophore solutions of known concentration using a spectrofluorometer. Alternatively, the luminophore or bead brightness (B) can be determined that equals the product of the absorption cross section (σa) at the excitation wavelength (σa(λex)) and the photoluminescence quantum yield (Φpl). Thereby, an absolute scale based on fundamental and measurable spectroscopic properties can be realized which is independent of particle size, material, and luminophore staining or labeling density and considers the sensitivity of the optical properties of luminophores to their environment. Aiming for establishing such a brightness scale for light-scattering dispersions of luminescent particles with sizes exceeding a few ten nanometers, we demonstrate how the brightness of quasi-monodisperse 25 nm, 100 nm, and 1 µm sized polystyrene particles (PSP), loaded with two different dyes in varying concentrations, can be obtained with a single custom-designed integrating sphere setup that enables the absolute determination of Φpl and transmittance and diffuse reflectance measurements. The resulting Φpl, σa(λex), imaginary parts of the refractive index, and calculated B values of these samples are given in dependence of the number of incorporated dye molecule per particle. Finally, a unitless luminescence efficiency (LE) is defined allowing for the direct comparison of luminescence efficiencies of particles with different sizes.
Collapse
Affiliation(s)
- Christian Würth
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstaetter Str. 11, 12489, Berlin, Germany.
| | - Thomas Behnke
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstaetter Str. 11, 12489, Berlin, Germany
| | - Jonas Gienger
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstaetter Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
23
|
Filho ACD, de Jesus Soares J, Carriço MRS, Viçozi GP, Flores WH, Denardin CC, Roehrs R, Denardin ELG. Green synthesis silver nanoparticles Bougainvillea glabra Choisy/LED light with high catalytic activity in the removal of methylene blue aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36244-36258. [PMID: 36547835 DOI: 10.1007/s11356-022-24633-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In this study, we evaluated, in a pioneering way, the influence of wavelengths from the decomposition of white light on the production and physicochemical properties of silver nanoparticles (AgNPs). Bearing in mind a process of green synthesis, an extract of the bracts of Bougainvillea glabra Choisy (BgC) was used, a species native to tropical and subtropical regions and frequently used in ornamentation, possessing in its photochemical composition, biomolecules capable of acting as reducing agents for convert Ag+ to Ag0. We used light-emitting diodes (LED) to obtain the desired wavelengths (violet, blue, green, yellow, orange, and red) in the test called rainbow, and we evaluated the obtaining of AgNPs compared to white LED light, nature, and absence of light. In the rainbow assay, we obtained a gradual increase in the intensity of the plasmonic band resonance from the red wavelength (0.124 ± 0.067 a.u.) to violet (0.680 ± 0.199 a.u.), indicating a higher reaction yield in obtaining AgNPs. Smaller hydrodynamic sizes (approximately 150 nm) at more energetic wavelengths (violet, blue, and green) about less energetic wavelengths (yellow, orange, and red) (approximately 400 nm) were obtained. Analysis by SEM microscopy, FTIR spectroscopy, and X-ray diffraction indicates the presence of silver nanoparticles in all LED colors used together with white LED light and Laboratory light (natural light). Due to the high environmental demand to remove pollutants from water sources, including textile dyes, we applied AgNPs/BgC to remove methylene blue (MB) dye from an aqueous solution. A minimum removal percentage greater than 65%, with emphasis on formulations synthesized by the colors of violet LED (84.27 ± 2.65%) and orange LED (85.91 ± 1.95%), was obtained.
Collapse
Affiliation(s)
- Augusto Cezar Dotta Filho
- Laboratório de Estudos Físico-Químicos E Produtos Naturais (LEFQPN), Campus Uruguaiana, Universidade Federal Do Pampa, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Jefferson de Jesus Soares
- Laboratório de Estudos Físico-Químicos E Produtos Naturais (LEFQPN), Campus Uruguaiana, Universidade Federal Do Pampa, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Murilo Ricardo Sigal Carriço
- Laboratório de Análises Químicas Ambientais E Toxicológicas (LAQAT), Campus Uruguaiana, Universidade Federal Do Pampa, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Gabriel Pedroso Viçozi
- Universidade Federal Do Pampa, Campus Uruguaiana, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | | | - Cristiane Casagrande Denardin
- Grupo de Pesquisa Em Bioquímica E Toxicologia Em Compostos Bioativos, Campus Uruguaiana, Universidade Federal Do Pampa, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Rafael Roehrs
- Laboratório de Análises Químicas Ambientais E Toxicológicas (LAQAT), Campus Uruguaiana, Universidade Federal Do Pampa, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Elton Luís Gasparotto Denardin
- Laboratório de Estudos Físico-Químicos E Produtos Naturais (LEFQPN), Campus Uruguaiana, Universidade Federal Do Pampa, P. Box: 118, Uruguaiana, RS, CEP 97500-970, Brazil.
| |
Collapse
|
24
|
Gagliardi M, Vincenzi A, Baroncelli L, Cecchini M. Stabilized Reversed Polymeric Micelles as Nanovector for Hydrophilic Compounds. Polymers (Basel) 2023; 15:946. [PMID: 36850229 PMCID: PMC9966941 DOI: 10.3390/polym15040946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Small hydrophilic drugs are widely used for systemic administration, but they suffer from poor absorption and fast clearance. Their nanoencapsulation can improve biodistribution, targeted delivery, and pharmaceutical efficacy. Hydrophilics are effectively encapsulated in compartmented particles, such as liposomes or extracellular vesicles, which are biocompatible but poorly customizable. Polymeric vectors can form compartmental structures, also being functionalizable. Here, we report a system composed of polymeric stabilized reversed micelles for hydrophilic drugs encapsulation. We optimized the preparation procedure, and calculated the critical micellar concentration. Then, we developed a strategy for stabilization that improves micelle stability upon dilution. We tested the drug loading and delivery capabilities with creatine as a drug molecule. Prepared stabilized reversed micelles had a size of around 130 nm and a negative z-potential around -16 mV, making them functional as a drug carrier. The creatine cargo increased micelle size and depended on the loading conditions. The higher amount of loaded creatine was around 60 μg/mg of particles. Delivery tests indicated full release within three days in micelles with the lower cargo, while higher loadings can provide a sustained release for longer times. Obtained results are interesting and encouraging to test the same system with different drug cargoes.
Collapse
Affiliation(s)
- Mariacristina Gagliardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Agnese Vincenzi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128 Calambrone, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, 56127 Pisa, Italy
| |
Collapse
|
25
|
Berdecka D, Harizaj A, Goemaere I, Punj D, Goetgeluk G, De Munter S, De Keersmaecker H, Boterberg V, Dubruel P, Vandekerckhove B, De Smedt SC, De Vos WH, Braeckmans K. Delivery of macromolecules in unstimulated T cells by photoporation with polydopamine nanoparticles. J Control Release 2023; 354:680-693. [PMID: 36681281 DOI: 10.1016/j.jconrel.2023.01.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/23/2023]
Abstract
Ex vivo modification of T cells with exogenous cargo is a common prerequisite for the development of T cell therapies, such as chimeric antigen receptor therapy. Despite the clinical success and FDA approval of several such products, T cell manufacturing presents unique challenges related to therapeutic efficacy after adoptive cell transfer and several drawbacks of viral transduction-based manufacturing, such as high cost and safety concerns. To generate cellular products with optimal potency, engraftment potential and persistence in vivo, recent studies have shown that minimally differentiated T cell phenotypes are preferred. However, genetic engineering of quiescent T cells remains challenging. Photoporation is an upcoming alternative non-viral transfection method which makes use of photothermal nanoparticles, such as polydopamine nanoparticles (PDNPs), to induce transient membrane permeabilization by distinct photothermal effects upon laser irradiation, allowing exogenous molecules to enter cells. In this study, we analyzed the capability of PDNP-photoporation to deliver large model macromolecules (FITC-dextran 500 kDa, FD500) in unstimulated and expanded human T cells. We compared different sizes of PDNPs (150, 250 and 400 nm), concentrations of PDNPs and laser fluences and found an optimal condition that generated high delivery yields of FD500 in both T cell phenotypes. A multiparametric analysis of cell proliferation, surface activation markers and cytokine production, revealed that unstimulated T cells photoporated with 150 nm and 250 nm PDNPs retained their propensity to become activated, whereas those photoporated with 400 nm PDNPs did less. Our findings show that PDNP-photoporation is a promising strategy for transfection of quiescent T cells, but that PDNPs should be small enough to avoid excessive cell damage.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Ilia Goemaere
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Deep Punj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Heymanslaan 10, 9000 Ghent, Belgium
| | - Stijn De Munter
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Heymanslaan 10, 9000 Ghent, Belgium
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium
| | - Veerle Boterberg
- Polymer Chemistry and Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
26
|
Quantification of particle number concentration in liposomal suspensions by Laser Transmission Spectroscopy (LTS). Colloids Surf B Biointerfaces 2023; 222:113137. [PMID: 36640540 DOI: 10.1016/j.colsurfb.2023.113137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Laser Transmission Spectroscopy (LTS) is an experimental technique able to determine the particle number concentration and the size of colloidal suspensions by a single measurement of the transmittance of a laser beam through the suspension of particles as a function of the wavelength. In this protocol, we show that LTS represents a unique and powerful tool to investigate suspensions of liposomes, where the precise quantification of the number concentration is particularly relevant for the complete definition of the colloidal properties of the suspension. We study a model formulation of Soy-PC:Chol liposomes and we validate LTS results by comparison with High-Performance Liquid Chromatography determination of lipid mass. Then LTS protocols is applied to state-of-art liposomal nanocarrier suspensions. We explain details of data analysis to obtain the particle number concentration by using the Lambert-Beer law and by calculating the extinction cross section, within the framework of Mie theory for spherical vesicles. We also determine the liposome radius and compare it with the hydrodynamic radius measured by Dynamic Light Scattering. As future perspective, we aim to extend LTS analysis to other nanostructures with different geometries and to contribute to the development of new quantitative strategies for the accurate characterization of nanocarriers and other nanoparticles.
Collapse
|
27
|
A novel magnetically oscillatory fluidized bed using micron-sized magnetic particles for continuous capture of emulsified oil droplets. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
28
|
Yim W, Zhou J, Sasi L, Zhao J, Yeung J, Cheng Y, Jin Z, Johnson W, Xu M, Palma-Chavez J, Fu L, Qi B, Retout M, Shah NJ, Bae J, Jokerst JV. 3D-Bioprinted Phantom with Human Skin Phototypes for Biomedical Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206385. [PMID: 36305604 PMCID: PMC9868107 DOI: 10.1002/adma.202206385] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
3D-bioprinted skin-mimicking phantoms with skin colors ranging across the Fitzpatrick scale are reported. These tools can help understand the impact of skin phototypes on biomedical optics. Synthetic melanin nanoparticles of different sizes (70-500 nm) and clusters are fabricated to mimic the optical behavior of melanosome. The absorption coefficient and reduced scattering coefficient of the phantoms are comparable to real human skin. Further the melanin content and distribution in the phantoms versus real human skins are validated via photoacoustic (PA) imaging. The PA signal of the phantom can be improved by: 1) increasing melanin size (3-450-fold), 2) increasing clustering (2-10.5-fold), and 3) increasing concentration (1.3-8-fold). Then, multiple biomedical optics tools (e.g., PA, fluorescence imaging, and photothermal therapy) are used to understand the impact of skin tone on these modalities. These well-defined 3D-bioprinted phantoms may have value in translating biomedical optics and reducing racial bias.
Collapse
Affiliation(s)
- Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Jiajing Zhou
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Lekshmi Sasi
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Jiayu Zhao
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yong Cheng
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Zhicheng Jin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Wade Johnson
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Ming Xu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Jorge Palma-Chavez
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Lei Fu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Baiyan Qi
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Maurice Retout
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Nisarg J. Shah
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Jinhye Bae
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Jesse V. Jokerst
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Kim J, Kim Y, Howard KJ, Lee SJ. Smartphone-based holographic measurement of polydisperse suspended particulate matter with various mass concentration ratios. Sci Rep 2022; 12:22609. [PMID: 36585469 PMCID: PMC9803653 DOI: 10.1038/s41598-022-27215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Real-time monitoring of suspended particulate matter (PM) has become essential in daily life due to the adverse effects of long-term exposure to PMs on human health and ecosystems. However, conventional techniques for measuring micro-scale particulates commonly require expensive instruments. In this study, a smartphone-based device is developed for real-time monitoring of suspended PMs by integrating a smartphone-based digital holographic microscopy (S-DHM) and deep learning algorithms. The proposed S-DHM-based PM monitoring device is composed of affordable commercial optical components and a smartphone. Overall procedures including digital image processing, deep learning training, and correction process are optimized to minimize the prediction error and computational cost. The proposed device can rapidly measure the mass concentrations of coarse and fine PMs from holographic speckle patterns of suspended polydisperse PMs in water with measurement errors of 22.8 ± 18.1% and 13.5 ± 9.8%, respectively. With further advances in data acquisition and deep learning training, this study would contribute to the development of hand-held devices for monitoring polydisperse non-spherical pollutants suspended in various media.
Collapse
Affiliation(s)
- Jihwan Kim
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| | - Youngdo Kim
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| | - Kyler J. Howard
- grid.47894.360000 0004 1936 8083School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80521 USA
| | - Sang Joon Lee
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| |
Collapse
|
30
|
Kumar L, Horechyy A, Paturej J, Nandan B, Kłos JS, Sommer JU, Fery A. Encapsulation of Nanoparticles into Preformed Block Copolymer Micelles Driven by Competitive Solvation: Experimental Studies and Molecular Dynamic Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Labeesh Kumar
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069Dresden, Germany
| | - Andriy Horechyy
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069Dresden, Germany
| | - Jarosław Paturej
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069Dresden, Germany
- Institute of Physics, University of Silesia, Chorzów, 41-500, Poland
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Jarosław S. Kłos
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069Dresden, Germany
- Faculty of Physics, A. Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614Poznań, Poland
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069Dresden, Germany
- Institute for Theoretical Physics, Technische Universität Dresden, Dresden01062, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069Dresden, Germany
- Physical Chemistry of Polymer Materials, Technische Universität Dresden, Dresden01062, Germany
| |
Collapse
|
31
|
Sharma A, Rastogi H, Sundar Ghosh K. Enhancement in chaperone activity of human αA-crystallin by nanochaperone gold nanoparticles: Multispectroscopic studies on their molecular interactions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121344. [PMID: 35605420 DOI: 10.1016/j.saa.2022.121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
The chaperone activity of human αA-crystallin (HAA) against aggregation of human γD-crystallin (HGD) was enhanced by gold nanoparticles (AuNPs). Chaperone activity of HAA was almost doubled in the presence of 5.5 nM gold nanoparticles (AuNPs). To decipher this effect at molecular level, interactions between HAA and AuNPs were studied using fluorescence and circular dichroism spectroscopic techniques. The nanoparticles were synthesized and characterized by using TEM and dynamic light scattering (DLS). TEM and DLS studies revealed that bioconjugation of AuNPs with HAA did not cause any significant change in the size of the nanoparticles. AuNPs had caused static quenching of tryptophan (Trp) fluorescence, which was confirmed through determination of excited state lifetime of Trp residue of HAA in absence and the presence of AuNPs. The association and quenching constant for HAA-AuNPs conjugation were ∼ 109 M-1. Hydrogen bonding and van der Waals interactions were found to be involved in HAA-AuNPs complex. Polarity of Trp microenvironment in HAA was not perturbed by AuNPs as supported by synchronous and three-dimensional fluorescence spectroscopy. Far-UV CD spectra suggested that the secondary structure of HAA was not significantly affected by AuNPs.
Collapse
Affiliation(s)
- Anchal Sharma
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh 177005, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh 177005, India.
| |
Collapse
|
32
|
Hlaváček A, Křivánková J, Brožková H, Weisová J, Pizúrová N, Foret F. Absolute Counting Method with Multiplexing Capability for Estimating the Number Concentration of Nanoparticles Using Anisotropically Collapsed Gels. Anal Chem 2022; 94:14340-14348. [PMID: 36194835 DOI: 10.1021/acs.analchem.2c02989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Number concentration─the number of nanoparticles in a given volume─is an important characteristic of any nanoparticle dispersion. However, its estimation for small nanoparticles (∼30 nm) is generally challenging. We introduce an absolute and widely applicable method for analyzing aqueous dispersions of nanoparticles. An innovative immobilization of nanomaterials in the anisotropically collapsed agarose gel is pioneered, followed by optical microscopy and nanoparticle counting. The number of counted nanoparticles is inherently coupled with sampled volume (517 pL) and translates to the number concentration. Photon-upconversion, fluorescence, bright-field, and dark-field microscopy techniques have been proven applicable and used for imaging lanthanide-doped photon-upconversion nanoparticles, their bioconjugates with antibodies, silica dye-doped fluorescent nanoparticles, quantum dots, and pure silica submicron particles. The precision and linearity were characterized by constructing a dilution series of photon-upconversion nanoparticles. The limit of detection was 2.0 × 106 mL-1, and the working range was from 4.4 × 107 to 2.2 × 1010 mL-1. The quantification of nanoparticle clusters was achieved by a thorough analysis of the micrographs. The accuracy was confirmed using gravimetric analysis and transmission electron microscopy as a reference. Multiplexed detection of two nanoparticle types in a mixed dispersion was feasibly demonstrated. The low thickness of the collapsed gel (<1 μm) supported extremely sensitive imaging. This was proven by imaging Tm3+-doped photon-upconversion nanoparticles (17 nm hydrodynamic diameter) with a nanoparticle emission rate of only ∼900 photons/s at a wavelength of 800 nm (excitation wavelength 976 nm).
Collapse
Affiliation(s)
- Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00Brno, Czech Republic
| | - Jana Křivánková
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00Brno, Czech Republic
| | - Hana Brožková
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00Brno, Czech Republic
| | - Julie Weisová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00Brno, Czech Republic
| | - Naděžda Pizúrová
- Institute of Physics of Materials of the Czech Academy of Sciences, 616 00Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00Brno, Czech Republic
| |
Collapse
|
33
|
A Simple Model to Estimate the Number of Metal Engineered Nanoparticles in Samples Using Inductively Coupled Plasma Optical Emission Spectrometry. Molecules 2022; 27:molecules27185810. [PMID: 36144546 PMCID: PMC9506279 DOI: 10.3390/molecules27185810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Accurate determination of the size and the number of nanoparticles plays an important role in many different environmental studies of nanomaterials, such as fate, toxicity, and occurrence in general. This work presents an accurate model that estimates the number of nanoparticles from the mass and molar concentration of gold nanoparticles (AuNPs) in water. Citrate-capped AuNPs were synthesized and characterized using transmission electron microscopy (TEM) and ultraviolet–visible spectroscopy (UV-vis). A mimic of environmental matrices was achieved by spiking sediments with AuNPs, extracted with leachate, and separated from the bulk matrix using centrifuge and phase transfer separation techniques. The quantification of AuNPs’ molar concentration on the extracted residues was achieved by inductively coupled plasma optical emission spectroscopy (ICP-OES). The molar concentrations, an average diameter of 27 nm, and the colloidal suspension volumes of AuNPs enable the calculation of the number of nanoparticles in separated residues. The plot of the number of AuNPs against the mass of AuNPs yielded a simple linear model that was used to estimate the number of nanoparticles in the sample using ICP-OES. According to the authors’ knowledge, this is the first adaptation of the gravimetric method to ICP-OES for estimating the number of nanoparticles after separation with phase transfer.
Collapse
|
34
|
Ahn B, Chen M, Mazzotti M. Online Monitoring of the Concentrations of Amorphous and Crystalline Mesoscopic Species Present in Solution. CRYSTAL GROWTH & DESIGN 2022; 22:5071-5080. [PMID: 35942122 PMCID: PMC9354028 DOI: 10.1021/acs.cgd.2c00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/30/2022] [Indexed: 06/01/2023]
Abstract
Despite the growing evidence for the existence of amorphous mesoscopic species in a solution and their crucial roles in crystallization, there has been the lack of a suitable method to measure the time-resolved concentrations of amorphous and crystalline mesospecies in a lab-scale stirred reactor. This has limited experimental investigations to understand the kinetics of amorphous and crystalline mesospecies formation in stirred solutions and made it challenging to measure the crystal nucleation rate directly. Here, we used depolarized light sheet microscopy to achieve time-resolved measurements of amorphous and crystalline mesospecies concentrations in solutions at varying temperatures. After demonstrating that the concentration measurement method is reasonably accurate, precise, and sensitive, we utilized this method to examine mesospecies formation both in a mixture of two miscible liquids and in an undersaturated solution of dl-valine, thus revealing the importance of a temperature change in the formation of metastable and amorphous mesospecies as well as the reproducibility of the measurements. Moreover, we used the presented method to monitor both mesospecies formation and crystal nucleation in dl-valine solutions at four different levels of supersaturation, while achieving the direct measurement of the crystal nucleation rates in stirred solutions. Our results show that, as expected, the inherent variability in nucleation originating from its stochastic nature reduces with increasing supersaturation, and the dependence of the measured nucleation rate on supersaturation is in reasonable agreement with that predicted by the classical nucleation theory.
Collapse
|
35
|
Detection of magnetic iron nanoparticles by single-particle ICP-TOFMS: case study for a magnetic filtration medical device. Anal Bioanal Chem 2022; 414:6743-6751. [PMID: 35864268 DOI: 10.1007/s00216-022-04234-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/13/2022] [Accepted: 07/15/2022] [Indexed: 11/01/2022]
Abstract
Nanoparticles are increasingly used in medical products and devices. Their properties are critical for such applications, as particle characteristics determine their interaction with the biological system, and, therefore, the performance and safety of the final product. Among the most important nanoparticle characteristics and parameters are particle mass distribution, composition, total particle mass, and number concentration. In this study, we utilize single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOFMS) for the characterization of inorganic nanoparticles in complex biological fluids. We report online microdroplet calibration for reference-nanomaterial-free and matrix-matched calibration of carbon-coated iron carbide nanoparticles (C/Fe3C NPs). As a case study, we analyze C/Fe3C NPs designed for targeted blood purification. Through the analysis of NP mass distributions, we study the effect of the NP surface modification on aggregation of C/Fe3C NPs in whole blood. We also demonstrate the efficiency of removal of coated C/Fe3C NP from saline by magnetically enhanced filters. Magnetic filtering is shown to reduce the mass concentration of detectable C/Fe3C NPs by 99.99 ± 0.01% in water.
Collapse
|
36
|
Analysis of Nanomaterials on Biological and Environmental Systems and New Analytical Methods for Improved Detection. Int J Mol Sci 2022; 23:ijms23116331. [PMID: 35683010 PMCID: PMC9181213 DOI: 10.3390/ijms23116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
The advancing field of nanoscience has produced lower mass, smaller size, and expanded chemical composition nanoparticles over recent years. These new nanoparticles have challenged traditional analytical methods of qualification and quantification. Such advancements in nanoparticles and nanomaterials have captured the attention of toxicologists with concerns regarding the environment and human health impacts. Given that nanoparticles are only limited by size (1–100 nm), their chemical and physical characteristics can drastically change and thus alter their overall nanotoxicity in unpredictable ways. A significant limitation to the development of nanomaterials is that traditional regulatory and scientific methods used to assess the biological and environmental toxicity of chemicals do not generally apply to the assessment of nanomaterials. Significant research effort has been initiated, but much more is still needed to develop new and improved analytical measurement methods for detecting and quantitating nanomaterials in biological and environmental systems.
Collapse
|
37
|
Concentration Quantification of TiO 2 Nanoparticles Synthesized by Laser Ablation of a Ti Target in Water. MATERIALS 2022; 15:ma15093146. [PMID: 35591479 PMCID: PMC9104483 DOI: 10.3390/ma15093146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
In this work, we present a quantitative method for determining the concentration of metal oxide nanoparticles (NP) synthesized by laser ablation in liquid. The case study was performed with titanium dioxide nanoparticles (TiO2 NP), which were synthesized by laser ablation of a Ti target in water. After synthesis, a colloidal solution was analyzed with UV-Vis spectroscopy. At the same time, the craters that remained on the Ti target after ablation were evaluated with an optical microscope to determine the volume of the ablated material. SEM microscopy was used to determine the TiO2 NP size distribution. It was found that synthesized TiO2 NP followed a Log-Normal diameter distribution with a maximum at about 64 nm. From the volume of ablated material and NP size distribution, under the assumption that most of the ablated material is consumed to form nanoparticles, a concentration of nanoparticles can be determined. The proposed method is verified by comparing the calculated concentrations to the values obtained from the Beer–Lambert law using the Mie scattering theory for the NP cross-section calculation.
Collapse
|
38
|
Khan M, Koivisto JT, Kellomäki M. Injectable and self‐healing biobased composite hydrogels as future anticancer therapeutic biomaterials. NANO SELECT 2022. [DOI: 10.1002/nano.202100354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Musammir Khan
- Biomaterials and Tissue Engineering Group, BioMediTech Institute, Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Chemistry University of Wah Quaid Avenue, Wah Cantt Rawalpindi Punjab 47040 Pakistan
| | - Janne T. Koivisto
- Biomaterials and Tissue Engineering Group, BioMediTech Institute, Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Laboratory Medicine Karolinska Institute Huddinge Stockholm Sweden
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, BioMediTech Institute, Faculty of Medicine and Health Technology Tampere University Tampere Finland
| |
Collapse
|
39
|
Hamza ME, Othman MA, Swillam MA. Plasmonic Biosensors: Review. BIOLOGY 2022; 11:621. [PMID: 35625349 PMCID: PMC9138269 DOI: 10.3390/biology11050621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 04/26/2023]
Abstract
Biosensors have globally been considered as biomedical diagnostic tools required in abundant areas including the development of diseases, detection of viruses, diagnosing ecological pollution, food monitoring, and a wide range of other diagnostic and therapeutic biomedical research. Recently, the broadly emerging and promising technique of plasmonic resonance has proven to provide label-free and highly sensitive real-time analysis when used in biosensing applications. In this review, a thorough discussion regarding the most recent techniques used in the design, fabrication, and characterization of plasmonic biosensors is conducted in addition to a comparison between those techniques with regard to their advantages and possible drawbacks when applied in different fields.
Collapse
Affiliation(s)
| | | | - Mohamed A. Swillam
- Nanophotonics Research Laboratory, Department of Physics, The American University in Cairo, Cairo 11835, Egypt; (M.E.H.); (M.A.O.)
| |
Collapse
|
40
|
Montoro Bustos AR, Murphy KE, Winchester MR. Evaluation of the Potential of Single Particle ICP-MS for the Accurate Measurement of the Number Concentration of AuNPs of Different Sizes and Coatings. Anal Chem 2022; 94:3091-3102. [PMID: 35144383 PMCID: PMC9809148 DOI: 10.1021/acs.analchem.1c04140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that is capable of simultaneous measurement of the size and number concentration of metal-containing nanoparticles (NPs) at environmentally relevant levels. Although spICP-MS is widely applied to different fields, challenges remain in obtaining accurate and consistent particle number concentration (PNC) measurements. This paper presents, for the first time, a rigorous assessment of spICP-MS capabilities for measuring the PNC of gold NP (AuNP) suspensions of different sizes and coatings. The calibration of spICP-MS was accomplished with the National Institute of Standards and Technology (NIST) AuNP reference material (RM) 8013. The comparability of both spICP-MS direct and derived determination of PNC and reference PNC derived based on the mean particle size or the particle size distribution obtained by different reference sizing techniques was first assessed for NIST AuNP RM 8012, nominal diameter 30 nm. To enable a proper assessment of the accuracy of the spICP-MS results, a comprehensive estimation of the expanded uncertainty for PNC determination was carried out. Regardless of NP size or coating, a good agreement (90-110%) between spICP-MS direct determination of PNC and reported PNCs was obtained for all of the suspensions studied only when reliable in-house Au mass fractions and thorough mean particle size determinations were included in the calculation of the derived PNCs. The use of the particle size distribution over the mean size to derive PNCs resulted in larger differences for materials with a low contribution (<2%) of smaller NPs (30 nm), materials with a higher polydispersity (100 nm), or materials with two distinct subpopulations of particles (60 nm), regardless of NP coating.
Collapse
Affiliation(s)
- Antonio R Montoro Bustos
- Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-1070, United States
| | - Karen E Murphy
- Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-1070, United States
| | - Michael R Winchester
- Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-1070, United States
| |
Collapse
|
41
|
Velez-Saboyá CS, Guzmán-Sepúlveda JR, Ruiz-Suárez JC. Phase transitions of liposomes: when light meets heat. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:124002. [PMID: 34936996 DOI: 10.1088/1361-648x/ac45b7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Phase transitions of liposomes are normally studied by differential scanning calorimetry. A suspension of liposomes is subjected to an increase (decrease) of temperature and when heat is absorbed (released), the liposomes transit from a gel (liquid) to a liquid (gel) phase. This endothermic (exothermic) process takes place at a temperature called the melting temperatureTm, which is distinctive of the type of lipids forming the vesicles. The vesicles, though, also modify their size in the transition. Indeed, the thickness of the membranes decreases (increases) because carbon tails misalign (align). Concomitant with the modifications in the membrane thickness, the diameter (D) of the liposomes changes too. Therefore, when they are inspected by light, the scattered signal carries information from such dilatation (contraction) process. We performed careful experiments using dynamic light scattering as a function of temperature to detect the size changes of different liposomes. Gaussian fits of the derivatives of theDvsTcurves coincide within 1% with thermograms, which hints to the possibility of performing thermodynamic studies of lipid systems employing light.
Collapse
Affiliation(s)
| | | | - J C Ruiz-Suárez
- CINVESTAV-Monterrey, PIIT, Apodaca, Nuevo León 66600, Mexico
| |
Collapse
|
42
|
Wang F, Chen Z, Wang Y, Yin Y, Ma C, Song M, Jiang G. Characterization of nanoparticles using coupled gel immobilization and label-free optical imaging. Chem Commun (Camb) 2021; 57:13016-13019. [PMID: 34806729 DOI: 10.1039/d1cc05896g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Accurate quantification of number concentration of nanoparticles (NPs) is critical for their biomedical and catalytic applications. We developed a novel NP analysis platform based on coupled gel immobilization and a three-dimensional (3D) scattered light imaging (SLI) platform. This imaging-based technique enables high-throughput analysis of silver nanoparticles (AgNPs) at single-particle level without the need for particle labeling or modification. This is a well-established quantitative characterization technique that can simultaneously measure the number concentration and size distribution of AgNPs. It also demonstrates the visualization and quantification of the size and 3D morphology of AgNP agglomerates in solution.
Collapse
Affiliation(s)
- Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. .,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zihan Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. .,China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Diseases Control and Prevention, Beijing, 100050, China
| | - Yongguang Yin
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
43
|
Błaszczyk MM, Przybysz Ł. Determination of nanoparticles concentration in solution based on Pickering emulsion destabilization analyses. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe
dynamic development of nanotechnology research has contributed to the fact that various types of nanoparticles are increasingly used on a large scale both for medical and biological purposes, but above all in many industrial fields. Such a wide application of nanoparticles is often connected with the need to estimate their characteristic parameters, such as size, size distribution or concentration. Existing instruments are usually quite expensive and not always available. Therefore, other cheaper and simpler methods based on analytical techniques are sought. In this paper, we have proposed a method to estimate the concentration of nanoparticles in solutions based on destabilization analyses of Pickering emulsions produced with their use. The fact of mutual relationship between emulsion concentration, nanoparticle concentration and emulsion stability was used here. The study was carried out using silica nanoparticles. It was presented how to apply the method and what are its limitations. Moreover, an example of its application for the determination of nanoparticle concentration in an unknown sample, obtained after analysis of the permeability of membranes in diffusion chambers, has been presented. The method can become a useful alternative for the determination of nanoparticle concentration in solution in places where no specialized equipment is available.
Collapse
|
44
|
Shamsudin N, Shafie S, Ab Kadir MZA, Ahmad F, Sadrolhosseini AR, Sulaiman Y, Abdullah AH, Mohd Chachuli SA. Impact of polyvinylpyrrolidone and quantity of silver nitrate on silver nanoparticles sizing via solvothermal method for dye‐sensitized solar cells. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.7026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- N.H. Shamsudin
- Department of Electrical and Electronic Engineering, Faculty of Engineering Universiti Putra Malaysia Seri Kembangan Malaysia
- Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka Melaka Malaysia
| | - Suhaidi Shafie
- Department of Electrical and Electronic Engineering, Faculty of Engineering Universiti Putra Malaysia Seri Kembangan Malaysia
- Institute of Advanced Technology Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Mohd Zainal Abidin Ab Kadir
- Department of Electrical and Electronic Engineering, Faculty of Engineering Universiti Putra Malaysia Seri Kembangan Malaysia
- Centre for Electromagnetic and Lightning Protection (CELP) Universiti Putra Malaysia Seri Kembangan Selangor Malaysia
| | - Fauzan Ahmad
- Department of Electronic System Engineering, Malaysia‐Japan International Institute of Technology (MJIT) Universiti Teknologi Malaysia Kuala Lumpur Malaysia
| | | | - Yusran Sulaiman
- Institute of Advanced Technology Universiti Putra Malaysia Seri Kembangan Malaysia
- Department of Chemistry, Faculty of Science Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Abdul Halim Abdullah
- Department of Chemistry, Faculty of Science Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Siti Amaniah Mohd Chachuli
- Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka Melaka Malaysia
| |
Collapse
|
45
|
Dong C, Wang Q, Xu Z, Deng L, Zhang T, Lu B, Wang Q, Ren J. The Theoretical Model, Method, and Applications of Scattering Photon Burst Counting Based on an Objective Scanning Technique. Anal Chem 2021; 93:12556-12564. [PMID: 34477357 DOI: 10.1021/acs.analchem.1c01834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scattering photon burst counting (SPBC) is a single-particle detection method, which is based on measuring scattering photon bursting of single nanoparticles through a detection volume of <1 fL. Although SPBC has been used for bioassays and analysis of nanoparticles, it is necessary to establish its theoretical model and develop a new detection mode in order to further enhance its sensitivity and enlarge its application fields. In this paper, we proposed a theoretical model for the confocal SPBC method and developed a novel SPBC detection mode using the fast objective scanning technique. The computer simulations and experiments documented that this model well describes the relation between photon counts and experimental parameters (such as nanoparticle concentration and diameter, temperature, and viscosity). Based on this model, we developed a novel SPBC detection mode by using the fast objective scanning technique. Compared to the current confocal SPBC method, the sensitivity of this new method was significantly increased due to the significantly increased photon counts per sampling time, the linear detection range is from 0.9 to 90 pM, and the limit of detection is reduced to 40 fM for 30 nm gold nanoparticles. Furthermore, this new method was successfully applied to determine the enzyme activity of caspase-3 and evaluate the inhibition effectiveness of some inhibitors.
Collapse
Affiliation(s)
- Chaoqing Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qing Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhenli Xu
- School of Mathematical Sciences and MOE-LSC, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liyun Deng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Binglin Lu
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
| | - Qin Wang
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
46
|
Geißler D, Nirmalananthan-Budau N, Scholtz L, Tavernaro I, Resch-Genger U. Analyzing the surface of functional nanomaterials-how to quantify the total and derivatizable number of functional groups and ligands. Mikrochim Acta 2021; 188:321. [PMID: 34482449 PMCID: PMC8418596 DOI: 10.1007/s00604-021-04960-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/08/2021] [Indexed: 12/04/2022]
Abstract
Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address method- and material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5-10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization.
Collapse
Affiliation(s)
- Daniel Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Nithiya Nirmalananthan-Budau
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Lena Scholtz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Isabella Tavernaro
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
47
|
Khoris IM, Ganganboina AB, Park EY. Self-Assembled Chromogenic Polymeric Nanoparticle-Laden Nanocarrier as a Signal Carrier for Derivative Binary Responsive Virus Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36868-36879. [PMID: 34328304 DOI: 10.1021/acsami.1c08813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the current biosensor, the signal generation is limited to single virus detection in the reaction chamber. An adaptive strategy is required to enable the recognition of multiple viruses for diagnostics and surveillance. In this work, a nanocarrier is deployed to bring specific signal amplification into the biosensor, depending on the target viruses. The nanocarrier is designed using pH-sensitive polymeric nanoparticle-laden nanocarriers (PNLNs) prepared by sequential nanoprecipitation. The nanoprecipitation of two chromogens, phenolphthalein (PP) and thymolphthalein (TP), is investigated in three different solvent systems in which PNLNs demonstrate a high loading of the chromogen up to 59.75% in dimethylformamide (DMF)/dimethyl sulfoxide (DMSO)/ethanol attributing to the coprecipitation degree of the chromogens and the polymer. The PP-encapsulated PNLNs (PP@PNLNs) and TP-encapsulated PNLNs (TP@PNLNs) are conjugated to antibodies specific to target viruses, influenza virus A subtype H1N1 (IV/A/H1N1) and H3N2 (IV/A/H3N2), respectively. After the addition of anti-IV/A antibody-conjugated magnetic nanoparticles (MNPs) and magnetic separation, the enriched PNLNs/virus/MNPs sandwich structure is treated in an alkaline solution. It demonstrates a synergy reaction in which the degradation of the polymeric boundary and the pH-induced colorimetric development of the chromogen occurred. The derivative binary biosensor shows feasible detection on IV/A with excellent specificities of PP@PNLNs on IV/A/H1N1 and TP@PNLNs on IV/A/H3N2 with LODs of 27.56 and 28.38 fg mL-1, respectively. It intrigues the distinguished analytical signal in human serum with a variance coefficient of 25.8% and a recovery of 93.6-110.6% for one-step subtype influenza virus detection.
Collapse
Affiliation(s)
- Indra Memdi Khoris
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Akhilesh Babu Ganganboina
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
48
|
Abstract
Extracellular Vesicles (EVs) gained significant interest within the last decade as a new source of biomarkers for the early detection of diseases and a promising tool for therapeutic applications. In this work, we present Extracellular Vesicles Quantitative Capillary Electrophoresis (EVqCE) to measure an average mass of RNA in EVs, determine EV concentrations and the degree of EV degradation after sample handling. We used EVqCE to analyze EVs isolated from conditioned media of three cancer cell lines. EVqCE employs capillary zone electrophoresis with laser-induced fluorescent detection to separate intact EVs from free nucleic acids. After lysis of EVs with a detergent, the encapsulated nucleic acids are released. Therefore, the initial concentration of intact EVs is calculated based on a nucleic acid peak gain. EVqCE works in a dynamic range of EV concentrations from 108 to 1010 particles/mL. The quantification process can be completed in less than one hour and requires minimum optimization. Furthermore, the average mass of RNA was found to be in the range of 200–400 ag per particle, noting that more aggressive cancer cells have less RNA in EVs (200 ag per particle) than non-aggressive cancer cells (350 ag per particle). EVqCE works well for the degradation analysis of EVs. Sonication for 10 min at 40 kHz caused 85% degradation of EVs, 10 freeze-thaw cycles (from −80 °C to 22 °C) produced 40%, 14-day storage at 4 °C made 32%, and vortexing for 5 min caused 5% degradation. Presently, EVqCE cannot separate and distinguish individual EV populations (exosomes, microvesicles, apoptotic bodies) from each other. Still, it is tolerant to the presence of non-EV particles, protein-lipid complexes, and protein aggregates.
Collapse
|
49
|
Fagúndez P, Botasini S, Tosar JP, Méndez E. Systematic process evaluation of the conjugation of proteins to gold nanoparticles. Heliyon 2021; 7:e07392. [PMID: 34307927 PMCID: PMC8258641 DOI: 10.1016/j.heliyon.2021.e07392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
The present work addresses some fundamental aspects in the preparation of protein-conjugated gold nanoparticles, in order to ensure an appropriate final product. Ten broadly available and/or easy to implement analytical tools were benchmarked and compared in their capacity to provide reliable and conclusive information for each step of the procedure. These techniques included transmission electron microscopy, UV/VIS spectroscopy, dynamic light scattering, zeta-potential, Fourier-transformed infrared spectroscopy, colloidal stability titration, end-point colloidal stability analysis, cyclic voltammetry, agarose gel electrophoresis and size-exclusion chromatography (SEC). Four different proteins widely used as adaptors or blocking agents were tested, together with 13 nm gold nanoparticles containing different surface chemistries. Among all tested techniques, some of the least popular among nanomaterial scientists probed to be the most informative, including colloidal stability, gel electrophoresis and SEC; the latter being also an efficient purification procedure. These three techniques provide low-cost, low time consuming, sensitive and robust ways to assess the success of the nanoparticle bioconjugation steps, especially when used in adequate combinations.
Collapse
Affiliation(s)
- Pablo Fagúndez
- Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay.,Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Uruguay
| | - Santiago Botasini
- Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Juan Pablo Tosar
- Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Eduardo Méndez
- Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| |
Collapse
|
50
|
Cheng R, Wang S, Moslova K, Mäkilä E, Salonen J, Li J, Hirvonen J, Xia B, Santos HA. Quantitative Analysis of Porous Silicon Nanoparticles Functionalization by 1H NMR. ACS Biomater Sci Eng 2021; 8:4132-4139. [PMID: 34292713 PMCID: PMC9554871 DOI: 10.1021/acsbiomaterials.1c00440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Porous silicon (PSi)
nanoparticles have been applied in various
fields, such as catalysis, imaging, and biomedical applications, because
of their large specific surface area, easily modifiable surface chemistry,
biocompatibility, and biodegradability. For biomedical applications,
it is important to precisely control the surface modification of PSi-based
materials and quantify the functionalization density, which determines
the nanoparticle’s behavior in the biological system. Therefore,
we propose here an optimized solution to quantify the functionalization
groups on PSi, based on the nuclear magnetic resonance (NMR) method
by combining the hydrolysis with standard 1H NMR experiments.
We optimized the hydrolysis conditions to degrade the PSi, providing
mobility to the molecules for NMR detection. The NMR parameters were
also optimized by relaxation delay and the number of scans to provide
reliable NMR spectra. With an internal standard, we quantitatively
analyzed the surficial amine groups and their sequential modification
of polyethylene glycol. Our investigation provides a reliable, fast,
and straightforward method in quantitative analysis of the surficial
modification characterization of PSi requiring a small amount of sample.
Collapse
Affiliation(s)
- Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Karina Moslova
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku FI-20014, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku FI-20014, Finland
| | - Jiachen Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.,College of Science Key Laboratory of Forest Genetics & Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Bing Xia
- College of Science Key Laboratory of Forest Genetics & Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.,Helsinki Insititute of Life Science, HiLIFE, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|