1
|
Ying H, Xie K, Cai H, Li Z, Liu L, Guo X, An M, Shang H, Zheng X. Multifunctional Logic-in-Memory Circuits Based on Reconfigurable WSe 2 Transistors via Enhanced Ambipolarity. ACS NANO 2025; 19:19442-19453. [PMID: 40374270 DOI: 10.1021/acsnano.5c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Ambipolar two-dimensional semiconductors exhibit electrostatically modulable carrier polarity, enabling reconfigurable electronic functionalities critical for the development of logic-in-memory computing architectures. However, the ambipolar conduction is generally weak and unbalanced, in particular, under ambient operating conditions. Here, we develop a universal nonvolatile and reconfigurable device architecture based on tungsten diselenide (WSe2) and delicately enhance its ambipolar transport via scanning probe lithography, demonstrating on/off current ratios approaching 1010 for both electron and hole conductions. By integrating floating-gate architecture and split-gate control, the WSe2 device can be configured into memory, transistor, and diode modes and perform reconfigurable linear and nonlinear logic operations with only one device, such as NAND, AND, OR, NOR, XOR, and XNOR circuits. Eventually, we realize operational logic-in-memory circuits by integrating our WSe2 devices on a printed circuit board, demonstrating reliable half adder and parity-checker circuit operations under ambient conditions.
Collapse
Affiliation(s)
- Haoting Ying
- Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kanghao Xie
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Hecheng Cai
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Zishun Li
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lin Liu
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou, Zhejiang 311421, China
| | - Xudong Guo
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou, Zhejiang 311421, China
| | - Minghao An
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Hongpeng Shang
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Xiaorui Zheng
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou, Zhejiang 311421, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
2
|
Cao B, Dong J, Wang Z, Wang L. Large-Scale Non-Adiabatic Dynamics Simulation Based on Machine Learning Hamiltonian and Force Field: The Case of Charge Transport in Monolayer MoS 2. J Phys Chem Lett 2025; 16:4907-4920. [PMID: 40346030 DOI: 10.1021/acs.jpclett.5c01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
We present an efficient and reliable large-scale non-adiabatic dynamics simulation method based on machine learning Hamiltonian and force field. The quasi-diabatic Hamiltonian network (DHNet) is trained in the Wannier basis based on well-designed translation and rotation invariant structural descriptors, which can effectively capture both local and nonlocal environmental information. Using the representative two-dimensional transition metal dichalcogenide MoS2 as an illustration, we show that density functional theory (DFT) calculations of only ten structures are sufficient to generate the training set for DHNet due to the high efficiency of Wannier analysis and orbital classification in sampling the interorbital couplings. DHNet demonstrates good transferability, thus enabling direct construction of the electronic Hamiltonian matrices for large systems. Compared with direct DFT calculations, DHNet significantly reduces the computational cost by about 5 orders of magnitude. By combining DHNet with the DeePMD machine learning force field, we successfully simulate electron transport in monolayer MoS2 with up to 3675 atoms and 13475 electronic levels by using a state-of-the-art surface hopping method. The electron mobility is calculated to be 110 cm2/(V s), which is in good agreement with the extensive experimental results in the range of 3-200 cm2/(V s) during 2013-2023. Due to the high performance, the proposed DHNet and large-scale non-adiabatic dynamics methods have great potential to be applied to study charge carrier dynamics in a wide range of material systems.
Collapse
Affiliation(s)
- Bichuan Cao
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiawei Dong
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zedong Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Wang MA, Pop E. Monte Carlo Simulation of Electrical Transport with Joule Heating and Strain in Monolayer MoS 2 Devices. NANO LETTERS 2025; 25:6841-6847. [PMID: 40237296 DOI: 10.1021/acs.nanolett.4c05254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Two-dimensional (2D) semiconductors are candidates for future nanoscale (e.g., nanosheet) transistors, wherein high current densities and high-density integration cause self-heating, limiting performance and reliability. Here, we study the effects of self-heating and strain on electrical transport in monolayer MoS2 using electro-thermal Monte Carlo simulations. Incorporating Joule self-heating with a generalizable thermal resistance model reveals that at high lateral field (∼5 V/μm) and high charge carrier density (∼1013 cm-2), transistor temperatures can increase by more than 200 K in steady state. The electron saturation velocity decreases to 2.1 × 106 cm/s with self-heating but can reach 5.3 × 106 cm/s at room temperature if self-heating is mitigated and tensile strain is applied to reduce intervalley scattering. Simulations also reveal that electron mean free paths are just 2-3 nm in this high-field regime. These results provide fundamental insights showing that both self-heating and strain must be considered in emerging 2D transistors.
Collapse
Affiliation(s)
- Maritha A Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Eric Pop
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Wani SS, Kuo YR, Kimbulapitiya K, Cyu RH, Chen CT, Liu MJ, Nguyen HUP, Rehman B, Liu XR, Chuang FC, Lin YF, Shen CH, Chiu PW, Chueh YL. Improved Metal-Semiconductor Interface in Monolayer (1L)-MoS 2 via Thermally-Driven Ag Filaments as Atomic Scale Edge Contacts Triggered by Selective Annealing Process Using Long Wavelength (1064 nm) Pulsed Laser. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23209-23221. [PMID: 40178868 PMCID: PMC12012742 DOI: 10.1021/acsami.4c20612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
Here, we explore the effectiveness of a pulsed laser annealing (PLA) process to trigger atomic scale edge contacts by Ag filaments in reducing the contact resistance of a MoS2 field-effect transistor (FET). Employing a long wavelength (1064 nm) pulsed laser, we anneal monolayer (1L)-MoS2 FETs with various metal electrodes, including Ag/Au, Ni/Au, and Cr/Au. A remarkable enhancement in FET performance could be achieved after the PLA treatment. Specifically, Ag/Au-contacted 1L-MoS2 FETs after the PLA treatment exhibit a peak field-effect mobility increase from 60 to 135 cm2 V-1 s-1 and an on-current improvement from 40.5 to 96.1 μA at a Vd of 1 V, accompanied by a significant decrease in contact resistance to 0.29 kΩ μm. PLA-treated 1L-MoS2 FETs showed a high on/off ratio of 107. TEM analysis provided insight into the mechanism of reduced contact resistance, revealing the thermally driven diffusion of Ag atoms into the 1L-MoS2 as Ag filaments to lateral contact with the edge of the 1L-MoS2, namely atomic scale edge contacts, as a key contributing factor. Furthermore, our investigation extends to the larger scale CVD-grown 1L-MoS2 films, where the PLA treatment demonstrates notable improvements in mobility, on-current, and on-off ratio.
Collapse
Affiliation(s)
- Sumayah-Shakil Wani
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yao-Ren Kuo
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - K.M.M.D.K. Kimbulapitiya
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ruei-Hong Cyu
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Ting Chen
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Jin Liu
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Huynh-Uyen-Phuong Nguyen
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bushra Rehman
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Xin-Rui Liu
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Feng-Chuan Chuang
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yen-Fu Lin
- Department
of Physics, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chang-Hong Shen
- National
Applied Research Laboratories, Taiwan Semiconductor
Research Institute, Hsinchu 300091, Taiwan
| | - Po-Wen Chiu
- College
of
Semiconductor Research, National Tsing Hua
University, Hsinchu 30013, Taiwan
- Institute
of Electronics Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan
| | - Yu-Lun Chueh
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
- College
of
Semiconductor Research, National Tsing Hua
University, Hsinchu 30013, Taiwan
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Liu MJ, Tang SY, Cyu RH, Chung CC, Peng YR, Yang PJ, Chueh YL. Two-Dimensional Transition Metal Dichalcogenides (2D TMDs) Coupled With Zero-Dimensional Nanomaterials (0D NMs) for Advanced Photodetection. SMALL METHODS 2025; 9:e2401240. [PMID: 39676477 DOI: 10.1002/smtd.202401240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Indexed: 12/17/2024]
Abstract
The integration of 2D transition metal dichalcogenides (TMDs) with other materials presents a promising approach to overcome inherent limitations and enable the development of novel functionalities. In particular, 0D nanomaterials (0D NMs) offer notable advantages for photodetection, including broadband light absorption, size-dependent optoelectronic properties, high quantum efficiency, and good compatibility. Herein, the integration of 0D NMs with 2D TMDs to develop high-performance photodetectors is reviewed. The review provides a comprehensive overview of different types of 0D NMs, including plasma nanoparticles (NPs), up-conversion NPs, quantum dots (QDs), nanocrystals (NCs), and small molecules. The discussion starts with an analysis of the mechanism of 0D NMs on 2D TMDs in photodetection, exploring various strategies for improving the performance of hybrid 2D TMDs/0D NMs. Recent advancements in photodetectors combining 2D TMDs with 0D NMs are investigated, particularly emphasizing critical factors such as photosensitivity, photogain, specific detectivity, and photoresponse speed. The review concludes with a summary of the current status, highlighting the existing challenges and prospective developments in the advancement of 0D NMs/2D TMDs-based photodetectors.
Collapse
Affiliation(s)
- Ming-Jin Liu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Shin-Yi Tang
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Ruei-Hong Cyu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Chia-Chen Chung
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Ren Peng
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Jung Yang
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
6
|
Luan Y, Li Y, Li Z, Zhang BY, Ou JZ. Layered Anion-Mixed Oxycompounds: Synthesis, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500477. [PMID: 39921285 PMCID: PMC11948045 DOI: 10.1002/advs.202500477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Indexed: 02/10/2025]
Abstract
Layered anion-mixed oxycompounds have emerged as pivotal materials across diverse technological domains encompassing electronics, optics, sensing, catalysis, and energy applications. Capitalizing on the unique properties imparted by the additional anion, these compounds exhibit exceptional characteristics including ultra-large charge carrier mobility, giant second-harmonic generation, visible-light-driven photocatalysis, and outstanding thermoelectricity. This article aims to provide a comprehensive summary of layered anion-mixed oxychalcogenides, oxyhalides, oxynitrides, and oxypnictides. Organized by chemical composition and crystal structures, the classification of these oxycompounds precedes an in-depth exploration of various synthesis methodologies. Subsequently, their properties are elucidated in electronics, optics, magnetics, and ferroelectrics, contextualizing their utility in electronic, optical, and catalytic applications. The review culminates in a critical assessment of extant challenges and opportunities within this realm. Furthermore, insights are proffered into the future trajectory of research, underpinning the significance of advancing novel 2D multi-anion oxygenated compounds and their attendant applications.
Collapse
Affiliation(s)
- Yange Luan
- School of EngineeringRMIT UniversityMelbourne3000Australia
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Yumin Li
- School of EngineeringRMIT UniversityMelbourne3000Australia
| | - Zhong Li
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Bao Yue Zhang
- School of EngineeringRMIT UniversityMelbourne3000Australia
| | - Jian Zhen Ou
- School of EngineeringRMIT UniversityMelbourne3000Australia
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| |
Collapse
|
7
|
Zhao C, Cui S, Li T, Wu Y, Kong M, Bai W, Li K, Liu Y, Liu Z, Shang Z, Sun Z, Xiao C, Xie Y. Unexpected 18-Fold Overlapped Feathery Fermi Pockets in Typical Thermoelectric Bi_{0.5}Sb_{1.5}Te_{3}. PHYSICAL REVIEW LETTERS 2025; 134:086401. [PMID: 40085913 DOI: 10.1103/physrevlett.134.086401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/08/2024] [Accepted: 01/13/2025] [Indexed: 03/16/2025]
Abstract
Bi_{0.5}Sb_{1.5}Te_{3} is the most widely used p-type commercial thermoelectric materials over six decades, yet its complex electronic structure remains uncertain especially in band degeneracy and k_{z} dispersions. Here we show an unexpected band structure of 18-fold overlapped feathery Fermi pockets through substantial angle-resolved photoelectron spectroscopy data. Complemented with transport tests, we suggest that the high performance originates in the cooperation of four electronic features-momentum overlap of Fermi pockets, 18-fold band degeneracy, ultrasharp k_{y} dispersions, and heavy k_{z} bands. This cooperation of band features proposes a new paradigm for promising thermoelectrics.
Collapse
Affiliation(s)
- Chenxi Zhao
- University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale, Hefei, Anhui, 230026, People's Republic of China
| | - Shengtao Cui
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029, People's Republic of China
| | - Tongrui Li
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029, People's Republic of China
| | - Yunbo Wu
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029, People's Republic of China
| | - Mengruizhe Kong
- University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale, Hefei, Anhui, 230026, People's Republic of China
| | - Wei Bai
- University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale, Hefei, Anhui, 230026, People's Republic of China
| | - Kai Li
- University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale, Hefei, Anhui, 230026, People's Republic of China
| | - Yi Liu
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029, People's Republic of China
| | - Zhanfeng Liu
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029, People's Republic of China
| | - Zhengming Shang
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029, People's Republic of China
| | - Zhe Sun
- University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029, People's Republic of China
| | - Chong Xiao
- University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale, Hefei, Anhui, 230026, People's Republic of China
| | - Yi Xie
- University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale, Hefei, Anhui, 230026, People's Republic of China
| |
Collapse
|
8
|
Goswami T, Bhatt H, Yadav DK, Ghosh HN. Ultrafast broadband spectroscopy of widely spread excitonic features in WSe 2 nanosheets. NANOSCALE 2025; 17:5213-5221. [PMID: 39871774 DOI: 10.1039/d4nr03874f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The performance of an optoelectronic device is largely dependent on the light harvesting properties of the active material as well as the dynamic behaviour of the photoexcited charge carriers upon absorption of light. Recently, atomically thin two-dimensional transition metal dichalcogenides (2D TMDCs) have garnered attention as highly prospective materials for advanced ultrathin solar cells and other optoelectronic applications, owing to their strong interaction with electromagnetic radiation, substantial optical conductivity, and impressive charge carrier mobility. WSe2 is one such extremely promising solar energy material. It has absorption throughout the UV-Vis-NIR region with the existence of four excitonic features, just like MoS2 and WS2. However, stability issues and the absence of any robust synthetic route limit their practical applications. Herein, we have successfully synthesized atomically thin stable WSe2 nanosheets using a very effective colloidal hot injection method and further studied the optical properties of this material using femtosecond transient absorption spectroscopy. We probed all four excitonic features of WSe2 spread throughout the visible region. The dynamics of the high-energy excitons were found to be distinctively slower when compared to their band edge counterparts, adding an additional advantage in optoelectronic applications. We delved further into the factors governing exciton dynamics within WSe2, uncovering the strong influence of the electronic band structure. Importantly, our study highlights the importance of all four excitonic features in a 2D TMDC material, which emerge in the system irrespective of the excitation wavelength and influence each other.
Collapse
Affiliation(s)
- Tanmay Goswami
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab-140306, India
| | - Himanshu Bhatt
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab-140306, India
| | - Dharmendra Kumar Yadav
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab-140306, India
| | - Hirendra N Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
9
|
Zhao X, Zhao D, Hu T, Cao H, Jia Y, Chen Y, Wang X, Yang J, Zhang Y, Tang X, Bai W, Wang J, Chu J. Carrier Recirculation Induced Ultrasensitive Photodetectors of InSe/CdTe Heterostructure Featuring an Interfacial Holes Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408826. [PMID: 39696965 DOI: 10.1002/smll.202408826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Photodetectors (PDs) based on mix-dimensional heterojunctions (MDHJs) built from 2D layered materials and covalent-bonded semiconductors show the prospect of compensating the intrinsic weakness of 2D materials to realize their full potential. However, there is an open issue to improve the temporal response of PDs while maintaining high gain and sensitivity. Herein, photoconductive type MDHJs PDs with 2D InSe and covalent-bonded CdTe thin film are designed and fabricated in which InSe is the active layer and CdTe is the medium gain one. The conductivity of InSe is improved by exceeding 50 times led by the formation of p-p heterojunction because of that an interfacial hole accumulation at InSe side and a built-in field at CdTe one are formed. Benefiting from the synergistic function of photoconductive and photogating effects, carrier recirculation induced responsitivity, detectivity, and external quantum efficiency with orders of magnitude increment reach 4.31 × 104 AW-1, 7.55 × 1013 Jones and 1.01 × 107%, and more optimal response time than those of other InSe PDs is demonstrated. This device construction strategy with exceptional performance hints at the prospect of optoelectronic devices of 2D InSe.
Collapse
Affiliation(s)
- Xuefeng Zhao
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Dongyang Zhao
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
| | - Tao Hu
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
| | - Hechun Cao
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
| | - Yu Jia
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Yan Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Xudong Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
| | - Jing Yang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Yuanyuan Zhang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiaodong Tang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Wei Bai
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Jianlu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
- Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, P. R. China
| | - Junhao Chu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, No.500 Yutian Road, Shanghai, 200083, P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
10
|
Zhan L, Pei X, Tang J, Li S, Li S, Li Y, Li L, Wan C, Deng Y, Shi Y, Hao Y, Li S. Highly Oriented WS 2 Monolayers for High-Performance Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414100. [PMID: 39713954 DOI: 10.1002/adma.202414100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Indexed: 12/24/2024]
Abstract
2D transition-metal dichalcogenide (TMDC) semiconductors represent the most promising channel materials for post-silicon microelectronics due to their unique structure and electronic properties. However, it remains challenging to synthesize wide-bandgap TMDCs monolayers featuring large areas and high performance simultaneously. Herein, highly oriented WS2 monolayers are reproducibly synthesized through a templated growth strategy on vicinal C/A-plane sapphire wafers. Various spectroscopic characterizations confirm the high crystallographic orientation and uniformity across the entire wafers. Electronic measurements for samples transferred onto SiO2/Si substrates reveal high average field-effect mobilities of 62 and 180 cm2V-1s-1 at room temperature and 8 K, respectively. On hexagonal boron nitride substrates, these mobilities increase to 94 and 473 cm2V-1s-1, respectively. A record high saturation current density of 675 µA µm-1 is observed, outperforming the index required for high-density integration circuits in IRDS 2025. This work paves the way for the application of wide-bandgap TMDC monolayers in post-silicon electronics.
Collapse
Affiliation(s)
- Li Zhan
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Xudong Pei
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Jiachen Tang
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Shuaixing Li
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Shuo Li
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Yuan Li
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Lintao Li
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, and Collaborative Innovation Center of Extreme Optics Shanxi University, Taiyuan, 030006, China
| | - Changjin Wan
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Yu Deng
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Yi Shi
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Yufeng Hao
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Songlin Li
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Hu X, He W, Wang D, Chen L, Fan X, Ling D, Bi Y, Wu W, Ren S, Rong P, Zhang Y, Han Y, Wang J. Recent progress in two-dimensional Bi 2O 2Se and its heterostructures. NANOSCALE 2025; 17:661-686. [PMID: 39584808 DOI: 10.1039/d4nr03769c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Ever since the identification of graphene, research on two-dimensional (2D) materials has garnered significant attention. As a typical layered bismuth oxyselenide, Bi2O2Se has attracted growing interest not only due to its conventional thermoelectricity but also because of the excellent optoelectronic properties found in the 2D limit. Moreover, 2D Bi2O2Se exhibits remarkable properties, including high carrier mobility, air stability, tunable band gap, unique defect characteristics, and favorable mechanical properties. These properties make it a promising candidate for next-generation electronic and optoelectronic devices, such as logic devices, photodetectors, sensors, energy technologies, and memory devices. However, despite significant progress, there are still challenges that must be addressed for widespread commercial use. This review provides an overview of progress in Bi2O2Se research. We start by introducing the crystal structure and physical properties of Bi2O2Se and a compilation of methods for modulating its physical properties is further outlined. Then, a series of methods for synthesizing high-quality 2D Bi2O2Se are summarized and compared. We next focus on the advancements made in the practical applications of Bi2O2Se in the fields of field-effect transistors (FETs), photodetectors, neuromorphic computing and optoelectronic synapses. As heterostructures induce a new degree of freedom to modulate the properties and broaden applications, we especially discuss the heterostructures and corresponding applications of Bi2O2Se integrated with 0D, 1D and 2D materials, providing insights into constructing heterojunctions and enhancing device performance. Finally, the development prospects for Bi2O2Se and future challenges are discussed.
Collapse
Affiliation(s)
- Xiaoyu Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Wen He
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Dongbo Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Lei Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Xiangqian Fan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Duoduo Ling
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Yanghao Bi
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Wei Wu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Shuai Ren
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Ping Rong
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Yinze Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Yajie Han
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China.
| | - Jinzhong Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China.
- State Key Laboratory of Precision Welding and Joining of Materials and Structures, Harbin, 150001, China
- Heilongjiang Provincial Key Laboratory of Advanced Quantum Functional Materials and Sensor Devices, Harbin 150001, China
| |
Collapse
|
12
|
Chen M, Chen X, Wu Z, Huang Z, Gao W, Yang M, Xiao Y, Zhao Y, Zheng Z, Yao J, Li J. An Ultrasensitive Bi 2O 2Se/In 2S 3 Photodetector with Low Detection Limit and Fast Response toward High-Precision Unmanned Driving. ACS NANO 2024; 18:27579-27589. [PMID: 39316416 DOI: 10.1021/acsnano.4c08636] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The machine vision utilized in unmanned driving systems must possess the ability to accurately perceive scenes under low-light illumination conditions. To achieve this, photodetectors with low detection limits and a fast response are essential. Current systems rely on avalanche diodes or lidars, which come with the drawbacks of increased energy consumption and complexity. Here, we present an ultrasensitive photodetector based on a two-dimensional (2D) Bi2O2Se/In2S3 heterostructure, incorporating a homotype unilateral depletion band design. This innovative architecture effectively modulates the transport of both free and photoexcited carriers, suppressing the dark current and facilitating the rapid and efficient separation of photocarriers. Owing to these features, this device exhibits a responsivity of 144 A/W, a specific detectivity of 1.2 × 1014 Jones, and a light on/off ratio of 1.1 × 105. These metrics rank among the top values reported for state-of-the-art 2D devices. Moreover, this device also demonstrates a fast response time of 170/296 μs and a low noise equivalent power of 0.57 fW/Hz1/2, attributes that endow it with ultraweak light imaging capabilities. Furthermore, we have successfully integrated this device into an unmanned driving system, providing a perspective on the design and fabrication of future optoelectronic devices.
Collapse
Affiliation(s)
- Meifei Chen
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Xiqiang Chen
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Ziqiao Wu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528200, Guangdong, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528200, Guangdong, P. R. China
| | - Ye Xiao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| |
Collapse
|
13
|
Sharme RK, Quijada M, Terrones M, Rana MM. Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4559. [PMID: 39336302 PMCID: PMC11432801 DOI: 10.3390/ma17184559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Thin conducting films are distinct from bulk materials and have become prevalent over the past decades as they possess unique physical, electrical, optical, and mechanical characteristics. Comprehending these essential properties for developing novel materials with tailored features for various applications is very important. Research on these conductive thin films provides us insights into the fundamental principles, behavior at different dimensions, interface phenomena, etc. This study comprehensively analyzes the intricacies of numerous commonly used thin conducting films, covering from the fundamentals to their advanced preparation methods. Moreover, the article discusses the impact of different parameters on those thin conducting films' electronic and optical properties. Finally, the recent future trends along with challenges are also highlighted to address the direction the field is heading towards. It is imperative to review the study to gain insight into the future development and advancing materials science, thus extending innovation and addressing vital challenges in diverse technological domains.
Collapse
Affiliation(s)
- Razia Khan Sharme
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| | - Manuel Quijada
- NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA;
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, 104 Davey Lab, PMB 196, University Park, PA 16802, USA;
| | - Mukti M. Rana
- Division of Physics, Engineering, Mathematics and Computer Sciences, and Research on Nanomaterial-Based Integrated Circuits and Electronics (NICE), Delaware State University, Dover, DE 19901, USA;
| |
Collapse
|
14
|
Li M, Jiang Y, Ju H, He S, Jia C, Guo X. Electronic Devices Based on Heterostructures of 2D Materials and Self-Assembled Monolayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402857. [PMID: 38934535 DOI: 10.1002/smll.202402857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
2D materials (2DMs), known for their atomically ultrathin structure, exhibit remarkable electrical and optical properties. Similarly, molecular self-assembled monolayers (SAMs) with comparable atomic thickness show an abundance of designable structures and properties. The strategy of constructing electronic devices through unique heterostructures formed by van der Waals assembly between 2DMs and molecular SAMs not only enables device miniaturization, but also allows for convenient adjustment of their structures and functions. In this review, the fundamental structures and fabrication methods of three different types of electronic devices dominated by 2DM-SAM heterojunctions with varying architectures are timely elaborated. Based on these heterojunctions, their fundamental functionalities and characteristics, as well as the regulation of their performance by external stimuli, are further discussed.
Collapse
Affiliation(s)
- Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Yu Jiang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Suhang He
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
15
|
Yao ZF, Cordova DLM, Milligan GM, Lopez D, Allison SJ, Kuang Y, Ardoña HAM, Arguilla MQ. Lattice-guided assembly of optoelectronically active π-conjugated peptides on 1D van der Waals single crystals. SCIENCE ADVANCES 2024; 10:eadl2402. [PMID: 38865466 PMCID: PMC11168473 DOI: 10.1126/sciadv.adl2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
The deployment of organic molecules in high-performance devices strongly relies on the formation of well-ordered domains, which is often complicated by the dynamic and sensitive nature of supramolecular interactions. Here, we engineered the assembly of water-processable, optoelectronic π-conjugated peptides into well-defined organic-inorganic heterointerfaced assemblies by leveraging the long-range anisotropic ordering of 1D van der Waals (vdW) crystals composed of subnanometer-thick transition metal sulfide chains (MS3; M = Nb, Ta) as assembly templates. We found that the monomers can readily form 1D supramolecular assemblies onto the underlying crystal surface, owing to the structural correspondence between the π-π interactions of the quaterthiophene (4T)-based peptide units (DDD-4T) and sulfur atom ordering along the NbS3 (100) surface. The heterointerfaced assemblies exhibited substantially red-shifted photoluminescence and enhanced visible-range photocurrent generation compared to solution-assembled films. Our results underscore the role of lattice matching in forming ordered supramolecular assemblies, offering an emergent approach to assembling organic building blocks endowed with improved physical properties.
Collapse
Affiliation(s)
- Ze-Fan Yao
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| | - Dmitri Leo Mesoza Cordova
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| | - Griffin M. Milligan
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| | - Diana Lopez
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| | - Steven Jay Allison
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| | - Yuyao Kuang
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Herdeline Ann M. Ardoña
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Maxx Q. Arguilla
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
16
|
Mandia AK, Kumar R, Lee SC, Bhattacharjee S, Muralidharan B. Magneto-transport in the monolayer MoS 2material system for high-performance field-effect transistor applications. NANOTECHNOLOGY 2024; 35:305706. [PMID: 38631306 DOI: 10.1088/1361-6528/ad3fc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Electronic transport in monolayer MoS2is significantly constrained by several extrinsic factors despite showing good prospects as a transistor channel material. Our paper aims to unveil the underlying mechanisms of the electrical and magneto-transport in monolayer MoS2. In order to quantitatively interpret the magneto-transport behavior of monolayer MoS2on different substrate materials, identify the underlying bottlenecks, and provide guidelines for subsequent improvements, we present a deep analysis of the magneto-transport properties in the diffusive limit. Our calculations are performed on suspended monolayer MoS2and MoS2on different substrate materials taking into account remote impurity and the intrinsic and extrinsic phonon scattering mechanisms. We calculate the crucial transport parameters such as the Hall mobility, the conductivity tensor elements, the Hall factor, and the magnetoresistance over a wide range of temperatures, carrier concentrations, and magnetic fields. The Hall factor being a key quantity for calculating the carrier concentration and drift mobility, we show that for suspended monolayer MoS2at room temperature, the Hall factor value is around 1.43 for magnetic fields ranging from 0.001 to 1 Tesla, which deviates significantly from the usual value of unity. In contrast, the Hall factor for various substrates approaches the ideal value of unity and remains stable in response to the magnetic field and temperature. We also show that the MoS2over an Al2O3substrate is a good choice for the Hall effect detector. Moreover, the magnetoresistance increases with an increase in magnetic field strength for smaller magnetic fields before reaching saturation at higher magnetic fields. The presented theoretical model quantitatively captures the scaling of mobility and various magnetoresistance coefficients with temperature, carrier densities, and magnetic fields.
Collapse
Affiliation(s)
- Anup Kumar Mandia
- Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru 560065, India
| | - Rohit Kumar
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Seung-Cheol Lee
- Electronic Materials Research Center, KIST, Seoul 136-791, Republic of Korea
| | | | - Bhaskaran Muralidharan
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
- Centre of Excellence in Quantum Information, Computation, Science and Technology, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
17
|
Li Z, Liu J, Ou H, Hu Y, Zhu J, Huang J, Liu H, Tu Y, Qi D, Hao Q, Zhang W. Enhancement of Carrier Mobility in Multilayer InSe Transistors by van der Waals Integration. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:382. [PMID: 38392755 PMCID: PMC10892934 DOI: 10.3390/nano14040382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Two-dimensional material indium selenide (InSe) holds great promise for applications in electronics and optoelectronics by virtue of its fascinating properties. However, most multilayer InSe-based transistors suffer from extrinsic scattering effects from interface disorders and the environment, which cause carrier mobility and density fluctuations and hinder their practical application. In this work, we employ the non-destructive method of van der Waals (vdW) integration to improve the electron mobility of back-gated multilayer InSe FETs. After introducing the hexagonal boron nitride (h-BN) as both an encapsulation layer and back-gate dielectric with the vdW interface, as well as graphene serving as a buffer contact layer, the electron mobilities of InSe FETs are substantially enhanced. The vdW-integrated devices exhibit a high electron mobility exceeding 103 cm2 V-1 s-1 and current on/off ratios of ~108 at room temperature. Meanwhile, the electron densities are found to exceed 1012 cm-2. In addition, the fabricated devices show an excellent stability with a negligible electrical degradation after storage in ambient conditions for one month. Electrical transport measurements on InSe FETs in different configurations suggest that a performance enhancement with vdW integration should arise from a sufficient screening effect on the interface impurities and an effective passivation of the air-sensitive surface.
Collapse
Affiliation(s)
- Zhiwei Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China; (Z.L.); (J.L.); (H.O.); (Y.H.); (J.Z.); (J.H.); (H.L.); (Y.T.)
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Jidong Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China; (Z.L.); (J.L.); (H.O.); (Y.H.); (J.Z.); (J.H.); (H.L.); (Y.T.)
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Haohui Ou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China; (Z.L.); (J.L.); (H.O.); (Y.H.); (J.Z.); (J.H.); (H.L.); (Y.T.)
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yutao Hu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China; (Z.L.); (J.L.); (H.O.); (Y.H.); (J.Z.); (J.H.); (H.L.); (Y.T.)
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Jiaqi Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China; (Z.L.); (J.L.); (H.O.); (Y.H.); (J.Z.); (J.H.); (H.L.); (Y.T.)
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Jiarui Huang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China; (Z.L.); (J.L.); (H.O.); (Y.H.); (J.Z.); (J.H.); (H.L.); (Y.T.)
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Haolin Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China; (Z.L.); (J.L.); (H.O.); (Y.H.); (J.Z.); (J.H.); (H.L.); (Y.T.)
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yudi Tu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China; (Z.L.); (J.L.); (H.O.); (Y.H.); (J.Z.); (J.H.); (H.L.); (Y.T.)
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Dianyu Qi
- Zhejiang Technology Innovation Center of CMOS IC Manufacturing Process and Design, College of Integrated Circuits, Zhejiang University, Hangzhou 311200, China;
| | - Qiaoyan Hao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China; (Z.L.); (J.L.); (H.O.); (Y.H.); (J.Z.); (J.H.); (H.L.); (Y.T.)
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Wenjing Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China; (Z.L.); (J.L.); (H.O.); (Y.H.); (J.Z.); (J.H.); (H.L.); (Y.T.)
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
18
|
Abbas Q, Kazmi SMT, Li C, Xu X, Rafiq MA. Charge transport mechanisms of PbSnSe 2 and observation of transition from direct to Fowler-Nordheim tunneling. RSC Adv 2024; 14:5812-5816. [PMID: 38362072 PMCID: PMC10865302 DOI: 10.1039/d3ra07812d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
In this study, we report the observation of various conduction mechanisms in mechanically exfoliated PbSnSe2 based on temperature-dependent current and voltage characteristics. A transition from direct tunneling to Fowler-Nordheim tunneling in PbSnSe2 was observed at 2.63 V. At lower temperatures, the 3D Mott variable range hopping model fits the data, yielding a density of states of ∼8.80 × 1020 eV-1 cm-3 at 2 V. The values of Whop and Rhop were 64 meV and 22.7 nm, respectively, at 250 K. The Poole-Frenkel conduction was observed in the Au/PbSnSe2/Au device and the dielectric constant of PbSnSe2 was calculated to be 1.4. At intermediate voltages, a space charge limited current with an exponential distribution of traps was observed and a trap density of ∼9.53 × 1013 cm-3 and a trap characteristic temperature of 430 K were calculated for the Au/PbSnSe2/Au device.
Collapse
Affiliation(s)
- Qaisar Abbas
- Condensed Matter Physics Laboratories, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences PO Nilore Islamabad 45650 Pakistan
| | - Syed Mesam Tamar Kazmi
- Condensed Matter Physics Laboratories, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences PO Nilore Islamabad 45650 Pakistan
| | - Chuanbo Li
- School of Science, Minzu University of China Beijing 100081 China
| | - Xiulai Xu
- Institute of Physics, Chinese Academy of Sciences Beijing 100190 China
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University Beijing 100871 China
| | - M A Rafiq
- Condensed Matter Physics Laboratories, Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences PO Nilore Islamabad 45650 Pakistan
| |
Collapse
|
19
|
Huang W, De-Eknamkul C, Ren Y, Cubukcu E. Directing valley-polarized emission of 3 L WS 2 by photonic crystal with directional circular dichroism. OPTICS EXPRESS 2024; 32:6076-6084. [PMID: 38439318 PMCID: PMC11018336 DOI: 10.1364/oe.510027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 03/06/2024]
Abstract
The valley degree of freedom that results from broken inversion symmetry in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) has sparked a lot of interest due to its huge potential in information processing. In this experimental work, to optically address the valley-polarized emission from three-layer (3 L) thick WS2 at room temperature, we employ a SiN photonic crystal slab that has two sets of holes in a square lattice that supports directional circular dichroism engendered by delocalized guided mode resonances. By perturbatively breaking the inversion symmetry of the photonic crystal slab, we can simultaneously manipulate s and p components of the radiating field so that these resonances correspond to circularly polarized emission. The emission of excitons from distinct valleys is coupled into different radiative channels and hence separated in the farfield. This directional exciton emission from selective valleys provides a potential route for valley-polarized light emitters, which lays the groundwork for future valleytronic devices.
Collapse
Affiliation(s)
- Wenzhuo Huang
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407, USA
| | - Chawina De-Eknamkul
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0448, USA
| | - Yundong Ren
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0448, USA
| | - Ertugrul Cubukcu
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407, USA
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0448, USA
| |
Collapse
|
20
|
Chen C, Yang Z, Liu R, Xue L, Xu LC. Insights into electron dynamics in two-dimensional bismuth oxyselenide: a monolayer-bilayer perspective. Phys Chem Chem Phys 2024; 26:5438-5446. [PMID: 38275150 DOI: 10.1039/d3cp05357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Bismuth oxyselenide (Bi2O2Se), an emerging 2D semiconductor material, has garnered substantial attention owing to its remarkable properties, including air stability, elevated carrier mobility, and ultrafast optical response. In this study, we conduct a comparative analysis of electron excitation and relaxation processes in monolayer and bilayer Bi2O2Se. Our findings reveal that monolayer Bi2O2Se exhibits parity-forbidden transitions between the band edges at the Γ point, whereas bilayer Bi2O2Se demonstrates parity activity, providing the bilayer with an advantage in light absorption. Employing nonadiabatic molecular dynamics simulations, we uncover a two-stage hot-electron relaxation process-initially fast followed by slow-in both monolayer and bilayer Bi2O2Se within the conduction band. Despite the presence of weak nonadiabatic coupling between the CBM + 1 and CBM, limiting hot electron relaxation, the monolayer displays a shorter relaxation time due to its higher phonon-coupled frequency and smaller energy difference. Our investigation sheds light on the layer-specific excitation properties of 2D Bi2O2Se layered materials, providing crucial insights for the strategic design of photonic devices utilizing 2D materials.
Collapse
Affiliation(s)
- Cuifan Chen
- College of Physics, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Zhi Yang
- College of Physics, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Ruiping Liu
- College of Physics, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Lin Xue
- College of Physics, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Li-Chun Xu
- College of Physics, Taiyuan University of Technology, Jinzhong 030600, China.
| |
Collapse
|
21
|
Wu F, Xu Q, Wang Q, Chu Y, Li L, Tang J, Liu J, Tian J, Ji Y, Liu L, Yuan Y, Huang Z, Zhao J, Zan X, Watanabe K, Taniguchi T, Shi D, Gu G, Xu Y, Xian L, Yang W, Du L, Zhang G. Giant Correlated Gap and Possible Room-Temperature Correlated States in Twisted Bilayer MoS_{2}. PHYSICAL REVIEW LETTERS 2023; 131:256201. [PMID: 38181343 DOI: 10.1103/physrevlett.131.256201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
Moiré superlattices have emerged as an exciting condensed-matter quantum simulator for exploring the exotic physics of strong electronic correlations. Notable progress has been witnessed, but such correlated states are achievable usually at low temperatures. Here, we report evidence of possible room-temperature correlated electronic states and layer-hybridized SU(4) model simulator in AB-stacked MoS_{2} homobilayer moiré superlattices. Correlated insulating states at moiré band filling factors v=1, 2, 3 are unambiguously established in twisted bilayer MoS_{2}. Remarkably, the correlated electronic state at v=1 shows a giant correlated gap of ∼126 meV and may persist up to a record-high critical temperature over 285 K. The realization of a possible room-temperature correlated state with a large correlated gap in twisted bilayer MoS_{2} can be understood as the cooperation effects of the stacking-specific atomic reconstruction and the resonantly enhanced interlayer hybridization, which largely amplify the moiré superlattice effects on electronic correlations. Furthermore, extreme large nonlinear Hall responses up to room temperature are uncovered near correlated electronic states, demonstrating the quantum geometry of moiré flat conduction band.
Collapse
Affiliation(s)
- Fanfan Wu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoling Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China
| | - Qinqin Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbang Chu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Tang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieying Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpeng Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiru Ji
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalong Yuan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiheng Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaojiao Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhou Zan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dongxia Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Gangxu Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lede Xian
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Wei Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Luojun Du
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
22
|
Verma D, Chen TC, Liu B, Lai CS. Bi 2O 2Se-based CBRAM integrated artificial synapse. Heliyon 2023; 9:e22512. [PMID: 38107308 PMCID: PMC10724560 DOI: 10.1016/j.heliyon.2023.e22512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Integrating two-dimensional (2D) semiconducting materials into memristor structures has paved the way for emerging 2D materials to be employed in a vast field of memory applications. Bismuth oxyselenide (Bi2O2Se), a 2D material with high electron mobility, has attracted significant research interest owing to its great potential in various fields of advanced applications. Here, we explore the out-of-plane intrinsic switching behavior of few-layered Bi2O2Se via a cross point device for application in conductive bridge random access memory (CBRAM) and artificial synapses for neuromorphic computing. Via state-of-the-art methods, CVD-grown Bi2O2Se nanoplate is applied as a switching material (SM) in an Al/Cu/Bi2O2Se/Pd CBRAM structure. The device exhibits ∼90 consecutive DC cycles with a tight distribution of the SET/RESET voltages under a compliance current (CC) of 1 mA, a retention of over 10 ks, and multilevel switching characteristics showing four distinct states at Vread values of 0.1, 0.2, 0.25, and 0.3 V. Moreover, an artificial synapse is realized with potentiation and depression by modulating the conductance. The switching mechanism is explained via Cu migration through Bi2O2Se based on HRTEM analysis. The present structure shows potential for future integrated memory applications.
Collapse
Affiliation(s)
- Dharmendra Verma
- Department of Electronic Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tsung-Cheng Chen
- Department of Electronic Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Bo Liu
- Faculty of Information Technology, College of Microelectronics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Chao-Sung Lai
- Department of Electronic Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou 33302, Taiwan
- Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
23
|
Li S, Ouyang D, Zhang N, Zhang Y, Murthy A, Li Y, Liu S, Zhai T. Substrate Engineering for Chemical Vapor Deposition Growth of Large-Scale 2D Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211855. [PMID: 37095721 DOI: 10.1002/adma.202211855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The large-scale production of 2D transition metal dichalcogenides (TMDs) is essential to realize their industrial applications. Chemical vapor deposition (CVD) has been considered as a promising method for the controlled growth of high-quality and large-scale 2D TMDs. During a CVD process, the substrate plays a crucial role in anchoring the source materials, promoting the nucleation and stimulating the epitaxial growth. It thus significantly affects the thickness, microstructure, and crystal quality of the products, which are particularly important for obtaining 2D TMDs with expected morphology and size. Here, an insightful review is provided by focusing on the recent development associated with the substrate engineering strategies for CVD preparation of large-scale 2D TMDs. First, the interaction between 2D TMDs and substrates, a key factor for the growth of high-quality materials, is systematically discussed by combining the latest theoretical calculations. Based on this, the effect of various substrate engineering approaches on the growth of large-area 2D TMDs is summarized in detail. Finally, the opportunities and challenges of substrate engineering for the future development of 2D TMDs are discussed. This review might provide deep insight into the controllable growth of high-quality 2D TMDs toward their industrial-scale practical applications.
Collapse
Affiliation(s)
- Shaohua Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yi Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Akshay Murthy
- Superconducting Quantum Materials and Systems Division, Fermi National Accelerator Laboratory (FNAL), Batavia, IL, 60510, USA
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
24
|
Dutta R, Bala A, Sen A, Spinazze MR, Park H, Choi W, Yoon Y, Kim S. Optical Enhancement of Indirect Bandgap 2D Transition Metal Dichalcogenides for Multi-Functional Optoelectronic Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303272. [PMID: 37453927 DOI: 10.1002/adma.202303272] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
The unique electrical and optical properties of transition metal dichalcogenides (TMDs) make them attractive nanomaterials for optoelectronic applications, especially optical sensors. However, the optical characteristics of these materials are dependent on the number of layers. Monolayer TMDs have a direct bandgap that provides higher photoresponsivity compared to multilayer TMDs with an indirect bandgap. Nevertheless, multilayer TMDs are more appropriate for various photodetection applications due to their high carrier density, broad spectral response from UV to near-infrared, and ease of large-scale synthesis. Therefore, this review focuses on the modification of the optical properties of devices based on indirect bandgap TMDs and their emerging applications. Several successful developments in optical devices are examined, including band structure engineering, device structure optimization, and heterostructures. Furthermore, it introduces cutting-edge techniques and future directions for optoelectronic devices based on multilayer TMDs.
Collapse
Affiliation(s)
- Riya Dutta
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Arindam Bala
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Anamika Sen
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Michael Ross Spinazze
- Waterloo Institute for Nanotechnology and the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Heekyeong Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Woong Choi
- School of Materials Science & Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngki Yoon
- Waterloo Institute for Nanotechnology and the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Sunkook Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
25
|
Xiong Y, Chen T, Feng W. Broadband high-performance vertical WS 1.08Se 0.92/Si heterojunction photodetector with MXene electrode. NANOTECHNOLOGY 2023; 35:025201. [PMID: 37797612 DOI: 10.1088/1361-6528/ad005a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Vertical semiconductor van der Waals heterojunctions are essential for fabricating high-performance photodetectors. However, the range of the spectral response and defect states of semiconductor materials are two critical factors affecting the performance of photodetectors. In this work, the spectral response range of WS2was changed through WS2band gap regulation, and a self-powered vertical WS1.08Se0.92/Si heterojunction photodetector with MXene electrode was prepared by synthesizing WS1.08Se0.92film on Si substrate and vertically stacking Ti3C2TxMXene on the film. Due to the electron collection of MXene and the wonderful junction quality of WS1.08Se0.92/Si, the photodetector can detect near-infrared light in the range of 980-1310 nm, which exceed the detection limit of WS1.08Se0.92. And the device had high sensitivity in the broadband. The responsivity was 4.58 A W-1, the specific detectivity was 4.58 × 1011Jones, the on/off ratio was 4.95 × 103, and the fast response time was 9.81/9.03μs. These properties are superior to previously reported WS2-based photodetectors. Vertical structure, Energy band tuning, and MXene electrode provide a new idea for preparing broadband high-performance and self-powered photodetector.
Collapse
Affiliation(s)
- Yuexu Xiong
- School of Physics and Astronomy, China West Normal University, Nanchong 637009, People's Republic of China
| | - Taihong Chen
- School of Physics and Astronomy, China West Normal University, Nanchong 637009, People's Republic of China
| | - Wenlin Feng
- School of Science, Chongqing University of Technology, Chongqing 400054, People's Republic of China
- Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Chongqing 400054, People's Republic of China
| |
Collapse
|
26
|
Vrinda Narayanan P, Majumder S, Gokul MA, Taneja C, Kumar GVP, Rahman A. Improving the optoelectronic properties of monolayer MoS 2field effect transistor through dielectric engineering. NANOTECHNOLOGY 2023; 34:505713. [PMID: 37708882 DOI: 10.1088/1361-6528/acf9aa] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
The reduced dielectric screening in atomically thin two-dimensional materials makes them very sensitive to the surrounding environment, which can be modulated to tune their optoelectronic properties. In this study, we significantly improved the optoelectronic properties of monolayer MoS2by varying the surrounding environment using different liquid dielectrics, each with a specific dielectric constant ranging from 1.89 to 18. Liquid mediums offer the possibility of environment tunability on the same device. For a back-gated field effect transistor, the field effect mobility exhibited more than two-order enhancement when exposed to a high dielectric constant medium. Further investigation into the effect of the dielectric environment on the optoelectronic properties demonstrated a variation in photoresponse relaxation time with the dielectric medium. The rise and decay times were observed to increase and decrease, respectively, with an increase in the dielectric constant of the medium. These results can be attributed to the dielectric screening provided by the surrounding medium, which strongly modifies the charged impurity scattering, the band gap, and defect levels of monolayer MoS2. These findings have important implications for the design of biological and chemical sensors, particularly those operating in a liquid environment. By leveraging the tunability of the dielectric medium, we can optimize the performance of such sensors and enhance their detection capabilities.
Collapse
Affiliation(s)
- P Vrinda Narayanan
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Sudipta Majumder
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - M A Gokul
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Chetna Taneja
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - G V Pavan Kumar
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Atikur Rahman
- Department of Physics, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| |
Collapse
|
27
|
Xiao W, Li Y, Elgendy A, Duran EC, Buckingham MA, Spencer BF, Han B, Alam F, Zhong X, Cartmell SH, Cernik RJ, Eggeman AS, Dryfe RAW, Lewis DJ. Synthesis of High Entropy and Entropy-Stabilized Metal Sulfides and Their Evaluation as Hydrogen Evolution Electrocatalysts. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7904-7914. [PMID: 37840778 PMCID: PMC10568966 DOI: 10.1021/acs.chemmater.3c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/29/2023] [Indexed: 10/17/2023]
Abstract
High entropy metal chalcogenides are materials containing five or more elements within a disordered sublattice. These materials exploit a high configurational entropy to stabilize their crystal structure and have recently become an area of significant interest for renewable energy applications such as electrocatalysis and thermoelectrics. Herein, we report the synthesis of bulk particulate HE zinc sulfide analogues containing four, five, and seven metals. This was achieved using a molecular precursor cocktail approach with both transition and main group metal dithiocarbamate complexes which are decomposed simultaneously in a rapid (1 h) and low-temperature (500 °C) thermolysis reaction to yield high entropy and entropy-stabilized metal sulfides. The resulting materials were characterized by powder XRD, SEM, and TEM, alongside EDX spectroscopy at both the micro- and nano-scales. The entropy-stabilized (CuAgZnCoMnInGa)S material was demonstrated to be an excellent electrocatalyst for the hydrogen evolution reaction when combined with conducting carbon black, achieving a low onset overpotential of (∼80 mV) and η10 of (∼255 mV).
Collapse
Affiliation(s)
- Weichen Xiao
- Department
of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| | - Yi Li
- Department
of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| | - Amr Elgendy
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Egyptian
Petroleum Research Institute, 11727 Cairo, Egypt
| | - Ercin C. Duran
- Department
of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| | - Mark A. Buckingham
- Department
of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| | - Ben F. Spencer
- Department
of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| | - Bing Han
- Department
of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| | - Firoz Alam
- Department
of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| | - Xiangli Zhong
- Department
of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| | - Sarah H. Cartmell
- Department
of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| | - Robert J. Cernik
- Department
of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| | | | - Robert A. W. Dryfe
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David J. Lewis
- Department
of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
28
|
Li P, Zhao Y, Li H, Zhai T. On the Working Mechanisms of Molecules-Based Van der Waals Dielectrics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302230. [PMID: 37287381 DOI: 10.1002/smll.202302230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Indexed: 06/09/2023]
Abstract
Sb2 O3 molecules offer unprecedented opportunities for the integration of a van der Waals (vdW) dielectric and a 2D vdW semiconductor. However, the working mechanisms underlying molecules-based vdW dielectrics remain unclear. Here, the working mechanisms of Sb2 O3 and two Sb2 O3 -like molecules (As2 O3 and Bi2 O3 ) as dielectrics are systematically investigated by combining first-principles calculations and gate leakage current theories. It is revealed that molecules-based vdW dielectrics have a considerable advantage over conventional dielectric materials: defects hardly affect their insulating properties. This shows that it is unnecessary to synthesize high-quality crystals in practical applications, which has been a long-standing challenge for conventional dielectric materials. Further analysis reveals that a large thermionic-emission current renders Sb2 O3 difficult to simultaneously satisfy the requirements of dielectric layers in p-MOS and n-MOS, which hinders its application for complementary metal-oxide-semiconductor (CMOS) devices. Remarkably, it is found that As2 O3 can serve as a dielectric for both p-MOS and n-MOS. This work not only lays a theoretical foundation for the application of molecules-based vdW dielectrics, but also offers an unprecedentedly competitive dielectric (i.e., As2 O3 ) for 2D vdW semiconductors-based CMOS devices, thus having profound implications for future semiconductor industry.
Collapse
Affiliation(s)
- Pengyu Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
29
|
Zhang W, Liang B, Tang J, Chen J, Wan Q, Shi Y, Li S. Performance limit of all-wrapped monolayer MoS 2 transistors. Sci Bull (Beijing) 2023; 68:2025-2032. [PMID: 37598059 DOI: 10.1016/j.scib.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/21/2023]
Abstract
All-wrapped transistors consisting of two-dimensional transition-metal dichalcogenide channels are appealing candidates for post-silicon electronics. Based on the Boltzmann transport theory, here we report a comprehensive theoretical survey on the performance limits for monolayer MoS2 transistors with three prototypical gate dielectrics (Al2O3, HfO2 and BN), by including primary extrinsic charge scattering mechanisms present in practical devices. A concept of "dead space" between the dielectrics and channels is proposed and used in calculation to ameliorate the general overestimation in scattering intensity of surface optical phonons, which enables an accurate description of electronic transport behavior. Crucial device indices, including charge mobility and current density, are thoroughly analyzed for transistors at post-silicon technological nodes beyond 1 nm. The on-state current is estimated to be generally greater than 2 mA μm-1 at channel lengths below 10 nm. The results clarify the potential benefits in performance from extremely miniaturized monolayer-channel transistors for More-Moore electronics.
Collapse
Affiliation(s)
- Wenbo Zhang
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Binxi Liang
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Jiachen Tang
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Jian Chen
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Qing Wan
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yi Shi
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Songlin Li
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
30
|
Chen Y, Lu D, Kong L, Tao Q, Ma L, Liu L, Lu Z, Li Z, Wu R, Duan X, Liao L, Liu Y. Mobility Enhancement of Strained MoS 2 Transistor on Flat Substrate. ACS NANO 2023; 17:14954-14962. [PMID: 37459447 DOI: 10.1021/acsnano.3c03626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Strain engineering has been proposed as a promising method to boost the carrier mobility of two-dimensional (2D) semiconductors. However, state-of-the-art straining approaches are largely based on putting 2D semiconductors on flexible substrates or rough substrate with nanostructures (e.g., nanoparticles, nanorods, ripples), where the observed mobility change is not only dependent on channel strain but could be impacted by the change of dielectric environment as well as rough interface scattering. Therefore, it remains an open question whether the pure lattice strain could improve the carrier mobilities of 2D semiconductors, limiting the achievement of high-performance 2D transistors. Here, we report a strain engineering approach to fabricate highly strained MoS2 transistors on a flat substrate. By mechanically laminating a prefabricated MoS2 transistor onto a custom-designed trench structure on flat substrate, well-controlled strain can be uniformly generated across the 2D channel. In the meantime, the substrate and the back-gate dielectric layer remain flat without any roughness-induced scattering effect or variation of the dielectric environment. Based on this technique, we demonstrate the MoS2 electron mobility could be enhanced by tension strain and decreased by compression strain, consistent with theoretical predictions. The highest mobility enhancement is 152% for monolayer MoS2 and 64% for bilayer MoS2 transistors, comparable to that of a silicon device. Our method not only provides a compatible approach to uniformly strain the layered semiconductors on flat and solid substrate but also demonstrates an effective method to boost the carrier mobilities of 2D transistors.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Donglin Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lingan Kong
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Quanyang Tao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Likuan Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liting Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zheyi Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zhiwei Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Ruixia Wu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Liao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
31
|
Ravichandran H, Knobloch T, Pannone A, Karl A, Stampfer B, Waldhoer D, Zheng Y, Sakib NU, Karim Sadaf MU, Pendurthi R, Torsi R, Robinson JA, Grasser T, Das S. Observation of Rich Defect Dynamics in Monolayer MoS 2. ACS NANO 2023. [PMID: 37490390 DOI: 10.1021/acsnano.2c12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Defects play a pivotal role in limiting the performance and reliability of nanoscale devices. Field-effect transistors (FETs) based on atomically thin two-dimensional (2D) semiconductors such as monolayer MoS2 are no exception. Probing defect dynamics in 2D FETs is therefore of significant interest. Here, we present a comprehensive insight into various defect dynamics observed in monolayer MoS2 FETs at varying gate biases and temperatures. The measured source-to-drain currents exhibit random telegraph signals (RTS) owing to the transfer of charges between the semiconducting channel and individual defects. Based on the modeled temperature and gate bias dependence, oxygen vacancies or aluminum interstitials are probable defect candidates. Several types of RTSs are observed including anomalous RTS and giant RTS indicating local current crowding effects and rich defect dynamics in monolayer MoS2 FETs. This study explores defect dynamics in large area-grown monolayer MoS2 with ALD-grown Al2O3 as the gate dielectric.
Collapse
Affiliation(s)
- Harikrishnan Ravichandran
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Theresia Knobloch
- Institute for Microelectronics (TU Wien), Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Andrew Pannone
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Alexander Karl
- Institute for Microelectronics (TU Wien), Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Bernhard Stampfer
- Institute for Microelectronics (TU Wien), Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Dominic Waldhoer
- Institute for Microelectronics (TU Wien), Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Yikai Zheng
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Najam U Sakib
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Muhtasim Ul Karim Sadaf
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Rahul Pendurthi
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Riccardo Torsi
- Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Joshua A Robinson
- Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Tibor Grasser
- Institute for Microelectronics (TU Wien), Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Saptarshi Das
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Electrical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
32
|
Xu N, Shi L, Pei X, Zhang W, Chen J, Han Z, Samorì P, Wang J, Wang P, Shi Y, Li S. Oxidation kinetics and non-Marcusian charge transfer in dimensionally confined semiconductors. Nat Commun 2023; 14:4074. [PMID: 37429836 DOI: 10.1038/s41467-023-39781-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Electrochemical reactions represent essential processes in fundamental chemistry that foster a wide range of applications. Although most electrochemical reactions in bulk substances can be well described by the classical Marcus-Gerischer charge transfer theory, the realistic reaction character and mechanism in dimensionally confined systems remain unknown. Here, we report the multiparametric survey on the kinetics of lateral photooxidation in structurally identical WS2 and MoS2 monolayers, where electrochemical oxidation occurs at the atomically thin monolayer edges. The oxidation rate is correlated quantitatively with various crystallographic and environmental parameters, including the density of reactive sites, humidity, temperature, and illumination fluence. In particular, we observe distinctive reaction barriers of 1.4 and 0.9 eV for the two structurally identical semiconductors and uncover an unusual non-Marcusian charge transfer mechanism in these dimensionally confined monolayers due to the limit in reactant supplies. A scenario of band bending is proposed to explain the discrepancy in reaction barriers. These results add important knowledge into the fundamental electrochemical reaction theory in low-dimensional systems.
Collapse
Affiliation(s)
- Ning Xu
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Li Shi
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xudong Pei
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Weiyang Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jian Chen
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Zheng Han
- Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China.
- Suzhou Laboratory, Suzhou, 215125, China.
| | - Peng Wang
- Department of Physics, University of Warwick, CV4 7AL, Coventry, UK.
| | - Yi Shi
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| | - Songlin Li
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
33
|
Nagaura T, Ashok A, Alowasheeir A, Vasanth A, Han M, Yamauchi Y. Mesoporous Semiconductive Bi 2Se 3 Films. NANO LETTERS 2023. [PMID: 37289968 DOI: 10.1021/acs.nanolett.3c00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bi2Se3 is a semiconductive material possessing a bandgap of 0.3 eV, and its unique band structure has paved the way for diverse applications. Herein, we demonstrate a robust platform for synthesizing mesoporous Bi2Se3 films with uniform pore sizes via electrodeposition. Block copolymer micelles act as soft templates in the electrolyte to create a 3D porous nanoarchitecture. By controlling the length of the block copolymer, the pore size is adjusted to 9 and 17 nm precisely. The nonporous Bi2Se3 film exhibits a tunneling current in a vertical direction of 52.0 nA, but upon introducing porosity (9 nm pores), the tunneling current increases significantly to 684.6 nA, suggesting that the conductivity of Bi2Se3 films is dependent on the pore structure and surface area. The abundant porous architecture exposes a larger surface area of Bi2Se3 to the surrounding air within the same volume, thereby augmenting its metallic properties.
Collapse
Affiliation(s)
- Tomota Nagaura
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Aditya Ashok
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Azhar Alowasheeir
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Arya Vasanth
- Amrita School for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Minsu Han
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
34
|
Huang Z, Luo Z, Deng Z, Yang M, Gao W, Yao J, Zhao Y, Dong H, Zheng Z, Li J. Integration of Self-Passivated Topological Electrodes for Advanced 2D Optoelectronic Devices. SMALL METHODS 2023; 7:e2201571. [PMID: 36932942 DOI: 10.1002/smtd.202201571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/20/2023] [Indexed: 06/09/2023]
Abstract
With the rapid development of two-dimensional semiconductor technology, the inevitable chemical disorder at a typical metal-semiconductor interface has become an increasingly serious problem that degrades the performance of 2D semiconductor optoelectronic devices. Herein, defect-free van der Waals contacts have been achieved by utilizing topological Bi2 Se3 as the electrodes. Such clean and atomically sharp contacts avoid the consumption of photogenerated carriers at the interface, enabling a markedly boosted sensitivity as compared to counterpart devices with directly deposited metal electrodes. Typically, the device with 2D WSe2 channel realizes a high responsivity of 20.5 A W-1 , an excellent detectivity of 2.18 × 1012 Jones, and a fast rise/decay time of 41.66/38.81 ms. Furthermore, high-resolution visible-light imaging capability of the WSe2 device is demonstrated, indicating its promising application prospect in future optoelectronic systems. More inspiringly, the topological electrodes are universally applicable to other 2D semiconductor channels, including WS2 and InSe, suggesting its broad applicability. These results open fascinating opportunities for the development of high-performance electronics and optoelectronics.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhongtong Luo
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Ziwen Deng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
| | - Wei Gao
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Huafeng Dong
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jingbo Li
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| |
Collapse
|
35
|
Yang S, Liu K, Xu Y, Liu L, Li H, Zhai T. Gate Dielectrics Integration for 2D Electronics: Challenges, Advances, and Outlook. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207901. [PMID: 36226584 DOI: 10.1002/adma.202207901] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/28/2022] [Indexed: 05/05/2023]
Abstract
2D semiconductors have emerged both as an ideal platform for fundamental studies and as promising channel materials in beyond-silicon field-effect-transistors due to their outstanding electrical properties and exceptional tunability via external field. However, the lack of proper dielectrics for 2D semiconductors has become a major roadblock for their further development toward practical applications. The prominent issues between conventional 3D dielectrics and 2D semiconductors arise from the integration and interface quality, where defect states and imperfections lead to dramatic deterioration of device performance. In this review article, the root causes of such issues are briefly analyzed and recent advances on some possible solutions, including various approaches of adapting conventional dielectrics to 2D semiconductors, and the development of novel dielectrics with van der Waals surface toward high-performance 2D electronics are summarized. Then, in the perspective, the requirements of ideal dielectrics for state-of-the-art 2D devices are outlined and an outlook for their future development is provided.
Collapse
Affiliation(s)
- Sijie Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yongshan Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lixin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
36
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
37
|
Xu N, Pei X, Qiu L, Zhan L, Wang P, Shi Y, Li S. Noninvasive Photodelamination of van der Waals Semiconductors for High-Performance Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300618. [PMID: 37016540 DOI: 10.1002/adma.202300618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Atomically thin 2D van der Waals semiconductors are promising candidate materials for post-silicon electronics. However, it remains challenging to attain completely uniform monolayer semiconductor wafers free of over-grown islands. Here, the observation of the energy-funneling effect and ambient photodelamination phenomenon in inhomogeneous few-layer WS2 flakes under low-illumination fluencies down to several nW µm-2 and its potential as a noninvasive atomic-layer etching strategy for selectively stripping the local excessive overlying islands are reported. Photoluminescent tracking on the photoetching traces reveals relatively fast etching rates of around 0.3-0.8 µm min-1 at varied temperatures and an activation energy of 1.7 eV. By using crystallographic and electronic characterization, the noninvasive nature of the low-power photodelamination and the highly preserved lattice quality are also confirmed in the as-etched monolayer products, featuring a comparable density of atomic defects (≈4.2 × 1013 cm-2 ) to pristine flakes and a high electron mobility of up to 80 cm2 V-1 s-1 at room temperature. This approach opens a noninvasive postetching route for thickness uniformity management in 2D van der Waals semiconductor wafers for electronic applications.
Collapse
Affiliation(s)
- Ning Xu
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xudong Pei
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Lipeng Qiu
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Li Zhan
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Peng Wang
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Yi Shi
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Songlin Li
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
38
|
Zhao WJ, Ma L, Zhang JM. Investigation on the photocatalytic property of direct Z-type van der Waals g-C3N4/AlN heterojunction and its mechanism. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
39
|
Park H, Sen A, Kaniselvan M, AlMutairi A, Bala A, Lee LP, Yoon Y, Kim S. A Wafer-Scale Nanoporous 2D Active Pixel Image Sensor Matrix with High Uniformity, High Sensitivity, and Rapid Switching. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210715. [PMID: 36807606 DOI: 10.1002/adma.202210715] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/15/2023] [Indexed: 06/18/2023]
Abstract
2D transition-metal dichalcogenides (TMDs) have been successfully developed as novel ubiquitous optoelectronics owing to their excellent electrical and optical characteristics. However, active-matrix image sensors based on TMDs have limitations owing to the difficulty of fabricating large-area integrated circuitry and achieving high optical sensitivity. Herein, a large-area uniform, highly sensitive, and robust image sensor matrix with active pixels consisting of nanoporous molybdenum disulfide (MoS2 ) phototransistors and indium-gallium-zinc oxide (IGZO) switching transistors is reported. Large-area uniform 4-inch wafer-scale bilayer MoS2 films are synthesized by radio-frequency (RF) magnetron sputtering and sulfurization processes and patterned to be a nanoporous structure consisting of an array of periodic nanopores on the MoS2 surface via block copolymer lithography. Edge exposure on the nanoporous bilayer MoS2 induces the formation of subgap states, which promotes a photogating effect to obtain an exceptionally high photoresponsivity of 5.2 × 104 A W-1 . A 4-inch-wafer-scale image mapping is successively achieved using this active-matrix image sensor by controlling the device sensing and switching states. The high-performance active-matrix image sensor is state-of-the-art in 2D material-based integrated circuitry and pixel image sensor applications.
Collapse
Affiliation(s)
- Heekyeong Park
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Harvard Institute of Medicine, Harvard Medical School, Harvard University, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Anamika Sen
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Manasa Kaniselvan
- Waterloo Institute for Nanotechnology (WIN) & Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - AbdulAziz AlMutairi
- Waterloo Institute for Nanotechnology (WIN) & Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Arindam Bala
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Luke P Lee
- Harvard Institute of Medicine, Harvard Medical School, Harvard University, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Youngki Yoon
- Waterloo Institute for Nanotechnology (WIN) & Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Sunkook Kim
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
40
|
Thoutam LR, Mathew R, Ajayan J, Tayal S, Nair SV. A critical review of fabrication challenges and reliability issues in top/bottom gated MoS 2field-effect transistors. NANOTECHNOLOGY 2023; 34:232001. [PMID: 36731113 DOI: 10.1088/1361-6528/acb826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The voyage of semiconductor industry to decrease the size of transistors to achieve superior device performance seems to near its physical dimensional limitations. The quest is on to explore emerging material systems that offer dimensional scaling to match the silicon- based technologies. The discovery of atomic flat two-dimensional materials has opened up a completely new avenue to fabricate transistors at sub-10 nanometer level which has the potential to compete with modern silicon-based semiconductor devices. Molybdenum disulfide (MoS2) is a two-dimensional layered material with novel semiconducting properties at atomic level seems like a promising candidate that can possibly meet the expectation of Moore's law. This review discusses the various 'fabrication challenges' in making MoS2based electronic devices from start to finish. The review outlines the intricate challenges of substrate selection and various synthesis methods of mono layer and few-layer MoS2. The review focuses on the various techniques and methods to minimize interface defect density at substrate/MoS2interface for optimum MoS2-based device performance. The tunable band-gap of MoS2with varying thickness presents a unique opportunity for contact engineering to mitigate the contact resistance issue using different elemental metals. In this work, we present a comprehensive overview of different types of contact materials with myriad geometries that show a profound impact on device performance. The choice of different insulating/dielectric gate oxides on MoS2in co-planar and vertical geometry is critically reviewed and the physical feasibility of the same is discussed. The experimental constraints of different encapsulation techniques on MoS2and its effect on structural and electronic properties are extensively discussed.
Collapse
Affiliation(s)
- Laxman Raju Thoutam
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Ribu Mathew
- School of Electrical & Electronics Engineering, VIT Bhopal University, Bhopal, 466114, India
| | - J Ajayan
- Department of Electronics and Communication Engineering, SR University, Warangal, 506371, India
| | - Shubham Tayal
- Department of Electronics and Communication Engineering, SR University, Warangal, 506371, India
| | - Shantikumar V Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| |
Collapse
|
41
|
Hei J, Li X, Wu S, Lin P, Shi Z, Tian Y, Li X, Zeng L, Yu X, Wu D. Wafer-Scale Patterning Synthesis of Two-Dimensional WSe 2 Layers by Direct Selenization for Highly Sensitive van der Waals Heterojunction Broadband Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12052-12060. [PMID: 36848604 DOI: 10.1021/acsami.2c22409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) exhibit promising potential in fabricating highly sensitive photodetectors due to their unique electrical and optoelectrical characteristics. However, micron-sized 2D materials produced by conventional chemical vapor deposition (CVD) and mechanical exfoliation methods fail to satisfy the demands for applications in integrated optoelectronics and systems given their poor controllability and repeatability. Here, we propose a simple selenization approach to grow wafer-scale (2 in.) 2D p-WSe2 layers with high uniformity and customized patterns. Furthermore, a self-driven broadband photodetector with a p-WSe2/n-Si van der Waals heterojunction has been in situ fabricated with a satisfactory responsivity of 689.8 mA/W and a large specific detectivity of 1.59 × 1013 Jones covering from ultraviolet to short-wave infrared. In addition, a remarkable nanosecond response speed has been recorded under 0.5% duty cycle of the input light. The proposed selenization approach on the growth of 2D WSe2 layers demonstrates an effective route to fabricate highly sensitive broadband photodetectors used for integrated optoelectronic systems.
Collapse
Affiliation(s)
- Jinjin Hei
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xue Li
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuoen Wu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Pei Lin
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhifeng Shi
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongtao Tian
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinjian Li
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Longhui Zeng
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Xuechao Yu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Di Wu
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
42
|
Lei Y, Zhang T, Lin YC, Granzier-Nakajima T, Bepete G, Kowalczyk DA, Lin Z, Zhou D, Schranghamer TF, Dodda A, Sebastian A, Chen Y, Liu Y, Pourtois G, Kempa TJ, Schuler B, Edmonds MT, Quek SY, Wurstbauer U, Wu SM, Glavin NR, Das S, Dash SP, Redwing JM, Robinson JA, Terrones M. Graphene and Beyond: Recent Advances in Two-Dimensional Materials Synthesis, Properties, and Devices. ACS NANOSCIENCE AU 2022; 2:450-485. [PMID: 36573124 PMCID: PMC9782807 DOI: 10.1021/acsnanoscienceau.2c00017] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022]
Abstract
Since the isolation of graphene in 2004, two-dimensional (2D) materials research has rapidly evolved into an entire subdiscipline in the physical sciences with a wide range of emergent applications. The unique 2D structure offers an open canvas to tailor and functionalize 2D materials through layer number, defects, morphology, moiré pattern, strain, and other control knobs. Through this review, we aim to highlight the most recent discoveries in the following topics: theory-guided synthesis for enhanced control of 2D morphologies, quality, yield, as well as insights toward novel 2D materials; defect engineering to control and understand the role of various defects, including in situ and ex situ methods; and properties and applications that are related to moiré engineering, strain engineering, and artificial intelligence. Finally, we also provide our perspective on the challenges and opportunities in this fascinating field.
Collapse
Affiliation(s)
- Yu Lei
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Institute
of Materials Research, Tsinghua Shenzhen
International Graduate School, Shenzhen, Guangdong 518055, China
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tianyi Zhang
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Material Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu-Chuan Lin
- Center
for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Material Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tomotaroh Granzier-Nakajima
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - George Bepete
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dorota A. Kowalczyk
- Department
of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, Lodz 90-236, Poland
| | - Zhong Lin
- Department
of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Da Zhou
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas F. Schranghamer
- Department
of Engineering Science and Mechanics, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Akhil Dodda
- Department
of Engineering Science and Mechanics, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Amritanand Sebastian
- Department
of Engineering Science and Mechanics, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Yifeng Chen
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive, Singapore 117456, Singapore
| | - Yuanyue Liu
- Texas
Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Thomas J. Kempa
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Bruno Schuler
- nanotech@surfaces
Laboratory, Empa − Swiss Federal
Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Mark T. Edmonds
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Su Ying Quek
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive, Singapore 117456, Singapore
| | - Ursula Wurstbauer
- Institute
of Physics, University of Münster, Wilhelm-Klemm-Str. 10, Münster 48149, Germany
| | - Stephen M. Wu
- Department
of Electrical and Computer Engineering & Department of Physics
and Astronomy, University of Rochester, Rochester, New York 14627, United States
| | - Nicholas R. Glavin
- Air
Force
Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, Ohio 45433, United States
| | - Saptarshi Das
- Center
for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Material Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Engineering Science and Mechanics, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Saroj Prasad Dash
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, Göteborg SE-412 96, Sweden
| | - Joan M. Redwing
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Material Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joshua A. Robinson
- Center
for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Material Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mauricio Terrones
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Material Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Research
Initiative for Supra-Materials and Global Aqua Innovation Center, Shinshu University, 4-17-1Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
43
|
Tu J, Lei X, Li P. Strain-induced ultrahigh power conversion efficiency in BP-MoSe 2vdW heterostructure. NANOTECHNOLOGY 2022; 34:085403. [PMID: 36541493 DOI: 10.1088/1361-6528/aca548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic water splitting is a promising method for hydrogen production, and the search for efficient photocatalysts has received extensive attention. Two-dimensional van der Waals (vdW) heterostructures have recently been considered excellent candidates for photocatalytic water splitting. In this work, a BP-MoSe2vdW heterostructure composed of a blue phosphorus (BP) and MoSe2monolayer was studied as a potential photocatalyst for water splitting using first-principles calculations. The results show that the heterostructure has a type-II band structure, and the band edges straddle water redox potentials under biaxial strains from -3% to 2%, satisfying the requirements for photocatalytic water splitting. In addition, the heterostructure has excellent power conversion efficiency (PCE) and strong optical absorption in both visible light and near-ultraviolet region, indicating that it is a very promising candidate for photocatalytic water splitting. Specifically, the PCE was enhanced to ∼20.2% under a tensile strain of 2%. The Gibbs free energy profiles indicate that BP-MoSe2vdW heterostructure exhibits good catalytic performance in hydrogen and oxygen evolution reactions. In particular, high carrier mobility implies that the transfer of carriers to reactive sites is easy, and the recombination probability of photogenerated electron-hole pairs is reduced.
Collapse
Affiliation(s)
- Jiarui Tu
- Department of Physics, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Xueling Lei
- Department of Physics, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| |
Collapse
|
44
|
First‐principles Study of SO
2
and NO Gas Sensors Based on SnTe Monolayer. ChemistrySelect 2022. [DOI: 10.1002/slct.202204120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Zhang X, Zhang Y, Yu H, Zhao H, Cao Z, Zhang Z, Zhang Y. Van der Waals-Interface-Dominated All-2D Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2207966. [PMID: 36353883 DOI: 10.1002/adma.202207966] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The interface is the device. As the feature size rapidly shrinks, silicon-based electronic devices are facing multiple challenges of material performance decrease and interface quality degradation. Ultrathin 2D materials are considered as potential candidates in future electronics by their atomically flat surfaces and excellent immunity to short-channel effects. Moreover, due to naturally terminated surfaces and weak van der Waals (vdW) interactions between layers, 2D materials can be freely stacked without the lattice matching limit to form high-quality heterostructure interfaces with arbitrary components and twist angles. Controlled interlayer band alignment and optimized interfacial carrier behavior allow all-2D electronics based on 2D vdW interfaces to exhibit more comprehensive functionality and better performance. Especially, achieving the same computing capacity of multiple conventional devices with small footprint all-2D devices is considered to be the key development direction of future electronics. Herein, the unique properties of all-2D vdW interfaces and their construction methods are systematically reviewed and the main performance contributions of different vdW interfaces in 2D electronics are summarized, respectively. Finally, the recent progress and challenges for all-2D vdW electronics are discussed, and how to improve the compatibility of 2D material devices with silicon-based industrial technology is pointed out as a critical challenge.
Collapse
Affiliation(s)
- Xiankun Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yanzhe Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Huihui Yu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hang Zhao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihong Cao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
46
|
The effects of point defect type, location, and density on the Schottky barrier height of Au/MoS 2 heterojunction: a first-principles study. Sci Rep 2022; 12:18001. [PMID: 36289283 PMCID: PMC9606307 DOI: 10.1038/s41598-022-22913-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Using DFT calculations, we investigate the effects of the type, location, and density of point defects in monolayer MoS2 on electronic structures and Schottky barrier heights (SBH) of Au/MoS2 heterojunction. Three types of point defects in monolayer MoS2, that is, S monovacancy, S divacancy and MoS (Mo substitution at S site) antisite defects, are considered. The following findings are revealed: (1) The SBH for the monolayer MoS2 with these defects is universally higher than that for its defect-free counterpart. (2) S divacancy and MoS antisite defects increase the SBH to a larger extent than S monovacancy. (3) A defect located in the inner sublayer of MoS2, which is adjacent to Au substrate, increases the SBH to a larger extent than that in the outer sublayer of MoS2. (4) An increase in defect density increases the SBH. These findings indicate a large variation of SBH with the defect type, location, and concentration. We also compare our results with previously experimentally measured SBH for Au/MoS2 contact and postulate possible reasons for the large differences among existing experimental measurements and between experimental measurements and theoretical predictions. The findings and insights revealed here may provide practical guidelines for modulation and optimization of SBH in Au/MoS2 and similar heterojunctions via defect engineering.
Collapse
|
47
|
Tu J, Wu W, Lei X, Li P. The SWSe-BP vdW Heterostructure as a Promising Photocatalyst for Water Splitting with Power Conversion Efficiency of 19.4. ACS OMEGA 2022; 7:37061-37069. [PMID: 36312328 PMCID: PMC9609072 DOI: 10.1021/acsomega.2c01977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen generation by photocatalytic water splitting has drawn enormous research attention for converting sunlight and water into clean and green hydrogen fuel. However, the search for a high efficiency photocatalyst for water splitting is a key challenge. Two dimensional (2D) van der Waals (vdW) heterostructures as photocatalysts exhibit many advantages over the stacked original materials. In this article, we designed two novel 2D vdW heterostructures composed of WSSe and blue phosphorene (BP) monolayers, SWSe-BP and SeWS-BP, which are thermodynamically stable at room temperature. Using first-principles calculations, we found that the SWSe-BP vdW heterostructure can act as a potential photocatalyst for water splitting due to its robust stabilities, type-II band alignment, moderate bandgap, and suitable band edge positions for the redox reactions of water splitting, strong optical absorption, and excellent power conversion efficiency (PCE). Remarkably, the PCE of the SWSe-BP vdW heterostructure can achieve approximately 19.4% under a 3% biaxial tensile strain.
Collapse
Affiliation(s)
- Jiarui Tu
- Department
of Physics, Jiangxi Normal University, Nanchang, Jiangxi330022, China
| | - Wenjun Wu
- Department
of Physics, Jiangxi Normal University, Nanchang, Jiangxi330022, China
| | - Xueling Lei
- Department
of Physics, Jiangxi Normal University, Nanchang, Jiangxi330022, China
| | - Pengfei Li
- Key
Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials
and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei230031, China
| |
Collapse
|
48
|
Cai Y, Shen J, Fu JH, Qaiser N, Chen C, Tseng CC, Hakami M, Yang Z, Yen HJ, Dong X, Li LJ, Han Y, Tung V. Graphdiyne-Based Nanofilms for Compliant On-Skin Sensing. ACS NANO 2022; 16:16677-16689. [PMID: 36125976 DOI: 10.1021/acsnano.2c06169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thin-film electronics pliably laminated onto the epidermis for noninvasive, specific, and multifunctional sensing are ideal wearable systems for health monitoring and information technologies. However, it remains a critical challenge to fabricate ultrathin and compliant skin-like sensors with high imperceptibility and sensitivities. Here we report a design of conductive hydrogen-substituted graphdiyne (HsGDY) nanofilms with conjugated porous structure and inherent softness for on-skin sensors that allow minimization of stress and discomfort with wear. Dominated by the subtle deformation-induced changes in the interdomain tunneling conductance, the engineered HsGDY sensors show continuous and accurate results. Real-time noninvasive spatial mapping of dynamic/static strains in both tensile/compressive directions monitors various body motions with high sensitivity (GF ∼22.6, under 2% strain), fast response (∼60 ms), and long-term durability (∼5000 cycles). Moreover, such devices can dynamically distinguish between the temperature difference and frequency of air inhaled and exhaled through the nostril, revealing a quantitative assessment of the movement/health of the human body. The proof-of-concept strategy provides an alternative route for the design of next-generation wearable organic bioelectronics with multiple electronic functionalities.
Collapse
Affiliation(s)
- Yichen Cai
- Physical Science and Engineering Division, Material Science and Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jie Shen
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jui-Han Fu
- Department of Chemical System Engineering, University of Tokyo, Tokyo 113-8654, Japan
| | - Nadeem Qaiser
- Physical Science and Engineering Division, Material Science and Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Cailing Chen
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Chien-Chih Tseng
- Physical Science and Engineering Division, Material Science and Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Department of Chemical System Engineering, University of Tokyo, Tokyo 113-8654, Japan
| | - Mariam Hakami
- Department of Chemical System Engineering, University of Tokyo, Tokyo 113-8654, Japan
| | - Zheng Yang
- Physical Science and Engineering Division, Material Science and Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hung-Ju Yen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Lain-Jong Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yu Han
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Vincent Tung
- Physical Science and Engineering Division, Material Science and Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Department of Chemical System Engineering, University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
49
|
Jang J, Kim JK, Shin J, Kim J, Baek KY, Park J, Park S, Kim YD, Parkin SSP, Kang K, Cho K, Lee T. Reduced dopant-induced scattering in remote charge-transfer-doped MoS 2 field-effect transistors. SCIENCE ADVANCES 2022; 8:eabn3181. [PMID: 36129985 PMCID: PMC9491718 DOI: 10.1126/sciadv.abn3181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Efficient doping for modulating electrical properties of two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors is essential for meeting the versatile requirements for future electronic and optoelectronic devices. Because doping of semiconductors, including TMDCs, typically involves generation of charged dopants that hinder charge transport, tackling Coulomb scattering induced by the externally introduced dopants remains a key challenge in achieving ultrahigh mobility 2D semiconductor systems. In this study, we demonstrated remote charge transfer doping by simply inserting a hexagonal boron nitride layer between MoS2 and solution-deposited n-type dopants, benzyl viologen. A quantitative analysis of temperature-dependent charge transport in remotely doped devices supports an effective suppression of the dopant-induced scattering relative to the conventional direct doping method. Our mechanistic investigation of the remote doping method promotes the charge transfer strategy as a promising method for material-level tailoring of electrical and optoelectronic devices based on TMDCs.
Collapse
Affiliation(s)
- Juntae Jang
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Jae-Keun Kim
- Max-Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Saale, Germany
| | - Jiwon Shin
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Jaeyoung Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Kyeong-Yoon Baek
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Jaehyoung Park
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Seungmin Park
- Department of Physics, Kyung Hee University, Seoul 02447, Korea
| | - Young Duck Kim
- Department of Physics, Kyung Hee University, Seoul 02447, Korea
| | - Stuart S. P. Parkin
- Max-Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Saale, Germany
| | - Keehoon Kang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Kyungjune Cho
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Takhee Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
50
|
Yu J, Han Y, Zhang H, Ding X, Qiao L, Hu J. Excimer Formation in the Non-Van-Der-Waals 2D Semiconductor Bi 2 O 2 Se. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204227. [PMID: 35781340 DOI: 10.1002/adma.202204227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The layered semiconductor Bi2 O2 Se is a promising new-type 2D material that holds layered structure via electrostatic forces instead of van der Waals (vdW) attractions. Aside from the huge success in device performance, the non-vdW nature in Bi2 O2 Se with a built-in interlayer electric field has also provided an appealing platform for investigating unique photoexcited carrier dynamics. Here, experimental evidence for the observation of excimers in multilayer Bi2 O2 Se nanosheets via transient absorption spectroscopy is presented. It is found that the excimer formation is the primary decay pathway of photoexcited excitons and three-stage excimer dynamics with corresponding time scales are established. Excitation-fluence-dependent excimer dynamics further suggest that the excimer is diffusive and its formation can be simply described as excitons relaxed to an excimer geometry. This work indicates the outstanding promise of unique excitonic processes in Bi2 O2 Se, which may motivate novel device designs.
Collapse
Affiliation(s)
- Junhong Yu
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yadong Han
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Hang Zhang
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiang Ding
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jianbo Hu
- Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|