1
|
Koner K, Das K, Paitandi RP, Mahapatra R, Sarkar A, Sury A, Koo YH, Zhang Y, Heine T, Kuc A, Pillai PP, Seki S, Reddy CM, Banerjee R. Photoconductivity Switching in Semiconducting Two-Dimensional Crystals via Molecular Tetris. J Am Chem Soc 2025; 147:9972-9980. [PMID: 40063599 DOI: 10.1021/jacs.5c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Two-dimensional organic materials are mainly constructed by using orthogonal anisotropic connectivity of covalent bonding and π-π stacking. The noncovalent connectivity between building blocks is presumed to be too delicate to stabilize the two-dimensional (2D) layers. Contrary to this assumption, we constructed graphite-like 2D layered material by utilizing pure noncovalent connectivity, i.e., weak intermolecular and π-π interaction via a molecular Tetris strategy. We produce X-ray mountable single crystals comprising polycyclic aromatic heterocycles by employing a single-crystal-to-dissolution-to-single-crystal transformation methodology. The macromechanical analysis of this layered crystal shows shearing behavior, which is quantified using nanoindentation experiments. The 2D lattice's layer space allows reversible intercalation-deintercalation of iodine, which enhances the photoconductivity by 17 folds. Combined efforts of X-ray diffraction, solid-state spectroscopy, and electrochemical studies established the mechanism of intercalation and resulting photoconductivity enhancement.
Collapse
Affiliation(s)
- Kalipada Koner
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Kaustav Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Rajendra Prasad Paitandi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Rohan Mahapatra
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Abhradeep Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Adhra Sury
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Yun Hee Koo
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yingying Zhang
- Helmholtz-Zentrum Dresden-Rossendorf, HZDR, Bautzner Landstr. 400, 01328 Dresden, Germany
- Center for Advanced Systems Understanding, CASUS, Conrad-Schiedt-Straße 20, 02826 Görlitz, Germany
| | - Thomas Heine
- Helmholtz-Zentrum Dresden-Rossendorf, HZDR, Bautzner Landstr. 400, 01328 Dresden, Germany
- Center for Advanced Systems Understanding, CASUS, Conrad-Schiedt-Straße 20, 02826 Görlitz, Germany
- Yonsei University and IBS-CNM, Seodaemun-gu, Seoul 120-749, Republic of Korea
- Theoretical Chemistry, Technische Universität Dresden, Bergstr. 66c, 01069 Dresden, Germany
| | - Agnieszka Kuc
- Helmholtz-Zentrum Dresden-Rossendorf, HZDR, Bautzner Landstr. 400, 01328 Dresden, Germany
- Center for Advanced Systems Understanding, CASUS, Conrad-Schiedt-Straße 20, 02826 Görlitz, Germany
| | - Pramod P Pillai
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Department of Chemistry, Indian Institute of Technology Hyderabad, Hyderabad 502284, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Rezaei M, Abouie J, Nazari F. Enhancing magnetic coupling in MN 4-graphene via strain engineering. Phys Chem Chem Phys 2025. [PMID: 40025957 DOI: 10.1039/d5cp00248f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
MN4-embedded graphene (MN4-G) layers, with transition metal elements M, are experimentally accessible two-dimensional (2D) materials and show great potential for stable nanoscale magnetization. In these materials, the exchange couplings between magnetic atoms are predominantly governed by Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling, exhibiting an unusual prolonged decay of r-n, where r is the M-M separation distance, and 0.5 ≤ n ≤ 2. In this paper, we explore the effects of induced strain on the electronic and magnetic properties of MN4-G layers through ab initio density functional theory. We employ a specific method to apply strain by positioning atoms from one layer within the equilibrium structure of another layer, thereby inducing strain in the form of either tension or compression. The induced strain results in an approximate ±0.4% variation in the unit-cell area of the MN4-G lattice. Our findings reveal that while the exchange coupling mechanism remains unaffected, the strength, amplitude, and decay rate of the RKKY coupling are significantly influenced by the induced strain. Notably, the CoN4-G layer exhibits a remarkable increase in the strength and oscillation amplitude of the RKKY coupling, along with a reduced decay rate. Additionally, the electronic and magnetic properties of the CuN4-G layers remain unchanged under induced strain.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran.
| | - Jahanfar Abouie
- Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran.
| | - Fariba Nazari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran.
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran
| |
Collapse
|
3
|
Lobo K, Moolayadukkam S, Vishwanathan S, Ramakrishna Matte HSS. Solution-Processed MoS 2-Expanded Graphite as a Fast-Charging Anode for Lithium-Ion Batteries. Chem Asian J 2025; 20:e202401044. [PMID: 39743854 DOI: 10.1002/asia.202401044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/11/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
The widespread demand for battery-powered technologies has propelled the search for efficient and commercially viable electrode materials with fast-charging abilities. Reported herein is an MoS2-expanded graphite (EG) composite as a stable and high-rate lithium-ion battery (LIB) anode, delivering specific capacities of 796 mAh g-1 at 0.5 A g-1 and 320 mAh g-1 at 20 A g-1 over 400 cycles. Cyclability at extreme rates up to 50 A g-1 (~103 mAh g-1) illustrates its scope for fast charging applications. As a result of the processing technique, the exfoliated nanosheets have good interfacial contact which aids in charge transfer and maintaining structural integrity during continuous battery operation. Further, analytical electrochemical methods suggest a predominance of pseudocapacitive charge storage mechanism, explaining the anode performance at high rates.
Collapse
Affiliation(s)
- Kenneth Lobo
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Bangalore, 562162, India
| | - Sreejesh Moolayadukkam
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Bangalore, 562162, India
- Current affiliation: Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA-90089, United States
- Iovine and Young Academy, University of Southern California, Los Angeles, CA-90089, United States
| | - Savithri Vishwanathan
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Bangalore, 562162, India
| | - H S S Ramakrishna Matte
- Energy Materials Laboratory, Centre for Nano and Soft Matter Sciences, Bangalore, 562162, India
| |
Collapse
|
4
|
Liu Y, Wang Z, Hu G, Chen X, Xu K, Guo Y, Xie Y, Wu C. Precision Intercalation of Organic Molecules in 2D Layered Materials: From Interface Chemistry to Low-Dimensional Physics. PRECISION CHEMISTRY 2025; 3:51-71. [PMID: 40018453 PMCID: PMC11863159 DOI: 10.1021/prechem.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 03/01/2025]
Abstract
The past few decades have witnessed significant development in intercalation chemistry research aimed at precisely controlling material properties. Intercalation, as a powerful surface and interface synthesis strategy, facilitates the insertion of external guests into van der Waals (vdW) gaps in two-dimensional (2D) layered materials, inducing various modulation effects (the weakening of interlayer interactions, changes in electronic structures, interfacial charge transfer, and symmetry manipulation) to tailor material properties while preserving intralayer covalent bonds. Importantly, benefiting from the very diverse structures and properties of organic molecules, their intercalation enables the integration of various molecules with a wide array of 2D materials, resulting in the creation of numerous organic-inorganic hybrid superlattices with exotic properties, which brings extensive potential applications in fields such as spintronics, superconductor electronics, optoelectronics, and thermoelectrics. Herein, based on recent advancements in organic intercalation systems, we briefly discuss a summary and classification of various organic guest species. We also discuss three modulation effects induced by organic intercalation and further introduce intriguing modulations in physicochemical properties, including superconductivity, magnetism, thermoelectricity and thermal conductivity, chiral-induced spin selectivity (CISS) effects, and interlayer-confined chemical reaction. Finally, we offer insights into future research opportunities and emerging challenges in organic intercalation systems.
Collapse
Affiliation(s)
- Yang Liu
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ziren Wang
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guoliang Hu
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaomeng Chen
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ke Xu
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuqiao Guo
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Xie
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changzheng Wu
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
5
|
Liu B, Zhong H, Liu J, Yu J, Zhang Q, Loh JR, Zhao L, Zhang P, Gao L, Xue J. Modulation of Electrochemical Reactions through External Stimuli: Applications in Oxygen Evolution Reaction and Beyond. ACS NANO 2025; 19:5110-5130. [PMID: 39878872 DOI: 10.1021/acsnano.5c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process. Despite significant enhancement in catalytic performance, an in-depth understanding of the origin of superior OER activity contributed by the external stimuli remains elusive, which significantly hinders the further development of highly efficient and durable water electrolyzed devices. Herein, this review systematically summarizes the recent advancements in the understanding of various external stimuli, including photon irradiation, applied magnetic field, and thermal heating, etc., to boost OER activities. In particular, the underlying mechanisms of external stimuli to promote species transfer, modify the electronic structure of electrocatalysts, and accelerate structural reconstruction are highlighted. Additionally, applications of external stimuli in other electrocatalytic reactions are also presented. Finally, several remaining challenges and future opportunities are discussed, providing insights that could further the study of external stimuli in electrocatalytic reactions and support the rational design of highly efficient energy storage and conversion devices.
Collapse
Affiliation(s)
- Baoshan Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Haoyin Zhong
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Jing Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Junchen Yu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Qi Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Jiong Rui Loh
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Liping Zhao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lian Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
6
|
Merentsov AI, Píš I, Shkvarin AS, Postnikov MS, Yarmoshenko YM, Shkvarina EG, Titov AA, Onischenko AO, Titov AN. Isovalent substitution-induced pseudodoping in ZrxTi1-xSe2 transition metal dichalcogenides. J Chem Phys 2025; 162:044704. [PMID: 39868917 DOI: 10.1063/5.0245563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
The crystal and electronic structure of ZrxTi1-xSe2 (0 < x < 1) compounds and their electrical resistivity have been studied in detail for the first time. A combination of soft x-ray spectroscopic methods (XPS, XAS, and ResPES) was used to investigate the electronic structure. The lattice parameters as a function of the metal concentration x obey Vegard's law. It was shown that the substitution of Ti by Zr results in an increase in the Fermi energy, attributed to the lower binding energy of Zr 4d compared to Ti 3d in the ZrxTi1-xSe2 valence band. Given that the oxidation states of both Ti and Zr are +4, and the concentration of free charge carriers remains unchanged upon substitution, the observed effect is explained by a reduced density of electronic states near the Fermi level. The influence of temperature on the Ti 2p-3d and Zr 3p-4d ResPES spectra is interpreted in terms of pseudodoping occurring with the substitution of Ti by Zr.
Collapse
Affiliation(s)
- A I Merentsov
- Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620990 Yekaterinburg, Russia
| | - I Píš
- CNR-Istituto Officina dei Materiali (IOM), S.S. 14-Km 163.5, 34149 Basovizza, Trieste, Italy
| | - A S Shkvarin
- Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620990 Yekaterinburg, Russia
| | - M S Postnikov
- Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620990 Yekaterinburg, Russia
| | - Y M Yarmoshenko
- Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620990 Yekaterinburg, Russia
| | - E G Shkvarina
- Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620990 Yekaterinburg, Russia
| | - A A Titov
- Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620990 Yekaterinburg, Russia
| | - A O Onischenko
- Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620990 Yekaterinburg, Russia
| | - A N Titov
- Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620990 Yekaterinburg, Russia
| |
Collapse
|
7
|
Hu W, Shen J, Wang T, Li Z, Xu Z, Lou Z, Qi H, Yan J, Wang J, Le T, Zheng X, Lu Y, Lin X. Lithium Ion Intercalation-Induced Metal-Insulator Transition in Inclined-Standing Grown 2D Non-Layered Cr 2S 3 Nanosheets. SMALL METHODS 2024; 8:e2400312. [PMID: 38654560 DOI: 10.1002/smtd.202400312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Gate-controlled ionic intercalation in the van der Waals gap of 2D layered materials can induce novel phases and unlock new properties. However, this strategy is often unsuitable for densely packed 2D non-layered materials. The non-layered rhombohedral Cr2S3 is an intrinsic heterodimensional superlattice with alternating layers of 2D CrS2 and 0D Cr1/3. Here an innovative chemical vapor deposition method is reported, utilizing strategically modified metal precursors to initiate entirely new seed layers, yields ultrathin inclined-standing grown 2D Cr2S3 nanosheets with edge instead of face contact with substrate surfaces, enabling rapid all-dry transfer to other substrates while ensuring high crystal quality. The unconventional ordered vacancy channels within the 0D Cr1/3 layers, as revealed by cross-sectional scanning transmission electron microscope, permitting the insertion of Li+ ions. An unprecedented metal-insulator transition, with a resistance modulation of up to six orders of magnitude at 300 K, is observed in Cr2S3-based ionic field-effect transistors. Theoretical calculations corroborate the metallization induced by Li-ion intercalation. This work sheds light on the understanding of growth mechanism, structure-property correlation and highlights the diverse potential applications of 2D non-layered Cr2S3 superlattice.
Collapse
Affiliation(s)
- Wanghua Hu
- Department of Physics, Fudan University, Shanghai, 200438, China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Jinbo Shen
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Tao Wang
- Department of Physics, Fudan University, Shanghai, 200438, China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Zishun Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Zhuokai Xu
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Zhefeng Lou
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Haoyu Qi
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Junjie Yan
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Jialu Wang
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Tian Le
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Xiaorui Zheng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yunhao Lu
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Lin
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| |
Collapse
|
8
|
Kim S, Lee H, Eom S, Ji G, Choi SH, Joo H, Bae J, Kim KK, Park HR, Park KD. Dynamical control of nanoscale electron density in atomically thin n-type semiconductors via nano-electric pulse generator. SCIENCE ADVANCES 2024; 10:eadr0492. [PMID: 39546603 PMCID: PMC11566989 DOI: 10.1126/sciadv.adr0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Controlling electron density in two-dimensional semiconductors is crucial for both comprehensive understanding of fundamental material properties and their technological applications. However, conventional electrostatic doping methods exhibit limitations, particularly in addressing electric field-induced drift and subsequent diffusion of electrons, which restrict nanoscale doping. Here, we present a tip-induced nanospectroscopic electric pulse modulator to dynamically control nanoscale electron density, thereby facilitating precise measurement of nano-optoelectronic behaviors within a MoS2 monolayer. The tip-induced electric pulse enables nanoscale modulation of electron distribution as a function of electric pulse width. We simultaneously investigate spatially altering photoluminescence quantum yield at the nanoscale region. We model the extent of electron depletion region, confirming a minimum doping region with a radius of ∼265 nanometers for a 30-nanosecond pulse width. Our approach paves the way for engineering local electron density and in situ nano-optical characterization in two-dimensional materials, enabling an in-depth understanding of doping-dependent nano-optoelectronic phenomena.
Collapse
Affiliation(s)
- Sujeong Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seonhye Eom
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gangseon Ji
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soo Ho Choi
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jinhyuk Bae
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ki Kang Kim
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hyeong-Ryeol Park
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
9
|
Del Piero JVB, Miwa RH, Scopel WL. Vanadium incorporation in 2D-layered MoSe 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:045503. [PMID: 39442551 DOI: 10.1088/1361-648x/ad8abb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Recent advances in experimental techniques have made it possible to manipulate the structural and electronic properties of two-dimensional layered materials (2DM) through interaction with foreign atoms. Using quantum mechanics calculations based on the density functional theory, we explored the dependency of the structural, energetic, electronic, and magnetic properties of the interaction between Vanadium (V) atoms and monolayer and bilayer MoSe2. Spin-polarized metallic behavior was observed for high V concentration, and a semiconductor/metal interface emerged due to V adsorption on top of BL MoSe2. Our research demonstrated that the functionalization of 2D materials makes an important contribution to the design of spintronic devices based on a 2D-layered materials platform.
Collapse
Affiliation(s)
- João V B Del Piero
- Departamento de Física, Universidade Federal do Espírito Santo-UFES, 29075-910 Vitória, ES, Brazil
| | - Roberto H Miwa
- Instituto de Física, Universidade Federal de Uberlândia-UFU, 38400-902 Uberlândia, MG, Brazil
| | - Wanderlã L Scopel
- Departamento de Física, Universidade Federal do Espírito Santo-UFES, 29075-910 Vitória, ES, Brazil
| |
Collapse
|
10
|
Wang J, Han J, Chen S, Li J, Wang Y, Wu C, Wang Q, Wang Z, Chen F, Wan W. Observation of a V-Shape Superconductivity Evolution on Tungsten-Intercalated 2H-Type Niobium Diselenide. ACS NANO 2024; 18:27665-27671. [PMID: 39342510 DOI: 10.1021/acsnano.4c09443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
van der Waals-layered niobium diselenide (NbSe2) intercalated by d-electron transition metals is an ideal test bed for the exploration of their diversiform evolution of ground states. These intercalations are mostly viewed as ordered structures aligned with periodicities of their host materials that enable control of the electronic phases via gradually changing of intercalation ratios. Here, we present the structure and superconductivity in tungsten (W)-intercalated 2H-NbSe2 crystals, which reveals an order to disorder distribution of W atoms with increasing confined intercalating amounts, leading to an approximate V-shape suppression of superconductivity. Aided by density functional theory calculations, we demonstrate that the local magnetic moment around W intercalants induced by the charge redistribution gives rise to the quick superconductivity suppression in 2H-NbSe2 below a certain dilute amount (W% = 0.06). Simultaneously, W intercalants also induce structural aberration due to aggregation effects and inhibit the generation of an ordered structure in 2H-NbSe2, resulting in a recovery of its superconductivity. The alteration of structure and electronic phases in 2H-NbSe2 via intercalation of nonmagnetic transition metals in the van der Waals gap enables the exploration of combined magnetic quantum criticality, superconductivity, and other related electronic correlations.
Collapse
Affiliation(s)
- Jin Wang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- College of Physics and Electronic Information Engineering, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jia Han
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Shu Chen
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jie Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yangzhou Wang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chuanyi Wu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Qianshuo Wang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zihan Wang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Fei Chen
- College of Physics and Electronic Information Engineering, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Wen Wan
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Krasheninnikov AV, Lin YC, Suenaga K. Graphene Bilayer as a Template for Manufacturing Novel Encapsulated 2D Materials. NANO LETTERS 2024; 24. [PMID: 39364880 PMCID: PMC11487710 DOI: 10.1021/acs.nanolett.4c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Bilayer graphene (BLG) has recently been used as a tool to stabilize encapsulated single sheets of various layered materials and tune their properties. It was also discovered that the protecting action of graphene sheets makes it possible to synthesize completely new two-dimensional materials (2DMs) inside the BLG by intercalating various atoms and molecules. In comparison to the bulk graphite, BLG allows for easier intercalation and a much larger increase in the interlayer separation of the sheets. Moreover, it enables studying the atomic structure of the intercalated 2DM by using high-resolution transmission electron microscopy. In this review, we summarize the recent progress in this area, with a special focus on new materials created inside BLG. We compare the experimental findings with the theoretical predictions, pay special attention to the discrepancies, and outline the challenges in the field. Finally, we discuss unique opportunities offered by intercalation into 2DMs beyond graphene and their heterostructures.
Collapse
Affiliation(s)
- Arkady V. Krasheninnikov
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden, Germany
- The
Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan
| | - Yung-Chang Lin
- The
Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan
- Nanomaterials
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Kazu Suenaga
- The
Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan
- Nanomaterials
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| |
Collapse
|
12
|
Zhai Y, Shi Z, Xia Q, Han W, Li W, Deng X, Zhang X. Lithiation: Advancing Material Synthesis and Structural Engineering for Emerging Applications. ACS NANO 2024; 18:26477-26502. [PMID: 39301666 DOI: 10.1021/acsnano.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Lithiation, a process of inserting lithium ions into a host material, is revolutionizing nanomaterials synthesis and structural engineering as well as enhancing their performance across emerging applications, particularly valuable for large-scale synthesis of high-quality low-dimensional nanomaterials. Through a systematic investigation of the synthetic strategies and structural changes induced by lithiation, this review aims to offer a comprehensive understanding of the development, potential, and challenges associated with this promising approach. First, the basic principles of lithiation/delithiation processes will be introduced. Then, the recent advancements in the lithiation-induced structure changes of nanomaterials, such as morphology tuning, phase transition, defect generation, etc., will be stressed, emphasizing the importance of lithiation in structural modulation of nanomaterials. With the tunable structures induced by the lithiation, the properties and performance in electrochemical, photochemical, electronic devices, bioapplications, etc. will be discussed, followed by outlining the current challenges and perspectives in this research area.
Collapse
Affiliation(s)
- Yanjie Zhai
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Zhenqi Shi
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Qing Xia
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wenkai Han
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Weisong Li
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Xiaoran Deng
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Jiangsu 221004, China
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
13
|
Li Y, Xu L, Yang C, Xu L, Liu S, Yang Z, Li Q, Dong J, Yang J, Lu J. Electrical Contacts in Monolayer MoSi 2N 4 Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49496-49507. [PMID: 39231283 DOI: 10.1021/acsami.4c09880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The latest synthesized monolayer (ML) MoSi2N4 material exhibits stability in ambient conditions, suitable bandgap, and high mobilities. Its potential as a next-generation transistor channel material has been demonstrated through quantum transport simulations. However, in practical two-dimensional (2D) material transistors, the electrical contacts formed by the channel and the electrode must be optimized, as they are crucial for determining the efficiency of carrier injection. We employed the density functional theory (DFT) combined with the nonequilibrium Green's function (NEGF) method to systematically explore the vertical and horizontal interfaces between the typical metal electrodes and the ML MoSi2N4. The DFT+NEGF method incorporates the coupling between the electrode and the channel, which is crucial for quantum transport. Among these metals, Sc and Ti form n-type Ohmic contacts with zero tunneling barriers at both vertical and horizontal interfaces with ML MoSi2N4, making them optimal for contact metals. In-ML MoSi2N4 contacts display zero Schottky barriers but a 3.11 eV tunneling barrier. Cu and Au establish n-type Schottky contacts, while Pt forms a p-type contact. The Fermi pinning factors of the metal-ML MoSi2N4 contacts for both electrons and holes are above 0.51, much higher than the typical 2D semiconductors. Moreover, there is a strong positive correlation between the Fermi pinning factor and the band gap, with a Spearman rank correlation coefficient of 0.897 and a p-value below 0.001. Our work provides insight into the contact optimization for the ML MoSi2N4 transistors and highlights the promising potential of ML MoSi2N4 as the channel material for the next-generation FETs.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
| | - Lianqiang Xu
- School of Physics and Electronic Information Engineering, Engineering Research Center of Nanostructure and Functional Materials, Ningxia Normal University, Guyuan 756000, China
| | - Chen Yang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
| | - Linqiang Xu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
- Science, Mathematics and Technology, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Shiqi Liu
- State Key Laboratory of Spintronics Devices and Technologies, Hangzhou 311305, P. R. China
| | - Zongmeng Yang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
| | - Qiuhui Li
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
| | - Jichao Dong
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
| | - Jie Yang
- Key Laboratory of Material Physics, School of Physics, Ministry of Education, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jing Lu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD), Peking University, Beijing 100871, P. R. China
| |
Collapse
|
14
|
Zheng J, Xiang X, Xu D, Tang Y. Functional surfactant-directing ultrathin metallic nanoarchitectures as high-performance electrocatalysts. Chem Commun (Camb) 2024; 60:10080-10097. [PMID: 39162004 DOI: 10.1039/d4cc02988g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Ultrathin nanosheets possess a distinctive structure characterized by an abundance of active sites fully accessible on their surface. Concurrently, their nanoscale thickness confers an extraordinarily high specific surface area and promising electronic properties. To date, numerous strategies have been devised for synthesizing precious metal nanosheets that exhibit excellent electrocatalytic performance. In this paper, recent progress in the controlled synthesis of two-dimensional, ultrathin nanosheets by a self-assembly mechanism using functional surfactants is reviewed. The aim is to highlight the key role of functional surfactants in the assembly and synthesis of two-dimensional ultrathin nanosheets, as well as to discuss in depth how to enhance their electrochemical properties, thereby expanding their potential applications in catalysis. We provide a detailed exploration of the mechanisms employed by several long-carbon chain surfactants commonly used in the synthesis of nanosheets. These surfactants exhibit robust electrostatic and hydrophobic effects, effectively confining the crystalline growth of metals along lamellar micelles. Moreover, we present an overview of the electrocatalytic performance demonstrated by the ultrathin nanosheets synthesized through this innovative pathway. Furthermore, it offers valuable insights that may pave the way for further exploration of more functional long-chain surfactants, leading to the synthesis of ultrathin nanosheets with significantly enhanced electrocatalytic performance.
Collapse
Affiliation(s)
- Jinyu Zheng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Xin Xiang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| |
Collapse
|
15
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
16
|
Wang TH, Huang TY, Chen CL. Thermal-Driven Cobalt Intercalation Enhances Thermoelectric ZT of n-Type Bi 2Te 2.7Se 0.3. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46280-46288. [PMID: 39162615 DOI: 10.1021/acsami.4c08479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Layered materials have emerged as stars in the realm of nanomaterials, showcasing exceptional versatility in various fields. This investigation employed a thermally driven method to intercalate cobalt (Co) into the van der Waals gaps of (CuI)0.002Bi2Te2.7Se0.3 crystals and investigated the mechanism by which the intercalated Co enhances the thermoelectric performance of the material. Co intercalation decreases the carrier concentration, thereby improving the Seebeck coefficient and decreasing both the mobility and the electrical conductivity. These effects result in a significant enhancement of the power factor above 400 K. Theoretical electronic structure calculations provide insights into the role of Co in this material. Additionally, the presence of intercalated Co significantly enhances phonon scattering, thereby boosting the thermoelectric figure-of-merit, ZT to 1.33 at 350 K for 0.17% Co intercalation. These findings highlight the potential of Co incorporation for improving the thermoelectric energy efficiency of n-type Bi2Te2.7Se0.3, offering avenues for further optimization in thermoelectric applications.
Collapse
Affiliation(s)
| | - Tsung-Yu Huang
- Department of Materials Engineering and Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Cheng-Lung Chen
- Graduate School of Materials Science, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| |
Collapse
|
17
|
Li M, Fan Q, Gao L, Liang K, Huang Q. Chemical Intercalation of Layered Materials: From Structure Tailoring to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312918. [PMID: 38821561 DOI: 10.1002/adma.202312918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/02/2024] [Indexed: 06/02/2024]
Abstract
The intercalation of layered materials offers a flexible approach for tailoring their structures and generating unexpected properties. This review provides perspectives on the chemical intercalation of layered materials, including graphite/graphene, transition metal dichalcogenides, MXenes, and some particular materials. The characteristics of the different intercalation methods and their chemical mechanisms are discussed. The influence of intercalation on the structural changes of the host materials and the structural change how to affect the intrinsic properties of the intercalation compounds are discussed. Furthermore, a perspective on the applications of intercalation compounds in fields such as energy conversion and storage, catalysis, smart devices, biomedical applications, and environmental remediation is provided. Finally, brief insights into the challenges and future opportunities for the chemical intercalation of layered materials are provided.
Collapse
Affiliation(s)
- Mian Li
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Lin Gao
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| | - Qing Huang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| |
Collapse
|
18
|
Xu Z, Lau TW, Xiong P, Li J, Li MMJ, Yin J, Zhu Y. Imaging Anisotropic Proton Intercalation in Photochromic MoO 3. NANO LETTERS 2024; 24:9727-9733. [PMID: 39058683 DOI: 10.1021/acs.nanolett.4c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Protonation represents a fundamental chemical process with promising applications in the fields of energy, environment, and memory devices. Probing the protonation mechanism, however, presents a formidable challenge owing to the elusiveness of intercalated protons. In this work, we utilize the atomic and electronic structure changes associated with protonation to directly image the proton intercalation pathways in α-MoO3 induced by UV illumination. We reveal the anisotropic intercalation behavior which is initiated by photocatalyzed water dissociation preferentially at the (001) edges and then propagates along the c axis, transforming α-MoO3 into HxMoO3 to realize photochromism. This photochromic process can be reversed via heating in air, leading to anisotropic proton deintercalation, also preferentially along the c axis. The observed anisotropic behavior can be attributed to the intrinsically low energy barriers for both proton migration along the c axis and water dissociation/formation at (001) edges.
Collapse
Affiliation(s)
- Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong 00000, China
| | - Ting Wai Lau
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong 00000, China
| | - Pei Xiong
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong 00000, China
| | - Jiangtong Li
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong 00000, China
| | - Molly Meng-Jung Li
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong 00000, China
| | - Jun Yin
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong 00000, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong 00000, China
| |
Collapse
|
19
|
Yang B, Dong W, Zhu C, Huang X, Han Y, Zheng Y, Yan J, Zhuang Z, Yu Y. Reinforcing 2D Single-Crystal Bi 2O 2CO 3 with Additional Interlayer Carbonates by CO 2-Assisted Solid-to-Solid Phase Transition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401559. [PMID: 38659393 DOI: 10.1002/smll.202401559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Indexed: 04/26/2024]
Abstract
A facile gaseous CO2 mediated solid-to-solid transformation principle is adopted to insert additional CO3 2- anions into the thin single-crystal nanosheets of Bi2O2CO3, which is built of periodic arrays of intrinsic CO3 2- anions and (Bi2O2)2+ layers. The additional CO3 2- anions create abundant defects. The Bi2O2CO3 nanosheets with rich interlayer CO3 2- exhibit superior electronic properties and charge transfer kinetics than the pristine single-crystal 2D Bi2O2CO3 and display enhanced catalytic activity in photocatalytic CO2 reduction reaction and the photocatalytic oxidative degradation of organic pollutants. This work thus illustrates interlayer engineering as a flexible means to build layered 2D materials with excellent properties.
Collapse
Affiliation(s)
- Bixia Yang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Weilong Dong
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Chongbing Zhu
- AQUA Worth (Suzhou) Environmental Protection Co.,Ltd, Suzhou, 215011, China
| | - Xinlian Huang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yunhui Han
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yanting Zheng
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Jiawei Yan
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Zanyong Zhuang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yan Yu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
20
|
Ma M, Wang W, Li Z, Wang Z, Wang X, Zhang Y, Wang X, Zhu X. Linear-Organic-Ions In Situ-Intercalated MoS 2 for Unveiling Capacitive Energy Storage Relies on the Chain Length. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39066694 DOI: 10.1021/acsami.4c07573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intercalating linear-organic-ions into the MoS2 interlayer is beneficial for optimizing electrons/ions' capacitive storage behavior. The chain length, as an important parameter of linear organic ions, can lead to differences in the dispersion, polarity, critical micelle concentration of organic ions, and steric hindrance to the growth of MoS2 nanosheets. Up until now, the relationship between chain length, synthesis of intercalated-MoS2, and capacitive energy storage has not been unveiled. Herein, we have designed an in situ-intercalation route that is simple, efficient, and high yield for inserting four types of linear organic ions into the interlayer of MoS2 to synthesize four types of in situ-intercalated MoS2 samples. After organic-ion intercalation, the expanded interlayer spacing achieved the introduction of intercalation-type pseudocapacitors, as confirmed by ex situ XRD. Improved extra capacitance is verified due to the enlarged ion storage space from a synergistic spatial effect in the broken-shell-hollow ball. Additionally, the generation of high-valent Mo (+5 and +6) and S-vacancies is beneficial for energy storage. More importantly, according to density functional theory (DFT) calculations, as the chain length increases, the number of negative adsorption sites and the total adsorption ability also increase, leading to significantly improved specific capacitance. This work will provide an archetype for the preparation of in situ-intercalated layered materials and unveil capacitive energy storage that relies on the organic-ion chain length.
Collapse
Affiliation(s)
- Mingzhu Ma
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Weixin Wang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Ziyu Li
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Zhongliao Wang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Xin Wang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Yongxing Zhang
- Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Xin Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P.R. China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P.R. China
| |
Collapse
|
21
|
Pereira JM, Tezze D, Martín-García B, Casanova F, Ormaza M, Hueso LE, Gobbi M. Enhanced Superconductivity in 2H-TaS 2 Devices through in Situ Molecular Intercalation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042085 DOI: 10.1021/acsami.4c04997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The intercalation of guest species into the gap of van der Waals materials often leads to the emergence of intriguing phenomena such as superconductivity. While intercalation-induced superconductivity has been reported in several bulk crystals, reaching a zero-resistance state in flakes remains challenging. Here, we show a simple method for enhancing the superconducting transition in tens-of-nanometers thick 2H-TaS2 crystals contacted by gold electrodes through in situ intercalation. Our approach enables measuring the electrical characteristics of the same flake before and after intercalation, permitting us to precisely identify the effect of the guest species on the TaS2 transport properties. We find that the intercalation of amylamine molecules into TaS2 flakes causes a suppression of the charge density wave and an increase in the superconducting transition with an onset temperature above 3 K. Additionally, we show that a fully developed zero-resistance state can be achieved in flakes by engineering the conditions of the chemical intercalation. Our findings pave the way for the integration of chemically tailored intercalation compounds in scalable quantum technologies.
Collapse
Affiliation(s)
| | - Daniel Tezze
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Spain
| | - Beatriz Martín-García
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Fèlix Casanova
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Maider Ormaza
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, UPV-EHU, 20018 San Sebastián, Spain
| | - Luis E Hueso
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Marco Gobbi
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Centro de Física de Materiales (CSIC-UPV-EHU) and Materials Physics Center (MPC), 20018 San Sebastián, Spain
| |
Collapse
|
22
|
van Efferen C, Hall J, Atodiresei N, Boix V, Safeer A, Wekking T, Vinogradov NA, Preobrajenski AB, Knudsen J, Fischer J, Jolie W, Michely T. 2D Vanadium Sulfides: Synthesis, Atomic Structure Engineering, and Charge Density Waves. ACS NANO 2024; 18:14161-14175. [PMID: 38771774 PMCID: PMC11155258 DOI: 10.1021/acsnano.3c05907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Two ultimately thin vanadium-rich 2D materials based on VS2 are created via molecular beam epitaxy and investigated using scanning tunneling microscopy, X-ray photoemission spectroscopy, and density functional theory (DFT) calculations. The controlled synthesis of stoichiometric single-layer VS2 or either of the two vanadium-rich materials is achieved by varying the sample coverage and sulfur pressure during annealing. Through annealing of small stoichiometric single-layer VS2 islands without S pressure, S-vacancies spontaneously order in 1D arrays, giving rise to patterned adsorption. Via the comparison of DFT calculations with scanning tunneling microscopy data, the atomic structure of the S-depleted phase, with a stoichiometry of V4S7, is determined. By depositing larger amounts of vanadium and sulfur, which are subsequently annealed in a S-rich atmosphere, self-intercalated ultimately thin V5S8-derived layers are obtained, which host 2 × 2 V-layers between sheets of VS2. We provide atomic models for the thinnest V5S8-derived structures. Finally, we use scanning tunneling spectroscopy to investigate the charge density wave observed in the 2D V5S8-derived islands.
Collapse
Affiliation(s)
- Camiel van Efferen
- II.
Physikalisches Institut, Universität
zu Köln, Zülpicher
Straße 77, 50937 Köln, Germany
| | - Joshua Hall
- II.
Physikalisches Institut, Universität
zu Köln, Zülpicher
Straße 77, 50937 Köln, Germany
| | - Nicolae Atodiresei
- Peter
Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich, Wilhelm-Johnen Straße, 52428 Jülich, Germany
| | - Virginia Boix
- Division
of Synchrotron Radiation Research, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Affan Safeer
- II.
Physikalisches Institut, Universität
zu Köln, Zülpicher
Straße 77, 50937 Köln, Germany
| | - Tobias Wekking
- II.
Physikalisches Institut, Universität
zu Köln, Zülpicher
Straße 77, 50937 Köln, Germany
| | | | | | - Jan Knudsen
- Division
of Synchrotron Radiation Research, Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
- MAX
IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
- NanoLund,
Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Jeison Fischer
- II.
Physikalisches Institut, Universität
zu Köln, Zülpicher
Straße 77, 50937 Köln, Germany
| | - Wouter Jolie
- II.
Physikalisches Institut, Universität
zu Köln, Zülpicher
Straße 77, 50937 Köln, Germany
| | - Thomas Michely
- II.
Physikalisches Institut, Universität
zu Köln, Zülpicher
Straße 77, 50937 Köln, Germany
| |
Collapse
|
23
|
Xu T, Sun L. Diving into interlayer confinement. NATURE MATERIALS 2024; 23:729-730. [PMID: 38548900 DOI: 10.1038/s41563-024-01850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Affiliation(s)
- Tao Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China.
| |
Collapse
|
24
|
Yang R, Mei L, Lin Z, Fan Y, Lim J, Guo J, Liu Y, Shin HS, Voiry D, Lu Q, Li J, Zeng Z. Intercalation in 2D materials and in situ studies. Nat Rev Chem 2024; 8:410-432. [PMID: 38755296 DOI: 10.1038/s41570-024-00605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Intercalation of atoms, ions and molecules is a powerful tool for altering or tuning the properties - interlayer interactions, in-plane bonding configurations, Fermi-level energies, electronic band structures and spin-orbit coupling - of 2D materials. Intercalation can induce property changes in materials related to photonics, electronics, optoelectronics, thermoelectricity, magnetism, catalysis and energy storage, unlocking or improving the potential of 2D materials in present and future applications. In situ imaging and spectroscopy technologies are used to visualize and trace intercalation processes. These techniques provide the opportunity for deciphering important and often elusive intercalation dynamics, chemomechanics and mechanisms, such as the intercalation pathways, reversibility, uniformity and speed. In this Review, we discuss intercalation in 2D materials, beginning with a brief introduction of the intercalation strategies, then we look into the atomic and intrinsic effects of intercalation, followed by an overview of their in situ studies, and finally provide our outlook.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Liang Mei
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, China
| | - Yingying Fan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Jongwoo Lim
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jinghua Guo
- Advanced Light Source, Energy Storage and Distributed Resources Division, and Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yijin Liu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hyeon Suk Shin
- Center for 2D Quantum Heterostructures, Institute for Basic Science, and Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada.
| | - Ju Li
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
25
|
Zhang Y, Wang D, Wei G, Li B, Mao Z, Xu SM, Tang S, Jiang J, Li Z, Wang X, Xu X. Engineering Spin Polarization of the Surface-Adsorbed Fe Atom by Intercalating a Transition Metal Atom into the MoS 2 Bilayer for Enhanced Nitrogen Reduction. JACS AU 2024; 4:1509-1520. [PMID: 38665658 PMCID: PMC11040660 DOI: 10.1021/jacsau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The precise control of spin states in transition metal (TM)-based single-atom catalysts (SACs) is crucial for advancing the functionality of electrocatalysts, yet it presents significant scientific challenges. Using density functional theory (DFT) calculations, we propose a novel mechanism to precisely modulate the spin state of the surface-adsorbed Fe atom on the MoS2 bilayer. This is achieved by strategically intercalating a TM atom into the interlayer space of the MoS2 bilayer. Our results show that these strategically intercalated TM atoms can induce a substantial interfacial charge polarization, thereby effectively controlling the charge transfer and spin polarization on the surface Fe site. In particular, by varying the identity of the intercalated TM atoms and their vacancy filling site, a continuous modulation of the spin states of the surface Fe site from low to medium to high can be achieved, which can be accurately described using descriptors composed of readily accessible intrinsic properties of materials. Using the electrochemical dinitrogen reduction reaction (eNRR) as a prototypical reaction, we discovered a universal volcano-like relation between the tuned spin and the catalytic activity of Fe-based SACs. This finding contrasts with the linear scaling relationships commonly seen in traditional studies and offers a robust new approach to modulating the activity of SACs through interfacial engineering.
Collapse
Affiliation(s)
- Yuqin Zhang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Da Wang
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Guanping Wei
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Baolei Li
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Zongchang Mao
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Si-Min Xu
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Shaobin Tang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Jun Jiang
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Li
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Xijun Wang
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Xin Xu
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
26
|
Wang H, Zhang J, Shen C, Yang C, Küster K, Deuschle J, Starke U, Zhang H, Isobe M, Huang D, van Aken PA, Takagi H. Direct visualization of stacking-selective self-intercalation in epitaxial Nb 1+xSe 2 films. Nat Commun 2024; 15:2541. [PMID: 38514672 PMCID: PMC10957900 DOI: 10.1038/s41467-024-46934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Two-dimensional (2D) van der Waals (vdW) materials offer rich tuning opportunities generated by different stacking configurations or by introducing intercalants into the vdW gaps. Current knowledge of the interplay between stacking polytypes and intercalation often relies on macroscopically averaged probes, which fail to pinpoint the exact atomic position and chemical state of the intercalants in real space. Here, by using atomic-resolution electron energy-loss spectroscopy in a scanning transmission electron microscope, we visualize a stacking-selective self-intercalation phenomenon in thin films of the transition-metal dichalcogenide (TMDC) Nb1+xSe2. We observe robust contrasts between 180°-stacked layers with large amounts of Nb intercalants inside their vdW gaps and 0°-stacked layers with little detectable intercalants inside their vdW gaps, coexisting on the atomic scale. First-principles calculations suggest that the films lie at the boundary of a phase transition from 0° to 180° stacking when the intercalant concentration x exceeds ~0.25, which we could attain in our films due to specific kinetic pathways. Our results offer not only renewed mechanistic insights into stacking and intercalation, but also open up prospects for engineering the functionality of TMDCs via stacking-selective self-intercalation.
Collapse
Affiliation(s)
- Hongguang Wang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - Jiawei Zhang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Chen Shen
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany.
| | - Chao Yang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Kathrin Küster
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Julia Deuschle
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Ulrich Starke
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Hongbin Zhang
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany
| | - Masahiko Isobe
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Dennis Huang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Hidenori Takagi
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany
- Department of Physics, University of Tokyo, 113-0033, Tokyo, Japan
| |
Collapse
|
27
|
Jyothirmai MV, Dantuluri R, Sinha P, Abraham BM, Singh JK. Machine-Learning-Driven High-Throughput Screening of Transition-Metal Atom Intercalated g-C 3N 4/MX 2 (M = Mo, W; X = S, Se, Te) Heterostructures for the Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38436945 DOI: 10.1021/acsami.3c17389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Rising global energy demand, accompanied by environmental concerns linked to conventional fossil fuels, necessitates a shift toward cleaner and sustainable alternatives. This study focuses on the machine-learning (ML)-driven high-throughput screening of transition-metal (TM) atom intercalated g-C3N4/MX2 (M = Mo, W; X = S, Se, Te) heterostructures to unravel the rich landscape of possibilities for enhancing the hydrogen evolution reaction (HER) activity. The stability of the heterostructures and the intercalation within the substrates are verified through adhesion and binding energies, showcasing the significant impact of chalcogenide selection on the interaction properties. Based on hydrogen adsorption Gibbs free energy (ΔGH) computed via density functional theory (DFT) calculations, several ML models were evaluated, particularly random forest regression (RFR) emerges as a robust tool in predicting HER activity with a low mean absolute error (MAE) of 0.118 eV, thereby paving the way for accelerated catalyst screening. The Shapley Additive exPlanation (SHAP) analysis elucidates pivotal descriptors that influence the HER activity, including hydrogen adsorption on the C site (HC), MX layer (HMX), S site (HS), and intercalation of TM atoms at the N site (IN). Overall, our integrated approach utilizing DFT and ML effectively identifies hydrogen adsorption on the N site (site-3) of g-C3N4 as a pivotal active site, showcasing exceptional HER activity in heterostructures intercalated with Sc and Ti, underscoring their potential for advancing catalytic performance.
Collapse
Affiliation(s)
- M V Jyothirmai
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Roshini Dantuluri
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Priyanka Sinha
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - B Moses Abraham
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Prescience Insilico Private Limited, Bangalore 560049, India
| |
Collapse
|
28
|
Laipan M, Zhang M, Wang Z, Zhu R, Sun L. Highly efficient recovery of Zn 2+/Cu 2+ from water by using hydrotalcite as crystal seeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169954. [PMID: 38211855 DOI: 10.1016/j.scitotenv.2024.169954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The efficient and waste-free recovery of heavy metals is critical for heavy metal wastewater treatment. In this work, we explored how heavy metals can be recovered as valuable chemicals in the presence of crystal seeds. Hydrotalcite (one kind of layered double hydroxides (LDHs)) was used as crystal seeds to recover Zn2+ in the presence of Al3+ from water (i.e., seed-Zn2+-Al3+ system), which was compared with the monometallic heterogeneous system (seed-Zn2+) and direct coprecipitation (Zn2+-Al3+) system. Our results demonstrated that the seed-Zn2+-Al3+ system possessed a recovery rate of 2.6-2.8 times and a recovery kinetic rate of 2.7-5.9 times higher than those of the other two systems. Differing from the latter two systems, hydrotalcite seeds could induce Zn2+ and Al3+ to form ZnAl-LDH in seed-Zn2+-Al3+. Interestingly, the ZnAl-LDH presents a compositional divalent/trivalent cation molar ratio of ca. 3, which is comparable with the value in the hydrotalcite. It was demonstrated that the hydrotalcite seeds could act as a template to significantly induce the formation of ZnAl-LDH complying with the seed's structure and compositional ratio. Similar induction effect of seeds as the Zn2+ system was further verified in Cu2+ systems. This work provides a novel strategy for efficient recovery of heavy metals with product selectivity.
Collapse
Affiliation(s)
- Minwang Laipan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Min Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ziyu Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Luyi Sun
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
29
|
Niefind F, Mao Q, Nayir N, Kowalik M, Ahn JJ, Winchester AJ, Dong C, Maniyara RA, Robinson JA, van Duin ACT, Pookpanratana S. Watching (De)Intercalation of 2D Metals in Epitaxial Graphene: Insight into the Role of Defects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306554. [PMID: 37919862 DOI: 10.1002/smll.202306554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Intercalation forms heterostructures, and over 25 elements and compounds are intercalated into graphene, but the mechanism for this process is not well understood. Here, the de-intercalation of 2D Ag and Ga metals sandwiched between bilayer graphene and SiC are followed using photoemission electron microscopy (PEEM) and atomistic-scale reactive molecular dynamics simulations. By PEEM, de-intercalation "windows" (or defects) are observed in both systems, but the processes follow distinctly different dynamics. Reversible de- and re-intercalation of Ag is observed through a circular defect where the intercalation velocity front is 0.5 nm s-1 ± 0.2 nm s.-1 In contrast, the de-intercalation of Ga is irreversible with faster kinetics that are influenced by the non-circular shape of the defect. Molecular dynamics simulations support these pronounced differences and complexities between the two Ag and Ga systems. In the de-intercalating Ga model, Ga atoms first pile up between graphene layers until ultimately moving to the graphene surface. The simulations, supported by density functional theory, indicate that the Ga atoms exhibit larger binding strength to graphene, which agrees with the faster and irreversible diffusion kinetics observed. Thus, both the thermophysical properties of the metal intercalant and its interaction with defective graphene play a key role in intercalation.
Collapse
Affiliation(s)
- Falk Niefind
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Qian Mao
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Nadire Nayir
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physics, Karamanoglu Mehmetbey University, Karaman, 70000, Turkey
| | - Malgorzata Kowalik
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jung-Joon Ahn
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
- Department of Physics, Georgetown University, Washington, DC, 20057, USA
| | - Andrew J Winchester
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
- Institute for Soft Matter, Georgetown University, Washington, DC, 20057, USA
| | - Chengye Dong
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Rinu A Maniyara
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Joshua A Robinson
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Adri C T van Duin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sujitra Pookpanratana
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| |
Collapse
|
30
|
Yadav P, Rao S, Sreejith OV, Murugan R, Nagarajan R. Quasi-2D Bi 0.775Ln 0.225O 1.5 (Ln = La, Pr, Nd, Sm, Eu): reversible iodine intercalation and their evaluation as the anode in the lithium-ion battery system. Dalton Trans 2024; 53:2294-2305. [PMID: 38197298 DOI: 10.1039/d3dt03834c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Layered materials with a robust structure and reversible intercalation behavior are highly sought-after in applications involving energy conversion and storage systems, energy converting devices, supercapacitors, batteries, superconductors, photonic materials, and catalysis involving hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), solar cells and sensors. In the current study, quasi-2D rhombohedral Bi0.775Ln0.225O1.5 (Ln = La, Pr, Nd, Sm, and Eu) samples, synthesized by a solution combustion route, have been demonstrated to intercalate iodine reversibly. A solid-vapor reaction was employed to intercalate iodine at moderate temperatures, and deintercalation occurred on heating at higher temperatures. Expansion of the rhombohedral c-axis by ∼10 Å occurred, and the iodine between the interlayers existed as triiodide ions (I3-) in an unsymmetrical fashion. The amount of intercalated iodide has been determined from thermogravimetric analysis. Electron microscopic analysis confirmed these systems' intercalation and subsequent lattice expansion. In the diffuse reflectance spectra, charge transfer from the triiodide ions to the host oxide was noticed, and it caused the absorption edge to fall beyond the visible region for the intercalated samples. XPS analysis of iodine intercalated Bi0.775Pr0.225O1.5 has shown the mixed valence states for Pr and the existence of I3- along with some IO3- species. The quasi-2D structure was stable during the thermal deintercalation process. The evaluation of iodine intercalated Bi0.775Ln0.225O1.5 (Ln = La, Pr, Nd, Sm, and Eu) samples as anode material in the lithium-ion battery system has given quite promising results, exhibiting fast Li+-ion diffusion, low charge transfer resistance, good reversible capacity, capacity retention (after cycling back to 10 mA g-1), and structural stability (after long cycles).
Collapse
Affiliation(s)
- Priyanka Yadav
- Materials Chemistry Group, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Shivangi Rao
- Materials Chemistry Group, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - O V Sreejith
- High Energy Density Batteries Research Laboratory, Department of Physics, Pondicherry University, Puducherry 605 014, India.
| | - Ramaswamy Murugan
- High Energy Density Batteries Research Laboratory, Department of Physics, Pondicherry University, Puducherry 605 014, India.
| | - Rajamani Nagarajan
- Materials Chemistry Group, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
31
|
Liu Q, Cui S, Bian R, Pan E, Cao G, Li W, Liu F. The Integration of Two-Dimensional Materials and Ferroelectrics for Device Applications. ACS NANO 2024; 18:1778-1819. [PMID: 38179983 DOI: 10.1021/acsnano.3c05711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In recent years, there has been growing interest in functional devices based on two-dimensional (2D) materials, which possess exotic physical properties. With an ultrathin thickness, the optoelectrical and electrical properties of 2D materials can be effectively tuned by an external field, which has stimulated considerable scientific activities. Ferroelectric fields with a nonvolatile and electrically switchable feature have exhibited enormous potential in controlling the electronic and optoelectronic properties of 2D materials, leading to an extremely fertile area of research. Here, we review the 2D materials and relevant devices integrated with ferroelectricity. This review starts to introduce the background about the concerned themes, namely 2D materials and ferroelectrics, and then presents the fundamental mechanisms, tuning strategies, as well as recent progress of the ferroelectric effect on the optical and electrical properties of 2D materials. Subsequently, the latest developments of 2D material-based electronic and optoelectronic devices integrated with ferroelectricity are summarized. Finally, the future outlook and challenges of this exciting field are suggested.
Collapse
Affiliation(s)
- Qing Liu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Silin Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Renji Bian
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Er Pan
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guiming Cao
- School of Information Science and Technology, Xi Chang University, 615013 Xi'an, China
| | - Wenwu Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Fucai Liu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
32
|
Krämer M, Favelukis B, El-Zoka AA, Sokol M, Rosen BA, Eliaz N, Kim SH, Gault B. Near-Atomic-Scale Perspective on the Oxidation of Ti 3 C 2 T x MXenes: Insights from Atom Probe Tomography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305183. [PMID: 37608621 DOI: 10.1002/adma.202305183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Indexed: 08/24/2023]
Abstract
MXenes are a family of 2D transition metal carbides and nitrides with remarkable properties, bearing great potential for energy storage and catalysis applications. However, their oxidation behavior is not yet fully understood, and there are still open questions regarding the spatial distribution and precise quantification of surface terminations, intercalated ions, and possible uncontrolled impurities incorporated during synthesis and processing. Here, atom probe tomography (APT) analysis of as-synthesized Ti3 C2 Tx MXenes reveals the presence of alkali (Li, Na) and halogen (Cl, F) elements as well as unetched Al. Following oxidation of the colloidal solution of MXenes, it is observed that the alkalis are enriched in TiO2 nanowires. Although these elements are tolerated through the incorporation by wet chemical synthesis, they are often overlooked when the activity of these materials is considered, particularly during catalytic testing. This work demonstrates how the capability of APT to image these elements in 3D at the near-atomic scale can help to better understand the activity and degradation of MXenes, in order to guide their synthesis for superior functional properties.
Collapse
Affiliation(s)
- Mathias Krämer
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
| | - Bar Favelukis
- Department of Materials Science and Engineering, Tel Aviv University, P.O.B 39040, Ramat Aviv, 6997801, Israel
| | - Ayman A El-Zoka
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
- Department of Materials, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK
| | - Maxim Sokol
- Department of Materials Science and Engineering, Tel Aviv University, P.O.B 39040, Ramat Aviv, 6997801, Israel
| | - Brian A Rosen
- Department of Materials Science and Engineering, Tel Aviv University, P.O.B 39040, Ramat Aviv, 6997801, Israel
| | - Noam Eliaz
- Department of Materials Science and Engineering, Tel Aviv University, P.O.B 39040, Ramat Aviv, 6997801, Israel
| | - Se-Ho Kim
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Baptiste Gault
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
- Department of Materials, Royal School of Mines, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
33
|
Gao L, Li M, Fan Q, Liang K, Hu B, Huang Q. Intercalation of Metal into Transition Metal Dichalcogenides in Molten Salts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304281. [PMID: 37667446 DOI: 10.1002/smll.202304281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/12/2023] [Indexed: 09/06/2023]
Abstract
Van der Waals (vdW)-layered materials have drawn tremendous interests due to their unique properties. Atom intercalation in the vdW gap of layered materials can tune their electronic structure and generate unexpected properties. Here a chemical-scissor-mediated method that enables metal intercalation into transition metal dichalcogenides (TMDCs) in molten salts is reported. By using this approach, various guest metal atoms (Mn, Fe, Co, Ni, Cu, and Ag) are intercalated into various TMDC hosts (such as TiS2 , NbS2 , TaS2 , TiSe2 , NbSe2 , TaSe2 , and Ti0.5 V0.5 S2 ). The structure of the intercalated compound and intercalation mechanism are investigated. The results indicate that the vdW gap and valence state of TMDCs can be modified through metal intercalation, and the intercalation behavior is dictated by the electron work function. The adjustable charge transfer and intercalation endow a channel for rapid mass transfer to enhance the electrochemical performances. Such a chemical-scissor-mediated intercalation provides an approach to tune the physical and chemical properties of TMDCs, which may open an avenue in functional application ranging from energy conversion to electronics.
Collapse
Affiliation(s)
- Lin Gao
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo, 315100, China
- Qianwan Institute of CNiTECH, Ningbo, 315201, China
| | - Mian Li
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, 315201, China
| | - Qi Fan
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, 315201, China
| | - Kun Liang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, 315201, China
| | - Binjie Hu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo, 315100, China
| | - Qing Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, 315201, China
| |
Collapse
|
34
|
Ali M, Yousaf M, Munir J, Iqbal Khan MJ. Achieving controllable multifunctionality through layer sliding. J Mol Graph Model 2024; 126:108638. [PMID: 37757650 DOI: 10.1016/j.jmgm.2023.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Dynamical variation of physical properties in a controllable fashion provides exciting possibilities to obtain multifunctional materials. In this work, layer-sliding is employed to modify the structural, interfacial electronic and optical properties of unintercalated and Mg-intercalated two-dimensional (2D) van der Waals heterostructure (vdW-HS) consisting of buckled silicene and hexagonal boron nitride (hBN). The most stable stacking configuration of silicene over hBN is screened out and then intercalated with Mg at the interface. Dynamical-dependent changes in the properties of vdW-HS are performed by sliding silicene over hBN monolayer in the absence and presence of the intercalant. Layer-sliding is carried out in equal length intervals, and various parametric quantities related to the physical characteristics of the vdW-HS are repeatedly calculated and compared. Apart from various parametric quantities, stability of unintercalated and Mg-intercalated vdW-HS is also checked by means of relative total energies, binding energies and vdW gaps along the sliding pathway. Comparison of binding energies shows that the un-slided, half-slided, and fully-slided Mg-intercalated vdW-HS are 1.52, 1.44 and 1.42 eV more stable than the unintercalated vdW-HS. Opening of a small band gap of 12, 31 and 28 meV for un-slided, half-slided and fully-slided unintercalated vdW-HS, respectively, is worth mentioning. To study the interfacial electronic behavior, planar average charge density difference (Δρ) and charge transfer (ΔQ) are also calculated and varied via layer-sliding. Further, we calculated diverse optical spectra such as the complex dielectric function (DF), electron energy loss function [L(ω)], diagonal components of dielectric tensor [ε(iω)], refractive index [n(ω)], extinction coefficient [k(ω)], absorption coefficient [α(ω)], and reflectivity [R(ω)] for un-slided, half-slided and fully-slided unintercalated and Mg-intercalated vdW-HS. Interestingly, the polarization and energy losses have been reduced in the case of Mg-intercalated vdW-HS. The suggested layer-sliding method can be established as a general scheme for bringing multifunctionality into a layered material.
Collapse
Affiliation(s)
- Mubashar Ali
- Department of Physics, University of Education, Lahore, Pakistan
| | - Masood Yousaf
- Department of Physics, University of Education, Lahore, Pakistan.
| | - Junaid Munir
- Department of Physics, Riphah International University, Lahore, Pakistan
| | - M Junaid Iqbal Khan
- Laboratory of Theoretical and Experimental Physics, Department of Physics, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
35
|
Huynh V, Rivera KR, Teoh T, Chen E, Ura J, Koski KJ. Hafnium, Titanium, and Zirconium Intercalation in 2D Layered Nanomaterials. ACS NANOSCIENCE AU 2023; 3:475-481. [PMID: 38144706 PMCID: PMC10740116 DOI: 10.1021/acsnanoscienceau.3c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 12/26/2023]
Abstract
Altering the physical and chemical properties of a layered material through intercalation has emerged as a unique strategy toward tunable applications. In this work, we demonstrate a wet chemical method to intercalate titanium, hafnium, and zirconium into 2D layered nanomaterials. The metals are intercalated using bis-tetrahydrofuran metal halide complexes. Metal intercalation is demonstrated in nanomaterials of Bi2Se3, Si2Te3, MoO3, and GeS. This strategy intercalates, on average, 3 atm % or less of Hf, Ti, and Zr that share charge with the host nanomaterial. This methodology is used to chemochromically alter MoO3 from transparent white to dark blue.
Collapse
Affiliation(s)
| | | | - Tiffany Teoh
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Ethan Chen
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Jared Ura
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Kristie J. Koski
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
36
|
Zeng G, Bi X, Liu L, Zhuang Y, Fang Z, Qi M, Xiao L, Qin C, Jia S. Tunable Optical Display of Multilayer Graphene through Lithium Intercalation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53688-53696. [PMID: 37956364 DOI: 10.1021/acsami.3c11079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The tunable optical display is vital for many application fields in telecommunications, sensors, and military devices. However, most optical materials have a strong wavelength dependence, which limits their spectral operation range. In this work, we develop an electrically reconfigurable optical medium based on graphene, demonstrating a cycle-controlled display covering the electromagnetic spectrum from the visible to the infrared wavelength. Through an electro-intercalation method, the graphene-based surface enables rich colors from gray to dark blue to dark red to yellow, and the response time is about 1 min from the start gray color to the final yellow color. Simultaneously, it exhibits a remarkable change in infrared emissivity (from 0.63 to 0.80 reduction to 0.20) with a response time of 1 s. This modification of optical properties of lithiated multilayer graphene (MLG) is the increase of Fermi energy (Ef) due to the charge transfer from lithium (Li) to graphene layers, which causes changes in interband and intraband electronic transitions. Our findings imply potential value in fabricating multispectral optical materials with high tunability.
Collapse
Affiliation(s)
- Ganying Zeng
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaoxue Bi
- Key Laboratory of National Defense Science and Technology on Electroni Measurement, North University of China, Taiyuan 030051, China
| | - Longhao Liu
- Key Laboratory of National Defense Science and Technology on Electroni Measurement, North University of China, Taiyuan 030051, China
| | - Yan Zhuang
- Key Laboratory of National Defense Science and Technology on Electroni Measurement, North University of China, Taiyuan 030051, China
| | - Zhenyu Fang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Minru Qi
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
37
|
Yang R, Fan Y, Hu J, Chen Z, Shin HS, Voiry D, Wang Q, Lu Q, Yu JC, Zeng Z. Photocatalysis with atomically thin sheets. Chem Soc Rev 2023; 52:7687-7706. [PMID: 37877319 DOI: 10.1039/d2cs00205a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Atomically thin sheets (e.g., graphene and monolayer molybdenum disulfide) are ideal optical and reaction platforms. They provide opportunities for deciphering some important and often elusive photocatalytic phenomena related to electronic band structures and photo-charges. In parallel, in such thin sheets, fine tuning of photocatalytic properties can be achieved. These include atomic-level regulation of electronic band structures and atomic-level steering of charge separation and transfer. Herein, we review the physics and chemistry of electronic band structures and photo-charges, as well as their state-of-the-art characterization techniques, before delving into their atomic-level deciphering and mastery on the platform of atomically thin sheets.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Yingying Fan
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
- Eastern Institute for Advanced Study, Ningbo, China
| | - Hyeon Suk Shin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 612022, South Korea
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Qian Wang
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China.
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
38
|
Chhattal M, Rosenkranz A, Zaki S, Ren K, Ghaffar A, Gong Z, Grützmacher PG. Unveiling the tribological potential of MXenes-current understanding and future perspectives. Adv Colloid Interface Sci 2023; 321:103021. [PMID: 37866121 DOI: 10.1016/j.cis.2023.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Reducing energy consumption and CO2 emissions by improving the tribological performance of mechanical systems relies on the development of new lubrication concepts. Two-dimensional (2D) materials have been the subject of extensive tribological research due to their unique physical and chemical properties. 2D transition metal carbides, nitrides, and carbonitrides (MXenes), with their tuneable chemistry and structure, are a relatively new addition to the family of 2D materials. MXenes' good strength and stiffness, easy-to-shear ability, capability to form wear-resistant tribofilms, and the possibility to control their surface chemistry make them appealing candidates to be explored for tribological purposes. This review provides a comprehensive overview of MXenes' tribology, covering their structure-property relationship, synthesis approaches, deposition methods to generate MXene coatings for tribological purposes, and their fundamental tribological mechanisms. Furthermore, detailed insights into studies exploring MXenes' tribological performance from the nano- to the macro-scale are presented with special emphasis on their use as self-lubricating solid lubricants, lubricant additives, and reinforcement phases in composites.
Collapse
Affiliation(s)
- Muhammad Chhattal
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology, and Materials, FCFM, Universidad de Chile, Santiago, Chile
| | - Sana Zaki
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4, Ireland
| | - Kexin Ren
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abdul Ghaffar
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenbin Gong
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Philipp G Grützmacher
- Department of Engineering Design and Product Development, TU Wien, Vienna 1060, Austria.
| |
Collapse
|
39
|
Liang J, Ma K, Zhao X, Lu G, Riffle J, Andrei CM, Dong C, Furkan T, Rajabpour S, Prabhakar RR, Robinson JA, Magdaleno V, Trinh QT, Ager JW, Salmeron M, Aloni S, Caldwell JD, Hollen S, Bechtel HA, Bassim ND, Sherburne MP, Al Balushi ZY. Elucidating the Mechanism of Large Phosphate Molecule Intercalation Through Graphene-Substrate Heterointerfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47649-47660. [PMID: 37782678 PMCID: PMC10571006 DOI: 10.1021/acsami.3c07763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Intercalation is the process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on the intercalation of metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains challenging. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene-substrate heterointerface using various techniques. Density functional theory (DFT) corroborates the experimental results and reveals the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from predissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This in-depth study advances our understanding of intercalation routes of large molecules via the basal plane of graphene as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.
Collapse
Affiliation(s)
- Jiayun Liang
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Ke Ma
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Xiao Zhao
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Guanyu Lu
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jake Riffle
- Department
of Physics and Astronomy, University of
New Hampshire, Durham, New Hampshire 03824, United States
| | - Carmen M. Andrei
- Canadian
Centre for Electron Microscopy, McMaster
University, Hamilton ,ON L8S 4L8, Canada
| | - Chengye Dong
- 2D Crystal
Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Turker Furkan
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Siavash Rajabpour
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rajiv Ramanujam Prabhakar
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joshua A. Robinson
- 2D Crystal
Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vasquez Magdaleno
- Department
of Mining, Metallurgy, and Materials Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Quang Thang Trinh
- Queensland
Micro- and Nanotechnology Centre, Griffith
University, Brisbane, 4111 Australia
| | - Joel W. Ager
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Miquel Salmeron
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Shaul Aloni
- The Molecular Foundry, Lawrence
Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Joshua D. Caldwell
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Shawna Hollen
- Department
of Physics and Astronomy, University of
New Hampshire, Durham, New Hampshire 03824, United States
| | - Hans A. Bechtel
- Advanced
Light Source, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Nabil D. Bassim
- Canadian
Centre for Electron Microscopy, McMaster
University, Hamilton ,ON L8S 4L8, Canada
- Department of
Materials Science and Engineering, McMaster
University, Hamilton ,ON L8S 4L8, Canada
| | - Matthew P. Sherburne
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Zakaria Y. Al Balushi
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Chitara B, Dimitrov E, Liu M, Seling TR, Kolli BSC, Zhou D, Yu Z, Shringi AK, Terrones M, Yan F. Charge Transfer Modulation in Vanadium-Doped WS 2 /Bi 2 O 2 Se Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302289. [PMID: 37310414 DOI: 10.1002/smll.202302289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/23/2023] [Indexed: 06/14/2023]
Abstract
The field of photovoltaics is revolutionized in recent years by the development of two-dimensional (2D) type-II heterostructures. These heterostructures are made up of two different materials with different electronic properties, which allows for the capture of a broader spectrum of solar energy than traditional photovoltaic devices. In this study, the potential of vanadium (V)-doped WS2 is investigated, hereafter labeled V-WS2 , in combination with air-stable Bi2 O2 Se for use in high-performance photovoltaic devices. Various techniques are used to confirm the charge transfer of these heterostructures, including photoluminescence (PL) and Raman spectroscopy, along with Kelvin probe force microscopy (KPFM). The results show that the PL is quenched by 40%, 95%, and 97% for WS2 /Bi2 O2 Se, 0.4 at.% V-WS2 /Bi2 O2 Se, and 2 at.% V-WS2 /Bi2 O2 Se, respectively, indicating a superior charge transfer in V-WS2 /Bi2 O2 Se compared to pristine WS2 /Bi2 O2 Se. The exciton binding energies for WS2 /Bi2 O2 Se, 0.4 at.% V-WS2 /Bi2 O2 Se and 2 at.% V-WS2 /Bi2 O2 Se heterostructures are estimated to be ≈130, 100, and 80 meV, respectively, which is much lower than that for monolayer WS2 . These findings confirm that by incorporating V-doped WS2 , charge transfer in WS2 /Bi2 O2 Se heterostructures can be tuned, providing a novel light-harvesting technique for the development of the next generation of photovoltaic devices based on V-doped transition metal dichalcogenides (TMDCs)/Bi2 O2 Se.
Collapse
Affiliation(s)
- Basant Chitara
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Edgar Dimitrov
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mingzu Liu
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tank R Seling
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Bhargava S C Kolli
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhuohang Yu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amit K Shringi
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fei Yan
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| |
Collapse
|
41
|
Singh A, Jain M, Bhumla P, Bhattacharya S. Electrocatalytic study of the hydrogen evolution reaction on MoS 2/BP and MoSSe/BP in acidic media. NANOSCALE ADVANCES 2023; 5:5332-5339. [PMID: 37767041 PMCID: PMC10521249 DOI: 10.1039/d3na00215b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Molecular hydrogen (H2) production by the electrochemical hydrogen evolution reaction (HER) is being actively explored for non-precious metal-based electrocatalysts that are earth-abundant and low cost like MoS2. Although it is acid-stable, its applicability is limited by catalytically inactive basal planes, poor electrical transport and inefficient charge transfer at the interface. Therefore, the present work examines its bilayer van der Waals heterostructure (vdW HTS). The second constituent monolayer boron phosphide (BP) is advantageous as an electrode material owing to its chemical stability in both oxygen and water environments. Here, we have performed first-principles based calculations under the framework of density functional theory (DFT) for the HER in an electrochemical double layer model with the BP monolayer, MoS2/BP and MoSSe/BP vdW HTSs. The climbing image nudged elastic band method (CI-NEB) has been employed to determine the minimum energy pathways for Tafel and Heyrovsky reactions. The calculations reveal that the Tafel reaction shows no reaction barrier. Thereafter, for the Heyrovsky reaction, we obtained a low reaction barrier in the vdW HTSs as compared to that in the BP monolayer. Subsequently, we have observed no significant difference in the reaction profile of MoS2/BP and MoSSe/BP vdW HTSs in the case of 2 × 2 supercell configuration. However, in the case of 3 × 3 and 4 × 4 configurations, MoSSe/BP shows a feasible Heyrovsky reaction with no reaction barrier. The coverages with 1/4H+ concentration (conc.) deduced high coverage with low conc. and low coverage with high conc. to be apt for the HER via the Heyrovsky reaction path. Finally, on observing the activation barrier of the Heyrovsky pathway along with that of second H adsorption at the surface, the Heyrovsky path is expected to be favoured.
Collapse
Affiliation(s)
- Arunima Singh
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Manjari Jain
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Preeti Bhumla
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Saswata Bhattacharya
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
42
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
43
|
Wang Z, Yang L, Dai L, Huang Z, Wu K, Liu B. Scalable Production of 2D Minerals by Polymer Intercalation and Adhesion for Multifunctional Applications. SMALL METHODS 2023; 7:e2300529. [PMID: 37246257 DOI: 10.1002/smtd.202300529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Indexed: 05/30/2023]
Abstract
Natural and sustainable 2D minerals have many unique properties and may reduce reliance on petroleum-based products. However, the large-scale production of 2D minerals remains challenging. Herein, a green, scalable, and universal polymer intercalation and adhesion exfoliation (PIAE) method to produce 2D minerals such as vermiculite, mica, nontronite, and montmorillonite with large lateral sizes and high efficiency, is developed. The exfoliation relies on the dual functions of polymers involving intercalation and adhesion to expand interlayer space and weaken interlayer interactions of minerals, facilitating their exfoliation. Taking vermiculite as an example, the PIAE produces 2D vermiculite with an average lateral size of 1.83 ± 0.48 µm and thickness of 2.40 ± 0.77 nm at a yield of ≈30.8%, surpassing state-of-the-art methods in preparing 2D minerals. Flexible films are directly fabricated by the 2D vermiculite/polymer dispersion, exhibiting outstanding performances including mechanical strength, thermal resistance, ultraviolet shielding, and recyclability. The representative application of colorful multifunctional window coatings in sustainable buildings is demonstrated, indicating the potential of massively produced 2D minerals.
Collapse
Affiliation(s)
- Zhongyue Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Liusi Yang
- Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing, 100048, P. R. China
| | - Lixin Dai
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Ziyang Huang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Keyou Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
44
|
Laipan M, Chen Q, Wang Z, Zhang M, Yuan M, Zhu R, Sun L. Interlayer Anions of Layered Double Hydroxides as Mobile Active Sites To Improve the Adsorptive Performance toward Cd 2. Inorg Chem 2023; 62:13857-13866. [PMID: 37590466 DOI: 10.1021/acs.inorgchem.3c01681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Layered double hydroxides (LDHs) have been considered important sinks for ionic contaminants in nature and effectively engineered adsorbents for environmental remediation. The availability of interlayer active sites of LDHs is critical for their adsorptive ability. However, inorganic LDHs generally have a nano-confined interlayer space of ca. 0.3-0.5 nm, and it is unclear how LDHs can utilize their interlayer active sites during the adsorption process. Thus, LDHs intercalated with SO42-, PO43-, NO3-, Cl-, or CO32- were taken as examples to reveal this unsolved problem during Cd2+ adsorption. New adsorption behaviors and pronounced differences in adsorption performance were observed. Specifically, SO42-/PO43- intercalated LDHs showed a maximum Cd2+ adsorption capacity of 19.2/9.8 times higher than other LDHs. The ligand exchange of H+ (on the surface -OH) by Cd2+ and formation of Cd-SO42-/PO43- complexes led to the efficient removal of Cd2+. Interestingly, interlayer SO42- was demonstrated to be able to move to the edges/outer surfaces of LDHs, providing abundant movable adsorption sites for Cd2+. This novel phenomenon made the SO42- intercalated LDH a superior adsorbent for Cd2+ among the tested LDHs, which also suggests that LDHs with a nano-confined interlayer space can also highly utilize their interlayer active sites based on the mobility of interlayer anions, offering a new method for constructing superior LDH adsorbents.
Collapse
Affiliation(s)
- Minwang Laipan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingze Chen
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyu Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Min Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mengyao Yuan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
45
|
Han Y, Chen S, Hall J, Roberts S, Kolmer M, Evans JW, Tringides MC. Degeneracy in Intercalated Pb Phases under Buffer-Layer Graphene on SiC(0001) and Diffuse Moiré Spots in Surface Diffraction. J Phys Chem Lett 2023; 14:7053-7058. [PMID: 37526312 DOI: 10.1021/acs.jpclett.3c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
First-principles density functional theory (DFT) is used to analyze the stability of Pb intercalated phases under buffer layer graphene on SiC(0001) as a function of the supercell size, Pb coverage, and degree of Pb ordering. By comparing the chemical potentials of such two-dimensional Pb structures, we find that there is a family of structurally distinct thermodynamically preferred Pb subsurface configurations with minute stability differences. These differences are comparable to the thermal energies at about 450 °C, where the Pb intercalated phases are grown. High-resolution surface-diffraction experiments using Spot Profile Analysis Low-Energy Electron Diffraction (SPA-LEED) confirm this high degree of degeneracy of the Pb intercalated phases from broad, low-intensity moiré spots observed exclusively from intercalated Pb. The low intensity of the moiré spots implies the coexistence of structurally different subsurface Pb phases.
Collapse
Affiliation(s)
- Yong Han
- Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Shen Chen
- Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Joseph Hall
- Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Samuel Roberts
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Marek Kolmer
- Ames National Laboratory, Ames, Iowa 50011, United States
| | - James W Evans
- Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Michael C Tringides
- Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
46
|
Zhu K, Tao Y, Clark DE, Hong W, Li CW. Solution-Phase Synthesis of Vanadium Intercalated 1T'-WS 2 with Tunable Electronic Properties. NANO LETTERS 2023; 23:4471-4478. [PMID: 37155184 DOI: 10.1021/acs.nanolett.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Metal ion intercalation into Group VI transition metal dichalcogenides enables control over their carrier transport properties. In this work, we demonstrate a low-temperature, solution-phase synthetic method to intercalate cationic vanadium complexes into bulk WS2. Vanadium intercalation expands the interlayer spacing from 6.2 to 14.2 Å and stabilizes the 1T' phase of WS2. Kelvin-probe force microscopy measurements indicate that vanadium binding in the van der Waals gap causes an increase in the Fermi level of 1T'-WS2 by 80 meV due to hybridization of vanadium 3d orbitals with the conduction band of the TMD. As a result, the carrier type switches from p-type to n-type, and carrier mobility increases by an order of magnitude relative to the Li-intercalated precursor. Both the conductivity and thermal activation barrier for carrier transport are readily tuned by varying the concentration of VCl3 during the cation-exchange reaction.
Collapse
Affiliation(s)
- Kuixin Zhu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yiyin Tao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniel E Clark
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wei Hong
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina W Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
47
|
He Y, Dong Y, Zhang Y, Li Y, Li H. Graphene Nano-Blister in Graphite for Future Cathode in Dual-Ion Batteries: Fundamentals, Advances, and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207426. [PMID: 36950760 PMCID: PMC10214271 DOI: 10.1002/advs.202207426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Indexed: 05/27/2023]
Abstract
The intercalating of anions into cost-effective graphite electrode provides a high operating voltage, therefore, the dual-ion batteries (DIBs) as novel energy storage device has attracted much attention recently. The "graphene in graphite" has always existed in the graphite cathode of DIBs, but has rarely been researched. It is foreseeable that the graphene blisters with the intact lattice structure in the shell can utilize its ultra-high elastic stiffness and reversible lattice expansion for increasing the storage capacity of anions in the batteries. This review proposes an expected "blister model" by introducing the high elasticity of graphene blisters and its possible formation mechanism. The unique blisters composed of multilayer graphene that do not fall off on the graphite surface may become indispensable in nanotechnology in the future development of cathode materials for DIBs.
Collapse
Affiliation(s)
- Yitao He
- Department of Energy and Power EngineeringSchool of Energy and EnvironmentAnhui University of TechnologyMa'anshanAnhui243002China
| | - Yujie Dong
- Department of Energy and Power EngineeringSchool of Energy and EnvironmentAnhui University of TechnologyMa'anshanAnhui243002China
| | - Yaohui Zhang
- School of PhysicsHarbin Institute of TechnologyNo. 92 Xidazhi StreetHarbinHeilongjiang150001China
| | - Yongtao Li
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal MaterialsMinistry of EducationAnhui University of TechnologyMa'anshanAnhui243002China
| | - Haijin Li
- Department of Energy and Power EngineeringSchool of Energy and EnvironmentAnhui University of TechnologyMa'anshanAnhui243002China
| |
Collapse
|
48
|
Zhang P, Xue M, Chen C, Guo W, Zhang Z. Mechanism Regulating Self-Intercalation in Layered Materials. NANO LETTERS 2023; 23:3623-3629. [PMID: 37043360 DOI: 10.1021/acs.nanolett.3c00827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by ab initio calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials.
Collapse
Affiliation(s)
- Peikun Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Minmin Xue
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
49
|
He XL, Shao B, Huang RK, Dong M, Tong YQ, Luo Y, Meng T, Yang FJ, Zhang Z, Huang J. A Mixed Protonic-Electronic Conductor Base on the Host-Guest Architecture of 2D Metal-Organic Layers and Inorganic Layers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2205944. [PMID: 37076939 DOI: 10.1002/advs.202205944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The key to designing and fabricating highly efficient mixed protonic-electronic conductors materials (MPECs) is to integrate the mixed conductive active sites into a single structure, to break through the shortcomings of traditional physical blending. Herein, based on the host-guest interaction, an MPEC is consisted of 2D metal-organic layers and hydrogen-bonded inorganic layers by the assembly methods of layered intercalation. Noticeably, the 2D intercalated materials (≈1.3 nm) exhibit the proton conductivity and electron conductivity, which are 2.02 × 10-5 and 3.84 × 10-4 S cm-1 at 100 °C and 99% relative humidity, much higher than these of pure 2D metal-organic layers (>>1.0 × 10-10 and 2.01×10-8 S cm-1 ), respectively. Furthermore, combining accurate structural information and theoretical calculations reveals that the inserted hydrogen-bonded inorganic layers provide the proton source and a networks of hydrogen-bonds leading to efficient proton transport, meanwhile reducing the bandgap of hybrid architecture and increasing the band electron delocalization of the metal-organic layer to greatly elevate the electron transport of intrinsic 2D metal-organic frameworks.
Collapse
Affiliation(s)
- Xing-Lu He
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Bing Shao
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Rui-Kang Huang
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Min Dong
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Yu-Qing Tong
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yan Luo
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Ting Meng
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Fu-Jie Yang
- College Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510275, P. R. China
| | - Zhong Zhang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jin Huang
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| |
Collapse
|
50
|
Sannes J, Kizhake Malayil RK, Corredor LT, Wolter AUB, Grafe HJ, Valldor M. Synthesis and Characterization of Oxide Chloride Sr 2VO 3Cl, a Layered S = 1 Compound. ACS OMEGA 2023; 8:14233-14239. [PMID: 37091428 PMCID: PMC10116624 DOI: 10.1021/acsomega.3c01151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
The mixed-anion compound with composition Sr2VO3Cl has been synthesized for the first time, using the conventional high-temperature solid-state synthesis technique in a closed silica ampule under inert conditions. This compound belongs to the known Sr2 TmO3Cl (Tm = Sc, Mn, Fe, Co, Ni) family, but with Tm = V. All homologues within this family can be described with the tetragonal space group P4/nmm (No. 129); from a Rietveld refinement of powder X-ray diffraction data on the Tm = V homologue, the unit cell parameters were determined to a = 3.95974(8) and c = 14.0660(4) Å, and the atomic parameters in the crystal structure could be estimated. The synthesized powder is black, implying that the compound is a semiconductor. The magnetic investigations suggest that Sr2VO3Cl is a paramagnet at high temperatures, exhibiting a μeff = 2.0 μB V-1 and antiferromagnetic (AFM) interactions between the magnetic vanadium spins (θCW = -50 K), in line with the V-O-V advantageous super-exchange paths in the V-O layers. Specific heat capacity studies indicate two small anomalies around 5 and 35 K, which however are not associated with long-range magnetic ordering. 35Cl ss-NMR investigations suggest a slow spin freezing below 4.2 K resulting in a glassy-like spin ground state.
Collapse
Affiliation(s)
- Johnny
A. Sannes
- Department
of Chemistry, University of Oslo, Sem Sælands vei 26, N-0371 Oslo, Norway
| | | | - Laura T. Corredor
- Leibniz
Institute for Solid State Research, IFW Dresden, Helmholtzstraβe 20, 01069 Dresden, Germany
| | - Anja U. B. Wolter
- Leibniz
Institute for Solid State Research, IFW Dresden, Helmholtzstraβe 20, 01069 Dresden, Germany
| | - Hans-Joachim Grafe
- Leibniz
Institute for Solid State Research, IFW Dresden, Helmholtzstraβe 20, 01069 Dresden, Germany
| | - Martin Valldor
- Department
of Chemistry, University of Oslo, Sem Sælands vei 26, N-0371 Oslo, Norway
| |
Collapse
|