1
|
Zhang Y, Wang C, Zhang J, Jia A, Liu Y, Bi S, Chen G. A H 2O 2 responsive self-activatable fluorescent probe and pro-photosensitizer based on a pyridine-chalcone skeleton. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126050. [PMID: 40112753 DOI: 10.1016/j.saa.2025.126050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Hydrogen peroxide (H2O2) is closely associated with various physiological and pathological processes, particularly in tumor microenvironment. It has been designed for the activation and release of fluorescent probes and tumor-related drugs. In this work, we proposed a self-activatable fluorescent probe and pro-photosensitizer (pro-PS) MN-BP based on a pyridine-chalcone photosensitizer (PS) MN and a H2O2 responsive boronate moiety. The endogenous H2O2 in tumor cells triggers partial release of PS MN from the pro-PS MN-BP. Under light irradiation, the generated PS MN can produce Reactive oxygen species (ROS) and be partially converted to H2O2 to proceed the self-activatable process. The generated H2O2 can be used as an activator to accelerate the release of PS MN, thus amplifying the effect of photodynamic therapy (PDT) by generating more ROS. In addition, the enhanced fluorescence of pro-PS MN-BP can be used for the detection of H2O2 and the visualization of photosensitizer, so as to realize the real-time monitoring and regulation of the PDT process.
Collapse
Affiliation(s)
- Yawen Zhang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Chao Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Jing Zhang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Aiping Jia
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yuxia Liu
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, PR China; School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Guang Chen
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
2
|
Zhao X, Zhong Q, Abudouaini N, Zhao Y, Zhang J, Tan G, Miao G, Wang X, Liu J, Pan Y, Wang X. Switchable Nanophotosensitizers as Pyroptosis Inducers for Targeted Boosting of Antitumor Photoimmunotherapy. Biomacromolecules 2025; 26:3065-3083. [PMID: 40200409 DOI: 10.1021/acs.biomac.5c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Photodynamic therapy (PDT) has emerged as a promising modality for cancer treatment, but its clinical application is constrained by unexpected phototoxicity arising from nonspecific photosensitizer activation and their "always-on" nature. Herein, we developed a switchable nanophotosensitizer, poly(cation-π) nanoparticles (NP), which achieves supramolecular assembly through cation-π interactions. By coupling choline cationic moieties with aromatic photosensitizers (ZnPc), the polymer facilitates self-assembly driven by cation-π interactions for NP engineering. Surprisingly, the photoactivity of ZnPc was completely quenched upon complexation via cation-π interactions, thereby significantly avoiding skin phototoxicity. Upon targeting tumor cells, NP undergoes a GSH-responsive degradation process that weakens cation-π interactions, leading to spontaneous restoration of photoactivity and amplifying tumor immunogenic pyroptosis. In vivo studies demonstrated that NP achieved a high tumor inhibition rate of 84% while effectively avoiding skin phototoxicity. This work provides a novel perspective for enhancing the safety and efficacy of PDT-based tumor treatment.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qinjie Zhong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Naibijiang Abudouaini
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan Zhao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jibin Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guozhu Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guifeng Miao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Xiaorui Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| |
Collapse
|
3
|
Alhoussein J, Merabishvili K, Ho T, Elkihel A, Cressey P, Tóth Á, Qian A, Hery M, Vergnaud J, Domenichini S, Di Meo F, Chen J, Zheng G, Makky A. Next generation of porphysomes for improved photodynamic therapy applications. J Control Release 2025; 381:113621. [PMID: 40073944 DOI: 10.1016/j.jconrel.2025.113621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/18/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Porphysomes are a class of liposome-like nanoparticles that have demonstrated efficacy in photothermal therapy (PTT) and photodynamic therapy (PDT) against cancer. These nanoparticles results from the self-assembly of amphiphilic phospholipid-porphyrin (PL-Por) conjugates. Despite their potential, porphysomes exhibit a high photothermal effect and a weak photodynamic activity as long as they remain intact within the body. In this study, we present the design of a novel generation of smart porphysomes capable of undergoing active dissociation and releasing porphyrin moieties upon illumination, thereby enabling tunable photothermal properties with enhanced photodynamic efficiency. These new porphysomes are composed of smart PL-Por conjugates that exhibit one or two ROS-responsive linkers separating the polar head group from the porphyrin moiety. Among the designed molecules, we demonstrated that monosubstituted conjugates bearing either pyro-a or pheo-a porphyrinoids with one ROS-responsive bond and shorter linker showed the best performance in terms of stability, photothermal and photodynamic efficiencies in vitro. Moreover, these assemblies were found to achieve complete tumor ablation in 80 % of PC3 prostate subcutaneous tumor-bearing mice after 30 days post-PDT, compared to 0 % using conventional porphysomes. Consequently, our strategy enabled the development of a versatile platform for delivering porphyrin-based photosensitizers for enhanced photodynamic applications.
Collapse
Affiliation(s)
- Jana Alhoussein
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Bâtiment Henri Moissan, 17, Avenue des Sciences, 91400 Orsay, France
| | - Khatia Merabishvili
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Bâtiment Henri Moissan, 17, Avenue des Sciences, 91400 Orsay, France
| | - Tiffany Ho
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, ON M5G1L7, Canada; Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, ON M5S 3M2, Canada
| | - Abdechakour Elkihel
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Bâtiment Henri Moissan, 17, Avenue des Sciences, 91400 Orsay, France
| | - Paul Cressey
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Bâtiment Henri Moissan, 17, Avenue des Sciences, 91400 Orsay, France
| | - Ágota Tóth
- INSERM U1248 Pharmacology & Transplantation, University Limoges, 2 rue du Prof. Descottes, 87000 Limoges CEDEX, France
| | - Ashley Qian
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, ON M5G1L7, Canada
| | - Mélanie Hery
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Bâtiment Henri Moissan, 17, Avenue des Sciences, 91400 Orsay, France
| | - Juliette Vergnaud
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Bâtiment Henri Moissan, 17, Avenue des Sciences, 91400 Orsay, France
| | - Séverine Domenichini
- UMS-IPSIT Plateforme MIPSIT, Université Paris-Saclay, CNRS, Inserm, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, 91400 Orsay, France
| | - Florent Di Meo
- INSERM U1248 Pharmacology & Transplantation, University Limoges, 2 rue du Prof. Descottes, 87000 Limoges CEDEX, France
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, ON M5G1L7, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, ON M5G1L7, Canada; Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, ON M5S 3M2, Canada.
| | - Ali Makky
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Bâtiment Henri Moissan, 17, Avenue des Sciences, 91400 Orsay, France.
| |
Collapse
|
4
|
Yang X, Jiang Z, Dai J, Fu Q, Pan S. Photoacoustic contrast agents: a review focusing on image-guided therapy. NANOSCALE HORIZONS 2025. [PMID: 40331279 DOI: 10.1039/d4nh00395k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Photoacoustic (PA) imaging is a burgeoning imaging modality that has a broad range of applications in the early diagnosis of cancer, detection of various diseases, and relevant scientific research. It is a non-invasive imaging modality that relies on the absorption coefficient of the imaging tissue and the injected PA-imaging contrast agent. Nevertheless, PA imaging exhibits weak imaging depth due to its exponentially decaying signal intensity with increasing tissue depth. To improve the depth and heighten the contrast of imaging, a series of PA contrast agents has been developed based on nanomaterials. In this review, we present a comprehensive overview of recent advancements in contrast agents for photoacoustic (PA) imaging, encompassing the emergence of first near-infrared region (NIR-I, 700-950 nm) PA contrast agents, second near-infrared region (NIR-II, 1000-1700 nm) PA contrast agents, and ratiometric PA contrast agents. Subsequently, the latest advances in PA image-guided cancer therapy were introduced, such as photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), and PTT-based synergistic therapy. Finally, the prospects of PA contrast agents and their biomedical applications were also discussed. This review provides a systematic summary of the development and utilization of the cutting-edge photoacoustic agents, which may inspire fresh thinking in the fabrication and application aspects of imaging agents.
Collapse
Affiliation(s)
- Xiao Yang
- Institute of Chronic Disease, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Zeyu Jiang
- Institute of Chronic Disease, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Jiayong Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China.
| | - Qinrui Fu
- Institute of Chronic Disease, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Shuhan Pan
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
5
|
Tao Y, Qiao Q, Ruan Y, Fang X, Wang X, Zhang Y, Bao P, Huang Y, Xu Z. SIM imaging of bacterial membrane dynamics and lipid peroxidation during photodynamic inactivation with a dual-functional activatable probe. Chem Sci 2025; 16:7766-7772. [PMID: 40191130 PMCID: PMC11966534 DOI: 10.1039/d5sc00858a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/30/2025] [Indexed: 04/09/2025] Open
Abstract
Photodynamic inactivation (PDI) has emerged as a promising antibacterial strategy that mitigates the risk of bacterial resistance. However, the precise morphological dynamics and mechanisms underlying bacterial cell death during PDI remain insufficiently understood. In this study, we developed a dual-functional activatable probe, RDP, which integrated rhodamine B as a fluorophore with moderate brightness and fatty chains for selective bacterial membrane localization. The probe employed an aggregation-disaggregation mechanism to achieve both fluorescence activation and PDI functionality. Using super-resolution fluorescence imaging, we unveiled the selective rupture of bacterial membranes at specific sites during PDI, followed by membrane contraction and internalization, ultimately leading to the formation of lipid-enriched droplets within the bacteria. Further mechanistic investigations confirmed that this membrane rupture was driven by lipid peroxidation. Statistical analysis of bacterial morphological changes during PDI revealed that membrane rupture predominantly occurred at the septum during cell division, whereas in other growth phases, rupture sites were mainly localized at the poles. These findings provide critical insights into the role of selective membrane rupture in bacterial growth and viability, paving the way for the rational design of targeted and highly efficient antibacterial agents.
Collapse
Affiliation(s)
- Yi Tao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinglong Qiao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yiyan Ruan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiangning Fang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiang Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yinchan Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pengjun Bao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yalin Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
6
|
Shao Y, Song J, Hao C, Lv F, Hou H, Fan X, Song F. A simple co-assembly strategy to control the dimensions of nanoparticles for enhanced synergistic therapy. J Colloid Interface Sci 2025; 685:1008-1017. [PMID: 39879780 DOI: 10.1016/j.jcis.2025.01.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Despite phthalocyanine has excellent photodynamic and photothermal effects as a photosensitizer and photothermal agent, hydrophobicity and aggregation limits its biological application. In this paper, phthalocyanine-cyanine co-assembled nanoparticles were designed to modulate the dimensions and morphology by introducing water-soluble cyanine. The cyanine had the ability to transform the nanomaterials from microrods to nanospheres, thus successfully constructing photoactivated nanomedicines. Their appropriate size effect and improved water solubility conferred the nanoparticles with extended blood circulation time and tumor accumulation capacity. Meanwhile, the fluorescence effect of cyanine enabled the nanoparticles to have the ability of fluorescence imaging. The nanoparticles achieved enhanced PDT/PTT synergistic effect under single laser induction, especially the generation of type I photodynamics.
Collapse
Affiliation(s)
- Yutong Shao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237 PR China
| | - Jitao Song
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237 PR China.
| | - Caiqin Hao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237 PR China
| | - Fangyuan Lv
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237 PR China
| | - Haoran Hou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 PR China
| | - Xinping Fan
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), PR China.
| | - Fengling Song
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237 PR China.
| |
Collapse
|
7
|
Yao G, Miao J, Huo Y, Guo W. Improved Orthogonality in Naphthalimide/Cyanine Dyad Boosts Superoxide Generation: a Tumor-Targeted Type-I Photosensitizer for Photodynamic Therapy of Tumor by Inducing Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417179. [PMID: 40047290 PMCID: PMC12061322 DOI: 10.1002/advs.202417179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Indexed: 05/10/2025]
Abstract
It is highly desired to achieve Type-I photosensitizer (PS) to overcome the hypoxic limitation found in most clinically used PSs. Herein, a new heavy-atom-free Type-I PS T-BNCy5 is presented by incorporating a biotin-modified naphthalimide (NI) unit into the meso-position of a N-benzyl-functionalized, strongly photon-capturing pentamethine cyanine (Cy5) dye. Such molecular engineering induces a rigid orthogonal geometry between NI and Cy5 units by introducing an intramolecular sandwich-like π-π stacking assembly, which effectively promotes intersystem crossing (ISC) and greatly extends the triplet-state lifetime (τ = 389 µs), thereby markedly improving the superoxide (O2 •-)-generating ability. In vitro assays reveal that T-BNCy5 specifically accumulates in mitochondria, where it not only generates O2 •- under photoirradiation but also induces the burst of the most cytotoxic hydroxy radical (HO•) by a cascade of biochemical reactions, ultimately triggering cell ferroptosis with the IC50 value up to ≈0.45 µm whether under normoxia or hypoxia. In vivo assays manifest that, benefiting from its biotin unit, T-BNCy5 displays a strong tumor-targeting ability, and after a single PDT treatment, it can not only ablate the tumor almost completely but also be cleared from the body through biosafe urinary excretion, indicating its potential for future clinical translation.
Collapse
Affiliation(s)
- Guangxiao Yao
- School of Chemistry and Chemical EngineeringShanxi UniversityTaiyuan030006China
| | - Junfeng Miao
- School of Chemistry and Chemical EngineeringShanxi UniversityTaiyuan030006China
| | - Yingying Huo
- School of Chemistry and Chemical EngineeringShanxi UniversityTaiyuan030006China
| | - Wei Guo
- School of Chemistry and Chemical EngineeringShanxi UniversityTaiyuan030006China
| |
Collapse
|
8
|
Li P, Zhang J, Shao T, Jiang J, Tang X, Yang J, Li J, Fang B, Huang Z, Fang H, Wang H, Hu W, Peng B, Bai H, Li L. NIR-II Photosensitizer-Based Nanoparticles Defunctionalizing Mitochondria to Overcome Tumor Self-Defense by Promoting Heat Shock Protein 40. ACS NANO 2025; 19:15751-15766. [PMID: 40241294 DOI: 10.1021/acsnano.4c18937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Inherent self-defense pathways within malignant tumors include the action of heat shock proteins (HSPs) and often impede photothermal therapy efficacy. Interestingly, HSP40 inhibits glycolysis and disrupts mitochondrial function to overcome tumor self-defense mechanisms and exhibits a tumor-suppressive effect. Reactive oxygen species (ROS), especially hydroxyl radicals, generated by type-I photodynamic therapy inhibit adenosine triphosphate (ATP) production and lead to ATP-independent HSP40 overexpression during heat stress. However, the regulatory mechanisms linking heat and hydroxyl radicals to induce HSP40 expression remain unclear. Therefore, it is imperative to elucidate the underlying mechanism governing the induction of HSP40 expression during heat stress and explore its potential as a promising therapeutic strategy against tumor development. By strategically modifying the aza-BODIPY structure to precisely distribute the excited-state energy, we have demonstrated that HSP40 specific expression is correlated with the proportion of heat to hydroxyl radicals rather than their individual levels. This orchestrated NIR-II photosensitizer-based nanoparticles reduced tumor glycolysis and disrupted ATP production, driving cell apoptosis and amplifying the efficacy of photothermal therapy. Silencing and compensation of HSPs under heat and ROS stress represent a promising and effective strategy for overcoming tumor self-defense mechanisms in cancer therapy.
Collapse
Affiliation(s)
- Panpan Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jiaxin Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Tao Shao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jiamin Jiang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiao Tang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jiaqi Yang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jintao Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Bin Fang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Ze Huang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Xiamen University, Xiamen 361102, China
| | - Haixiao Fang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Xiamen University, Xiamen 361102, China
| | - Hui Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Xiamen University, Xiamen 361102, China
| | - Wenbo Hu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Bo Peng
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Hua Bai
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lin Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Xiamen University, Xiamen 361102, China
| |
Collapse
|
9
|
Zhen W, Jiang X, Li E, Germanas T, Lee MJ, Luo T, Ma X, Wang C, Chen Y, Weichselbaum RR, Lin W. Transforming malignant tumors into vulnerable phenotypes via nanoscale coordination polymer mediated cell senescence and photodynamic therapy. Biomaterials 2025; 322:123355. [PMID: 40279766 DOI: 10.1016/j.biomaterials.2025.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/01/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Induction of senescence in cancer cells can thwart the proliferation of malignant tumors. Herein we report the design of AZT-P/pyro nanoscale coordination polymer particles consisting of 3-azido-2,3-dideoxythymidine monophosphate (AZT-P) in the core and photosensitizing pyro-lipid (pyro) in the shell for potent antitumor treatment. Gradual release of AZT-P in response to an acidic tumor microenvironment transforms cancer cells with unlimited proliferation capacity into senescent cells that are vulnerable to reactive oxygen species (ROS). Pyro selectively induces ROS generation and immunogenic cell death of cancer cells upon light irradiation. Co-delivery of AZT-P and pyro in a single particle prolongs their blood circulation times and enhances their accumulation in tumors. Additionally, the induction of senescence and ROS generation both contribute to the recruitment of immune cells to the tumors, resulting in an effective immune response to inhibit the growth of large subcutaneous tumors and metastatic spread of orthotopic tumors.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States
| | - En Li
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Tomas Germanas
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Morten J Lee
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Taokun Luo
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Xin Ma
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Chaoyu Wang
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States
| | - Yimei Chen
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States.
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States.
| |
Collapse
|
10
|
Kwon N, Weng H, Rajora MA, Zheng G. Activatable Photosensitizers: From Fundamental Principles to Advanced Designs. Angew Chem Int Ed Engl 2025; 64:e202423348. [PMID: 39899458 PMCID: PMC11976215 DOI: 10.1002/anie.202423348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Photodynamic therapy (PDT) is a promising treatment that uses light to excite photosensitizers in target tissue, producing reactive oxygen species and localized cell death. It is recognized as a minimally invasive, clinically approved cancer therapy with additional preclinical applications in arthritis, atherosclerosis, and infection control. A hallmark of ideal PDT is delivering disease-specific cytotoxicity while sparing healthy tissue. However, conventional photosensitizers often suffer from non-specific photoactivation, causing off-target toxicity. Activatable photosensitizers (aPS) have emerged as more precise alternatives, offering controlled activation. Unlike traditional photosensitizers, they remain inert and photoinactive during circulation and off-target accumulation, minimizing collateral damage. These photosensitizers are designed to "turn on" in response to disease-specific biostimuli, enhancing therapeutic selectivity and reducing off-target effects. This review explores the principles of aPS, including quenching mechanisms stemming from activatable fluorescent probes and applied to activatable photosensitizers (RET, PeT, ICT, ACQ, AIE), as well as pathological biostimuli (pH, enzymes, redox conditions, cellular internalization), and bioresponsive constructs enabling quenching and activation. We also provide a critical assessment of unresolved challenges in aPS development, including limitations in targeting precision, selectivity under real-world conditions, and potential solutions to persistent issues (dual-lock, targeting moieties, biorthogonal chemistry and artificial receptors). Additionally, it provides an in-depth discussion of essential research design considerations needed to develop translationally relevant aPS with improved therapeutic outcomes and specificity.
Collapse
Affiliation(s)
- Nahyun Kwon
- Princess Margaret Cancer CentreUniversity Health Network101 College Street, PMCRT 5–354Toronto, ONM5G1L7Canada
| | - Hanyi Weng
- Princess Margaret Cancer CentreUniversity Health Network101 College Street, PMCRT 5–354Toronto, ONM5G1L7Canada
- Department of Medical BiophysicsUniversity of TorontoToronto, ONCanada
| | - Maneesha A. Rajora
- Princess Margaret Cancer CentreUniversity Health Network101 College Street, PMCRT 5–354Toronto, ONM5G1L7Canada
- Department of MedicineUniversity of TorontoToronto, ONCanada
| | - Gang Zheng
- Princess Margaret Cancer CentreUniversity Health Network101 College Street, PMCRT 5–354Toronto, ONM5G1L7Canada
- Department of Medical BiophysicsUniversity of TorontoToronto, ONCanada
| |
Collapse
|
11
|
Cai Y, Chai T, Nguyen W, Liu J, Xiao E, Ran X, Ran Y, Du D, Chen W, Chen X. Phototherapy in cancer treatment: strategies and challenges. Signal Transduct Target Ther 2025; 10:115. [PMID: 40169560 PMCID: PMC11961771 DOI: 10.1038/s41392-025-02140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 04/03/2025] Open
Abstract
Phototherapy has emerged as a promising modality in cancer treatment, garnering considerable attention for its minimal side effects, exceptional spatial selectivity, and optimal preservation of normal tissue function. This innovative approach primarily encompasses three distinct paradigms: Photodynamic Therapy (PDT), Photothermal Therapy (PTT), and Photoimmunotherapy (PIT). Each of these modalities exerts its antitumor effects through unique mechanisms-specifically, the generation of reactive oxygen species (ROS), heat, and immune responses, respectively. However, significant challenges impede the advancement and clinical application of phototherapy. These include inadequate ROS production rates, subpar photothermal conversion efficiency, difficulties in tumor targeting, and unfavorable physicochemical properties inherent to traditional phototherapeutic agents (PTs). Additionally, the hypoxic microenvironment typical of tumors complicates therapeutic efficacy due to limited agent penetration in deep-seated lesions. To address these limitations, ongoing research is fervently exploring innovative solutions. The unique advantages offered by nano-PTs and nanocarrier systems aim to enhance traditional approaches' effectiveness. Strategies such as generating oxygen in situ within tumors or inhibiting mitochondrial respiration while targeting the HIF-1α pathway may alleviate tumor hypoxia. Moreover, utilizing self-luminescent materials, near-infrared excitation sources, non-photoactivated sensitizers, and wireless light delivery systems can improve light penetration. Furthermore, integrating immunoadjuvants and modulating immunosuppressive cell populations while deploying immune checkpoint inhibitors holds promise for enhancing immunogenic cell death through PIT. This review seeks to elucidate the fundamental principles and biological implications of phototherapy while discussing dominant mechanisms and advanced strategies designed to overcome existing challenges-ultimately illuminating pathways for future research aimed at amplifying this intervention's therapeutic efficacy.
Collapse
Affiliation(s)
- Yeyu Cai
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Tian Chai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China
| | - William Nguyen
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Taicang, Suzhou, China
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Du
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China.
| | - Xiangyu Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
12
|
Anguluri K, Sharma B, Bagherpour S, Calpena AC, Halbaut L, Amabilino DB, Kaur G, Chaudhary GR, Pérez-García L. Supramolecular gels for antimicrobial photodynamic therapy against E. coli and S. aureus. Photodiagnosis Photodyn Ther 2025; 52:104529. [PMID: 39988224 DOI: 10.1016/j.pdpdt.2025.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Singlet oxygen (SO) reacts with organic molecules, for example in degrading environmental contaminants and causing toxicity to cells in photodynamic therapy (PDT). The relevance of SO in the environmental and biomedical domains has fuelled research towards improved methodologies for its efficient generation. In this paper, we report the use of a bis-imidazolium-based amphiphile that forms supramolecular gels in water-ethanol mixtures encapsulating SO generating chromophores. The gels comprise twisted fibres that incorporate one of four different porphyrins: 5,10,15,20-tetrakis(N-methyl-4-pyridinium)porphyrin tetraiodide (TPPP), 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP), 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (TPP-3OH) and 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (TPP-4OH). Rheological measurements confirmed viscoelastic properties characteristic of these types of supramolecular gels, suggesting their potential as effective local PDT delivery systems. Enhanced SO generation within the hydrogel matrix compared to the solution of the chromophores was observed in suspension in a spectrophotometer using uric acid as the molecular probe. The SO generation was also shown through antimicrobial PDT (aPDT) studies. The TPPP-containing gel showed the highest reduction in the colony forming unit (CFU) count, which is 94% against E. coli and 100% against S. aureus. These results indicate that the porphyrin gels based on a gemini amphiphile with a high level of SO production are of significant interest and have a lot of potential use in aPDT.
Collapse
Affiliation(s)
- Kavya Anguluri
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Avda. Joan XXIII 27-31, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028 Spain
| | - Bunty Sharma
- Department of SAIF/CIL, Panjab University, Chandigarh, 160014, India
| | - Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Avda. Joan XXIII 27-31, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028 Spain
| | - Ana C Calpena
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028 Spain; Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Lyda Halbaut
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - David B Amabilino
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til.lers, 08193 Bellaterra, Spain
| | - Gurpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Ganga Ram Chaudhary
- Department of SAIF/CIL, Panjab University, Chandigarh, 160014, India; Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Lluïsa Pérez-García
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Avda. Joan XXIII 27-31, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028 Spain.
| |
Collapse
|
13
|
Wang X, Zhou J, Wang M, Wang Y, Shen Z, Sun H, Hu Z, Luo X, Yang Y, Chen J. Proximal Oblique-Packing of Heptamethine Cyanines through Spiro-Connection Boosts Triplet State Generation in Near-Infrared. Angew Chem Int Ed Engl 2025; 64:e202425422. [PMID: 39809703 DOI: 10.1002/anie.202425422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Near-infrared (NIR) triplet dyes are the cornerstones of cutting-edge biomedical and material applications. The difficulty in rational development of triplet dyes increases exponentially as the absorption wavelength shifts deeper into the NIR range. Although classical H-/J-typed packing of NIR dyes has the potential to enhance intersystem crossing (ISC) compared with that in single-chromophore dyes, the triplet state quantum yields remain limited in such strategy. Herein, proximal oblique-packed (V-shaped) heptamethine cyanines (SZ780) through spiro-connection were achieved. Multi-channel ultrafast ISC were direct observed in SZ780 and a record high ISC rate constant (up to ~1011 s-1) is registered among all the reported NIR triplet dyes. SZ780 exhibits a triplet state quantum yield of 18.9 % upon excitation at 750 nm, which is almost an order of magnitude higher than that of the monomer (IR780, 2.1 %) and nearly threefold increase compared to that of the H-packed dimer (SC780) (6.7 %). Moreover, SZ780 efficiently generates singlet oxygen under 808 nm light irradiation, inducing cancer cell apoptosis in vivo. These findings demonstrate that constructing V-aggregated dyes system by spiro-connection offers a powerful approach for the design of high-performance NIR triplet sensitizers.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Mingkang Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuze Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhetao Shen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
14
|
Huang H, Wu Y, He X, Liu Y, Zhu J, Gu M, Zhou D, Long S, Chen Y, Wang L, Li M, Chen X, Peng X. Electrostatic Co-Assembly of Cyanine Pair for Augmented Photoacoustic Imaging and Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416905. [PMID: 39950855 PMCID: PMC11967836 DOI: 10.1002/advs.202416905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/04/2025] [Indexed: 04/05/2025]
Abstract
Molecular phototheranostic dyes are of eminent interest for oncological diagnosis and imaging-guided phototherapy. However, it remains challenging to develop photosensitizers (PSs) that simultaneously integrate high-contrast photoacoustic imaging and efficient therapeutic capabilities. In this work, a supramolecular strategy is employed to construct a molecular pair phototheranostic agent via the direct self-assembly of two cyanines, C5TNa (anionic) and Cy-Et (cationic). The Coulombic interactions between C5TNa and Cy-Et facilitate the formation of a complementary cyanine pair (C5T-ET) and the creation of supramolecular CT-J-type aggregates in water. This complementary cyanine pair (C5T-ET) results in completely quenched fluorescence and significantly enhances nonradiative deactivation (≈22 ps), leading to a 3.3-fold increase in photothermal conversion efficiency and a 7.1-fold enhancement in photoacoustic response compared to indocyanine green (ICG). As a result, the J-type aggregate cyanine pair (C5T-ET) demonstrates high photoacoustic imaging capability and remarkable antitumor phototheranostic efficacy in vivo, highlighting its potential for clinical applications. This work provides strong experimental evidence for the superior performance of the complementary cyanine pair (C5T-ET) in enhancing photosensitization and photoacoustic response. It is believed that this strategy will propel the advancement of controllable dye J-aggregates and contribute to the practical implementation of photoacoustic imaging and phototherapy in vivo.
Collapse
Affiliation(s)
- Haiqiao Huang
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
- Marshall Laboratory of Biomedical EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Yingnan Wu
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Xin He
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Yahang Liu
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Jing‐Hui Zhu
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
- Marshall Laboratory of Biomedical EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Mingrui Gu
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Danhong Zhou
- State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalian116024P. R. China
| | - Saran Long
- State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalian116024P. R. China
| | - Yahui Chen
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Lei Wang
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Mingle Li
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Xiaoqiang Chen
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
- Marshall Laboratory of Biomedical EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Xiaojun Peng
- College of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
- State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalian116024P. R. China
| |
Collapse
|
15
|
Sun Y, Zhen L, Xu L, Li P, Zhang C, Zhang Y, Zhao Y, Shi B. Hollow nanosystem-boosting synergistic effects between photothermal therapy and chemodynamic therapy via self-supplied hydrogen peroxide and relieved hypoxia. Biomater Sci 2025; 13:1784-1800. [PMID: 39995393 DOI: 10.1039/d4bm01178c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Nanomedicine-based photothermal therapy (PTT) has been considered as an excellent alternative for treatment of tumor tissue due to its high therapeutic efficiency and controllable range. However, the overexpression of heat shock proteins (HSPs) during PTT and the hypoxic properties of the tumor microenvironment can lead to intracellular thermal resistance and reduce its effectiveness. Reactive oxygen species (ROS), followed by the application of chemodynamic therapy (CDT) and photodynamic therapy (PDT), can eliminate HSPs and overcome thermal resistance. High concentration H2O2 was used to catalyze oxygen production in the tumor microenvironment to improve the anaerobic state. Therefore, we present a multifunctional nanocarrier system driving chemodynamic-photodynamic-photothermal synergistic therapy via self-supplied hydrogen peroxide and relieved hypoxia for prostate tumor treatment.
Collapse
Affiliation(s)
- Yunji Sun
- Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, P.R. China
- Qilu Hospital, Shandong, University, 107 Wenhua West Road, Lixia District, Jinan, Shandong, 250012, P.R. China.
| | - Lixiao Zhen
- Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, P.R. China
| | - Lin Xu
- Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, P.R. China
| | - Peipei Li
- Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, P.R. China
| | - Chao Zhang
- Qilu Hospital, Shandong, University, 107 Wenhua West Road, Lixia District, Jinan, Shandong, 250012, P.R. China.
| | - Yang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China.
| | - Yisheng Zhao
- School of Pharmaceutical Sciences, Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, P.R. China.
| | - Benkang Shi
- Qilu Hospital, Shandong, University, 107 Wenhua West Road, Lixia District, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
16
|
Lian G, Zhao W, Ma G, Zhang S, Wu A, Wang L, Zhang D, Liu W, Jiang J. Orthogonally conjugated phthalocyanine-porphyrin oligomer for NIR photothermal-photodynamic antibacterial treatment. Commun Chem 2025; 8:80. [PMID: 40087397 PMCID: PMC11909192 DOI: 10.1038/s42004-025-01470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
With the increase of antibiotic resistance worldwide, there is an urgent demand to develop new fungicides and approaches to address the threat to human health posed by the ineffectiveness of traditional antibiotics. In this work, an orthogonal conjugated uniform oligomer bactericide of SiPc-ddCPP was constructed between silicon phthalocyanine and porphyrin, which can effectively treat infection through photodynamic-photothermal combined therapy without considering drug resistance. Compared with organic photothermal agents induced by unstable H-aggregation with blue-shifted absorption and fluorescence/ROS quenching, this orthogonal-structured uniform SiPc-ddCPP nanoparticle shows remarkably stability and NIR photothermal effect (η = 31.15%) along with fluorescence and ROS generation. Antibacterial studies have shown that both Gram-positive and Gram-negative bacteria could be efficiently annihilated in a few minutes through synergistic PDT-PTT along with satisfactory bacterial targeting. These results suggest SiPc-ddCPP is a multifunctional NIR bactericide, which afford a new approach of synergistic PDT-PTT sterilization to conquer the crisis of antibiotic resistance.
Collapse
Affiliation(s)
- Guixue Lian
- School of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Wanru Zhao
- School of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Gaoqiang Ma
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250100, China
| | - Sen Zhang
- School of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ailin Wu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250100, China
| | - Lin Wang
- School of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China.
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250100, China.
| | - Wei Liu
- School of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Jianzhuang Jiang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing, 100083, China.
| |
Collapse
|
17
|
Lei Z, Song YH, Leng YL, Gu YJ, Yu M, Chen Y, Yu Q, Liu Y. In Situ NADH-Activated BODIPY-Based Macrocyclic Supramolecular Photosensitizer for Chemo-Photodynamic Synergistic Tumor Therapy. J Med Chem 2025; 68:5891-5906. [PMID: 40009744 DOI: 10.1021/acs.jmedchem.5c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Photodynamic therapy (PDT) based on supramolecular assembly has been receiving wide attention due to its great potential application in clinical treatment. Herein, we report a supramolecular photoelectron "reservoir" (SPR) constructed by tetracationic boron dipyrromethene (BODIPY)-based macrocycle (BBox·4Cl), doxorubicin (Dox), and tumor-targeted β-cyclodextrin-grafted hyaluronic acid (HACD). Upon irradiation, BBox·4Cl can in situ catalyze nicotinamide adenine dinucleotide (NADH) to continuously generate electrons to inject into SPR, which further transfers electrons to oxygen, inducing highly efficient hydroxyl radical generation even under hypoxia. Synergistically, Dox in SPR as "pump" can be encapsulated by BBox·4Cl and transport photoelectrons between two BODIPY units, while HACD as "sponge" can enrich BBox·4Cl by the electrostatic interaction to concentrate them closer in space, which facilitates intramolecular and intermolecular photoelectron transfer, respectively, and significantly enhances the generation of hydroxyl radicals. Meanwhile, electron replenishment in SPR causes NADH depletion and redox dysfunction, thereby accelerating the apoptosis and achieving highly effective synergistic tumor therapy.
Collapse
Affiliation(s)
- Zhuo Lei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ya-Hui Song
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yuan-Li Leng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yi-Jun Gu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Miao Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
18
|
He KL, Li WJ, Hu Y, Sun LL, Dong L, Xing J, Gong J, Gong X, Han HH. Flexible Formation of Nanoparticles: Selectively Self-Assembling with Glycoclusters to Form Nano-Photosensitizers for Multipurpose Bioimaging and Photodynamic Therapy. Molecules 2025; 30:1274. [PMID: 40142052 PMCID: PMC11944942 DOI: 10.3390/molecules30061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The smart construction of nano-photosensitizers (PSs) is significant for multipurpose applications, such as bioimaging, efficient photodynamic anti-tumor or anti-bacterial studies. This work reports a flexible self-assembling strategy for the construction of nano-PSs, in which PSs spontaneously form amorphous aggregates for killing bacteria, or self-assemble with tetraphenylethene (TPE) based glycoclusters (TPE-Glc4) to construct glyco-dots for cell imaging and photodynamic anti-tumor studies. Tricyanofuran (TCF) and TPE units were bridged with furan or thiophene moiety to construct two PSs (1 and 2) with NIR fluorescence in monomers, and a performance of the aggregation-induced generation of reactive oxygen species (AIG-ROS) in an aggregated state. Compared to the large amorphous aggregates (2-a), TPE-based glycoclusters encapsulated with PS form glyco-dots (2-Glc) that exhibit a smaller and more homogeneous hydrated size of approximately 40 nm, as well as enhanced water-solubility and biocompatibility. TPE-glycoclusters facilitate the cellular uptake of 2 into HepG2 cells, therefore enhancing the NIR fluorescence imaging signal and photodynamic therapy. Meanwhile, 2-a exhibits satisfied phototoxicity against Escherichia coli. This work highlights the flexible self-assembly of nano-PSs for multifunctional bioapplications.
Collapse
Affiliation(s)
- Kai-Li He
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (K.-L.H.); (Y.H.); (J.X.)
| | - Wen-Jia Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; (W.-J.L.); (L.-L.S.)
- Molecular Imaging Center, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Hu
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (K.-L.H.); (Y.H.); (J.X.)
| | - Lu-Lu Sun
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; (W.-J.L.); (L.-L.S.)
| | - Lei Dong
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (K.-L.H.); (Y.H.); (J.X.)
| | - Jing Xing
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (K.-L.H.); (Y.H.); (J.X.)
| | - Jin Gong
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (K.-L.H.); (Y.H.); (J.X.)
| | - Xiaoming Gong
- Comprehensive Technical Service Center of Weifang Customs, Weifang 261041, China
| | - Hai-Hao Han
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; (W.-J.L.); (L.-L.S.)
- Molecular Imaging Center, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Yao C, Wu Q, Zhao Y, Li H, He J, Liu L, Huang Y, Cheng F. Engineered Au@MOFs silk fibroin-based hydrogel phototherapy platform for enhanced wound healing performance. Int J Biol Macromol 2025; 297:139872. [PMID: 39818403 DOI: 10.1016/j.ijbiomac.2025.139872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/05/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy. This study presents a pioneering approach by combining zeolitic imidazolate framework derivatives (ZIFs) and Au NPs in a silk fibroin (SF) hydrogel for the first time. This combination not only prevents particle aggregation but also significantly enhances photothermal conversion efficiency and ROS generation capacity. The digital light processing (DLP) printability of our hydrogel allows for customized wound dressings tailored to individual patient needs, improving therapeutic efficacy. The hydrogel's effectiveness was evaluated through rigorous in vivo experiments, demonstrating enhanced antibacterial properties and accelerated wound healing. The biocompatibility of our hydrogel ensures its suitability for clinical applications, minimizing adverse reactions while promoting healing. A wound healing rate of 99.06 % represents a substantial improvement over the control groups, indicating markedly enhanced therapeutic efficacy. These findings underscore its multifunctionality in addressing infected wounds, presenting a promising strategy for facilitating the rapid healing of acute complex wounds in clinical applications.
Collapse
Affiliation(s)
- Chaofan Yao
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Qian Wu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yu Zhao
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Hongbin Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jinmei He
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Li Liu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Yudong Huang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Feng Cheng
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
20
|
Zeng S, Chen C, Yu D, Jiang M, Li X, Liu X, Guo Z, Hao Y, Zhou D, Kim H, Kang H, Wang J, Chen Q, Li H, Peng X, Yoon J. A One Stone Three Birds Paradigm of Photon-Driven Pyroptosis Dye for Amplifying Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409007. [PMID: 39804952 PMCID: PMC11884606 DOI: 10.1002/advs.202409007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Indexed: 01/16/2025]
Abstract
Activating the pyroptosis pathway of tumor cells by photodynamic therapy (PDT) for immunogenic cell death (ICD) is considered a valid strategy in pursuit of antitumor immunotherapy, but it remains a huge challenge due to the lack of reliable design guidelines. Moreover, it is often overlooked that conventional PDT can exacerbate the development of tumor immunosuppressive microenvironment, which is apparently unfavorable to clinical immunotherapy. The endoplasmic reticulum's (ER) pivotal role in cellular homeostasis and its emerging link to pyroptosis have galvanized interest in ER-centric imaging and therapeutics. Herein, using the targeted group-assisted strategy (TAGS), an intriguing cyclooxygenase-2-targeted photodynamic conjugate, Indo-Cy, strategically created, which exploits the enzyme's overabundance in the tumoral ER, especially under proinflammatory hypoxic conditions. This conjugate, with its highly precise ER imaging, embodies a trifunctional strategy: i) innovating an electron transfer mechanism, converting the hemicyanine moiety into an oxygen-independent type I photosensitizer, thereby navigating around the hypoxia constraints of traditional PDT; ii) executing precise ER-targeted PDT, amplifying caspase-1/GSDMD-mediated pyroptosis for ICD; 3) attenuating immunosuppressive pathways by inhibiting cyclooxygenase-2 downstream factors, including HIF-1α, PGE2, and VEGF. Indo-Cy's multimodal approach potently induces in vivo tumor pyroptosis and bolsters antitumor immunity, underscoring cyclooxygenase-2-targeted dyes' potential as a versatile oncotherapeutics.
Collapse
Affiliation(s)
- Shuang Zeng
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Chen Chen
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Dan Yu
- Shanghai Changzheng HospitalNaval Medical UniversityShanghai20000China
| | - Maojun Jiang
- School of ChemistryDalian University of TechnologyDalian116024China
| | - Xin Li
- School of ChemistryDalian University of TechnologyDalian116024China
| | - Xiaosheng Liu
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Zhihan Guo
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Yifu Hao
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Danhong Zhou
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Heejeong Kim
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760South Korea
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841South Korea
| | - Jingyun Wang
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Qixian Chen
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
- Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxing314100China
| | - Haidong Li
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Juyoung Yoon
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760South Korea
| |
Collapse
|
21
|
Peng T, Chen Y, Luan X, Hu W, Wu W, Guo B, Lu C, Wu C, Pan X. Microneedle technology for enhanced topical treatment of skin infections. Bioact Mater 2025; 45:274-300. [PMID: 39659727 PMCID: PMC11629152 DOI: 10.1016/j.bioactmat.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Skin infections caused by microbes such as bacteria, fungi, and viruses often lead to aberrant skin functions and appearance, eventually evolving into a significant risk to human health. Among different drug administration paradigms for skin infections, microneedles (MNs) have demonstrated superiority mainly because of their merits in enhancing drug delivery efficiency and reducing microbial resistance. Also, integrating biosensing functionality to MNs offers point-of-care wearable medical devices for analyzing specific pathogens, disease status, and drug pharmacokinetics, thus providing personalized therapy for skin infections. Herein, we do a timely update on the development of MN technology in skin infection management, with a special focus on how to devise MNs for personalized antimicrobial therapy. Notably, the advantages of state-of-the-art MNs for treating skin infections are pointed out, which include hijacking sequential drug transport barriers to enhance drug delivery efficiency and delivering various therapeutics (e.g., antibiotics, antimicrobial peptides, photosensitizers, metals, sonosensitizers, nanoenzyme, living bacteria, poly ionic liquid, and nanomoter). In addition, the nanoenzyme-based multimodal antimicrobial therapy is highlighted in addressing intractable infectious wounds. Furthermore, the MN-based biosensors used to identify pathogen types, track disease status, and quantify antibiotic concentrations are summarized. The limitations of antimicrobial MNs toward clinical translation are offered regarding large-scale production, quality control, and policy guidance. Finally, the future development of biosensing MNs with easy-to-use and intelligent properties and MN-based wearable drug delivery for home-based therapy are prospected. We hope this review will provide valuable guidance for future development in MN-mediated topical treatment of skin infections.
Collapse
Affiliation(s)
- Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Yangyan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuanyu Luan
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Wanshan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Wentao Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bing Guo
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
22
|
Nguyen VN, Nguyen MV, Pham Thi H, Vu AT, Nguyen TX. Recent advances in near-infrared organic photosensitizers for photodynamic cancer therapy. Biomater Sci 2025; 13:1179-1188. [PMID: 39868556 DOI: 10.1039/d4bm01457j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
With the advancement of photodynamic therapy, various photosensitizers have been developed to enhance the efficacy of cancer treatment while minimizing side effects. Recently, near-infrared organic fluorophores have gained significant attention as promising photodynamic agents for cancer therapy due to their tunable photophysical properties, structural versatility, good biocompatibility, high biosafety, and synthetic flexibility. In particular, near-infrared organic photosensitizers offer several notable advantages, including deep tissue penetration, a low fluorescence background for bioimaging, and reduced damage to biological tissues compared to traditional visible-spectrum photosensitizers. In this minireview, we will discuss the current developments in near-infrared organic photosensitizers for photodynamic cancer therapy. Furthermore, we will briefly highlight the challenges and prospects in this field. This minireview aims to encourage more researchers to develop advanced near-infrared organic photosensitizers and facilitate their transition from laboratory research to preclinical studies and ultimately to clinical use.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| | - Minh Viet Nguyen
- VNU-Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Vietnam.
| | - Huong Pham Thi
- Laboratory of Environmental Science and Climate Change, Institute for Computation Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.
- Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Anh-Tuan Vu
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| | - Truong Xuan Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| |
Collapse
|
23
|
Durdu S, Caglar Y, Ozcan K, Saka ET. Antibacterial and surface properties of post-light-activated metal-free phthalocyanine-deposited TiO 2 nanotube smart surfaces. Dalton Trans 2025; 54:3323-3334. [PMID: 39831820 DOI: 10.1039/d4dt03192j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The utilisation of implantable medical devices has become safer and more prevalent since the establishment of sterilisation methods and techniques a century ago. Nevertheless, device-associated infections remain a significant and growing concern, particularly in light of the continued rise in the number of medical device implantations. This underscores the imperative for the development of efficacious prevention and treatment strategies for device-associated infections, as well as further investigation into the design of innovative antibacterial surfaces for medical device applications. The motivation of this work is to investigate the post-light-activated antibacterial photosensitive surfaces fabricated on medical titanium (Ti) surfaces. Thus, in this work, metal-free phthalocyanine (H2Pc)-deposited TiO2 nanotube (TNT) array smart photosensitive surfaces were fabricated on titanium (Ti) surfaces for medical device applications. First, well-ordered nanotube surfaces were produced on titanium using an anodic oxidation (AO) process. Then, H2Pc was accumulated onto TNT surfaces using a physical vapour deposition (PVD-TE) process. H2Pc-deposited TNT surfaces were fabricated on Ti substrates by combining AO and physical vapour deposition (PVD-TE) processes in this work for the first time in the literature. H2Pc was largely coated onto TNT arrays and exhibited elemental homogeneity throughout the whole surface. The contact angle of H2Pc-deposited TNT surfaces was about 89° whereas other Ti and TNT surfaces demonstrated hydrophilic characteristics. Therefore, they exhibited remarkable hydrophobic behavior in terms of antibacterial properties. Importantly, compared to Ti and TNT surfaces, the bacterial inhibition on sunlight-activated H2Pc-deposited TNT surfaces was 94.9% for S. aureus and 97.3% for E. coli, respectively. According to these results, H2Pc-deposited TNT innovative surfaces provided superior antibacterial activity post-light-activation under sunlight due to their photosensitive character.
Collapse
Affiliation(s)
- Salih Durdu
- The Department of Industrial Engineering, Giresun University, 28200, Giresun, Turkey.
- The Department of Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Yasemin Caglar
- The Department of Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Kadriye Ozcan
- The Department of Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Ece Tugba Saka
- The Department of Chemistry, Karadeniz Technical University, 61080, Trabzon, Turkey.
| |
Collapse
|
24
|
Bi S, Yang R, Ju H, Liu Y. Dynamic Nanostructure-Based DNA Logic Gates for Cancer Diagnosis and Therapy. Chembiochem 2025; 26:e202400754. [PMID: 39429047 DOI: 10.1002/cbic.202400754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
DNA logic gates with dynamic nanostructures have made a profound impact on cancer diagnosis and treatment. Through programming the dynamic structure changes of DNA nanodevices, precise molecular recognition with signal amplification and smart therapeutic strategies have been reported. This enhances the specificity and sensitivity of cancer theranostics, and improves diagnosis precision and treatment outcomes. This review explores the basic components of dynamic DNA nanostructures and corresponding DNA logic gates, as well as their applications for cancer diagnosis and therapies. The dynamic DNA nanostructures would contribute to cancer early detection and personalized treatment.
Collapse
Affiliation(s)
- Shiyi Bi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ruowen Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
25
|
Mohammadi H, Moradpoor H, Beddu S, Mozaffari HR, Sharifi R, Rezaei R, Fallahnia N, Ebadi M, Mazlan SA, Safaei M. Current trends and research advances on the application of TiO 2 nanoparticles in dentistry: How far are we from clinical translation? Heliyon 2025; 11:e42169. [PMID: 39991247 PMCID: PMC11847115 DOI: 10.1016/j.heliyon.2025.e42169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
The great potential of nanotechnology-based knowledge during the past decade has shown great potential to elevate human living standards and enhance healthcare conditions through diagnosing, preventing, and treating different diseases. Among abundant nanoparticles (NPs), inorganic NPs feature distinctive biological and physicochemical properties compared to their conventional counterparts which do not endow. TiO2 NPs possess excellent properties including low-cast, antibacterial properties, biocompatibility, and physicochemical stability. The present review highlights and discusses the current trends in applying TiO2 NPs in dentistry ranging from TiO2-based nanocomposite in endodontics, orthodontics, and biofilm prevention. Moreover, the potential of TiO2 NPs in developing new photodynamic therapy and the next generation of oral care products is outlined. In the end, the clinical translation of TiO2-based dental materials is brought to the forefront which is impetus and of great importance to developing inorganic NP-based dental materials.
Collapse
Affiliation(s)
- Hossein Mohammadi
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300, Penang, Malaysia
- Institute of Energy Infrastructure (IEI), Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Salmia Beddu
- Institute of Energy Infrastructure (IEI), Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Rezaei
- Advanced Dental Science and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nima Fallahnia
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Division of Dental Biomaterials, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Ebadi
- Engineering Materials and Structures (eMast) Ikohza, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
| | - Saiful Amri Mazlan
- Engineering Materials and Structures (eMast) Ikohza, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
| | - Mohsen Safaei
- Advanced Dental Science and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Division of Dental Biomaterials, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Fang C, Wang Y, Pan Z. Formation of self-assembly aggregates in traditional Chinese medicine decoctions and their application in cancer treatments. RSC Adv 2025; 15:5476-5506. [PMID: 39967882 PMCID: PMC11833604 DOI: 10.1039/d4ra07212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Traditional Chinese Medicine (TCM) formulas, based on the principles of Chinese medicine, have a long history and are widely applied in the treatment of diseases. Compared to single-component drugs, TCM formulas demonstrate superior therapeutic efficacy and fewer side effects owing to their synergistic effects and mechanisms of detoxification and efficacy enhancement. However, various drawbacks, such as the uncertainty of functional targets and molecular mechanisms, poor solubility of components, and low bioavailability, have limited the global promotion and application of TCM formulas. To overcome these limitations, self-assembled aggregate (SA) nanotechnology has emerged as a promising solution. SA nanotechnology significantly enhances the bioavailability and anti-tumor efficacy of TCM by improving its absorption, distribution, and precise targeting capabilities, thereby providing an innovative solution for the modernization and internationalization of TCM. This review delves into the nature and common interactions of SAs based on the latest research developments. The structural characteristics of SAs in TCM formulas, paired-herb decoctions, and single-herb decoctions are analyzed and their self-assembly mechanisms are systematically elucidated. In addition, this article elaborates on the advantages of SAs in cancer treatment, particularly in enhancing the bioavailability and targeting capabilities. Furthermore, this review aims to provide new perspectives for the study of TCM compatibility and its clinical applications, thereby driving the innovative development of nanomaterials in this field. On addressing the technological challenges, SAs are expected to further promote the global application and recognition of TCM in the healthcare sector.
Collapse
Affiliation(s)
- Chunqiu Fang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613596030117
| | - Yinghang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613844993950
| | - Zhi Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613596030117
| |
Collapse
|
27
|
Liu X, Yu S, Zhang Y. pH-Sensitive and Lysosome Targetable Photosensitizers Based on BODIPYs. J Fluoresc 2025; 35:779-787. [PMID: 38170426 DOI: 10.1007/s10895-023-03562-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Photodynamic therapy (PDT) is an effective and U.S. Food and Drug Administration (FDA) approved treatment for cancer and other diseases. Photosensitizer is one of the three key components that harvest the energy of light at a certain wavelength. Compared to the conventional fluorophores used as photosensitizers, boron dipyrromethene (BODIPY) derivatives have grown fast in recent years due to their low dark toxicity, versatile tunable sites, and easiness of being paired with other treatments. In this paper, two pH-sensitive BODIPY-based photosensitizers (BDC and BDBrC) were synthesized by adding carbazole moieties onto the BODIPY cores (BD and BDBr) through condensation reactions. BDBrC has two Br atoms at the BODIPY core that promote singlet oxygen generation and further red-shift the absorption maximum peak. Both compounds showed sensitivity toward pH change and generated more singlet oxygen under acidic conditions. The cellular uptake and cell imaging experiments showed that BDBrC can selectively target the lysosome organelle. The further dark cell viability and light cytotoxicity indicate the light triggered PDT treatment can be accomplished with BDBrC.
Collapse
Affiliation(s)
- Xiangshan Liu
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, University Heights, Newark, NJ, 07102, USA
| | - Shupei Yu
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, University Heights, Newark, NJ, 07102, USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, University Heights, Newark, NJ, 07102, USA.
| |
Collapse
|
28
|
Durmisevic A, Regeni I, Namoro ME, Baksi A, Clever GH. Phenazinium- and Malachite Green-Based Pd(II) Cages: Chiroptical Discrimination of Nucleoside Triphosphates. Chemistry 2025; 31:e202403679. [PMID: 39469986 PMCID: PMC11771618 DOI: 10.1002/chem.202403679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 10/30/2024]
Abstract
Organic chromophores have been successfully implemented into supramolecular systems to bestow them with distinct photophysical properties for various applications, ranging from solar energy conversion, photochemical reactions or as receptors for guest molecules with optical readout. We had previously introduced first members of the large family of coal-tar dyes (methylene blue, crystal violet and rhodamine) as integral components of coordination cages. Here, we add two new chromophores, malachite green (MGP) and a purple phenazinium dye (PHP), serving as backbones of bis-monodentate banana-shaped ligands with pyridine donors. We show the formation of corresponding green and purple coloured Pd2L4 coordination cages and investigate their interaction with chiral guest molecules via UV-Vis and CD spectroscopy. The PHP cage can be used to recognize nucleoside triphosphates, based on chirality transfer from the guests to the structurally flexible helicate. In combination with the already known methylene blue cage MBP we could further differentiate between all four canonical NTPs through characteristic changes in the observed CD signatures.
Collapse
Affiliation(s)
- Armin Durmisevic
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| | - Irene Regeni
- Leiden Institute of ChemistryLeiden University2333CCLeidenThe Netherlands
| | - Mark Ely Namoro
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| | - Ananya Baksi
- Department of ChemistryJadavpur UniversityKolkata, West Bengal700032India
| | - Guido H. Clever
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| |
Collapse
|
29
|
Wang C, Xiu Y, Zhang Y, Wang Y, Xu J, Yu W, Xing D. Recent advances in biotin-based therapeutic agents for cancer therapy. NANOSCALE 2025; 17:1812-1873. [PMID: 39676680 DOI: 10.1039/d4nr03729d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Biotin receptors, as biomarkers for cancer cells, are overexpressed in various tumor types. Compared to other vitamin receptors, such as folate receptors and vitamin B12 receptors, biotin receptor-based targeting strategies exhibit superior specificity and broader potential in treating aggressive cancers, including ovarian cancer, leukemia, colon cancer, breast cancer, kidney cancer, and lung cancer. These strategies promote biotin transport via receptor-mediated endocytosis, which is triggered upon ligand binding. Biotin, as the ligand of the biotin receptor, can be conjugated to anti-cancer drugs to form targeted therapies that bind to receptors overexpressed on tumor cells, thus increasing drug uptake. Despite these advantages, many candidate drugs have progressed slowly and remain in the preclinical stage, impeding clinical translation. This is mainly due to the effects of various conjugation methods and drug formulations on their functionality and efficacy. Therefore, developing novel biotin-based therapeutics is crucial. The innovation of this strategy lies in its multifunctionality-researchers can use different conjugation methods to design and synthesize these drugs, enabling precise targeting of various tumor types while minimizing toxicity to normal cells. These drugs include small-molecule-biotin conjugates (SMBCs) and nano-biotin conjugates (NBCs). This dual-platform approach represents a significant advancement in targeted therapy, offering unprecedented flexibility in drug design and delivery. Compared to chemotherapy drugs and traditional delivery systems, biotin-based drugs with tumor-specific targeting demonstrate enhanced targeting, improved efficacy, and reduced toxicity. This review examines strategies and applications for enhancing the delivery of chemotherapy drugs to cancer cells, highlighting the need for high-quality conjugates and strategies. It not only summarizes the latest progress but also provides key insights into how this emerging field could revolutionize personalized cancer treatment, especially in the context of precision medicine. Additionally, it offers perspectives on future research directions in this field.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Yutao Xiu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Wanpeng Yu
- Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
30
|
Querini-Sanguillén W, Otero-González J, García-Sánchez M, Zúñiga-Núñez D, Günther G, Miranda ML, Castro-Pérez E, Ramos C, Fuentealba D, Robinson-Duggon J. Toluidine blue O demethylated photoproducts as type II photosensitizers. Photochem Photobiol 2025. [PMID: 39833094 DOI: 10.1111/php.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Toluidine blue O (TBO) is a type I-type II photosensitizer that has shown good efficacy and selectivity in antimicrobial and anticancer photodynamic therapy applications. However, its complex photochemistry with multiple photoproducts hinders its application as a photosensitizer. We have previously described the mechanism for photooxidative demethylation of TBO which in acetonitrile yields two main products: demethylated-TBO (d-TBO) and double-demethylated-TBO (dd-TBO). In the current work, we describe the photophysical properties of these two photoproducts. In acetonitrile and phosphate buffer, demethylation induces an hypsochromic shift in the absorption and fluorescence emission maxima. Fluorescence quantum yields increase slightly for the demethylated photoproducts, in agreement with the lengthening of the fluorescence lifetimes. Triplet excited states lifetimes in the presence of oxygen decreased slightly upon demethylation. However, the singlet oxygen quantum yield increased significantly reaching unity for the dd-TBO photoproduct. These results are interpreted in terms of the competing pathways of TBO photochemistry. For TBO, demethylation is the main pathway for deactivation of the excited state, while for d-TBO, demethylation and singlet oxygen generation are significant. For dd-TBO, singlet oxygen generation is the main deactivation pathway. Overall, TBO demethylated photoproducts demonstrate good potential as candidates for photodynamic therapy applications.
Collapse
Affiliation(s)
- Whitney Querini-Sanguillén
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
| | - Jennifer Otero-González
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
| | - Melannie García-Sánchez
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
| | - Daniel Zúñiga-Núñez
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Germán Günther
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mario L Miranda
- Departamento de Química Analítica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá, Republic of Panama
| | - Edgardo Castro-Pérez
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá, Republic of Panama
- Centro de Biología Celular y Molecular de Las Enfermedades, INDICASAT-AIP, Clayton, Republic of Panama
- Departamento de Genética y Biología Molecular, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
| | - Carlos Ramos
- Departamento de Genética y Biología Molecular, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
| | - Denis Fuentealba
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Robinson-Duggon
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá, Republic of Panama
| |
Collapse
|
31
|
Bunin DA, Akasov RA, Martynov AG, Stepanova MP, Monich SV, Tsivadze AY, Gorbunova YG. Pivotal Role of the Intracellular Microenvironment in the High Photodynamic Activity of Cationic Phthalocyanines. J Med Chem 2025; 68:658-673. [PMID: 39688928 DOI: 10.1021/acs.jmedchem.4c02451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
To investigate the influence of phthalocyanine aggregation on their photodynamic activity, a series of six cationic water-soluble zinc(II) phthalocyanines bearing from four to sixteen 4-((diethylmethylammonium)methyl)phenoxy substituents was synthesized. Depending on their structure, the phthalocyanines have different aggregation behaviors in phosphate buffer solutions ranging from fully assembled to monomeric states. Remarkably, independent of aggregation in buffer, very high photodynamic efficiencies against the tumor cell lines MCF-7 and MDA-MB-231 in the nanomolar range were found for all investigated phthalocyanine, and the IC50(light) varied from 27 to 358 nM (3.5 J/cm2, 660 nm) with IC50(dark)/IC50(light) ratios up to ∼3700. This is due to the intracellular disassembly of aggregated phthalocyanines with the formation of monomeric photoactive forms, as demonstrated by fluorescence microscopy. Indeed, the interaction of aggregated phthalocyanines with serum proteins in a buffer resulted in the disassembly of nonluminescent aggregate species with the release of photoactive monomers bound to protein macromolecules.
Collapse
Affiliation(s)
- Dmitry A Bunin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, Moscow 119071, Russia
| | - Roman A Akasov
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Troubetskaya st., 8, Building 2, Moscow 119991, Russia
| | - Alexander G Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, Moscow 119071, Russia
| | - Maria P Stepanova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, Moscow 119071, Russia
- Faculty of Chemistry, National Research University Higher School of Economics, Pokrovsky Boulevard 11, Moscow 109028, Russia
| | - Svetlana V Monich
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, Moscow 119071, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1, Building 3, Moscow 119991, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, Moscow 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, Moscow 119071, Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, Moscow 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, Moscow 119071, Russia
| |
Collapse
|
32
|
Chen J, Xu J, Wang Q, Lin F, Zhang X, Tang L, Xue J, Li J. A dual-targeted small-molecule photosensitizer with enhanced dual antitumor and anti-vascular effect for metastatic advanced prostate cancer photodynamic therapy. DYES AND PIGMENTS 2025; 232:112476. [DOI: 10.1016/j.dyepig.2024.112476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
33
|
Zhou Q, Huang G, Si J, Wu Y, Jin S, Ji Y, Ge Z. Potent Covalent Organic Framework Nanophotosensitizers with Staggered Type I/II Motifs for Photodynamic Immunotherapy of Hypoxic Tumors. ACS NANO 2024; 18:35671-35683. [PMID: 39698912 DOI: 10.1021/acsnano.4c14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Photodynamic therapy (PDT) using oxygen-dependent type II photosensitizers is frequently limited by the hypoxic microenvironment of solid tumors. Type I photosensitizers show oxygen-independent reactive oxygen species (ROS) generation upon light irradiation but still face the challenges of aggregation-caused quenching (ACQ) and low efficiency to produce ROS. Herein, we first prepare an efficient type I photosensitizer from a perylene derivative via intramolecular donor-acceptor binding and sulfur substitution, which significantly enhance intersystem crossing between singlet and triplet states and electron transfer capability. After reaction with a type II photosensitizer, the covalent organic framework (COF) nanophotosensitizer is formed with alternated type I and II photosensitizer motifs in the same layer and staggered AB stacking between layers to avoid ACQ. The nanophotosensitizer exhibits high-efficiency generation of singlet oxygen (1O2) and superoxide anion radicals (O2•-) via type I and II mechanism under normoxia upon exposure to light irradiation. Under hypoxia, massive O2•- can be produced continuously. The potent ROS generation capability results in efficient cellular apoptosis and immunogenic cell death (ICD) efficiently. After combination with immune checkpoint inhibitors, tumor immunosuppressive microenvironment is reversed, which effectively ablates bulky hypoxic primary tumors and suppresses metastases via photodynamic immunotherapy. The COF nanophotosensitizers with staggered type I and II photosensitizer motifs represent a promising strategy to boost photodynamic immunotherapy of hypoxic tumors.
Collapse
Affiliation(s)
- Qinghao Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Guopu Huang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jiale Si
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Youshen Wu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, Shaanxi, China
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yuanyuan Ji
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| |
Collapse
|
34
|
Zhao C, Sun W, Zhu Y, Huang X, Sun Y, Wang HY, Pan Y, Liu Y. An Activatable Heavy-Atom-Free Upconversion Photosensitizer for Targeted Imaging and Treatment of Tumors. J Med Chem 2024; 67:22322-22331. [PMID: 39635996 DOI: 10.1021/acs.jmedchem.4c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Photodynamic therapy (PDT) is an innovative and promising method for treating tumors that has attracted significant interest but still faces several challenges, such as a lack of selectivity, deep penetration of light, and efficient ROS generation. To address these challenges, we optimized and synthesized a series of photosensitizers and successfully developed a heavy-atom-free near-infrared FUCL photosensitizer NFh-NMe-2. This photosensitizer can generate singlet oxygen (1O2) and induce cellular apoptosis under 808 nm light. For the safe ablation of microtumors in vivo, an activatable FUCL photosensitizer NFh-NTR was developed based on the overexpression of nitroreductase (NTR). NFh-NTR could be activated by NTR, leading to the release of the photosensitizer NFh-NMe-2, restoring the fluorescence signal, and effectively killing tumor cells under 808 nm light irradiation. This work opens new possibilities in the chemical design of an FUCL photosensitizer for cancer treatment.
Collapse
Affiliation(s)
- Chao Zhao
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wanlu Sun
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yanyan Zhu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyan Huang
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ye Sun
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Hai-Yan Wang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Yi Pan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
35
|
Qian M, Wang K, Yang P, Liu Y, Li M, Zhang C, Qi H. Nonemissive Iridium(III) Solvent Complex as a Self-Reporting Photosensitizer for Monitoring Phototherapeutic Efficacy in a "Signal on" Mode. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:808-816. [PMID: 39735828 PMCID: PMC11672214 DOI: 10.1021/cbmi.4c00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 12/31/2024]
Abstract
Photodynamic therapy (PDT) has long been receiving increasing attention for the minimally invasive treatment of cancer. The performance of PDT depends on the photophysical and biological properties of photosensitizers (PSs). The always-on fluorescence signal of conventional PSs makes it difficult to real-time monitor phototherapeutic efficacy in the PDT process. Therefore, functional PSs with good photodynamic therapy effect and self-reporting properties are highly desired. Here, two nonemissive iridium(III) solvent complexes, [(dfppy)2Ir(DMSO)]Cl (Ir-DMSO, dfppy = 2,4-difluorophenyl)pyridine, DMSO = dimethyl sulfoxide) and [(dfppy)2Ir(ACN)]Cl (Ir-ACN, ACN = acetonitrile) as PSs, were synthesized. Both of them exhibit intense high-energy absorption bands, low photoluminescence (PL) emission, and low dark toxicity. Thanks to the lower dark toxicity of Ir-DMSO, we chose it as a PS for further PDT. In this work, Ir-DMSO functions as a specific PL "signal on" PS for self-reporting therapeutic efficacy during its own PDT process. Colocalization experiments indicated that Ir-DMSO accumulated in the endoplasmic reticulum and mitochondria. Under light irradiation, Ir-DMSO not only exhibited the ability to kill cancer cells but also presented a "signal on" PL response toward cell death. During Ir-DMSO-induced PDT, cell death modality was further investigated and immunogenic cell death was revealed, in which main hallmarks, including ROS generation, upregulation of surface-exposed calreticulin, high-mobility group box 1, and adenosine triphosphate secretion, were observed. Thanks to the specific coordination reaction between Ir-DMSO and histidine (His)/His-containing proteins, the phototherapeutic efficacy can be monitored in real time without other signal probes. This work provides a new and promising strategy for the development of PSs with self-reporting ability, which is of great importance for imaging-guided PDT.
Collapse
Affiliation(s)
| | | | - Peng Yang
- Key Laboratory of Analytical Chemistry
for Life Science of Shaanxi Province, School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| | - Yu Liu
- Key Laboratory of Analytical Chemistry
for Life Science of Shaanxi Province, School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| | - Meng Li
- Key Laboratory of Analytical Chemistry
for Life Science of Shaanxi Province, School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry
for Life Science of Shaanxi Province, School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry
for Life Science of Shaanxi Province, School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| |
Collapse
|
36
|
Kim C, Kim H, Jo J, Kim S, Bongo AM, Kim HJ, Yang J. Moderately Heavy Atom-Substituted BODIPY Photosensitizer with Mitochondrial Targeting Ability for Imaging-Guided Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2024; 7:8294-8304. [PMID: 39603692 DOI: 10.1021/acsabm.4c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Advanced photodynamic therapy requires photosensitizers with targeting, diagnostic, and therapeutic properties. To fulfill this multifunctionality, we report the synthesis of two triphenylphosphonium (TPP)-functionalized boron-dipyrromethene (BODIPY) dyes, TPPB-H and TPPB-Br, which incorporate a hydrogen atom and dibrominated vinyl moiety at the 6-position of the BODIPY core, respectively. The heavy-atom effect of the moderately heavy bromine atoms allowed TPPB-Br to achieve a proper balance between the toxic singlet oxygen (1O2) production and fluorescence efficiencies. In this dye, the bromine atom-induced stimulation of the singlet-to-triplet intersystem crossing dynamics resulted in an approximately 45-fold increase in the 1O2 quantum yield with respect to that of the nonbrominated counterpart (0.0059 and 0.28 for TPPB-H and TPPB-Br, respectively). This increase was accompanied only a 2-fold reduction in the fluorescence quantum yield (0.54 and 0.22 for TPPB-H and TPPB-Br, respectively). During multicolor confocal laser scanning microscopy observations conducted using two carcinomas, MCF-7 and HeLa, both BODIPY dyes exhibited high targeting specificity toward cancer cell mitochondria owing to the TPP cation functionalization. The two dyes also showed the feasibility of fluorescence cell imaging; however, only the dibrominated BODIPY TPPB-Br manifested pronounced photocytotoxicity with half-maximal inhibitory concentrations of 0.12 and 0.77 μM obtained for MCF-7 and HeLa cells, respectively. These findings demonstrate the potential applicability of TPPB-Br as an imaging-guided photodynamic therapy agent with mitochondrial specificity.
Collapse
Affiliation(s)
- Chanwoo Kim
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Korea
| | - Hayeon Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Korea
| | - Jinwoong Jo
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Korea
| | - Soyeon Kim
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Korea
| | - Arrhon Mae Bongo
- Department of Chemistry, Chosun University, Gwangju 61452, Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Korea
| | - Jaesung Yang
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Korea
| |
Collapse
|
37
|
Xiao B, Liao Y, Zhang J, Chen K, Feng G, Feng J, Zhang C. Tetramethyl Cucurbit[6]uril-Porphyrin Supramolecular Polymer Enhances Photosensitization. Int J Mol Sci 2024; 25:13037. [PMID: 39684748 DOI: 10.3390/ijms252313037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Porphyrins serve as photosensitizers (PS) in the realm of cancer photodynamic therapy (PDT). Upon excitation by laser light, porphyrins are capable of converting molecular oxygen into highly cytotoxic singlet oxygen (1O2). However, the rigid π-conjugated structure of porphyrins frequently results in the formation of aggregates in aqueous solutions, which leads to the self-quenching of the excited state. Cucurbit[n]urils exhibit the capacity to stably bind with porphyrins via host-guest interactions, effectively inhibiting their aggregation and potentially enhancing the therapeutic efficacy of PDT. In this study, water-soluble tetramethyl cucurbit[6]uril (TMeQ[6]) was selected as the host, while four propionic acid group-appended porphyrin cationic (TPPOR) was utilized as guests to construct a supramolecular photosensitizer (TPPOR-2TMeQ[6]) in a molar ratio of 2:1. Further experimental findings demonstrate that the presence of TMeQ[6] inhibits the aggregation of TPPOR through non-covalent interactions. This inhibition reduces the energy difference between the excited singlet and triplet states, thereby enhancing the conversion efficiency of 1O2. Moreover, TPPOR-2TMeQ[6] exhibits favorable biocompatibility and minimal dark toxicity against breast cancer cells (4T1). Upon intracellular excitation, the levels of reactive oxygen species (ROS) significantly increase, inducing oxidative stress in 4T1 cells and leading to apoptosis. Consequently, the findings of this study suggest that the enhanced photosensitization achieved through this supramolecular approach is likely to promote the anticancer therapeutic effects of PDT, thereby broadening the application prospects of porphyrins within PDT systems.
Collapse
Affiliation(s)
- Bo Xiao
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Yueyue Liao
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Jinyu Zhang
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Ke Chen
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Guangwei Feng
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Jian Feng
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| | - Chunlin Zhang
- School of Basic Medical Sciences/School of Medical Humanities, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
38
|
Zhu Y, Zhao R, Feng L, Wang W, Xie Y, Ding H, Liu B, Dong S, Yang P, Lin J. Defect-Engineered Tin Disulfide Nanocarriers as "Precision-Guided Projectile" for Intensive Synergistic Therapy. SMALL METHODS 2024; 8:e2400125. [PMID: 38461544 DOI: 10.1002/smtd.202400125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/25/2024] [Indexed: 03/12/2024]
Abstract
Nanoformulations with endogenous/exogenous stimulus-responsive characteristics show great potential in tumor cell elimination with minimal adverse effects and high precision. Herein, an intelligent nanotheranostic platform (denoted as TPZ@Cu-SnS2-x/PLL) for tumor microenvironment (TME) and near-infrared light (NIR) activated tumor-specific therapy is constructed. Copper (Cu) doping and the resulting sulfur vacancies can not only improve the response range of visible light but also improve the separation efficiency of photogenerated carriers and increase the carrier density, resulting in the ideal photothermal and photodynamic performance. Density functional theory calculations revealed that the introduction of Cu and resulting sulfur vacancies can induce electron redistribution, achieving favorable photogenerated electrons. After entering cells through endocytosis, the TPZ@Cu-SnS2-x/PLL nanocomposites show the pH responsivity property for the release of the TPZ selectively within the acidic TME, and the released Cu2+ can first interact with local glutathione (GSH) to deplete GSH with the production of Cu+. Subsequently, the Cu+-mediated Fenton-like reaction can decompose local hydrogen peroxide into hydroxyl radicals, which can also be promoted by hyperthermia derived from the photothermal effect for tumor cell apoptosis. The integration of photoacoustic/computed tomography imaging-guided NIR phototherapy, TPZ-induced chemotherapy, and GSH-elimination/hyperthermia enhanced chemodynamic therapy results in synergistic therapeutic outcomes without obvious systemic toxicity in vivo.
Collapse
Affiliation(s)
- Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- State Key Laboratory of Rare Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Wenzhuo Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
39
|
Zhang L, Zhang Q, Cao Z. Orthogonal Geometry Enhancing the Intersystem Crossing and Photosensitive Efficiency of Spiro Organoboron Compounds. Chemistry 2024; 30:e202402606. [PMID: 39150690 DOI: 10.1002/chem.202402606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 08/17/2024]
Abstract
Based on the reported spiro organoboron compounds (PS1 and PS2 as potent 1O2 sensitizers), several new organoboron molecules (PS4-PS9) were constructed through structural modification, and their low-lying excited states and photophysical properties have been explored by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The predicted effective intersystem crossing (ISC) processes arise from the S1→T2 transition for PS4-PS6 and the S1→T4 transition for PS1, and corresponding KISC rate constants reach the order of magnitude of 109 (s-1). The organoboron compounds with a (N, N) chelate acceptor are predicted to exhibit relatively higher ISC efficiency than those bearing a (N, O) acceptor, and the planar C3NBN ring and the orthogonal configuration between the donor and acceptor moieties are responsible for the ISC rate enhancement. Importantly, the geometric features of the lowest singlet excited state (S1) for these compounds play a decisive role in their photosensitive efficiency. The present results provide a basis for better understanding of the photosensitivity of these spiro organoboron compounds and the structural modification effect.
Collapse
Affiliation(s)
- Lin Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Qing Zhang
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Zexing Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| |
Collapse
|
40
|
Chu Z, Xu N, Su Y, Fang H, Su Z. Light switchable Ir(III)-based photosensitizers: a dual-state system for non-invasive, reversible ROS control in tumor therapy. Dalton Trans 2024; 53:18585-18591. [PMID: 39470257 DOI: 10.1039/d4dt02673j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Photodynamic therapy (PDT), a powerful anticancer approach converting oxygen to ROS for tumor ablation, encounters hurdles like limited spatio-temporal selectivity and the consequent unnecessary damage to normal tissues. Addressing these challenges, developing controllable Ir(III)-based photosensitizers (PSs) emerges as a promising solution, offering enhanced efficacy and precision in cancer therapy, while propelling the clinical progression of metal-based PSs. Herein, we proposed a series of light-controlled PSs, integrating an Ir(III)-based moiety with a light-responsive module, enabling non-invasive "off-on" control of ROS production via efficient energy transfer. The open form (OF) in this dual-state system has better lipid solubility and cellular uptake compared to the closed form (CF), which facilitates targeted delivery of metal drugs. Comprehensive intracellular experiments demonstrated the OF complex's superior cytotoxicity under light irradiation, with the CF complex achieving comparable toxicity post-conversion. Notably, the PSs inhibited 3D tumor growth and modulated intracellular ROS production. These findings underscore the potential of Ir(III)-based dual-state photoswitchable complexes as a platform for non-invasive, reversible ROS control, offering broad prospects in tumor therapy and beyond.
Collapse
Affiliation(s)
- Zhitong Chu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, PR China
| | - Na Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, PR China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, PR China
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, PR China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
41
|
Kou M, Qin F, Wang Y, Peng L, Hu Z, Zhao H, Zhang Z. Determination of singlet oxygen quantum yield based on the behavior of solvent dimethyl sulfoxide oxidation by singlet oxygen. Anal Chim Acta 2024; 1329:343222. [PMID: 39396287 DOI: 10.1016/j.aca.2024.343222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Photodynamic therapy (PDT) is emerging as a promising cancer treatment. The PDT efficacy is primarily attributed to the generation of singlet oxygen (1O2), stemming from the integrated effects of the photosensitizer, oxygen, and light. The singlet oxygen quantum yield (ΦΔ) serves as a bridge that links these parameters to the overall efficacy of PDT. The near-infrared luminescence of 1O2 provides a direct way for determining ΦΔ, but suffers from a poor signal-to-noise ratio. While the chemical trap probe method is detection-friendly, but it has a strict requirement for the excitation wavelength. Therefore, the existing methods for ΦΔ measurement are insufficient. RESULTS In this work, we developed an approach to determine ΦΔ of a broader range of photosensitizers using only the commonly used solvent dimethyl sulfoxide (DMSO), which can be oxidized by 1O2 to dimethyl sulfone. This method establishes the relationship between 1O2 production and changes in DMSO absorption spectra, eliminating the need for additional chemical probes. This method was validated by measuring the ΦΔ of rose bengal (RB) through systematic changes in absorption spectrum of DMSO under various RB concentrations and different excitation light power densities. Moreover, the ΦΔ of hematoporphyrin monomethyl ether (HMME), as determined by this method, is consistent with measurements obtained using the 1,3-diphenylisobenzofuran (DPBF) trapping probe. This consistency further validates the reliability of this method. SIGNIFICANCE AND NOVELTY This work presents a direct, probe-free method to determine ΦΔ, reducing potential interference and expanding the range of useable excitation wavelengths. Its ability to measure ΦΔ using only DMSO enhances the accuracy of photosensitizer measurement, and broadens the applicability of the method to a wide range of samples, thereby advancing research on the properties of photosensitizers and further promoting the development of PDT.
Collapse
Affiliation(s)
- Meng Kou
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Feng Qin
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Yongda Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lixin Peng
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Zheng Hu
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hua Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiguo Zhang
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China; School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
42
|
Liu Y, Li Y, Shao C, Wang P, Wang X, Li R. Curcumin-based residue-free and reusable photodynamic inactivation system for liquid foods and its application in freshly squeezed orange juice. Food Chem 2024; 458:140316. [PMID: 38968711 DOI: 10.1016/j.foodchem.2024.140316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
To enhance curcumin's application in photodynamic inactivation (PDI) of liquid foods, a supramolecular complex of biotin-modified β-cyclodextrin and curcumin (Biotin-CD@Cur) was synthesized. This complex significantly improves curcumin's solubility, stability, and PDI efficiency. Following PDI, Biotin-CD@Cur can be magnetically separated from the liquid matrix using streptavidin-coated magnetic beads (SA-MBs). Leveraging the reversible binding between streptavidin and biotin, Biotin-CD@Cur and SA-MBs fully dissociate in ultrapure water at 70 °C, enabling reuse. Antibacterial tests in freshly squeezed orange juice demonstrated that a low dose of 1.5 J/cm2 from a 420 nm LED array and 10 μg/mL of Biotin-CD@Cur achieved log reductions of 3.287 ± 0.015 for Staphylococcus aureus and 2.961 ± 0.011 for Listeria monocytogenes, while preserving the juice's flavor and nutritional contents. The PDI system remained effective for at least four cycles. Ultra-performance liquid chromatography and atomic absorption spectroscopy confirmed no residues of system components in the juice after magnetic separation.
Collapse
Affiliation(s)
- Yan Liu
- School of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Yujie Li
- Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Chen Shao
- School of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA
| | - Xiaoxuan Wang
- School of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Runhe Li
- School of Food Engineering, Ludong University, Yantai 264025, Shandong, China
| |
Collapse
|
43
|
Chang YK, Hao SJ, Wu FG. Recent Biomedical Applications of Functional Materials Based on Polyhedral Oligomeric Silsesquioxane (POSS). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401762. [PMID: 39279395 DOI: 10.1002/smll.202401762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/06/2024] [Indexed: 09/18/2024]
Abstract
Polyhedral oligomeric silsesquioxane (POSS) is a 3D, cage-like nanoparticle with an inorganic Si-O-Si core and eight tunable corner functional groups. Its well-defined structure grants it distinctive physical, chemical, and biological properties and has been widely used for preparing high-performance materials. Recently, click chemistry has enabled the synthesis of various functional POSS-based materials for diverse biomedical applications. This article reviews the recent applications of POSS-based materials in the biomedical field, including cancer treatment, tissue engineering, antibacterial use, and biomedical imaging. Representative examples are discussed in detail. Among the various POSS-based applications, cancer treatment and tissue engineering are the most important. Finally, this review presents the current limitations of POSS-based materials and provides guidance for future research.
Collapse
Affiliation(s)
- Yun-Kai Chang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Shi-Jie Hao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
44
|
Xu P, Meng F, Wan J, Zhu H, Fang S, Wang H. Hybrid Homodimeric Prodrug Nanoassemblies for Low-Toxicity and Synergistic Chemophotodynamic Therapy of Melanoma. Biomater Res 2024; 28:0101. [PMID: 39492977 PMCID: PMC11529783 DOI: 10.34133/bmr.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/16/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Synergistically active nanoparticles hold great promise for facilitating multimodal cancer therapy. However, strategies for their feasible manufacture and optimizing their formulations remain lacking. Herein, we developed hybrid homodimeric prodrug nanotherapeutics with tumor-restricted drug activation and chemophotodynamic pharmacology by leveraging the supramolecular nanoassembly of small molecules. The covalent dimerization of cytotoxic taxane chemotherapy via reactive oxygen species (ROS)-activated linker yielded a homodimeric prodrug, which was further coassembled with a ROS-generating dimeric photosensitizer. The nanoassemblies were readily refined in an amphiphilic PEGylation matrix for particle surface cloaking and in vivo intravenous injection. The nanoassemblies were optimized with favorable stability and combinatorial synergism to kill cancer cells. Upon near-infrared laser irradiation, the neighboring dimer photosensitizer generated ROS, subsequently triggering bond cleavage to facilitate drug activation, which in turn produced synergistic chemophotodynamic effects against cancer. In a preclinical model of melanoma, the intravenous administration of PEGylated nanoassemblies followed by near-infrared tumor irradiation led to significant tumor regression. Furthermore, animals treated with this efficient, photo-activatable nanotherapy exhibited low systemic toxicity even at high doses. This study describes a simple and cost-effective approach to integrate multimodal therapies by creating self-assembling small-molecule prodrugs for designing a combinatorial therapeutic nanosystem. We consider that this new paradigm holds substantial potential for advancing clinical translation.
Collapse
Affiliation(s)
- Peirong Xu
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine,
Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
- Department of Chemical Engineering,
Zhejiang University, Hangzhou 310027, Zhejiang Province, P. R. China
| | - Fanchao Meng
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine,
Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Jianqin Wan
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine,
Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Hengyan Zhu
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine,
Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
| | - Shijiang Fang
- Department of Chemical Engineering,
Zhejiang University, Hangzhou 310027, Zhejiang Province, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine,
Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, Shandong Province, P. R. China
| |
Collapse
|
45
|
Banerjee T, Dan K, Ghosh S. pH-Responsive self-assembled polymer-photosensitizer conjugate for activable photodynamic therapy. NANOSCALE 2024; 16:19756-19762. [PMID: 39373067 DOI: 10.1039/d4nr03249g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This paper reports synthesis, aqueous self-assembly and relevance of the pH-triggered activable photodynamic therapy of amphiphilic polyurethane (P1S) functionalized with a heavy-atom free organic photosensitizer. Condensation polymerization between 1,4-diisocyanatobutane and two different dihydroxy monomers (one having a pendant hydrophilic wedge and the other having 1,3-dihydroxypropan-2-one with a reactive carbonyl group) in the presence of a measured amount of (S)-2-methylbutan-1-ol (chain-stopper) and DABCO catalyst produces a reactive pre-polymer P1. Hydrazide-functionalized thionated-naphthalenemonoimide (NMIS), which acts as a photosensitizer, reacted with the carbonyl-functionality of P1 to obtain the desired polymer-photosensitizer conjugate P1S in which the dye was attached to the polymer backbone via an acid-labile hydrazone linker. In water, P1S adopted an intra-chain H-bonding stabilized folded structure, which further assembled to produce a polymersome structure (Dh ≈ 200 nm), in which the hydrophobic membrane consists of aggregated NMIS and trialkoxy-benzene chromophores, as evident from UV/vis, CD and small-angle X-ray diffraction studies. In the aggregated state, NMIS loses its reactive oxygen species (ROS) generation ability and remains in a dormant state. However, under acidic conditions (pH 5.5), the photosensitizer is detached (presumably because of the cleavage of the hydrazone linker) and regains its full ROS-generation activity under photoirradiation, as evidenced from the standard DCFH assay. To test the possibility of such pH-activable intra-cellular ROS generation, P1S was treated with HeLa cells, as it is known that cancer cells are more acidic than normal cells. Indeed, photoirradiation-induced intra-cellular ROS generation was evident by the DCFH assay, resulting in efficient cell killing.
Collapse
Affiliation(s)
- Tanushri Banerjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Krishna Dan
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
46
|
Aebisher D, Czech S, Dynarowicz K, Misiołek M, Komosińska-Vassev K, Kawczyk-Krupka A, Bartusik-Aebisher D. Photodynamic Therapy: Past, Current, and Future. Int J Mol Sci 2024; 25:11325. [PMID: 39457108 PMCID: PMC11508366 DOI: 10.3390/ijms252011325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The Greek roots of the word "photodynamic" are as follows: "phos" (φω~ς) means "light" and "dynamis" (δύναμις) means "force" or "power". Photodynamic therapy (PDT) is an innovative treatment method based on the ability of photosensitizers to produce reactive oxygen species after the exposure to light that corresponds to an absorbance wavelength of the photosensitizer, either in the visible or near-infrared range. This process results in damage to pathological cancer cells, while minimizing the impact on healthy tissues. PDT is a promising direction in the treatment of many diseases, with particular emphasis on the fight against cancer and other diseases associated with excessive cell growth. The power of light contributed to the creation of phototherapy, whose history dates back to ancient times. It was then noticed that some substances exposed to the sun have a negative effect on the body, while others have a therapeutic effect. This work provides a detailed review of photodynamic therapy, from its origins to the present day. It is surprising how a seemingly simple beam of light can have such a powerful healing effect, which is used not only in dermatology, but also in oncology, surgery, microbiology, virology, and even dentistry. However, despite promising results, photodynamic therapy still faces many challenges. Moreover, photodynamic therapy requires further research and improvement.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland
| | - Sara Czech
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland; (S.C.); (D.B.-A.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland;
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland; (S.C.); (D.B.-A.)
| |
Collapse
|
47
|
Wu D, Du X, Xue Q, Zhou J, Ping K, Cao Y, Liu S, Zhu Q. Supramolecular Porphyrin Photosensitizers Based on Host-Guest Recognition for In Situ Bacteria-Responsive Near-Infrared Photothermal Therapy. Adv Healthc Mater 2024:e2401662. [PMID: 39388515 DOI: 10.1002/adhm.202401662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Antibiotic resistance resulting from the overuse of antibiotics sets a high challenge for brutal antimicrobial treatment. Although photothermal therapy (PTT) overcomes the awkward situation of antibiotic resistance, it usually mistakenly kills the beneficial bacteria strains when eliminating pernicious bacteria. Specifically recognizing and damaging the target pathogens is urgently required for PTT-mediated sterilization strategy. Based on the host-guest recognition between cucurbit[10]uril (CB[10]) and porphyrins, two water-soluble supramolecular porphyrins are designed and implement selective bactericidal effect via in situ bacteria-responsive near-infrared (NIR) PTT. With the help of CB[10], the π-π stacking and hydrophobic interactions of porphyrins are efficiently inhibited, thus contributing to a good photostability and a high photothermal conversion efficiency. Attributing to the matching reduction potential between facultative anaerobic Escherichia coli (E. coli) and porphyrins, they are selectively in situ reduced into supramolecular phlorin and supramolecular chlorin by E. coli, successfully achieving a selective sterilization against E. coli. In vivo, the in situ bacteria-responsive NIR PTT systems also promote the quick recovery of E. coli-infected abscesses and trauma on mice without inducing obvious systemic toxicity, providing a new alternative to the current antibiotics and helping relieve the global public health crisis of abusive antibiotics.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, P. R. China
| | - Qiangqiang Xue
- Shanxi Provincial Department of Science and Technology, Taiyuan, 030021, P. R. China
| | - Jie Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shuang Liu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology Hangzhou, Hangzhou, 310014, P. R. China
| |
Collapse
|
48
|
Lei D, Xin J, Yao Y, Chen L, Liu J, Wang S, Wang J, Zeng W, Yao C. In situ pain relief during photodynamic therapy by ROS-responsive nanomicelle through blocking VGSC. Colloids Surf B Biointerfaces 2024; 242:114062. [PMID: 38972255 DOI: 10.1016/j.colsurfb.2024.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Pain in photodynamic therapy (PDT), resulting from the stimulation of reactive oxygen species (ROS) and local acute inflammation, is a primary side effect of PDT that often leads to treatment interruption or termination, significantly compromising the efficacy of PDT and posing an enduring challenge for clinical practice. Herein, a ROS-responsive nanomicelle, poly(ethylene glycol)-b-poly(propylene sulphide) (PEG-PPS) encapsulated Ce6 and Lidocaine (LC), (ESCL) was used to address these problems. The tumor preferentially accumulated micelles could realize enhanced PDT effect, as well as in situ quickly release LC due to its ROS generation ability after light irradiation, which owes to the ROS-responsive property of PSS. In addition, PSS can suppress inflammatory pain which is one of the mechanisms of PDT induced pain. High LC-loaded efficiency (94.56 %) owing to the presence of the thioether bond of the PPS made an additional pain relief by inhibiting excessive inflammation besides blocking voltage-gated sodium channels (VGSC). Moreover, the anti-angiogenic effect of LC offers further therapeutic effects of PDT. The in vitro and in vivo anti-tumor results revealed significant PDT efficacy. The signals of the sciatic nerve in mice were measured by electrophysiological study to evaluate the pain relief, results showed that the relative integral area of neural signals in ESCL-treated mice decreased by 49.90 % compared to the micelles without loaded LC. Therefore, our study not only develops a very simple but effective tumor treatment PDT and in situ pain relief strategy during PDT, but also provides a quantitative pain evaluation method.
Collapse
Affiliation(s)
- Dongqin Lei
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Xin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yuanping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Lan Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| |
Collapse
|
49
|
Li R, Fu D, Yuan X, Niu G, Fan Y, Shi J, Yang Y, Ye J, Han J, Kang Y, Ji X. Oral Heterojunction Coupling Interventional Optical Fiber Mediates Synergistic Therapy for Orthotopic Rectal Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404741. [PMID: 39031679 DOI: 10.1002/smll.202404741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Indexed: 07/22/2024]
Abstract
Catalytic therapy has shown great potential for clinical application. However, conventional catalytic therapies rely on reactive oxygen species (ROS) as "therapeutic drugs," which have limitations in effectively inhibiting tumor recurrence and metastasis. Here, a biomimetic heterojunction catalyst is developed that can actively target orthotopic rectal cancer after oral administration. The heterojunction catalyst is composed of quatrefoil star-shaped BiVO4 (BVO) and ZnIn2S4 (ZIS) nanosheets through an in situ direct growth technique. Poly-norepinephrine and macrophage membrane coatings afford the biomimetic heterojunction catalyst (BVO/ZIS@M), which has high rectal cancer targeting and retention abilities. The coupled optical fiber intervention technology activates the multicenter coordination of five catalytic reactions of heterojunction catalysts, including two reduction reactions (O2→·O2 - and CO2→CO) and three oxidation reactions (H2O→·OH, GSH→GSSG, and LA→PA). These catalytic reactions not only induce immunogenic death in tumor cells through the efficient generation of ROS/CO and the consumption of GSH but also specifically lead to the use of lactic acid (LA) as an electron donor to improve catalytic activity and disrupt the LA-mediated immunosuppressive microenvironment, mediating synergistic catalysis and immunotherapy for orthotopic rectal cancer. Therefore, this optical fiber intervention triggered the combination of heterojunction catalytic therapy and immunotherapy, which exhibits prominent antitumor effects.
Collapse
Affiliation(s)
- Ruiyan Li
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Dianxun Fu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Gaoli Niu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiacheng Shi
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yiwen Yang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jiamin Ye
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Jingwen Han
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
- Medical College, Linyi University, Linyi, 276000, China
| |
Collapse
|
50
|
Chen S, Huang B, Tian J, Zhang W. Advancements of Porphyrin-Derived Nanomaterials for Antibacterial Photodynamic Therapy and Biofilm Eradication. Adv Healthc Mater 2024; 13:e2401211. [PMID: 39073000 DOI: 10.1002/adhm.202401211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Indexed: 07/30/2024]
Abstract
The threat posed by antibiotic-resistant bacteria and the challenge of biofilm formation has highlighted the inadequacies of conventional antibacterial therapies, leading to increased interest in antibacterial photodynamic therapy (aPDT) in recent years. This approach offers advantages such as minimal invasiveness, low systemic toxicity, and notable effectiveness against drug-resistant bacterial strains. Porphyrins and their derivatives, known for their high molar extinction coefficients and singlet oxygen quantum yields, have emerged as crucial photosensitizers in aPDT. However, their practical application is hindered by challenges such as poor water solubility and aggregation-induced quenching. To address these limitations, extensive research has focused on the development of porphyrin-based nanomaterials for aPDT, enhancing the efficacy of photodynamic sterilization and broadening the range of antimicrobial activity. This review provides an overview of various porphyrin-based nanomaterials utilized in aPDT and biofilm eradication in recent years, including porphyrin-loaded inorganic nanoparticles, porphyrin-based polymer assemblies, supramolecular assemblies, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). Additionally, insights into the prospects of aPDT is offered, highlighting its potential for practical implementation.
Collapse
Affiliation(s)
- Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|