1
|
Feng Y, Zhao Z, Zhang T, Luo Z, Yang J, Xu B, Liu N, Nie J, Zhou J, Dou R. Building Bilayer MoS 2 with Versatile Morphologies via Etching-And-Growth Coexisting Method. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407728. [PMID: 39791196 DOI: 10.1002/smll.202407728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/18/2024] [Indexed: 01/12/2025]
Abstract
The etch-engineering is a feasible avenue to tailor the layer number and morphology of 2D layered materials during the chemical vapor deposition (CVD) growth. However, less reports strengthen the etch-engineering used in the fabrication of high-quality transition metal dichalcogenide (TMD) materials with tunable layers and desirable morphologies to improve their prominent performance in electronic and optoelectronic devices. Here, an etching-and-growth coexistence method is reported to directly synthesize high-quality, high-symmetric MoS2 bilayers with versatile morphologies via CVD. The growth mechanism is intensively elucidated through analyzing the carrier Ar perturbation associated with the precursor concentration variations, revealing four growth stages including the growth-priority, local-etching, equilibrium of etching and growth, and etching-priority. The as-grown polygonal bilayer MoS2 exhibits a uniform characteristic, attributed to the formation of the high-quality single crystal bilayer MoS2 owing to the limitation of the multigrain generation. The work not only enriches the understanding of the growth mechanism of the direct fabrication of TMD materials, but also offers a controllable protocol to engineer their morphologies and the shapes, which can benefit their applications in the electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Yibiao Feng
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zihan Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Tiantian Zhang
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zejun Luo
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jian Yang
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Boyu Xu
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jiacai Nie
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jun Zhou
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ruifen Dou
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
2
|
Zha X, Luo S, Wei L, Li F, Li Y, Cao Y. Investigation of oral toxicity of WS 2 nanosheets to mouse intestine: Pathological injury, trace element balance, lipid profile changes, and autophagy. J Appl Toxicol 2025; 45:311-321. [PMID: 39344173 DOI: 10.1002/jat.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
The success of graphene oxides has gained extensive research interests in developing novel 2D nanomaterials (NMs). WS2 nanosheets (NSs) are novel transition metal-based 2D NMs, but their toxicity is unclear. In this study, we investigated the oral toxicity of WS2 NSs to mouse intestines. Male mice were administrated with vehicles, 1, 10, or 100 mg/kg NSs via intragastric route, once a day, for 5 days. The results indicate that the NSs did not induce pathological or ultrastructural changes in intestines. There were minimal changes of trace elements that the exposure did not induce W accumulation, and only Co levels were dose-dependently increased. Lipid droplets were observed in all groups of mice, but lipidomics data indicate that WS2 NSs only significantly decreased four lipid species, all belonging to phosphatidylcholine (PC). The levels of proteins regulating autophagic lipolysis, namely, LC3, lysosomal associated membrane protein 2 (LAMP2) and perilipin 2 (PLIN2), were increased, but it was only statistically significantly different for LC3. The results of this study suggest that repeated intragastric exposure to WS2 NSs only induced minimal influences on pathological injury, trace element balance, autophagy, and lipid profiles in mouse intestines, indicating relatively high biocompatibility of WS2 NSs to mouse intestine via oral route.
Collapse
Affiliation(s)
- Xianghao Zha
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Xinjiang, China
| | - Sihuan Luo
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Lianghuan Wei
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Xinjiang, China
| | - Feixing Li
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Xinjiang, China
| | - Youwen Li
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Xinjiang, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Alam TI, Liu K, Hani SU, Ahmed S, Tsang YH. Advances in Group-10 Transition Metal Dichalcogenide PdSe 2-Based Photodetectors: Outlook and Perspectives. SENSORS (BASEL, SWITZERLAND) 2024; 24:6127. [PMID: 39338871 PMCID: PMC11435463 DOI: 10.3390/s24186127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
The recent advancements in low-dimensional material-based photodetectors have provided valuable insights into the fundamental properties of these materials, the design of their device architectures, and the strategic engineering approaches that have facilitated their remarkable progress. This review work consolidates and provides a comprehensive review of the recent progress in group-10 two-dimensional (2D) palladium diselenide (PdSe2)-based photodetectors. This work first offers a general overview of the various types of PdSe2 photodetectors, including their operating mechanisms and key performance metrics. A detailed examination is then conducted on the physical properties of 2D PdSe2 material and how these metrics, such as structural characteristics, optical anisotropy, carrier mobility, and bandgap, influence photodetector device performance and potential avenues for enhancement. Furthermore, the study delves into the current methods for synthesizing PdSe2 material and constructing the corresponding photodetector devices. The documented device performances and application prospects are thoroughly discussed. Finally, this review speculates on the existing trends and future research opportunities in the field of 2D PdSe2 photodetectors. Potential directions for continued advancement of these optoelectronic devices are proposed and forecasted.
Collapse
Affiliation(s)
- Tawsif Ibne Alam
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
- Department of Applied Physics, Materials Research Center, Photonics Research Institute and Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kunxuan Liu
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
- Department of Applied Physics, Materials Research Center, Photonics Research Institute and Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sumaiya Umme Hani
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
- Department of Applied Physics, Materials Research Center, Photonics Research Institute and Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Safayet Ahmed
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Yuen Hong Tsang
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
- Department of Applied Physics, Materials Research Center, Photonics Research Institute and Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
4
|
Roy S, Joseph A, Zhang X, Bhattacharyya S, Puthirath AB, Biswas A, Tiwary CS, Vajtai R, Ajayan PM. Engineered Two-Dimensional Transition Metal Dichalcogenides for Energy Conversion and Storage. Chem Rev 2024; 124:9376-9456. [PMID: 39042038 DOI: 10.1021/acs.chemrev.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Designing efficient and cost-effective materials is pivotal to solving the key scientific and technological challenges at the interface of energy, environment, and sustainability for achieving NetZero. Two-dimensional transition metal dichalcogenides (2D TMDs) represent a unique class of materials that have catered to a myriad of energy conversion and storage (ECS) applications. Their uniqueness arises from their ultra-thin nature, high fractions of atoms residing on surfaces, rich chemical compositions featuring diverse metals and chalcogens, and remarkable tunability across multiple length scales. Specifically, the rich electronic/electrical, optical, and thermal properties of 2D TMDs have been widely exploited for electrochemical energy conversion (e.g., electrocatalytic water splitting), and storage (e.g., anodes in alkali ion batteries and supercapacitors), photocatalysis, photovoltaic devices, and thermoelectric applications. Furthermore, their properties and performances can be greatly boosted by judicious structural and chemical tuning through phase, size, composition, defect, dopant, topological, and heterostructure engineering. The challenge, however, is to design and control such engineering levers, optimally and specifically, to maximize performance outcomes for targeted applications. In this review we discuss, highlight, and provide insights on the significant advancements and ongoing research directions in the design and engineering approaches of 2D TMDs for improving their performance and potential in ECS applications.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Antony Joseph
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Abhijit Biswas
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Mehdipour H, Kratzer P, Tafreshi SS, Prezhdo O. Accelerated Electron-Hole Separation at the Organic-Inorganic Anthracene/Janus MoSSe Interface. J Phys Chem Lett 2024; 15:7878-7884. [PMID: 39058559 PMCID: PMC11318028 DOI: 10.1021/acs.jpclett.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Organic light-absorbing materials with two-dimensional semiconductor layers as contact electrodes are promising for efficient and flexible low-cost solar cells. Considering anthracene as an absorber and a MoSSe Janus monolayer, we use non-adiabatic molecular dynamics to show that electron transfer from anthracene to MoSSe is faster on the Se side than the S side. The transfer from anthracene to MoS2 and MoSe2 monolayers takes intermediate times. As a rule, we find that a shorter adsorption distance produces a stronger donor-acceptor coupling. The smaller distance on the Se side is rationalized by the attractive force between the intrinsic dipole moment of the Janus structure and that of the molecule induced due to adsorption. Quantum coherence also affects the transfer time. The study provides detailed insights into adsorption of molecules on Janus structures and the resulting electronic and electron vibrational interactions. The results suggest that the dipole interaction plays an important role in the thermodynamic stability, alignment of electronic levels, and electron vibrational dynamics.
Collapse
Affiliation(s)
- Hamid Mehdipour
- Faculty
of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Peter Kratzer
- Faculty
of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Saeedeh S. Tafreshi
- Department
of Chemistry, Amirkabir University of Technology, 350 Hafez Avenue, Valiasr Square, 1591634311 Tehran, Iran
| | - Oleg Prezhdo
- Department
of Chemistry and Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Malavekar D, Pujari S, Jang S, Bachankar S, Kim JH. Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312179. [PMID: 38593336 DOI: 10.1002/smll.202312179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Indexed: 04/11/2024]
Abstract
In recent years, nanomaterials exploration and synthesis have played a crucial role in advancing energy storage research, particularly in supercapacitor development. Researchers have diversified materials, including metal oxides, chalcogenides, and composites, as well as carbon materials, to enhance energy and power density. Balancing energy density with electrochemical stability remains challenging, driving intensified efforts in advancing electrode materials. This review focuses on recent progress in designing and synthesizing core-shell materials tailored for supercapacitors. The core-shell architecture offers advantages such as increased surface area, redox active sites, electrical conductivity, ion diffusion kinetics, specific capacitance, and cyclability. The review explores the impact of core and shell materials, specifically transition metal oxides (TMOs), on supercapacitor electrochemical behavior. Metal oxide choices, such as cobalt oxide as a preferred core and manganese oxide as a shell, are discussed. The review also highlights characterization techniques for assessing structural, morphological, and electrochemical properties of core-shell materials. Overall, it provides a comprehensive overview of ongoing TMOs-based core-shell material research for supercapacitors, showcasing their potential to enhance energy storage for applications ranging from gadgets to electric vehicles. The review outlines existing challenges and future opportunities in evolving TMOs-based core-shell materials for supercapacitor advancements, holding promise for high-efficiency energy storage devices.
Collapse
Affiliation(s)
- Dhanaji Malavekar
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Sachin Pujari
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Suyoung Jang
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Shital Bachankar
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Jin Hyeok Kim
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| |
Collapse
|
7
|
Mattinen M, Chen W, Dawley RA, Verheijen MA, Hensen EJM, Kessels WMM, Bol AA. Structural Aspects of MoS x Prepared by Atomic Layer Deposition for Hydrogen Evolution Reaction. ACS Catal 2024; 14:10089-10101. [PMID: 38988655 PMCID: PMC11232007 DOI: 10.1021/acscatal.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Molybdenum sulfides (MoS x ) in both crystalline and amorphous forms are promising earth-abundant electrocatalysts for hydrogen evolution reaction (HER) in acid. Plasma-enhanced atomic layer deposition was used to prepare thin films of both amorphous MoS x with adjustable S/Mo ratio (2.8-4.7) and crystalline MoS2 with tailored crystallinity, morphology, and electrical properties. All the amorphous MoS x films transform into highly HER-active amorphous MoS2 (overpotential 210-250 mV at 10 mA/cm2 in 0.5 M H2SO4) after electrochemical activation at approximately -0.3 V vs reversible hydrogen electrode. However, the initial film stoichiometry affects the structure and consequently the HER activity and stability. The material changes occurring during activation are studied using ex situ and quasi in situ X-ray photoelectron spectroscopy. Possible structures of as-deposited and activated catalysts are proposed. In contrast to amorphous MoS x , no changes in the structure of crystalline MoS2 catalysts are observed. The overpotentials of the crystalline films range from 300 to 520 mV at 10 mA/cm2, being the lowest for the most defective catalysts. This work provides a practical method for deposition of tailored MoS x HER electrocatalysts as well as new insights into their activity and structure.
Collapse
Affiliation(s)
- Miika Mattinen
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Wei Chen
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rebecca A. Dawley
- Department
of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Marcel A. Verheijen
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Eurofins
Materials Science Netherlands, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - W. M. M. Kessels
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ageeth A. Bol
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department
of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
8
|
Raghunathan M, Kapoor A, Kumar P, Laxshmivarahan A, Tripathi SC, Ahmad I, Pal DB. Nanostructured transition metal dichalcogenides-based colorimetric sensors: Synthesis, characterization, and emerging applications. LUMINESCENCE 2024; 39:e4833. [PMID: 39051471 DOI: 10.1002/bio.4833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Nanostructured transition metal dichalcogenides (TMDCs) have garnered significant attention as prospective materials for the development of highly sensitive and versatile colorimetric sensors. This work explores the synthesis, characterization, and emerging applications of TMDC-based sensors, focusing on their unique structural aspects and inherent properties. The synthesis methods involve tailored fabrication techniques, such as chemical vapor deposition and hydrothermal processes, aimed at producing well-defined nanostructures that enhance sensor performance. Characterization techniques, including microscopy, spectroscopy, and surface analysis, are employed to elucidate the structural and chemical features of the nanostructured TMDCs. These analyses provide insights into the correlation between the material's morphology and its sensing capabilities. The colorimetric sensing mechanism relies on the modulation of optical properties in response to specific analytes, enabling rapid and visual detection. The emerging applications of TMDC-based colorimetric sensors span diverse fields, including environmental monitoring, healthcare, and industrial processes. The sensors exhibit high sensitivity, selectivity, and real-time response, making them ideal candidates for detecting various target analytes. Furthermore, their integration with complementary technologies such as microfluidics, can facilitate the development of on-site and point-of-care applications. This work highlights the interdisciplinary significance of nanostructured TMDC-based colorimetric sensors and underscores their potential contributions to addressing contemporary challenges in sensing technology.
Collapse
Affiliation(s)
- Muthukumar Raghunathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| | - Praveen Kumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Ananya Laxshmivarahan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Subhash Chandra Tripathi
- Institute of Applied Sciences & Humanities, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| |
Collapse
|
9
|
Orgiani P, Braglia L, Polewczyk V, Nie Z, Lavini F, Punathum Chalil S, Chaluvadi SK, Rajak P, Morabito F, Dobovičnik E, Foglietti V, Torelli P, Riedo E, Ciancio R, Yang N, Aruta C. On the origin of the improved hydrogen evolution reaction in Mn- and Co-doped MoS 2. NANOSCALE 2024; 16:12237-12247. [PMID: 38847457 DOI: 10.1039/d4nr00876f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
In the field of hydrogen production, MoS2 demonstrates good catalytic properties for the hydrogen evolution reaction (HER) which improve when doped with metal cations. However, while the role of sulfur atoms as active sites in the HER is largely reported, the role of metal atoms (i.e. molybdenum or the dopant cations) has yet to be studied in depth. To understand the role of the metal dopant, we study MoS2 thin films doped with Co and Mn ions. We identify the contribution of the electronic bands of the Mn and Co dopants to the integral valence band of the material using in situ resonant photoemission measurements. We demonstrate that Mn and Co dopants act differently: Mn doping favors the shift of the S-Mo hybridized band towards the Fermi level, while in the case of Co doping it is the less hybridized Co band that shifts closer to the Fermi level. Doping with Mn increases the effectiveness of S as the active site, thus improving the HER, while doping with Co introduces the metallic site of Co as the active site, which is less effective in improving HER properties. We therefore clarify the role of the dopant cation in the electronic structure determining the active site for hydrogen adsorption/desorption. Our results pave the way for the design of efficient materials for hydrogen production via the doping route, which can be extended to different catalytic reactions in the field of energy applications.
Collapse
Affiliation(s)
- Pasquale Orgiani
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
| | - Luca Braglia
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
- Area Science Park, Padriciano 99, Trieste 34149, Italy
| | - Vincent Polewczyk
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
| | - Zhiwei Nie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Francesco Lavini
- Tandon School of Engineering, New York University, New York, NY 11201, USA
| | | | | | - Piu Rajak
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
| | - Floriana Morabito
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
- Area Science Park, Padriciano 99, Trieste 34149, Italy
| | - Edvard Dobovičnik
- Department of Engineering and Architecture, University of Trieste, Trieste 34127, Italy
| | | | - Piero Torelli
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
| | - Elisa Riedo
- Tandon School of Engineering, New York University, New York, NY 11201, USA
| | - Regina Ciancio
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
- Area Science Park, Padriciano 99, Trieste 34149, Italy
| | - Nan Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Carmela Aruta
- CNR-SPIN, via del Fosso del Cavaliere 100, Roma 00133, Italy.
| |
Collapse
|
10
|
Yan C, Tang Z, Wang L, Piao Z, Wang H, Zhang Y. Covalently Linking Reduced Graphene Oxide Facilitated Electrodeposition of MoS 2 on Silicon Pyramidal Photocathode To Enhance Hydrogen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12427-12436. [PMID: 38804701 DOI: 10.1021/acs.langmuir.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In recent years, increasing attention has been paid to photoelectrochemical (PEC) hydrogen production owing to the utilization of sustainable solar energy and its promising performance. Silicon-based composites are generally considered ideal materials for PEC hydrogen production. However, slow reaction kinetics and poor stability are still key factors hindering the development of silicon-based photoelectrocatalysts. Herein, we present an n+-p Si pyramidal photocathode assembly method to load reduced graphene oxide (rGO) onto the surface of the n+-p Si pyramid by covalently linking (Si/rGO). rGO is utilized as a conductive layer to reduce the interfacial charge-transfer resistance. Then, MoS2 can be successfully electrodeposited on the surface of Si/rGO to form the Si/rGO/MoS2 composite, which possesses excellent PEC hydrogen evolution performance with a high and stable photocurrent of -41.6 mA cm-2 and a hydrogen evolution rate of about 18.1 μmol min-1 cm-2 under 0 V (vs RHE). The covalently linking rGO layer effectively enhances the transfer of photogenerated carriers between the Si substrate and MoS2. MoS2 provides abundant hydrogen evolution active sites, which accelerate the surface reaction kinetics, as well as a protective layer for the Si pyramidal array structure. This work provides a low-cost, convenient, and efficient way of preparing silicon-based photocathodes.
Collapse
Affiliation(s)
- Chenyu Yan
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zheng Tang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Linjie Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhe Piao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Honggui Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ya Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
11
|
Mirzaei A, Alizadeh M, Ansari HR, Moayedi M, Kordrostami Z, Safaeian H, Lee MH, Kim TU, Kim JY, Kim HW, Kim SS. Resistive gas sensors for the detection of NH 3gas based on 2D WS 2, WSe 2, MoS 2, and MoSe 2: a review. NANOTECHNOLOGY 2024; 35:332002. [PMID: 38744265 DOI: 10.1088/1361-6528/ad4b22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Transition metal dichalcogenides (TMDs) with a two-dimensional (2D) structure and semiconducting features are highly favorable for the production of NH3gas sensors. Among the TMD family, WS2, WSe2, MoS2, and MoSe2exhibit high conductivity and a high surface area, along with high availability, reasons for which they are favored in gas-sensing studies. In this review, we have discussed the structure, synthesis, and NH3sensing characteristics of pristine, decorated, doped, and composite-based WS2, WSe2, MoS2, and MoSe2gas sensors. Both experimental and theoretical studies are considered. Furthermore, both room temperature and higher temperature gas sensors are discussed. We also emphasized the gas-sensing mechanism. Thus, this review provides a reference for researchers working in the field of 2D TMD gas sensors.
Collapse
Affiliation(s)
- Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Morteza Alizadeh
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Hamid Reza Ansari
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Mehdi Moayedi
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Zoheir Kordrostami
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Haniyeh Safaeian
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Myoung Hoon Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Tae-Un Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jin-Young Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyoun Woo Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
12
|
Martínez-Jódar A, Villar-Rodil S, Munuera JM, Castro-Muñiz A, Coleman JN, Raymundo-Piñero E, Paredes JI. Two-Dimensional MoS 2 Nanosheets Derived from Cathodic Exfoliation for Lithium Storage Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:932. [PMID: 38869557 PMCID: PMC11173767 DOI: 10.3390/nano14110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
The preparation of 2H-phase MoS2 thin nanosheets by electrochemical delamination remains a challenge, despite numerous efforts in this direction. In this work, by choosing appropriate intercalating cations for cathodic delamination, the insertion process was facilitated, leading to a higher degree of exfoliation while maintaining the original 2H-phase of the starting bulk MoS2 material. Specifically, trimethylalkylammonium cations were tested as electrolytes, outperforming their bulkier tetraalkylammonium counterparts, which have been the focus of past studies. The performance of novel electrochemically derived 2H-phase MoS2 nanosheets as electrode material for electrochemical energy storage in lithium-ion batteries was investigated. The lower thickness and thus higher flexibility of cathodically exfoliated MoS2 promoted better electrochemical performance compared to liquid-phase and ultrasonically assisted exfoliated MoS2, both in terms of capacity (447 vs. 371 mA·h·g-1 at 0.2 A·g-1) and rate capability (30% vs. 8% capacity retained when the current density was increased from 0.2 A·g-1 to 5 A·g-1), as well as cycle life (44% vs. 17% capacity retention at 0.2 A·g-1 after 580 cycles). Overall, the present work provides a convenient route for obtaining MoS2 thin nanosheets for their advantageous use as anode material for lithium storage.
Collapse
Affiliation(s)
- Alberto Martínez-Jódar
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain; (A.M.-J.); (A.C.-M.)
- CEMHTI UPR3079, University of Orléans, CNRS, 1D avenue de la Recherche Scientifique, 45071 Orléans, France;
| | - Silvia Villar-Rodil
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain; (A.M.-J.); (A.C.-M.)
| | - José M. Munuera
- Department of Physics, Faculty of Sciences, University of Oviedo, C/ Leopoldo Calvo Sotelo, 18, 33007 Oviedo, Spain;
- School of Physics, CRANN and AMBER Research Centre, Trinity College Dublin, D02 E8C0 Dublin, Ireland;
| | - Alberto Castro-Muñiz
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain; (A.M.-J.); (A.C.-M.)
| | - Jonathan N. Coleman
- School of Physics, CRANN and AMBER Research Centre, Trinity College Dublin, D02 E8C0 Dublin, Ireland;
| | | | - Juan I. Paredes
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain; (A.M.-J.); (A.C.-M.)
| |
Collapse
|
13
|
Di Mauro G, González VJ, Bambini F, Camarda S, Prado E, Holgado JP, Vázquez E, Ballerini L, Cellot G. MoS 2 2D materials induce spinal cord neuroinflammation and neurotoxicity affecting locomotor performance in zebrafish. NANOSCALE HORIZONS 2024; 9:785-798. [PMID: 38466179 DOI: 10.1039/d4nh00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
MoS2 nanosheets belong to an emerging family of nanomaterials named bidimensional transition metal dichalcogenides (2D TMDCs). The use of such promising materials, featuring outstanding chemical and physical properties, is expected to increase in several fields of science and technology, with an enhanced risk of environmental dispersion and associated wildlife and human exposures. In this framework, the assessment of MoS2 nanosheets toxicity is instrumental to safe industrial developments. Currently, the impact of the nanomaterial on the nervous tissue is unexplored. In this work, we use as in vivo experimental model the early-stage zebrafish, to investigate whether mechano-chemically exfoliated MoS2 nanosheets reach and affect, when added in the behavioral ambient, the nervous system. By high throughput screening of zebrafish larvae locomotor behavioral changes upon exposure to MoS2 nanosheets and whole organism live imaging of spinal neuronal and glial cell calcium activity, we report that sub-acute and prolonged ambient exposures to MoS2 nanosheets elicit locomotor abnormalities, dependent on dose and observation time. While 25 μg mL-1 concentration treatments exerted transient effects, 50 μg mL-1 ones induced long-lasting changes, correlated to neuroinflammation-driven alterations in the spinal cord, such as astrogliosis, glial intracellular calcium dysregulation, neuronal hyperactivity and motor axons retraction. By combining integrated technological approaches to zebrafish, we described that MoS2 2D nanomaterials can reach, upon water (i.e. ambient) exposure, the nervous system of larvae, resulting in a direct neurological damage.
Collapse
Affiliation(s)
- Giuseppe Di Mauro
- Neuron Physiology and Technology Lab, Neuroscience area, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| | - Viviana Jehová González
- Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, 13071 Ciudad Real, Spain
| | - Francesco Bambini
- Neuron Physiology and Technology Lab, Neuroscience area, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| | - Silvia Camarda
- Neuron Physiology and Technology Lab, Neuroscience area, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| | - Eduardo Prado
- Department of Applied Physics, Faculty of Science, University of Castilla La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Juan Pedro Holgado
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Universidad de Sevilla-CSIC, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Ester Vázquez
- Instituto Regional de Investigación Científica Aplicada (IRICA), UCLM, 13071 Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, UCLM, Avda. Camilo José Cela S/N, Ciudad Real, Spain
| | - Laura Ballerini
- Neuron Physiology and Technology Lab, Neuroscience area, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| | - Giada Cellot
- Neuron Physiology and Technology Lab, Neuroscience area, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
14
|
Mu Y, Liu G, Su D, Yang Z, Zhang G. Adsorption of Zn atoms by monolayer WS 2 doped with different atoms X (X = O, Se, N, P, F, Cl): first principles study. J Mol Model 2024; 30:146. [PMID: 38656409 DOI: 10.1007/s00894-024-05949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
CONTEXT The effect of X (X = O, Se, N, P, F, Cl) doping on the adsorption of Zn atoms by WS2 was investigated based on first principles. The electronic structure and optical properties of the adsorbed system after atomic doping were calculated. It is found that the Zn atom adsorbed on the W top (Tw) site has the most stable structure. When an S atom is replaced with an X atom based on the adsorption system, where the adsorption energy decreases after doping of O, P, F, and Cl atoms compared to the undoped system, it means that each system is more stable after doping of these atoms; charge transfer shows that the adsorption system after P-atom doping the system around the Zn atom loses electrons while S-atom gains electrons, which indicates that P-atom doping is favorable for the adsorption of Zn by WS2, N, P-atom is introduced as p-type doping and F, Cl-atom is introduced undoped by n-type doping, and the band gap of the doped system is less than that of the undoped one. With the introduction of different dopant atoms, certain impurity energy levels are introduced into the adsorption system. The prohibited bandwidth around the Fermi energy level reduces the density of states, causing the doped system's density of states to shift to lower energies, among which the shifts of N, P, F, and Cl are more pronounced. The P-doped adsorption system shows a new peak near the energy of - 11 eV. In addition, the study of optical properties showed that the peak reflections of both doped and non-doped systems adsorbing Zn atoms appeared in the ultraviolet region; the absorbance coefficient of the doped system is moved in the lower energy direction and red-shifted after atom doping; in addition, the absorption coefficients and reflectance of the P, Se doped systems are enhanced in the wavelength range of 200-300 nm compared with that before doping, the dielectric function and CBM and VBM positions were also calculated further indicating the potential of Se-doped systems in improving photocatalytic efficiency. METHODS In this paper, the structure optimization of X (X = O, Se, N, P, F, Cl) doping on WS2 adsorbed Zn atom model is performed based on the CASTEP module in Materials-Studio software under the first principles using GGA and PBE generalized function. The corresponding binding energies, bond lengths, bond angles, charge densities, energy band structures, densities of states, and optical properties were also analyzed. The Monkhorst-Pack particular K-point sampling method is used in the calculations; the K-point grid is 6 × 6 × 1, and the cutoff energy for the plane wave expansion is 500 eV. After geometric optimization, the iterative accuracy converges to a value of less than 1 × 10-5 eV/atom for the total energy of each atom and less than 0.03 eV/Å for all atomic forces. The thickness of the vacuum layer was set to 20 Å to avoid the effect of interlayer interaction forces. In this paper, 27 atoms were used to form a 3 × 3 × 1 supercellular tungsten disulfide system consisting of 18 S atoms and 9 W atoms.
Collapse
Affiliation(s)
- Yansong Mu
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Guili Liu
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China.
| | - Dan Su
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Zhonghua Yang
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Guoying Zhang
- School of Physics, Shenyang Normal University, Shenyang, People's Republic of China
| |
Collapse
|
15
|
Hurley N, Bhandari B, Kamau S, Gonzalez Rodriguez R, Squires B, Kaul AB, Cui J, Lin Y. Selective CW Laser Synthesis of MoS 2 and Mixture of MoS 2 and MoO 2 from (NH 4) 2MoS 4 Film. MICROMACHINES 2024; 15:258. [PMID: 38398986 PMCID: PMC10892590 DOI: 10.3390/mi15020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Very recently, the synthesis of 2D MoS2 and WS2 through pulsed laser-directed thermolysis can achieve wafer-scale and large-area structures, in ambient conditions. In this paper, we report the synthesis of MoS2 and MoS2 oxides from (NH4)2MoS4 film using a visible continuous-wave (CW) laser at 532 nm, instead of the infrared pulsed laser for the laser-directed thermolysis. The (NH4)2MoS4 film is prepared by dissolving its crystal powder in DI water, sonicating the solution, and dip-coating onto a glass slide. We observed a laser intensity threshold for the laser synthesis of MoS2, however, it occurred in a narrow laser intensity range. Above that range, a mixture of MoS2 and MoO2 is formed, which can be used for a memristor device, as demonstrated by other research groups. We did not observe a mixture of MoS2 and MoO3 in the laser thermolysis of (NH4)2MoS4. The laser synthesis of MoS2 in a line pattern is also achieved through laser scanning. Due to of the ease of CW beam steering and the fine control of laser intensities, this study can lead toward the CW laser-directed thermolysis of (NH4)2MoS4 film for the fast, non-vacuum, patternable, and wafer-scale synthesis of 2D MoS2.
Collapse
Affiliation(s)
- Noah Hurley
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (N.H.); (B.B.); (S.K.); (R.G.R.); (B.S.); (J.C.)
| | - Bhojraj Bhandari
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (N.H.); (B.B.); (S.K.); (R.G.R.); (B.S.); (J.C.)
| | - Steve Kamau
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (N.H.); (B.B.); (S.K.); (R.G.R.); (B.S.); (J.C.)
| | - Roberto Gonzalez Rodriguez
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (N.H.); (B.B.); (S.K.); (R.G.R.); (B.S.); (J.C.)
| | - Brian Squires
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (N.H.); (B.B.); (S.K.); (R.G.R.); (B.S.); (J.C.)
| | - Anupama B. Kaul
- Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, USA;
- Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Jingbiao Cui
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (N.H.); (B.B.); (S.K.); (R.G.R.); (B.S.); (J.C.)
| | - Yuankun Lin
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (N.H.); (B.B.); (S.K.); (R.G.R.); (B.S.); (J.C.)
- Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
16
|
Su D, Liu G, Wei R, Ma M, Mu Y, Yang Z, Zhang G. Effect of O-doping on electronic and optical properties of monolayer MoSe 2 under shear deformation. J Mol Model 2024; 30:27. [PMID: 38194209 DOI: 10.1007/s00894-024-05828-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
CONTEXT In this study, the electronic structures and optical properties of the pure MoSe2 and O-doped MoSe2 systems under different shear deformations are calculated based on the first-principles approach. It is hoped to provide new possibilities for the design of novel controllable optoelectronic devices and to provide guidance for the application of MoSe2 in the field of optoelectronic devices. The findings indicate that both pure MoSe2 and O-doped MoSe2 systems are somewhat impacted by shear deformation. The pure MoSe2 undergoes a transition from direct to indirect and then to direct bandgap under shear deformation, but still maintains the semiconductor properties. The bandgap of the doped system changes from a direct to an indirect bandgap at 8% shear deformation. According to the examination of the density of states, we find that the density of states of the pure MoSe2 system is mainly contributed by the Mo-d and Se-p orbitals, and the total density of states of the system after O-atom doping mainly originates from the results of the contributions of the Mo-d, Se-p, and O-p orbitals. Optical property analysis reveals that the conductivity and peak value of the pure MoSe2 system are gradually red-shifted toward the low-energy region with the increase of shear deformation. The dielectric function of the O-doped MoSe2 system is red-shifted in the region of 6~10% shear deformation, and the degree of red-shift rises with deformation amount. The findings demonstrate that the electrical structure and optical characteristics of the O-doped MoSe2 system may be modulated effectively by shear deformation, providing a theoretical foundation for expanding the usage of MoSe2 materials in the field of optoelectronic devices. METHODS This study is founded on the CASTEP module in the Materials-Studio software within the first-principles of the density-functional theory framework. The photoelectric properties of the intrinsic and doped systems under shear deformation are calculated using the Perdew-Burke-Ernzerh (PBE) of generalized function under the generalized gradient approximation (GGA). The Monkhorst-Pack special K-point sampling method is used in the calculations, and a 5 × 5 × 1 K-point grid is used for the calculations with a plane-wave truncation energy of 400 eV in the optimization of the structure of each model. After geometrical optimization, the energy convergence criterion for each atom is 1 × 10-5 eV/atom, the force convergence criterion is 0.05 eV/Å, and a vacuum layer of 20 Å in the c-direction is set.
Collapse
Affiliation(s)
- Dan Su
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Guili Liu
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China.
| | - Ran Wei
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Mengting Ma
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Yansong Mu
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Zhonghua Yang
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Guoying Zhang
- School of Physics, Shenyang Normal University, Shenyang, People's Republic of China
| |
Collapse
|
17
|
Shinde PA, Ariga K. Two-Dimensional Nanoarchitectonics for Two-Dimensional Materials: Interfacial Engineering of Transition-Metal Dichalcogenides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18175-18186. [PMID: 38047629 DOI: 10.1021/acs.langmuir.3c02929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Transition-metal dichalcogenides (TMDs) have attracted increasing attention in fundamental studies and technological applications owing to their atomically thin thickness, expanded interlayer distance, motif band gap, and phase-transition ability. Even though TMDs have a wide variety of material assets from semiconductor to semimetallic to metallic, the materials with fixed features may not show excellence for precise application. As a result of exclusive crystalline polymorphs, physical and chemical assets of TMDs can be efficiently modified via various approaches of interface nanoarchitectonics, including heteroatom doping, heterostructure, phase engineering, reducing size, alloying, and hybridization. With modified properties, TMDs become interesting materials in diverse fields, including catalysis, energy, electronics, transistors, and optoelectronics.
Collapse
Affiliation(s)
- Pragati A Shinde
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
18
|
Alsaqer M, Daaoub AH, Sangtarash S, Sadeghi H. Large Mechanosensitive Thermoelectric Enhancement in Metallo-Organic Magnetic Molecules. NANO LETTERS 2023; 23:10719-10724. [PMID: 37988562 PMCID: PMC10722535 DOI: 10.1021/acs.nanolett.3c02569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Organic materials are promising candidates for thermoelectric cooling and energy harvesting at room temperature. However, their electrical conductance (G) and Seebeck coefficient (S) need to be improved to make them technologically competitive. Therefore, radically new strategies need to be developed to tune their thermoelectric properties. Here, we demonstrate that G and S can be tuned mechanically in paramagnetic metallocenes, and their thermoelectric properties can be significantly enhanced by the application of mechanical forces. With a 2% junction compression, the full thermoelectric figure of merit is enhanced by more than 200 times. We demonstrate that this is because spin transport resonances in paramagnetic metallocenes are strongly sensitive to the interaction between organic ligands and the metal center, which is not the case in their diamagnetic analogue. These results open a new avenue for the development of organic thermoelectric materials for cooling future quantum computers and generating electricity from low-grade energy sources.
Collapse
Affiliation(s)
- Munirah Alsaqer
- Device Modelling Group, School
of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Abdalghani H.S. Daaoub
- Device Modelling Group, School
of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Sara Sangtarash
- Device Modelling Group, School
of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Hatef Sadeghi
- Device Modelling Group, School
of Engineering, University of Warwick, CV4 7AL Coventry, United Kingdom
| |
Collapse
|
19
|
Uthappa UT, Nehra M, Kumar R, Dilbaghi N, Marrazza G, Kaushik A, Kumar S. Trends and prospects of 2-D tungsten disulphide (WS 2) hybrid nanosystems for environmental and biomedical applications. Adv Colloid Interface Sci 2023; 322:103024. [PMID: 37952364 DOI: 10.1016/j.cis.2023.103024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Recently, 2D layered transition metal dichalcogenides (TMDCs) with their ultrathin sheet nanostructure and diversified electronic structure have drawn attention for various advanced applications to achieve high-performance parameters. Unique 2D TMDCs mainly comprise transition metal and chalcogen element where chalcogen element layers sandwich the transition metal element layer. In such a case, various properties can be enhanced and controlled depending on the targeted application. Among manipulative 2D TMDCs, tungsten disulphide (WS2) is one of the emerging nano-system due to its fascinating properties in terms of direct band gap, higher mobility, strong photoluminescence, good thermal stability, and strong magnetic field interaction. The advancement in characterization techniques, especially scattering techniques, can help in study of opto-electronic properties of 2D TMDCs along with determination of layer variations and investigation of defect. In this review, the fabrication and applications are well summarized to optimize an appropriate WS2-TMDCs assembly according to focused field of research. Here, the scientific investigations on 2D WS2 are studied in terms of its structure, role of scattering techniques to study its properties, and synthesis routes followed by its potential applications for environmental remediation (e.g., photocatalytic degradation of pollutants, gas sensing, and wastewater treatment) and biomedical domain (e.g., drug delivery, photothermal therapy, biomedical imaging, and biosensing). Further, a special emphasis is given to the significance of 2D WS2 as a substrate for surface-enhanced Raman scattering (SERS). The discussion is further extended to commercial and industrial aspects, keeping in view major research gaps in existing research studies.
Collapse
Affiliation(s)
- U T Uthappa
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry" Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, USA; United State, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India.
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Physics Department, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India.
| |
Collapse
|
20
|
Cheng J, Jin Y, Zhao J, Jing Q, Gu B, Wei J, Yi S, Li M, Nie W, Qin Q, Zhang D, Zheng G, Che R. From VIB- to VB-Group Transition Metal Disulfides: Structure Engineering Modulation for Superior Electromagnetic Wave Absorption. NANO-MICRO LETTERS 2023; 16:29. [PMID: 37994956 PMCID: PMC10667208 DOI: 10.1007/s40820-023-01247-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/11/2023] [Indexed: 11/24/2023]
Abstract
The laminated transition metal disulfides (TMDs), which are well known as typical two-dimensional (2D) semiconductive materials, possess a unique layered structure, leading to their wide-spread applications in various fields, such as catalysis, energy storage, sensing, etc. In recent years, a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption (EMA) has been carried out. Therefore, it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application. In this review, recent advances in the development of electromagnetic wave (EMW) absorbers based on TMDs, ranging from the VIB group to the VB group are summarized. Their compositions, microstructures, electronic properties, and synthesis methods are presented in detail. Particularly, the modulation of structure engineering from the aspects of heterostructures, defects, morphologies and phases are systematically summarized, focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance. Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
Collapse
Affiliation(s)
- Junye Cheng
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China.
| | - Yongheng Jin
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jinghan Zhao
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Qi Jing
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Bailong Gu
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Jialiang Wei
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Shenghui Yi
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Mingming Li
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Wanli Nie
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Qinghua Qin
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China.
| | - Deqing Zhang
- School of Materials Science and Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
| | - Guangping Zheng
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China.
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China.
- Zhejiang Laboratory, Hangzhou, 311100, People's Republic of China.
| |
Collapse
|
21
|
Li C, Zhu L, Wu Z, Chen Q, Zheng R, Huan J, Huang Y, Zhu X, Sun Y. Phase Engineering of W-Doped MoS 2 by Magneto-Hydrothermal Synthesis for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303646. [PMID: 37528507 DOI: 10.1002/smll.202303646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Indexed: 08/03/2023]
Abstract
Molybdenum disulfide (MoS2 ) has been proved as an excellent potential hydrogen evolution reaction (HER) catalyst. Compared with thermodynamically stable 2H-MoS2 , 1T-MoS2 exhibits higher conductivity and catalytic activity, whereas it is usually difficult to prepare since of thermodynamically metastable. Herein, a feasible method is reported to fabricate ambient-stable MoS2 with high concentration 1T phase through magnetic free energy synergistic microstrain induced by W doping under low magnetic field. The 1T phase proportion in MoS2 can be as high as 80% and is ambient-stable for more than one year. The catalyst prepared under a magnetic field of 3 T delivers an overpotential of 195 mV at a current density of 10 mA cm-2 and has a long-term stability over 50 h. This work provides a novel strategy for preparation of MoS2 with high 1T concentration and high stability.
Collapse
Affiliation(s)
- Changdian Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lili Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ziqiang Wu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qian Chen
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ruobing Zheng
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Huan
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yanan Huang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yuping Sun
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
22
|
Walke P, Kaupmees R, Grossberg-Kuusk M, Krustok J. Unusual Defect-Related Room-Temperature Emission from WS 2 Monolayers Synthesized through a Potassium-Based Precursor. ACS OMEGA 2023; 8:37958-37970. [PMID: 37867715 PMCID: PMC10586178 DOI: 10.1021/acsomega.3c03476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/29/2023] [Indexed: 10/24/2023]
Abstract
Alkali-metal-based synthesis of transition metal dichalcogenide (TMD) monolayers is an established strategy for both ultralarge lateral growth and promoting the metastable 1T phase. However, whether this can also lead to modified optical properties is underexplored, with reported photoluminescence (PL) spectra from semiconducting systems showing little difference from more traditional syntheses. Here, we show that the growth of WS2 monolayers from a potassium-salt precursor can lead to a pronounced low-energy emission in the PL spectrum. This is seen 200-300 meV below the A exciton and can dominate the signal at room temperature. The emission is spatially heterogeneous, and its presence is attributed to defects in the layer due to sublinear intensity power dependence, a noticeable aging effect, and insensitivity to washing in water and acetone. Interestingly, statistical analysis links the band to an increase in the width of the A1g Raman band. The emission can be controlled by altering when hydrogen is introduced into the growth process. This work demonstrates intrinsic and intense defect-related emission at room temperature and establishes further opportunities for tuning TMD properties through alkali-metal precursors.
Collapse
Affiliation(s)
- Peter Walke
- Department of Materials and
Environmental Technology, Tallinn University
of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Reelika Kaupmees
- Department of Materials and
Environmental Technology, Tallinn University
of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Maarja Grossberg-Kuusk
- Department of Materials and
Environmental Technology, Tallinn University
of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jüri Krustok
- Department of Materials and
Environmental Technology, Tallinn University
of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| |
Collapse
|
23
|
Ni P, Dieng M, Vanel JC, Florea I, Bouanis FZ, Yassar A. Liquid Shear Exfoliation of MoS 2: Preparation, Characterization, and NO 2-Sensing Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2502. [PMID: 37764530 PMCID: PMC10537371 DOI: 10.3390/nano13182502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
2D materials possess great potential to serve as gas-sensing materials due to their large, specific surface areas and strong surface activities. Among this family, transition metal chalcogenide materials exhibit different properties and are promising candidates for a wide range of applications, including sensors, photodetectors, energy conversion, and energy storage. Herein, a high-shear mixing method has been used to produce multilayered MoS2 nanosheet dispersions. MoS2 thin films were manufactured by vacuum-assisted filtration. The structural morphology of MoS2 was studied using ς-potential, UV-visible, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy (RS). The spectroscopic and microscopic analyses confirm the formation of a high-crystalline MoS2 thin film with good inter-sheet connectivity and relative thickness uniformity. The thickness of the MoS2 layer is measured to be approximately 250 nm, with a nanosheet size of 120 nm ± 40 nm and a number of layers between 6 and 9 layers. Moreover, the electrical characteristics clearly showed that the MoS2 thin film exhibits good conductivity and a linear I-V curve response, indicating good ohmic contact between the MoS2 film and the electrodes. As an example of applicability, we fabricated chemiresistive sensor devices with a MoS2 film as a sensing layer. The performance of the MoS2-chemiresistive sensor for NO2 was assessed by being exposed to different concentrations of NO2 (1 ppm to 10 ppm). This sensor shows a sensibility to low concentrations of 1 ppm, with a response time of 114 s and a recovery time of 420 s. The effect of thin-film thickness and operating temperatures on sensor response was studied. The results show that thinner film exhibits a higher response to NO2; the response decreases as the working temperature increases.
Collapse
Affiliation(s)
- Pingping Ni
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France; (P.N.); (M.D.); (J.-C.V.)
- COSYS-IMSE, University Gustave Eiffel, F-77454 Marne-la-Vallée, France
| | - Mbaye Dieng
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France; (P.N.); (M.D.); (J.-C.V.)
- COSYS-IMSE, University Gustave Eiffel, F-77454 Marne-la-Vallée, France
| | - Jean-Charles Vanel
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France; (P.N.); (M.D.); (J.-C.V.)
| | - Ileana Florea
- CRHEA, CNRS, Université Cote d’Azur, UMR7073, Rue Bernard Grégory, 06905 Sophia-Antipolis CEDEX, France;
| | - Fatima Zahra Bouanis
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France; (P.N.); (M.D.); (J.-C.V.)
- COSYS-IMSE, University Gustave Eiffel, F-77454 Marne-la-Vallée, France
| | - Abderrahim Yassar
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France; (P.N.); (M.D.); (J.-C.V.)
| |
Collapse
|
24
|
Qin Z, Zhang J, Li S. Molybdenum Disulfide as Tunable Electrochemical and Optical Biosensing Platforms for Cancer Biomarker Detection: A Review. BIOSENSORS 2023; 13:848. [PMID: 37754082 PMCID: PMC10527254 DOI: 10.3390/bios13090848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Cancer is a common illness with a high mortality. Compared with traditional technologies, biomarker detection, with its low cost and simple operation, has a higher sensitivity and faster speed in the early screening and prognosis of cancer. Therefore, extensive research has focused on the development of biosensors and the construction of sensing interfaces. Molybdenum disulfide (MoS2) is a promising two-dimensional (2D) nanomaterial, whose unique adjustable bandgap shows excellent electronic and optical properties in the construction of biosensor interfaces. It not only has the advantages of a high catalytic activity and low manufacturing costs, but it can also further expand the application of hybrid structures through different functionalization, and it is widely used in various biosensors fields. Herein, we provide a detailed introduction to the structure and synthesis methods of MoS2, and explore the unique properties and advantages/disadvantages exhibited by different structures. Specifically, we focus on the excellent properties and application performance of MoS2 and its composite structures, and discuss the widespread application of MoS2 in cancer biomarkers detection from both electrochemical and optical dimensions. Additionally, with the cross development of emerging technologies, we have also expanded the application of other emerging sensors based on MoS2 for early cancer diagnosis. Finally, we summarized the challenges and prospects of MoS2 in the synthesis, functionalization of composite groups, and applications, and provided some insights into the potential applications of these emerging nanomaterials in a wider range of fields.
Collapse
Affiliation(s)
- Ziyue Qin
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jiawei Zhang
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang Li
- Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.Z.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
25
|
Lambora S, Bhardwaj A. Morphology Transition with Temperature and its Effect on Optical Properties of Colloidal MoS 2 Nanostructures. ACS OMEGA 2023; 8:27725-27731. [PMID: 37546589 PMCID: PMC10398838 DOI: 10.1021/acsomega.3c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Morphology plays a crucial role in determining the chemical and optical properties of nanomaterials due to confinement effects. We report the morphology transition of colloidal molybdenum disulfide (MoS2) nanostructures, synthesized by a one-pot heat-up method, from a mix of quantum dots (QDs) and nanosheets to predominantly nanorods by varying the synthesis reaction temperature from 90 to 160 °C. The stoichiometry and composition of the synthesized QDs, nanosheets, and nanorods were quantified to be MoS2 using energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy analyses. A nanostructure morphology transition due to variation in the reaction temperature resulted in a photoluminescence quantum yield enhancement from 0 to 4.4% on increasing the temperature from 90 to 120 °C. On further increase in the temperature to 160 °C, a decrease in the quantum yield to 3.06% is observed. Red-shifts of ≈18 and ≈140 nm in the emission maxima and absorption edge, respectively, are observed for the synthesized nanostructures with an increase in the reaction temperature from 90 to 160 °C. The change in the quantum yield is attributed to the change in shape and hence confinement of charge carriers. To the best of our knowledge, microscopic analysis of variation in shape and optical properties of colloidal MoS2 nanostructures with temperature, explained by a nonclassical growth mechanism is presented here for the first time.
Collapse
|
26
|
Mattinen M, Schulpen JJPM, Dawley RA, Gity F, Verheijen MA, Kessels WMM, Bol AA. Toolbox of Advanced Atomic Layer Deposition Processes for Tailoring Large-Area MoS 2 Thin Films at 150 °C. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35565-35579. [PMID: 37459249 PMCID: PMC10375433 DOI: 10.1021/acsami.3c02466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Two-dimensional MoS2 is a promising material for applications, including electronics and electrocatalysis. However, scalable methods capable of depositing MoS2 at low temperatures are scarce. Herein, we present a toolbox of advanced plasma-enhanced atomic layer deposition (ALD) processes, producing wafer-scale polycrystalline MoS2 films of accurately controlled thickness. Our ALD processes are based on two individually controlled plasma exposures, one optimized for deposition and the other for modification. In this way, film properties can be tailored toward different applications at a very low deposition temperature of 150 °C. For the modification step, either H2 or Ar plasma can be used to combat excess sulfur incorporation and crystallize the films. Using H2 plasma, a higher degree of crystallinity compared with other reported low-temperature processes is achieved. Applying H2 plasma steps periodically instead of every ALD cycle allows for control of the morphology and enables deposition of smooth, polycrystalline MoS2 films. Using an Ar plasma instead, more disordered MoS2 films are deposited, which show promise for the electrochemical hydrogen evolution reaction. For electronics, our processes enable control of the carrier density from 6 × 1016 to 2 × 1021 cm-3 with Hall mobilities up to 0.3 cm2 V-1 s-1. The process toolbox forms a basis for rational design of low-temperature transition metal dichalcogenide deposition processes compatible with a range of substrates and applications.
Collapse
Affiliation(s)
- Miika Mattinen
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Jeff J P M Schulpen
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Rebecca A Dawley
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Farzan Gity
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
| | - Marcel A Verheijen
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
- Eurofins Materials Science Netherlands, High Tech Campus 11, Eindhoven 5656 AE, The Netherlands
| | - Wilhelmus M M Kessels
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Ageeth A Bol
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
27
|
Silveri F, Obořilová R, Máčala J, Compagnone D, Skládal P. Impedimetric immunosensor for microalbuminuria based on a WS 2/Au water-phase assembled nanocomposite. Mikrochim Acta 2023; 190:306. [PMID: 37466678 DOI: 10.1007/s00604-023-05873-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023]
Abstract
An electrochemical impedimetric biosensor for human serum albumin (HSA) determination is proposed. The biosensor is based on water-phase assembled nanocomposites made of 2D WS2 nanoflakes and Au nanoparticles (AuNPs). The WS2 has been produced using a liquid-phase exfoliation strategy assisted by sodium cholate, obtaining a water-stable suspension that allowed the straightforward decoration with AuNPs directly in the aqueous phase. The resulting WS2/Au nanocomposite has been characterized by atomic force microscopy and Raman spectroscopy and, then, employed to modify screen-printed electrodes. Good electron-transfer features have been achieved. An electrochemical immunosensing platform has been assembled exploiting cysteamine-glutaraldehyde covalent chemistry for antibody (Ab) immobilization. The resulting immunosensor exhibited good sensitivity for HSA detection (LOD = 2 ng mL-1), with extended linear range (0.005 - 100 µg mL-1), providing a useful analytical tool for HSA determination in urine at relevant clinical ranges for microalbuminuria screening. The HSA quantification in human urine samples resulted in recoveries from 91.8 to 112.4% and was also reproducible (RSD < 7.5%, n = 3), with marked selectivity. This nanocomposite, thanks to the reliable performance and the ease of the assembling strategy, is a promising alternative for electrochemical immunosensing of health relevant markers.
Collapse
Affiliation(s)
- Filippo Silveri
- Department of Bioscience and Technology for Food, Agriculture and Environment, Campus "Aurelio Saliceti", Via R Balzarini 1, 64100, Teramo, Italy
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Radka Obořilová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- CEITEC MU-Nanobiotechnology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jakub Máčala
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, Campus "Aurelio Saliceti", Via R Balzarini 1, 64100, Teramo, Italy.
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- CEITEC MU-Nanobiotechnology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
28
|
Muller SE, Prange MP, Lu Z, Rosenthal WS, Bilbrey JA. An open database of computed bulk ternary transition metal dichalcogenides. Sci Data 2023; 10:336. [PMID: 37253748 DOI: 10.1038/s41597-023-02103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/24/2023] [Indexed: 06/01/2023] Open
Abstract
We present a dataset of structural relaxations of bulk ternary transition metal dichalcogenides (TMDs) computed via plane-wave density functional theory (DFT). We examined combinations of up to two chalcogenides with seven transition metals from groups 4-6 in octahedral (1T) or trigonal prismatic (2H) coordination. The full dataset consists of 672 unique stoichiometries, with a total of 50,337 individual configurations generated during structural relaxation. Our motivations for building this dataset are (1) to develop a training set for the generation of machine and deep learning models and (2) to obtain structural minima over a range of stoichiometries to support future electronic analyses. We provide the dataset as individual VASP xml files as well as all configurations encountered during relaxations collated into an ASE database with the corresponding total energy and atomic forces. In this report, we discuss the dataset in more detail and highlight interesting structural and electronic features of the relaxed structures.
Collapse
Affiliation(s)
- Scott E Muller
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Micah P Prange
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Zexi Lu
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | | | - Jenna A Bilbrey
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
29
|
Della Pelle F, Bukhari QUA, Alvarez Diduk R, Scroccarello A, Compagnone D, Merkoçi A. Freestanding laser-induced two dimensional heterostructures for self-contained paper-based sensors. NANOSCALE 2023; 15:7164-7175. [PMID: 37009987 DOI: 10.1039/d2nr07157f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The production of 2D/2D heterostructures (HTs) with favorable electrochemical features is challenging, particularly for semiconductor transition metal dichalcogenides (TMDs). In this studies, we introduce a CO2 laser plotter-based technology for the realization of HT films comprising reduced graphene oxide (rGO) and 2D-TMDs (MoS2, WS2, MoSe2, and WSe2) produced via water phase exfoliation. The strategy relies on the Laser-Induced production of HeterosTructures (LIHTs), where after irradiation the nanomaterials exhibit changes in the morphological and chemical structure, becoming conductive easily transferable nanostructured films. The LIHTs were characterized in detail by SEM, XPS, Raman and electrochemical analysis. The laser treatment induces the conversion of GO into conductive highly exfoliated rGO decorated with homogeneously distributed small TMD/TM-oxide nanoflakes. The freestanding LIHT films obtained were employed to build self-contained sensors onto nitrocellulose, where the HT works both as a transducer and sensing surface. The proposed nitrocellulose-sensor manufacturing process is semi-automated and reproducible, multiple HT films may be produced in the same laser treatment and the stencil-printing allows customizable design. Excellent performance in the electroanalytical detection of different molecules such as dopamine (a neurotransmitter), catechin (a flavonol), and hydrogen peroxide was demonstrated, obtaining nanomolar limits of detection and satisfactory recovery rates in biological and agrifood samples, together with high fouling resistance. Considering the robust and rapid laser-induced production of HTs and the versatility of scribing desired patterns, the proposed approach appears as a disruptive technology for the development of electrochemical devices through sustainable and accessible strategies.
Collapse
Affiliation(s)
- Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti", Via R. Balzarini 1, 64100, Teramo, Italy.
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Qurat Ul Ain Bukhari
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti", Via R. Balzarini 1, 64100, Teramo, Italy.
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Ruslán Alvarez Diduk
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Annalisa Scroccarello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti", Via R. Balzarini 1, 64100, Teramo, Italy.
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti", Via R. Balzarini 1, 64100, Teramo, Italy.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain.
- ICREA Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
30
|
Xiang M, Ma X, Gao C, Guo Z, Huang C, Xing Y, Tan S, Zhao J, Wang B, Shao X. Revealing the Polaron State at the MoS 2/TiO 2 Interface. J Phys Chem Lett 2023; 14:3360-3367. [PMID: 36995045 DOI: 10.1021/acs.jpclett.2c03856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Interfacial polarons determine the distribution of free charges at the interface and thus play important roles in manipulating the physicochemical properties of hybridized polaronic materials. In this work, we investigated the electronic structures at the atomically flat interface of the single-layer MoS2 (SL-MoS2) on the rutile TiO2 surface using high-resolution angle-resolved photoemission spectroscopy. Our experiments directly visualized both the valence band maximum and the conduction band minimum (CBM) of SL-MoS2 at the K point, which clearly defines a direct bandgap of ∼2.0 eV. Detailed analyses corroborated by density functional theory calculations demonstrated that the CBM of MoS2 is formed by the trapped electrons at the MoS2/TiO2 interface that couple with the longitudinal optical phonons in the TiO2 substrate through an interfacial Fröhlich polaron state. Such an interfacial coupling effect may register a new route for tuning the free charges in the hybridized systems of two-dimensional materials and functional metal oxides.
Collapse
|
31
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
32
|
Nagaoka DA, Grasseschi D, Cadore AR, Fonsaca JES, Jawaid AM, Vaia RA, de Matos CJS. Redox exfoliated NbS 2: characterization, stability, and oxidation. Phys Chem Chem Phys 2023; 25:9559-9568. [PMID: 36939519 DOI: 10.1039/d2cp05197d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Niobium disulfide is a layered transition metal dichalcogenide that is being exploited as a two-dimensional material. Although it is a superconductor at low temperatures and demonstrates great potential to be applied as a catalyst or co-catalyst in hydrogen evolution reactions, only a few reports have demonstrated the synthesis of a few-layer NbS2. However, before applications can be pursued, it is essential to understand the main characteristics of the obtained material and its stability under an atmospheric environment. In this work, we conducted a thorough characterization of redox-exfoliated NbS2 nanoflakes regarding their structure and stability in an oxygen-rich environment. Structural, morphological, and spectroscopic characterization demonstrated different fingerprints associated with distinct oxidation processes. This led us to identify oxide species and analyse the stability of the redox exfoliated NbS2 nanosheets in air, suggesting the most likely reaction pathways during the NbS2 interaction with oxygen, which agrees with our density-functional theory results. The mastery over the stability of layered materials is of paramount importance to target future applications, mainly because the electronic properties of these materials are strongly affected by an oxidizing environment.
Collapse
Affiliation(s)
- Danilo A Nagaoka
- School of Engineering, Mackenzie Presbyterian University, Sao Paulo - 01302-907, Brazil. .,MackGraphe, Mackenzie Presbyterian Institute, São Paulo - 01302-907, Brazil
| | - Daniel Grasseschi
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro - 21941-909, Brazil
| | - Alisson R Cadore
- School of Engineering, Mackenzie Presbyterian University, Sao Paulo - 01302-907, Brazil.
| | - Jessica E S Fonsaca
- School of Engineering, Mackenzie Presbyterian University, Sao Paulo - 01302-907, Brazil. .,MackGraphe, Mackenzie Presbyterian Institute, São Paulo - 01302-907, Brazil
| | - Ali M Jawaid
- Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson AFB, Ohio 45433, USA
| | - Richard A Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson AFB, Ohio 45433, USA
| | - Christiano J S de Matos
- School of Engineering, Mackenzie Presbyterian University, Sao Paulo - 01302-907, Brazil. .,MackGraphe, Mackenzie Presbyterian Institute, São Paulo - 01302-907, Brazil
| |
Collapse
|
33
|
Qu J, Liu C, Zubair M, Zeng Z, Liu B, Yang X, Luo Z, Yi X, Chen Y, Chen S, Pan A. A universal growth method for high-quality phase-engineered germanium chalcogenide nanosheets. NANOSCALE 2023; 15:4438-4447. [PMID: 36752096 DOI: 10.1039/d2nr05657g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Low-dimensional group IV-VI metal chalcogenide-based semiconductors hold great promise for opto-electronic device applications owing to their diverse crystalline phases and intriguing properties related to thermoelectric and ferroelectric effects. Herein, we demonstrate a universal chemical vapor deposition (CVD) growth method to synthesize stable germanium chalcogenide-based (GeS, GeS2, GeSe, GeSe2) nanosheets, which increases the library of the p-type semiconductor. The phase transition between different crystalline polytypes can be deterministically controlled by hydrogen concentration in the reaction chamber. Structural characterization and synthesis experiments identify the behavior, where the higher hydrogen concentration promotes the transiton from germanium dichalcogenides to germanium monochalcogenides. The angle-polarized and temperature-dependent Raman spectra demonstrate the strong interlayer coupling and lattice orientation. Based on the optimized growth scheme and systematic comparison of electrical properties, GeSe nanosheet photodetectors were demonstrated, which exhibit superior device performance on SiO2/Si and HfO2/Si substrate with a high photoresponsivity up to 104 A W-1, fast response time less than 15 ms, and high mobility of 3.2 cm2 V-1 s-1, which is comparable to the mechanically exfoliated crystals. Our results manifest the hydrogen-mediated deposition strategy as a facile control knob to engineer crystalline phases of germanium chalcogenides for high performance optoelectronic devices.
Collapse
Affiliation(s)
- Junyu Qu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Chenxi Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Muhammad Zubair
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Zhouxiaosong Zeng
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Bo Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Xin Yang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Ziyu Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Xiao Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Ying Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha, 410082, China
| |
Collapse
|
34
|
Cimini C, Ramal-Sanchez M, Taraschi A, Della Pelle F, Scroccarello A, Belda-Perez R, Valbonetti L, Lanuti P, Marchisio M, D’Atri M, Ortolani C, Papa S, Capacchietti G, Bernabò N, Compagnone D, Barboni B. Catechin versus MoS 2 Nanoflakes Functionalized with Catechin: Improving the Sperm Fertilizing Ability-An In Vitro Study in a Swine Model. Int J Mol Sci 2023; 24:ijms24054788. [PMID: 36902221 PMCID: PMC10003105 DOI: 10.3390/ijms24054788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Nowadays, the adoption of In Vitro Fertilization (IVF) techniques is undergoing an impressive increase. In light of this, one of the most promising strategies is the novel use of non-physiological materials and naturally derived compounds for advanced sperm preparation methods. Here, sperm cells were exposed during capacitation to MoS2/Catechin nanoflakes and catechin (CT), a flavonoid with antioxidant properties, at concentrations of 10, 1, 0.1 ppm. The results showed no significant differences in terms of sperm membrane modifications or biochemical pathways among the groups, allowing the hypothesis that MoS2/CT nanoflakes do not induce any negative effect on the parameters evaluated related to sperm capacitation. Moreover, the addition of CT alone at a specific concentration (0.1 ppm) increased the spermatozoa fertilizing ability in an IVF assay by increasing the number of fertilized oocytes with respect to the control group. Our findings open interesting new perspectives regarding the use of catechins and new materials obtained using natural or bio compounds, which could be used to implement the current strategies for sperm capacitation.
Collapse
Affiliation(s)
- Costanza Cimini
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Marina Ramal-Sanchez
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angela Taraschi
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Flavio Della Pelle
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annalisa Scroccarello
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Ramses Belda-Perez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Luca Valbonetti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Mario D’Atri
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
- Sharp Solutions Software di D’Atri Mario, Via Udine, 2, Buttrio, 33042 Udine, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Giulia Capacchietti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Bernabò
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
- Correspondence:
| | - Dario Compagnone
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
35
|
Gao JF, Hou JF, Kong LB. Capacitive charge storage mechanism in sanmartinite to be determined by qualitative and quantitative electrochemical analysis. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Li Z, Rashvand F, Bretscher H, Szydłowska BM, Xiao J, Backes C, Rao A. Understanding the Photoluminescence Quenching of Liquid Exfoliated WS 2 Monolayers. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:21681-21688. [PMID: 36605783 PMCID: PMC9806825 DOI: 10.1021/acs.jpcc.2c05284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Monolayer transition metal dichalcogenides (TMDs) are being investigated as active materials in optoelectronic devices due to their strong excitonic effects. While mechanical exfoliation (ME) of monolayer TMDs is limited to small areas, these materials can also be exfoliated from their parent layered materials via high-volume liquid phase exfoliation (LPE). However, it is currently considered that LPE-synthesized materials show poor optoelectronic performance compared to ME materials, such as poor photoluminescence quantum efficiencies (PLQEs). Here we evaluate the photophysical properties of monolayer-enriched LPE WS2 dispersions via steady-state and time-resolved optical spectroscopy and benchmark these materials against untreated and chemically treated ME WS2 monolayers. We show that the LPE materials show features of high-quality semiconducting materials such as very small Stokes shift, smaller photoluminescence line widths, and longer exciton lifetimes than ME WS2. We reveal that the energy transfer between the direct-gap monolayers and in-direct gap few-layers in LPE WS2 dispersions is a major reason for their quenched PL. Our results suggest that LPE TMDs are not inherently highly defective and could have a high potential for optoelectronic device applications if improved strategies to purify the LPE materials and reduce aggregation could be implemented.
Collapse
Affiliation(s)
- Zhaojun Li
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE Cambridge, United Kingdom
- Molecular
and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Farnia Rashvand
- Institute
for Physical Chemistry, Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| | - Hope Bretscher
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE Cambridge, United Kingdom
| | - Beata M. Szydłowska
- Institute
for Physical Chemistry, Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| | - James Xiao
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE Cambridge, United Kingdom
| | - Claudia Backes
- Institute
for Physical Chemistry, Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| | - Akshay Rao
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE Cambridge, United Kingdom
| |
Collapse
|
37
|
Gaggiotti S, Scroccarello A, Della Pelle F, Ferraro G, Del Carlo M, Mascini M, Cichelli A, Compagnone D. An electronic nose based on 2D group VI transition metal dichalcogenides/organic compounds sensor array. Biosens Bioelectron 2022; 218:114749. [DOI: 10.1016/j.bios.2022.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022]
|
38
|
R. R, Prasannakumar AT, Mohan RR, V. M, Varma SJ. Advances in 2D Molybdenum Disulfide‐Based Functional Materials for Supercapacitor Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202203068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rohith. R.
- Materials for Energy Storage and Optoelectronic Devices Group Department of Physics Sanatana Dharma College University of Kerala Alappuzha Kerala 688003 India
- Research Centre University of Kerala Thiruvananthapuram Kerala 695034 India
| | - Anandhu Thejas Prasannakumar
- Materials for Energy Storage and Optoelectronic Devices Group Department of Physics Sanatana Dharma College University of Kerala Alappuzha Kerala 688003 India
- Research Centre University of Kerala Thiruvananthapuram Kerala 695034 India
| | - Ranjini R. Mohan
- Division for Research in Advanced Materials Department of Physics Cochin University of Science and Technology Kochi Kerala 688022 India
| | - Manju. V.
- Materials for Energy Storage and Optoelectronic Devices Group Department of Physics Sanatana Dharma College University of Kerala Alappuzha Kerala 688003 India
- Research Centre University of Kerala Thiruvananthapuram Kerala 695034 India
| | - Sreekanth J. Varma
- Materials for Energy Storage and Optoelectronic Devices Group Department of Physics Sanatana Dharma College University of Kerala Alappuzha Kerala 688003 India
- Research Centre University of Kerala Thiruvananthapuram Kerala 695034 India
| |
Collapse
|
39
|
Och M, Anastasiou K, Leontis I, Zemignani GZ, Palczynski P, Mostaed A, Sokolikova MS, Alexeev EM, Bai H, Tartakovskii AI, Lischner J, Nellist PD, Russo S, Mattevi C. Synthesis of mono- and few-layered n-type WSe 2 from solid state inorganic precursors. NANOSCALE 2022; 14:15651-15662. [PMID: 36189726 PMCID: PMC9631355 DOI: 10.1039/d2nr03233c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Tuning the charge transport properties of two-dimensional transition metal dichalcogenides (TMDs) is pivotal to their future device integration in post-silicon technologies. To date, co-doping of TMDs during growth still proves to be challenging, and the synthesis of doped WSe2, an otherwise ambipolar material, has been mainly limited to p-doping. Here, we demonstrate the synthesis of high-quality n-type monolayered WSe2 flakes using a solid-state precursor for Se, zinc selenide. n-Type transport has been reported with prime electron mobilities of up to 10 cm2 V-1 s-1. We also demonstrate the tuneability of doping to p-type transport with hole mobilities of 50 cm2 V-1 s-1 after annealing in air. n-Doping has been attributed to the presence of Zn adatoms on the WSe2 flakes as revealed by X-ray photoelectron spectroscopy (XPS), spatially resolved time of flight secondary ion mass spectroscopy (SIMS) and angular dark-field scanning transmission electron microscopy (AD-STEM) characterization of WSe2 flakes. Monolayer WSe2 flakes exhibit a sharp photoluminescence (PL) peak at room temperature and highly uniform emission across the entire flake area, indicating a high degree of crystallinity of the material. This work provides new insight into the synthesis of TMDs with charge carrier control, to pave the way towards post-silicon electronics.
Collapse
Affiliation(s)
- Mauro Och
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | | | - Ioannis Leontis
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Giulia Zoe Zemignani
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
- Center for Nano Science and Technology, Milan, Italy
| | - Pawel Palczynski
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Ali Mostaed
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | | | - Evgeny M Alexeev
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK
| | - Haoyu Bai
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | | | - Johannes Lischner
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
- Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Peter D Nellist
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | - Saverio Russo
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Cecilia Mattevi
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
40
|
A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Ren Z, Zhang Q, Li X, Guo L, Wu J, Li Y, Liu W, Li P, Fu Y, Ma J. Efficient Optical Modulation of Exciton State Population in Monolayer MoS 2 at Room Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3133. [PMID: 36144920 PMCID: PMC9505261 DOI: 10.3390/nano12183133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The modulation of exciton energy and state density of layer-structured transition metal dichalcogenides (TMDs) is required for diverse optoelectronic device applications. Here, the spontaneous inversion of exciton state population in monolayer MoS2 is observed by turning the pump light power. The excitons prefer to exist in low energy state under low pump power, but reverse under high pump power. To discuss the mechanism in depth, we propose a semiclassical model by combining the rate equation and photo-exciton interaction. Considering the modifying of exciton-exciton annihilation, the spontaneous inversion of exciton state population is phenomenologically described.
Collapse
Affiliation(s)
- Zeqian Ren
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, School of Physics and Electronic Engineering, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
| | - Qiwei Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, School of Physics and Electronic Engineering, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
| | - Xiu Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, School of Physics and Electronic Engineering, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
| | - Lixia Guo
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, School of Physics and Electronic Engineering, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
| | - Jizhou Wu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, School of Physics and Electronic Engineering, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yuqing Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, School of Physics and Electronic Engineering, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Wenliang Liu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, School of Physics and Electronic Engineering, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Peng Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, School of Physics and Electronic Engineering, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
| | - Yongming Fu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, School of Physics and Electronic Engineering, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
| | - Jie Ma
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, School of Physics and Electronic Engineering, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
42
|
Zhu Y, Zhao W, Jing B, Zhou J, Cai B, Li D, Ao Z. Density functional theory calculations on 2H-MoS2 monolayer for HCHO degradation: Piezoelectric-photocatalytic synergy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Tajik S, Dourandish Z, Nejad FG, Beitollahi H, Jahani PM, Di Bartolomeo A. Transition metal dichalcogenides: Synthesis and use in the development of electrochemical sensors and biosensors. Biosens Bioelectron 2022; 216:114674. [DOI: 10.1016/j.bios.2022.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/14/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
|
44
|
Mattinen M, Gity F, Coleman E, Vonk JFA, Verheijen MA, Duffy R, Kessels WMM, Bol AA. Atomic Layer Deposition of Large-Area Polycrystalline Transition Metal Dichalcogenides from 100 °C through Control of Plasma Chemistry. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7280-7292. [PMID: 36032554 PMCID: PMC9404538 DOI: 10.1021/acs.chemmater.2c01154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional transition metal dichalcogenides, such as MoS2, are intensely studied for applications in electronics. However, the difficulty of depositing large-area films of sufficient quality under application-relevant conditions remains a major challenge. Herein, we demonstrate deposition of polycrystalline, wafer-scale MoS2, TiS2, and WS2 films of controlled thickness at record-low temperatures down to 100 °C using plasma-enhanced atomic layer deposition. We show that preventing excess sulfur incorporation from H2S-based plasma is the key to deposition of crystalline films, which can be achieved by adding H2 to the plasma feed gas. Film composition, crystallinity, growth, morphology, and electrical properties of MoS x films prepared within a broad range of deposition conditions have been systematically characterized. Film characteristics are correlated with results of field-effect transistors based on MoS2 films deposited at 100 °C. The capability to deposit MoS2 on poly(ethylene terephthalate) substrates showcases the potential of our process for flexible devices. Furthermore, the composition control achieved by tailoring plasma chemistry is relevant for all low-temperature plasma-enhanced deposition processes of metal chalcogenides.
Collapse
Affiliation(s)
- Miika Mattinen
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Farzan Gity
- Tyndall
National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland
| | - Emma Coleman
- Tyndall
National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland
| | - Joris F. A. Vonk
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marcel A. Verheijen
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Eurofins
Materials Science Netherlands, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Ray Duffy
- Tyndall
National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland
| | - Wilhelmus M. M. Kessels
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ageeth A. Bol
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department
of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
45
|
Zhu H, Shen Y, Fang Q, Yang X, Chen L, Xu S. GaN/MgI 2 van der Waals heterostructure: a two-factor tunable photocatalyst for hydrogen evolution. Phys Chem Chem Phys 2022; 24:15075-15082. [PMID: 35696996 DOI: 10.1039/d2cp01456d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the increasing environmental pollution and energy crisis, it is significant to develop environmentally friendly and adjustable photocatalysts for water splitting. Here we explored the optoelectronic properties of several H-GaN/MgI2 vdW heterostructures by regulating different polarization surfaces and numbers of GaN layers. Our results demonstrate that all structures, except 2L-Ga-GaN/MgI2, exhibit excellent physical stability. Moreover, the band structures and band edge positions demonstrate that only the heterostructure of 3L-Ga-GaN/MgI2 with both suitable band alignment (type-II) and an acceptable band gap (∼1.92 eV) is most satisfactory for water splitting. Additionally, the absorption coefficient of the 3L-Ga-GaN/MgI2 heterostructure can reach over ∼105 cm-1, which has further confirmed its excellent advantage in photocatalysis. Finally, in the case of 6% external strain for the 3L-Ga-GaN/MgI2 heterostructure, a rollover in band alignment (from type-II to type-I) is exhibited. These promising features of the GaN/MgI2 vdW heterostructure give a new paradigm for developing novel efficient and adjustable photocatalytic water-splitting materials.
Collapse
Affiliation(s)
- Hua Zhu
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Yang Shen
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Qianglong Fang
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Xiaodong Yang
- Key Laboratory of Ecophysics and Department of Physics, Shihezi University, Xinjiang 832003, China.
| | - Liang Chen
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Shiqing Xu
- Institute of Optoelectronics Technology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
46
|
Karim Darboe A, Qi X, Gong X, Peng Q, Chen Y, Xie R, Zhong W, Wu G. Constructing MoSe 2/MoS 2 and MoS 2/MoSe 2 inner and outer-interchangeable flower-like heterojunctions: A combined strategy of interface polarization and morphology configuration to optimize microwave absorption performance. J Colloid Interface Sci 2022; 624:204-218. [PMID: 35660889 DOI: 10.1016/j.jcis.2022.05.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Interfacial polarization and geometrical morphology play a significant role in the attenuation of electromagnetic (EM) wave. Herein, the two-dimensional (2D)/2D heterojunction with flower-like geometrical morphology is proposed and produced, which may simultaneously provide a large contact area for achieving strong interfacial polarization and activates more sites for the possible multiple EM wave reflection and scattering. By adopting a simple two-step hydrothermal method, MoSe2/MoS2and MoS2/MoSe2 inner and outer-interchangeable heterojunctions consisting of 2D MoSe2 and MoS2 nanosheets with flower-like geometrical morphology were successfully synthesized. The results revealed that the hydrothermal temperatures significantly impacted the flower-like geometrical morphology and MoS2 content. By optimizing the microstructures, the designed MoSe2/MoS2 and MoS2/MoSe2 heterojunctions presented enhanced comprehensive EM wave absorption properties (EMWAPs), possessing strong absorption capability, wide absorption bandwidth and thin matching thicknesses. Generally, this work demonstrates that the optimized EMWAPs of designed heterojunctions mainly originate from the special interfaces and morphology configuration, which also paves a new way for the designing and synthesis of transition metal dichalcogenides-based heterojunction as a novel and desirable candidate for high-performance microwave absorbers.
Collapse
Affiliation(s)
- Abdou Karim Darboe
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China; Department of Physics, Division of Physical and Natural Sciences, School of Arts and Sciences. University of The Gambia, Kanifing P O Box 3530, The Gambia
| | - Xiaosi Qi
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China; National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, People's Republic of China.
| | - Xiu Gong
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China
| | - Qiong Peng
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China
| | - Yanli Chen
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China
| | - Ren Xie
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China
| | - Wei Zhong
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, People's Republic of China.
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
47
|
Enhanced Optical Response of Zinc-Doped Tin Disulfide Layered Crystals Grown with the Chemical Vapor Transport Method. NANOMATERIALS 2022; 12:nano12091442. [PMID: 35564152 PMCID: PMC9105956 DOI: 10.3390/nano12091442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022]
Abstract
Tin disulfide (SnS2) is a promising semiconductor for use in nanoelectronics and optoelectronics. Doping plays an essential role in SnS2 applications, because it can increase the functionality of SnS2 by tuning its original properties. In this study, the effect of zinc (Zn) doping on the photoelectric characteristics of SnS2 crystals was explored. The chemical vapor transport method was adopted to grow pristine and Zn-doped SnS2 crystals. Scanning electron microscopy images indicated that the grown SnS2 crystals were layered materials. The ratio of the normalized photocurrent of the Zn-doped specimen to that of the pristine specimen increased with an increasing illumination frequency, reaching approximately five at 104 Hz. Time-resolved photocurrent measurements revealed that the Zn-doped specimen had shorter rise and fall times and a higher current amplitude than the pristine specimen. The photoresponsivity of the specimens increased with an increasing bias voltage or decreasing laser power. The Zn-doped SnS2 crystals had 7.18 and 3.44 times higher photoresponsivity, respectively, than the pristine crystals at a bias voltage of 20 V and a laser power of 4 × 10−8 W. The experimental results of this study indicate that Zn doping markedly enhances the optical response of SnS2 layered crystals.
Collapse
|
48
|
Peña Román RJ, Auad Y, Grasso L, Padilha LA, Alvarez F, Barcelos ID, Kociak M, Zagonel LF. Design and implementation of a device based on an off-axis parabolic mirror to perform luminescence experiments in a scanning tunneling microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:043704. [PMID: 35489916 DOI: 10.1063/5.0078423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
We present the design, implementation, and illustrative results of a light collection/injection strategy based on an off-axis parabolic mirror collector for a low-temperature Scanning Tunneling Microscope (STM). This device allows us to perform STM induced Light Emission (STM-LE) and Cathodoluminescence (STM-CL) experiments and in situ Photoluminescence (PL) and Raman spectroscopy as complementary techniques. Considering the Étendue conservation and using an off-axis parabolic mirror, it is possible to design a light collection and injection system that displays 72% of collection efficiency (considering the hemisphere above the sample surface) while maintaining high spectral resolution and minimizing signal loss. The performance of the STM is tested by atomically resolved images and scanning tunneling spectroscopy results on standard sample surfaces. The capabilities of our system are demonstrated by performing STM-LE on metallic surfaces and two-dimensional semiconducting samples, observing both plasmonic and excitonic emissions. In addition, we carried out in situ PL measurements on semiconducting monolayers and quantum dots and in situ Raman on graphite and hexagonal boron nitride (h-BN) samples. Additionally, STM-CL and PL were obtained on monolayer h-BN gathering luminescence spectra that are typically associated with intragap states related to carbon defects. The results show that the flexible and efficient light injection and collection device based on an off-axis parabolic mirror is a powerful tool to study several types of nanostructures with multiple spectroscopic techniques in correlation with their morphology at the atomic scale and electronic structure.
Collapse
Affiliation(s)
- Ricardo Javier Peña Román
- "Gleb Wataghin" Institute of Physics, University of Campinas-UNICAMP, 13083-859 Campinas, SP, Brazil
| | - Yves Auad
- "Gleb Wataghin" Institute of Physics, University of Campinas-UNICAMP, 13083-859 Campinas, SP, Brazil
| | - Lucas Grasso
- "Gleb Wataghin" Institute of Physics, University of Campinas-UNICAMP, 13083-859 Campinas, SP, Brazil
| | - Lazaro A Padilha
- "Gleb Wataghin" Institute of Physics, University of Campinas-UNICAMP, 13083-859 Campinas, SP, Brazil
| | - Fernando Alvarez
- "Gleb Wataghin" Institute of Physics, University of Campinas-UNICAMP, 13083-859 Campinas, SP, Brazil
| | - Ingrid David Barcelos
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, SP, Brazil
| | - Mathieu Kociak
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Luiz Fernando Zagonel
- "Gleb Wataghin" Institute of Physics, University of Campinas-UNICAMP, 13083-859 Campinas, SP, Brazil
| |
Collapse
|
49
|
Optical Response of CVD-Grown ML-WS2 Flakes on an Ultra-Dense Au NP Plasmonic Array. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The combination of metallic nanostructures with two-dimensional transition metal dichalcogenides is an efficient way to make the optical properties of the latter more appealing for opto-electronic applications. In this work, we investigate the optical properties of monolayer WS2 flakes grown by chemical vapour deposition and transferred onto a densely-packed array of plasmonic Au nanoparticles (NPs). The optical response was measured as a function of the thickness of a dielectric spacer intercalated between the two materials and of the system temperature, in the 75–350 K range. We show that a weak interaction is established between WS2 and Au NPs, leading to temperature- and spacer-thickness-dependent coupling between the localized surface plasmon resonance of Au NPs and the WS2 exciton. We suggest that the closely-packed morphology of the plasmonic array promotes a high confinement of the electromagnetic field in regions inaccessible by the WS2 deposited on top. This allows the achievement of direct contact between WS2 and Au while preserving a strong connotation of the properties of the two materials also in the hybrid system.
Collapse
|
50
|
Qorbani M, Sabbah A, Lai YR, Kholimatussadiah S, Quadir S, Huang CY, Shown I, Huang YF, Hayashi M, Chen KH, Chen LC. Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe 2 photocatalyst. Nat Commun 2022; 13:1256. [PMID: 35273184 PMCID: PMC8913837 DOI: 10.1038/s41467-022-28926-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Ascertaining the function of in-plane intrinsic defects and edge atoms is necessary for developing efficient low-dimensional photocatalysts. We report the wireless photocatalytic CO2 reduction to CH4 over reconstructed edge atoms of monolayer 2H-WSe2 artificial leaves. Our first-principles calculations demonstrate that reconstructed and imperfect edge configurations enable CO2 binding to form linear and bent molecules. Experimental results show that the solar-to-fuel quantum efficiency is a reciprocal function of the flake size. It also indicates that the consumed electron rate per edge atom is two orders of magnitude larger than the in-plane intrinsic defects. Further, nanoscale redox mapping at the monolayer WSe2-liquid interface confirms that the edge is the most preferred region for charge transfer. Our results pave the way for designing a new class of monolayer transition metal dichalcogenides with reconstructed edges as a non-precious co-catalyst for wired or wireless hydrogen evolution or CO2 reduction reactions.
Collapse
Affiliation(s)
- Mohammad Qorbani
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Amr Sabbah
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- On leave from Tabbin Institute for Metallurgical Studies, Tabbin, Helwan 109, Cairo, 11421, Egypt
| | - Ying-Ren Lai
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Septia Kholimatussadiah
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
- Nano Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
| | - Shaham Quadir
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Physics, National Central University, Taoyuan City, 32001, Taiwan
| | - Chih-Yang Huang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Indrajit Shown
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Chemistry, Hindustan Institute of Technology and Science, Chennai, 603103, India
| | - Yi-Fan Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Michitoshi Hayashi
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuei-Hsien Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan.
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan.
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|