1
|
Palmer CR, Pastora LE, Kimmel BR, Pagendarm HM, Kwiatkowski AJ, Stone PT, Arora K, Francini N, Fedorova O, Pyle AM, Wilson JT. Covalent Polymer-RNA Conjugates for Potent Activation of the RIG-I Pathway. Adv Healthc Mater 2025; 14:e2303815. [PMID: 38648653 PMCID: PMC11493851 DOI: 10.1002/adhm.202303815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/13/2024] [Indexed: 04/25/2024]
Abstract
RNA ligands of retinoic acid-inducible gene I (RIG-I) are a promising class of oligonucleotide therapeutics with broad potential as antiviral agents, vaccine adjuvants, and cancer immunotherapies. However, their translation has been limited by major drug delivery barriers, including poor cellular uptake, nuclease degradation, and an inability to access the cytosol where RIG-I is localized. Here this challenge is addressed by engineering nanoparticles that harness covalent conjugation of 5'-triphospate RNA (3pRNA) to endosome-destabilizing polymers. Compared to 3pRNA loaded into analogous nanoparticles via electrostatic interactions, it is found that covalent conjugation of 3pRNA improves loading efficiency, enhances immunostimulatory activity, protects against nuclease degradation, and improves serum stability. Additionally, it is found that 3pRNA could be conjugated via either a disulfide or thioether linkage, but that the latter is only permissible if conjugated distal to the 5'-triphosphate group. Finally, administration of 3pRNA-polymer conjugates to mice significantly increases type-I interferon levels relative to analogous carriers that use electrostatic 3pRNA loading. Collectively, these studies have yielded a next-generation polymeric carrier for in vivo delivery of 3pRNA, while also elucidating new chemical design principles for covalent conjugation of 3pRNA with potential to inform the further development of therapeutics and delivery technologies for pharmacological activation of RIG-I.
Collapse
Affiliation(s)
- Christian R. Palmer
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Lucinda E. Pastora
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Blaise R. Kimmel
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Hayden M. Pagendarm
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | | | - Payton T. Stone
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Karan Arora
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Nora Francini
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Olga Fedorova
- Department of MolecularCellular and Developmental BiologyYale UniversityNew HavenCT06511USA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
| | - Anna M. Pyle
- Department of MolecularCellular and Developmental BiologyYale UniversityNew HavenCT06511USA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
- Department of ChemistryYale UniversityNew HavenCT06511USA
| | - John T. Wilson
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTN37235USA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTN37235USA
- Department of PathologyMicrobiologyand ImmunologyVanderbilt University Medical CenterNashvilleTN37232USA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTN37232USA
| |
Collapse
|
2
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
3
|
Wang-Bishop L, Wehbe M, Pastora LE, Yang J, Kimmel BR, Garland KM, Becker KW, Carson CS, Roth EW, Gibson-Corley KN, Ulkoski D, Krishnamurthy V, Fedorova O, Richmond A, Pyle AM, Wilson JT. Nanoparticle Retinoic Acid-Inducible Gene I Agonist for Cancer Immunotherapy. ACS NANO 2024; 18:11631-11643. [PMID: 38652829 PMCID: PMC11080455 DOI: 10.1021/acsnano.3c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Pharmacological activation of the retinoic acid-inducible gene I (RIG-I) pathway holds promise for increasing tumor immunogenicity and improving the response to immune checkpoint inhibitors (ICIs). However, the potency and clinical efficacy of 5'-triphosphate RNA (3pRNA) agonists of RIG-I are hindered by multiple pharmacological barriers, including poor pharmacokinetics, nuclease degradation, and inefficient delivery to the cytosol where RIG-I is localized. Here, we address these challenges through the design and evaluation of ionizable lipid nanoparticles (LNPs) for the delivery of 3p-modified stem-loop RNAs (SLRs). Packaging of SLRs into LNPs (SLR-LNPs) yielded surface charge-neutral nanoparticles with a size of ∼100 nm that activated RIG-I signaling in vitro and in vivo. SLR-LNPs were safely administered to mice via both intratumoral and intravenous routes, resulting in RIG-I activation in the tumor microenvironment (TME) and the inhibition of tumor growth in mouse models of poorly immunogenic melanoma and breast cancer. Significantly, we found that systemic administration of SLR-LNPs reprogrammed the breast TME to enhance the infiltration of CD8+ and CD4+ T cells with antitumor function, resulting in enhanced response to αPD-1 ICI in an orthotopic EO771 model of triple-negative breast cancer. Therapeutic efficacy was further demonstrated in a metastatic B16.F10 melanoma model, with systemically administered SLR-LNPs significantly reducing lung metastatic burden compared to combined αPD-1 + αCTLA-4 ICI. Collectively, these studies have established SLR-LNPs as a translationally promising immunotherapeutic nanomedicine for potent and selective activation of RIG-I with the potential to enhance response to ICIs and other immunotherapeutic modalities.
Collapse
Affiliation(s)
- Lihong Wang-Bishop
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Mohamed Wehbe
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Lucinda E. Pastora
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jinming Yang
- Department
of Pharmacology, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Department
of Veterans Affairs, Tennessee Valley Healthcare
System, Nashville, Tennessee 37212, United States
| | - Blaise R. Kimmel
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Kyle M. Garland
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Kyle W. Becker
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Carcia S. Carson
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Eric W. Roth
- Northwestern
University Atomic and Nanoscale Characterization Experimental (NUANCE)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine N. Gibson-Corley
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Medicine, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - David Ulkoski
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Venkata Krishnamurthy
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Olga Fedorova
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
- Howard
Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Ann Richmond
- Department
of Pharmacology, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Department
of Veterans Affairs, Tennessee Valley Healthcare
System, Nashville, Tennessee 37212, United States
| | - Anna Marie Pyle
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
- Howard
Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - John T. Wilson
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Vanderbilt
Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt
Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Ingram Cancer Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
4
|
Hsia T, Chen Y. RNA-encapsulating lipid nanoparticles in cancer immunotherapy: From pre-clinical studies to clinical trials. Eur J Pharm Biopharm 2024; 197:114234. [PMID: 38401743 DOI: 10.1016/j.ejpb.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanoparticle-based delivery systems such as RNA-encapsulating lipid nanoparticles (RNA LNPs) have dramatically advanced in function and capacity over the last few decades. RNA LNPs boast of a diverse array of external and core configurations that enhance targeted delivery and prolong circulatory retention, advancing therapeutic outcomes. Particularly within the realm of cancer immunotherapies, RNA LNPs are increasingly gaining prominence. Pre-clinical in vitro and in vivo studies have laid a robust foundation for new and ongoing clinical trials that are actively enrolling patients for RNA LNP cancer immunotherapy. This review explores RNA LNPs, starting from their core composition to their external membrane formulation, set against a backdrop of recent clinical breakthroughs. We further elucidate the LNP delivery avenues, broach the prevailing challenges, and contemplate the future perspectives of RNA LNP-mediated immunotherapy.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
5
|
Girma A, Mebratie G, Alamnie G, Bekele T. Advances With Selected Nanostructured Materials in Health Care. REFERENCE MODULE IN MATERIALS SCIENCE AND MATERIALS ENGINEERING 2024. [DOI: 10.1016/b978-0-323-95486-0.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
6
|
Xu W, Liu W, Yang J, Lu J, Zhang H, Ye D. Stimuli-responsive nanodelivery systems for amplifying immunogenic cell death in cancer immunotherapy. Immunol Rev 2024; 321:181-198. [PMID: 37403660 DOI: 10.1111/imr.13237] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Immunogenic cell death (ICD) is a special pattern of tumor cell death, enabling to elicit tumor-specific immune response via the release of damage-associated molecular patterns and tumor-associated antigens in the tumor microenvironment. ICD-induced immunotherapy holds the promise for completely eliminating tumors and long-term protective antitumor immune response. Increasing ICD inducers have been discovered for boosting antitumor immunity via evoking ICD. Nonetheless, the utilization of ICD inducers remains insufficient owing to serious toxic reactions, low localization efficiency within the tumor microenvironmental niche, etc. For overcoming such limitations, stimuli-responsive multifunctional nanoparticles or nanocomposites with ICD inducers have been developed for improving immunotherapeutic efficiency via lowering toxicity, which represent a prospective scheme for fostering the utilization of ICD inducers in immunotherapy. This review outlines the advances in near-infrared (NIR)-, pH-, redox-, pH- and redox-, or NIR- and tumor microenvironment-responsive nanodelivery systems for ICD induction. Furthermore, we discuss their clinical translational potential. The progress of stimuli-responsive nanoparticles in clinical settings depends upon the development of biologically safer drugs tailored to patient needs. Moreover, an in-depth comprehending of ICD biomarkers, immunosuppressive microenvironment, and ICD inducers may accelerate the advance in smarter multifunctional nanodelivery systems to further amplify ICD.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Wangrui Liu
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Yang
- Department of Surgery, ShangNan Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahe Lu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| |
Collapse
|
7
|
Garland KM, Kwiatkowski AJ, Tossberg JT, Crooke PS, Aune TM, Wilson JT. Nanoparticle Delivery of Immunostimulatory Alu RNA for Cancer Immunotherapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:1800-1809. [PMID: 37691856 PMCID: PMC10487107 DOI: 10.1158/2767-9764.crc-22-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
It was recently found that patients with relapsing remitting multiple sclerosis exhibit widespread loss of adenosine-to-inosine (A-to-I) RNA editing, which contributes to the accumulation of immunostimulatory double-stranded Alu RNA in circulating leukocytes and an attendant increase in levels of proinflammatory cytokines (e.g., type I IFNs). A specific Alu RNA (i.e., AluJb RNA) was implicated in activating multiple RNA-sensing pathways and found to be a potent innate immune agonist. Here, we have performed a bioinformatic analysis of A-to-I RNA editing in human melanoma samples and determined that pre-therapy levels of A-to-I RNA editing negatively correlate with survival times, suggesting that an accumulation of endogenous double-stranded Alu RNA might contribute to cancer patient survival. Furthermore, we demonstrated that immunostimulatory Alu RNA can be leveraged pharmacologically for cancer immunotherapy. AluJb RNA was in vitro transcribed and then formulated with endosome-destabilizing polymer nanoparticles to improve intracellular delivery of the RNA and enable activation of RNA-sensing pathways. AluJb RNA/polymer complexes (i.e., Alu-NPs) were engineered to form colloidally stable nanoparticles that exhibited immunostimulatory activity in vitro and in vivo. Finally, the therapeutic potential of Alu-NPs for the treatment of cancer was demonstrated by attenuated tumor growth and prolonged survival in the B16.F10 murine melanoma tumor model. Thus, these data collectively implicate intratumoral Alu RNA as a potentiator of antitumor innate immunity and identify AluJb RNA as a novel nucleic acid immunotherapeutic for cancer. Significance Loss of A-to-I editing leads to accumulation of unedited Alu RNAs that activate innate immunity via RNA-sensing pattern recognition receptors. When packaged into endosome-releasing polymer nanoparticles, AluJB RNA becomes highly immunostimulatory and can be used pharmacologically to inhibit tumor growth in mouse melanoma models. These findings identify Alu RNAs as a new class of nucleic acid innate immune agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Kyle M. Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Alexander J. Kwiatkowski
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - John T. Tossberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Philip S. Crooke
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee
| | - Thomas M. Aune
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
8
|
Yang W, Mixich L, Boonstra E, Cabral H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 2023; 12:e2202688. [PMID: 36785927 PMCID: PMC11469255 DOI: 10.1002/adhm.202202688] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Messenger RNA (mRNA)-based therapies offer great promise for the treatment of a variety of diseases. In 2020, two FDA approvals of mRNA-based vaccines have elevated mRNA vaccines to global recognition. However, the therapeutic capabilities of mRNA extend far beyond vaccines against infectious diseases. They hold potential for cancer vaccines, protein replacement therapies, gene editing therapies, and immunotherapies. For realizing such advanced therapies, it is crucial to develop effective carrier systems. Recent advances in materials science have led to the development of promising nonviral mRNA delivery systems. In comparison to other carriers like lipid nanoparticles, polymer-based delivery systems often receive less attention, despite their unique ability to carefully tune their chemical features to promote mRNA protection, their favorable pharmacokinetics, and their potential for targeting delivery. In this review, the central features of polymer-based systems for mRNA delivery highlighting the molecular design criteria, stability, and biodistribution are discussed. Finally, the role of targeting ligands for the future of RNA therapies is analyzed.
Collapse
Affiliation(s)
- Wenqian Yang
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Lucas Mixich
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Eger Boonstra
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Horacio Cabral
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| |
Collapse
|
9
|
Zheng J, Shi W, Yang Z, Chen J, Qi A, Yang Y, Deng Y, Yang D, Song N, Song B, Luo D. RIG-I-like receptors: Molecular mechanism of activation and signaling. Adv Immunol 2023; 158:1-74. [PMID: 37453753 DOI: 10.1016/bs.ai.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During RNA viral infection, RIG-I-like receptors (RLRs) recognize the intracellular pathogenic RNA species derived from viral replication and activate antiviral innate immune response by stimulating type 1 interferon expression. Three RLR members, namely, RIG-I, MDA5, and LGP2 are homologous and belong to a subgroup of superfamily 2 Helicase/ATPase that is preferably activated by double-stranded RNA. RLRs are significantly different in gene architecture, RNA ligand preference, activation, and molecular functions. As switchable macromolecular sensors, RLRs' activities are tightly regulated by RNA ligands, ATP, posttranslational modifications, and cellular cofactors. We provide a comprehensive review of the structure and function of the RLRs and summarize the molecular understanding of sensing and signaling events during the RLR activation process. The key roles RLR signaling play in both anti-infection and immune disease conditions highlight the therapeutic potential in targeting this important molecular pathway.
Collapse
Affiliation(s)
- Jie Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wenjia Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yulin Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongyuan Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
10
|
Li L, Lv L, Xu JC, He Q, Chang N, Cui YY, Tao ZC, Zhu T, Qian LT. RIG-I Promotes Tumorigenesis and Confers Radioresistance of Esophageal Squamous Cell Carcinoma by Regulating DUSP6. Int J Mol Sci 2023; 24:ijms24065586. [PMID: 36982663 PMCID: PMC10052926 DOI: 10.3390/ijms24065586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
We investigated the expression and biological function of retinoic acid inducible gene I (RIG-I) in esophageal squamous cell carcinoma (ESCC). Materials and methods: An immunohistochemical analysis was performed on 86 pairs of tumor tissue and adjacent normal tissue samples of patients with ESCC. We generated RIG-I-overexpressing ESCC cell lines KYSE70 and KYSE450, and RIG-I- knockdown cell lines KYSE150 and KYSE510. Cell viability, migration and invasion, radioresistance, DNA damage, and cell cycle were evaluated using CCK-8, wound-healing and transwell assay, colony formation, immunofluorescence, and flow cytometry and Western blotting, respectively. RNA sequencing was performed to determine the differential gene expression between controls and RIG-I knockdown. Tumor growth and radioresistance were assessed in nude mice using xenograft models. RIG-I expression was higher in ESCC tissues compared with that in matched non-tumor tissues. RIG-I overexpressing cells had a higher proliferation rate than RIG-I knockdown cells. Moreover, the knockdown of RIG-I slowed migration and invasion rates, whereas the overexpression of RIG-I accelerated migration and invasion rates. RIG-I overexpression induced radioresistance and G2/M phase arrest and reduced DNA damage after exposure to ionizing radiations compared with controls; however, it silenced the RIG-I enhanced radiosensitivity and DNA damage, and reduced the G2/M phase arrest. RNA sequencing revealed that the downstream genes DUSP6 and RIG-I had the same biological function; silencing DUSP6 can reduce the radioresistance caused by the overexpression of RIG-I. RIG-I knockdown depleted tumor growth in vivo, and radiation exposure effectively delayed the growth of xenograft tumors compared with the control group. RIG-I enhances the progression and radioresistance of ESCC; therefore, it may be a new potential target for ESCC-targeted therapy.
Collapse
Affiliation(s)
- Lu Li
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lei Lv
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Jun-Chao Xu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qing He
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Na Chang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Ya-Yun Cui
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Zhen-Chao Tao
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Tao Zhu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (T.Z.); (L.-T.Q.)
| | - Li-Ting Qian
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
- Correspondence: (T.Z.); (L.-T.Q.)
| |
Collapse
|
11
|
Jiang Y, Zhang H, Wang J, Chen J, Guo Z, Liu Y, Hua H. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. J Hematol Oncol 2023; 16:8. [PMID: 36755342 PMCID: PMC9906624 DOI: 10.1186/s13045-023-01405-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
RIG-I-like receptors (RLRs) are intracellular pattern recognition receptors that detect viral or bacterial infection and induce host innate immune responses. The RLRs family comprises retinoic acid-inducible gene 1 (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) that have distinctive features. These receptors not only recognize RNA intermediates from viruses and bacteria, but also interact with endogenous RNA such as the mislocalized mitochondrial RNA, the aberrantly reactivated repetitive or transposable elements in the human genome. Evasion of RLRs-mediated immune response may lead to sustained infection, defective host immunity and carcinogenesis. Therapeutic targeting RLRs may not only provoke anti-infection effects, but also induce anticancer immunity or sensitize "immune-cold" tumors to immune checkpoint blockade. In this review, we summarize the current knowledge of RLRs signaling and discuss the rationale for therapeutic targeting RLRs in cancer. We describe how RLRs can be activated by synthetic RNA, oncolytic viruses, viral mimicry and radio-chemotherapy, and how the RNA agonists of RLRs can be systemically delivered in vivo. The integration of RLRs agonism with RNA interference or CAR-T cells provides new dimensions that complement cancer immunotherapy. Moreover, we update the progress of recent clinical trials for cancer therapy involving RLRs activation and immune modulation. Further studies of the mechanisms underlying RLRs signaling will shed new light on the development of cancer therapeutics. Manipulation of RLRs signaling represents an opportunity for clinically relevant cancer therapy. Addressing the challenges in this field will help develop future generations of cancer immunotherapy.
Collapse
Affiliation(s)
- Yangfu Jiang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongying Zhang
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinzhu Chen
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyu Guo
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Jiang M, Qin B, Li X, Liu Y, Guan G, You J. New advances in pharmaceutical strategies for sensitizing anti-PD-1 immunotherapy and clinical research. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1837. [PMID: 35929522 DOI: 10.1002/wnan.1837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 01/31/2023]
Abstract
Attempts have been made continuously to use nano-drug delivery system (NDDS) to improve the effect of antitumor therapy. In recent years, especially in the application of immunotherapy represented by antiprogrammed death receptor 1 (anti-PD-1), it has been vigorously developed. Nanodelivery systems are significantly superior in a number of aspects including increasing the solubility of insoluble drugs, enhancing their targeting ability, prolonging their half-life, and reducing side effects. It can not only directly improve the efficacy of anti-PD-1 immunotherapy, but also indirectly enhance the antineoplastic efficacy of immunotherapy by boosting the effectiveness of therapeutic modalities such as chemotherapy, radiotherapy, photothermal, and photodynamic therapy (PTT/PDT). Here, we summarize the studies published in recent years on the use of nanotechnology in pharmaceutics to improve the efficacy of anti-PD-1 antibodies, analyze their characteristics and shortcomings, and combine with the current clinical research on anti-PD-1 antibodies to provide a reference for the design of future nanocarriers, so as to further expand the clinical application prospects of NDDSs. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guannan Guan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Sim TM. Nanoparticle-assisted targeting of the tumour microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Deng Y, Fu H, Han X, Li Y, Zhao W, Zhao X, Yu C, Guo W, Lei K, Wang T. Activation of DDX58/RIG‑I suppresses the growth of tumor cells by inhibiting STAT3/CSE signaling in colon cancer. Int J Oncol 2022; 61:120. [PMID: 36004488 PMCID: PMC9450811 DOI: 10.3892/ijo.2022.5410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/27/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yuying Deng
- Biopharmaceutical Department, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Han Fu
- Biopharmaceutical Department, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xue Han
- Biopharmaceutical Department, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yuxi Li
- Biopharmaceutical Department, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Wei Zhao
- Biopharmaceutical Department, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xuening Zhao
- Biopharmaceutical Department, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Chunxue Yu
- Biopharmaceutical Department, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Wenqing Guo
- Biopharmaceutical Department, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Kaijian Lei
- Biopharmaceutical Department, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Tianxiao Wang
- Biopharmaceutical Department, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
15
|
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. NANO CONVERGENCE 2022; 9:21. [PMID: 35569081 PMCID: PMC9108129 DOI: 10.1186/s40580-022-00313-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Innovations in nanomedicine has guided the improved outcomes for cancer diagnosis and therapy. However, frequent use of nanomaterials remains challenging due to specific limitations like non-targeted distribution causing low signal-to-noise ratio for diagnostics, complex fabrication, reduced-biocompatibility, decreased photostability, and systemic toxicity of nanomaterials within the body. Thus, better nanomaterial-systems with controlled physicochemical and biological properties, form the need of the hour. In this context, smart nanomaterials serve as promising solution, as they can be activated under specific exogenous or endogenous stimuli such as pH, temperature, enzymes, or a particular biological molecule. The properties of smart nanomaterials make them ideal candidates for various applications like biosensors, controlled drug release, and treatment of various diseases. Recently, smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods. In cancer therapy, the smart nanomaterials-system only activates in response to tumor microenvironment (TME) and remains in deactivated state in normal cells, which further reduces the side-effects and systemic toxicities. Thus, the present review aims to describe the stimulus-based classification of smart nanomaterials, tumor microenvironment-responsive behaviour, and their up-to-date applications in cancer theranostics. Besides, present review addresses the development of various smart nanomaterials and their advantages for diagnosing and treating cancer. Here, we also discuss about the drug targeting and sustained drug release from nanocarriers, and different types of nanomaterials which have been engineered for this intent. Additionally, the present challenges and prospects of nanomaterials in effective cancer diagnosis and therapeutics have been discussed.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ayush Sharma
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Joel Saji
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India.
| |
Collapse
|
16
|
Carson CS, Becker KW, Garland KM, Pagendarm HM, Stone PT, Arora K, Wang-Bishop L, Baljon JJ, Cruz LD, Joyce S, Wilson JT. A nanovaccine for enhancing cellular immunity via cytosolic co-delivery of antigen and polyIC RNA. J Control Release 2022; 345:354-370. [PMID: 35301055 PMCID: PMC9133199 DOI: 10.1016/j.jconrel.2022.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022]
Abstract
Traditional approaches to cancer vaccines elicit weak CD8+ T cell responses and have largely failed to meet clinical expectations. This is in part due to inefficient antigen cross-presentation, inappropriate selection of adjuvant and its formulation, poor vaccine pharmacokinetics, and/or suboptimal coordination of antigen and adjuvant delivery. Here, we describe a nanoparticle vaccine platform for facile co-loading and dual-delivery of antigens and nucleic acid adjuvants that elicits robust antigen-specific cellular immune responses. The nanovaccine design is based on diblock copolymers comprising a poly(ethylene glycol)-rich first block that is functionalized with reactive moieties for covalent conjugation of antigen via disulfide linkages, and a pH-responsive second block for electrostatic packaging of nucleic acids that also facilitates endosomal escape of associated vaccine cargo to the cytosol. Using polyIC, a clinically-advanced nucleic acid adjuvant, we demonstrated that endosomolytic nanoparticles promoted the cytosolic co-delivery of polyIC and protein antigen, which acted synergistically to enhance antigen cross-presentation, co-stimulatory molecule expression, and cytokine production by dendritic cells. We also found that the vaccine platform increased the accumulation of antigen and polyIC in the local draining lymph nodes. Consequently, dual-delivery of antigen and polyIC with endsomolytic nanoparticles significantly enhanced the magnitude and functionality of CD8+ T cell responses relative to a mixture of antigen and polyIC, resulting in inhibition of tumor growth in a mouse tumor model. Collectively, this work provides a proof-of-principle for a new cancer vaccine platform that strongly augments anti-tumor cellular immunity via cytosolic co-delivery of antigen and nucleic acid adjuvant.
Collapse
Affiliation(s)
- Carcia S Carson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Kyle W Becker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Kyle M Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Hayden M Pagendarm
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Payton T Stone
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Karan Arora
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lihong Wang-Bishop
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jessalyn J Baljon
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Lorena D Cruz
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John T Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Yang R, Yu S, Xu T, Zhang J, Wu S. Emerging role of RNA sensors in tumor microenvironment and immunotherapy. J Hematol Oncol 2022; 15:43. [PMID: 35413927 PMCID: PMC9006576 DOI: 10.1186/s13045-022-01261-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
RNA sensors detect foreign and endogenous RNAs to protect the host by initiating innate and adaptive immune response. In tumor microenvironment (TME), activation of RNA sensors induces tumor-inhibitory cytotoxic T lymphocyte responses and inhibits the activity of immunosuppressive cells though stimulating type I IFN signaling pathway. These characteristics allow RNA sensors to be prospective targets in tumor immunotherapy. Therefore, a comprehensive understanding of the roles of RNA sensors in TME could provide new insight into the antitumor immunotherapy. Moreover, RNA sensors could be prominent triggering targets to synergize with immunotherapies. In this review, we highlight the diverse mechanisms of RNA sensors in cancer immunity and their emerging contributions in cancer immunotherapy, including monotherapy with RNA sensor agonists, as well as combination with chemotherapy, radiotherapy, immune checkpoint blockade or cancer vaccine.
Collapse
Affiliation(s)
- Rui Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tianhan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
18
|
Meng F, Wang J, Yeo Y. Nucleic acid and oligonucleotide delivery for activating innate immunity in cancer immunotherapy. J Control Release 2022; 345:586-600. [PMID: 35351528 PMCID: PMC9133138 DOI: 10.1016/j.jconrel.2022.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022]
Abstract
A group of nucleic acids and oligonucleotides play various roles in the innate immune system. They can stimulate pattern recognition receptors to activate innate immune cells, encode immunostimulatory proteins or peptides, or silence specific genes to block negative regulators of immune cells. Given the limitations of current cancer immunotherapy, there has been increasing interest in harnessing innate immune responses by nucleic acids and oligonucleotides. The poor biopharmaceutical properties of nucleic acids and oligonucleotides make it critical to use carriers that can protect them in circulation, retain them in the tumor microenvironment, and bring them to intracellular targets. Therefore, various gene carriers have been repurposed to deliver nucleic acids and oligonucleotides for cancer immunotherapy and improve their safety and activity. Here, we review recent studies that employed carriers to enhance the functions of nucleic acids and oligonucleotides and overall immune responses to cancer, and discuss remaining challenges and future opportunities in the development of nucleic acid-based immunotherapeutics.
Collapse
Affiliation(s)
- Fanfei Meng
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jianping Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN 47907, USA.
| |
Collapse
|
19
|
Fraile-Bethencourt E, Foss MH, Nelson D, Malhotra SV, Anand S. A Cell-Based Screen Identifies HDAC Inhibitors as Activators of RIG-I Signaling. Front Mol Biosci 2022; 9:837610. [PMID: 35237663 PMCID: PMC8882870 DOI: 10.3389/fmolb.2022.837610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Enhancing the immune microenvironment in cancer by targeting the nucleic acid sensors is becoming a potent therapeutic strategy. Among the nucleic acid sensors, activation of the RNA sensor Retinoic Acid-inducible Gene (RIG-I) using small hairpin RNAs has been shown to elicit powerful innate and adaptive immune responses. Given the challenges inherent in pharmacokinetics and delivery of RNA based agonists, we set out to discover small molecule agonists of RIG-I using a cell-based assay. To this end, we established and validated a robust high throughput screening assay based on a commercially available HEK293 reporter cell line with a luciferase reporter downstream of tandem interferon stimulated gene 54 (ISG54) promoter elements. We first confirmed that the luminescence in this cell line is dependent on RIG-I and the interferon receptor using a hairpin RNA RIG-I agonist. We established a 96-well and a 384-well format HTS based on this cell line and performed a proof-of-concept screen using an FDA approved drug library of 1,200 compounds. Surprisingly, we found two HDAC inhibitors Entinostat, Mocetinostat and the PLK1 inhibitor Volasertib significantly enhanced ISG-luciferase activity. This luminescence was substantially diminished in the null reporter cell line indicating the increase in signaling was dependent on RIG-I expression. Combination treatment of tumor cell lines with Entinostat increased RIG-I induced cell death in a mammary carcinoma cell line that is resistant to either Entinostat or RIG-I agonist alone. Taken together, our data indicates an unexpected role for HDAC1,-3 inhibitors in enhancing RIG-I signaling and highlight potential opportunities for therapeutic combinations.
Collapse
Affiliation(s)
- Eugenia Fraile-Bethencourt
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Marie H. Foss
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Dylan Nelson
- High-Throughput Screening Services Laboratory, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Sanjay V. Malhotra
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Sudarshan Anand
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
20
|
Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J Control Release 2022; 343:564-583. [DOI: 10.1016/j.jconrel.2022.01.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022]
|
21
|
Shao L, Yu X, Han Q, Zhang X, Lu N, Zhang C. Enhancing anti-tumor efficacy and immune memory by combining 3p-GPC-3 siRNA treatment with PD-1 blockade in hepatocellular carcinoma. Oncoimmunology 2022; 11:2010894. [PMID: 36524206 PMCID: PMC9746623 DOI: 10.1080/2162402x.2021.2010894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is associated with a high mortality rate and presents a major challenge for human health. Activation of multiple oncogenes has been reported to be strongly associated with the progression of HCC. Moreover, the immunosuppressive tumor microenvironment (TME) and the host immune system are also implicated in the development of malignant HCC tumors. Glypican-3 (GPC-3), a proteoglycan involved in the regulation of cell proliferation and apoptosis, is aberrantly expressed in HCC. We synthesized a short 5'-triphosphate (3p) RNA targeting GPC-3, 3p-GPC-3 siRNA, and found that it effectively inhibited subcutaneous HCC growth by raising type I IFN levels in tumor cells and serum and promoting tumor cell apoptosis. Moreover, 3p-GPC-3 siRNA was able to enhance the activation of CD4+ T cells, CD8+ T cells, and natural killer (NK) cells while reducing the proportion of regulatory T cells (Tregs) in the TME. Most intriguingly, a blocking anti-PD-1 antibody improved the anti-tumor effect of 3p-GPC-3 siRNA, predominantly by activating the immune response, reversing immune exhaustion, and improving immune memory. Our study suggests that the combination of 3p-GPC-3 siRNA administration and PD-1 blockade may represent a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Liwei Shao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Yu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,College of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinke Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,CONTACT Cai Zhang , Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012Shandong, China
| |
Collapse
|
22
|
Li K, Zhang Z, Mei Y, Li M, Yang Q, WU Q, Yang H, HE LIANGCAN, Liu S. Targeting innate immune system by nanoparticles for cancer immunotherapy. J Mater Chem B 2022; 10:1709-1733. [DOI: 10.1039/d1tb02818a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various cancer therapies have advanced remarkably over the past decade. Unlike the direct therapeutic targeting of tumor cells, cancer immunotherapy is a new strategy that boosts the host's immune system...
Collapse
|
23
|
Garland KM, Rosch JC, Carson CS, Wang-Bishop L, Hanna A, Sevimli S, Van Kaer C, Balko JM, Ascano M, Wilson JT. Pharmacological Activation of cGAS for Cancer Immunotherapy. Front Immunol 2021; 12:753472. [PMID: 34899704 PMCID: PMC8662543 DOI: 10.3389/fimmu.2021.753472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023] Open
Abstract
When compartmentally mislocalized within cells, nucleic acids can be exceptionally immunostimulatory and can even trigger the immune-mediated elimination of cancer. Specifically, the accumulation of double-stranded DNA in the cytosol can efficiently promote antitumor immunity by activating the cGAMP synthase (cGAS) / stimulator of interferon genes (STING) cellular signaling pathway. Targeting this cytosolic DNA sensing pathway with interferon stimulatory DNA (ISD) is therefore an attractive immunotherapeutic strategy for the treatment of cancer. However, the therapeutic activity of ISD is limited by several drug delivery barriers, including susceptibility to deoxyribonuclease degradation, poor cellular uptake, and inefficient cytosolic delivery. Here, we describe the development of a nucleic acid immunotherapeutic, NanoISD, which overcomes critical delivery barriers that limit the activity of ISD and thereby promotes antitumor immunity through the pharmacological activation of cGAS at the forefront of the STING pathway. NanoISD is a nanoparticle formulation that has been engineered to confer deoxyribonuclease resistance, enhance cellular uptake, and promote endosomal escape of ISD into the cytosol, resulting in potent activation of the STING pathway via cGAS. NanoISD mediates the local production of proinflammatory cytokines via STING signaling. Accordingly, the intratumoral administration of NanoISD induces the infiltration of natural killer cells and T lymphocytes into murine tumors. The therapeutic efficacy of NanoISD is demonstrated in preclinical tumor models by attenuated tumor growth, prolonged survival, and an improved response to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Kyle M. Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jonah C. Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Carcia S. Carson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Lihong Wang-Bishop
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Casey Van Kaer
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Justin M. Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
24
|
Nagareddy R, Thomas RG, Jeong YY. Stimuli-Responsive Polymeric Nanomaterials for the Delivery of Immunotherapy Moieties: Antigens, Adjuvants and Agonists. Int J Mol Sci 2021; 22:ijms222212510. [PMID: 34830392 PMCID: PMC8625613 DOI: 10.3390/ijms222212510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy has been investigated for decades, and it has provided promising results in preclinical studies. The most important issue that hinders researchers from advancing to clinical studies is the delivery system for immunotherapy agents, such as antigens, adjuvants and agonists, and the activation of these agents at the tumour site. Polymers are among the most versatile materials for a variety of treatments and diagnostics, and some polymers are reactive to either endogenous or exogenous stimuli. Utilizing this advantage, researchers have been developing novel and effective polymeric nanomaterials that can deliver immunotherapeutic moieties. In this review, we summarized recent works on stimuli-responsive polymeric nanomaterials that deliver antigens, adjuvants and agonists to tumours for immunotherapy purposes.
Collapse
Affiliation(s)
- Raveena Nagareddy
- Department of Biomedical Sciences, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
| | - Reju George Thomas
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
- Correspondence:
| |
Collapse
|
25
|
Considerations for the delivery of STING ligands in cancer immunotherapy. J Control Release 2021; 339:235-247. [PMID: 34592386 DOI: 10.1016/j.jconrel.2021.09.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
Several studies have shown the importance of the cGAS-STING pathway in antigen-presenting cells for anti-cancer immunity. Cyclic GMP-AMP (cGAMP) - STING ligand is a negatively charged dinucleotide prone to degradation by hydrolases. Once administered in its soluble form, high doses are needed which in turn may cause side effects such as T cell apoptosis. Moreover, due to its negative charge, transfection of cGAMP into negatively-charged membrane cells is hampered. In order to achieve successful transfection and protection from enzymatic degradation there is a need for a suitable carrier for cGAMP. In this review, we therefore describe currently reported carriers for cGAMP, and correlate their characteristics to the effect they cause. To achieve targeted delivery to the tumor microenvironment, the route of administration and physicochemical parameters of the particles (containing a carrier and cGAMP) such as size and charge need to be determined. Therefore, the choice of the particle formulation and its impact on the preclinical outcome will be discussed.
Collapse
|
26
|
Reis-Sobreiro M, Teixeira da Mota A, Jardim C, Serre K. Bringing Macrophages to the Frontline against Cancer: Current Immunotherapies Targeting Macrophages. Cells 2021; 10:2364. [PMID: 34572013 PMCID: PMC8464913 DOI: 10.3390/cells10092364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022] Open
Abstract
Macrophages are found in all tissues and display outstanding functional diversity. From embryo to birth and throughout adult life, they play critical roles in development, homeostasis, tissue repair, immunity, and, importantly, in the control of cancer growth. In this review, we will briefly detail the multi-functional, protumoral, and antitumoral roles of macrophages in the tumor microenvironment. Our objective is to focus on the ever-growing therapeutic opportunities, with promising preclinical and clinical results developed in recent years, to modulate the contribution of macrophages in oncologic diseases. While the majority of cancer immunotherapies target T cells, we believe that macrophages have a promising therapeutic potential as tumoricidal effectors and in mobilizing their surroundings towards antitumor immunity to efficiently limit cancer progression.
Collapse
Affiliation(s)
| | | | | | - Karine Serre
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; (M.R.-S.); (A.T.d.M.); (C.J.)
| |
Collapse
|
27
|
Lee D, Huntoon K, Wang Y, Jiang W, Kim BYS. Harnessing Innate Immunity Using Biomaterials for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007576. [PMID: 34050699 DOI: 10.1002/adma.202007576] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/29/2021] [Indexed: 06/12/2023]
Abstract
The discovery of immune checkpoint blockade has revolutionized the field of immuno-oncology and established the foundation for developing various new therapies that can surpass conventional cancer treatments. Most recent immunotherapeutic strategies have focused on adaptive immune responses by targeting T cell-activating pathways, genetic engineering of T cells with chimeric antigen receptors, or bispecific antibodies. Despite the unprecedented clinical success, these T cell-based treatments have only benefited a small proportion of patients. Thus, the need for the next generation of cancer immunotherapy is driven by identifying novel therapeutic molecules or new immunoengineered cells. To maximize the therapeutic potency via innate immunogenicity, the convergence of innate immunity-based therapy and biomaterials is required to yield an efficient index in clinical trials. This review highlights how biomaterials can efficiently reprogram and recruit innate immune cells in tumors and ultimately initiate activation of T cell immunity against advanced cancers. Moreover, the design and specific biomaterials that improve innate immune cells' targeting ability to selectively activate immunogenicity with minimal adverse effects are discussed.
Collapse
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
28
|
Wang S. pH-Responsive Amphiphilic Carboxylate Polymers: Design and Potential for Endosomal Escape. Front Chem 2021; 9:645297. [PMID: 33834015 PMCID: PMC8021698 DOI: 10.3389/fchem.2021.645297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The intracellular delivery of emerging biomacromolecular therapeutics, such as genes, peptides, and proteins, remains a great challenge. Unlike small hydrophobic drugs, these biotherapeutics are impermeable to the cell membrane, thus relying on the endocytic pathways for cell entry. After endocytosis, they are entrapped in the endosomes and finally degraded in lysosomes. To overcome these barriers, many carriers have been developed to facilitate the endosomal escape of these biomacromolecules. This mini-review focuses on the development of anionic pH-responsive amphiphilic carboxylate polymers for endosomal escape applications, including the design and synthesis of these polymers, the mechanistic insights of their endosomal escape capability, the challenges in the field, and future opportunities.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Levy ES, Chang R, Zamecnik CR, Dhariwala MO, Fong L, Desai TA. Multi-Immune Agonist Nanoparticle Therapy Stimulates Type I Interferons to Activate Antigen-Presenting Cells and Induce Antigen-Specific Antitumor Immunity. Mol Pharm 2021; 18:1014-1025. [PMID: 33541072 DOI: 10.1021/acs.molpharmaceut.0c00984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer immunity is mediated by a delicate orchestration between the innate and adaptive immune system both systemically and within the tumor microenvironment. Although several adaptive immunity molecular targets have been proven clinically efficacious, stand-alone innate immunity targeting agents have not been successful in the clinic. Here, we report a nanoparticle optimized for systemic administration that combines immune agonists for TLR9, STING, and RIG-I with a melanoma-specific peptide to induce antitumor immunity. These immune agonistic nanoparticles (iaNPs) significantly enhance the activation of antigen-presenting cells to orchestrate the development and response of melanoma-sensitized T-cells. iaNP treatment not only suppressed tumor growth in an orthotopic solid tumor model, but also significantly reduced tumor burden in a metastatic animal model. This combination biomaterial-based approach to coordinate innate and adaptive anticancer immunity provides further insights into the benefits of stimulating multiple activation pathways to promote tumor regression, while also offering an important platform to effectively and safely deliver combination immunotherapies for cancer.
Collapse
Affiliation(s)
- Elizabeth S Levy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Ryan Chang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States.,Department of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Colin R Zamecnik
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Miqdad O Dhariwala
- Department of Dermatology, University of California San Francisco, San Francisco, California 94143, United Stats
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California 94143, United States.,Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, California 94143, United States
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
30
|
Ulkoski D, Munson MJ, Jacobson ME, Palmer CR, Carson CS, Sabirsh A, Wilson JT, Krishnamurthy VR. High-Throughput Automation of Endosomolytic Polymers for mRNA Delivery. ACS APPLIED BIO MATERIALS 2021; 4:1640-1654. [PMID: 35014512 DOI: 10.1021/acsabm.0c01463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, there has been an increasing interest in designing delivery systems to enhance the efficacy of RNA-based therapeutics. Here, we have synthesized copolymers comprised of dimethylaminoethyl methacrylate (DMAEMA) or diethylaminoethyl methacrylate (DEAEMA) copolymerized with alkyl methacrylate monomers ranging from 2 to 12 carbons, and developed a high throughput workflow for rapid investigation of their applicability for mRNA delivery. The structure activity relationship revealed that the mRNA encapsulation efficiency is improved by increasing the cationic density and use of shorter alkyl side chains (2-6 carbons). Minimal cytotoxicity was observed when using DEAEMA-co-BMA (EB) polyplexes up to 18 h after dosing, independent of a poly(ethylene glycol) (PEG) first block. The lowest molecular weight polymer (EB10,250) performed best, exhibiting greater transfection than polyethyenimine (PEI) based upon the number of cells transfected and mean intensity. Conventional investigations into the performance of polymeric materials for mRNA delivery is quite tedious, consequently limiting the number of materials and formulation conditions that can be studied. The high throughput approach presented here can accelerate the screening of polymeric systems and paves the way for expanding this generalizable approach to assess various materials for mRNA delivery.
Collapse
Affiliation(s)
- David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston 02451, United States
| | - Michael J. Munson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Max E. Jacobson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Christian R. Palmer
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Carcia S. Carson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United States
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37240-0002, United States
| | | |
Collapse
|
31
|
Jacobson ME, Becker KW, Palmer CR, Pastora LE, Fletcher RB, Collins KA, Fedorova O, Duvall CL, Pyle AM, Wilson JT. Structural Optimization of Polymeric Carriers to Enhance the Immunostimulatory Activity of Molecularly Defined RIG-I Agonists. ACS CENTRAL SCIENCE 2020; 6:2008-2022. [PMID: 33274278 PMCID: PMC7706089 DOI: 10.1021/acscentsci.0c00568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 05/03/2023]
Abstract
RNA ligands of retinoic acid-inducible gene I (RIG-I) hold significant promise as antiviral agents, vaccine adjuvants, and cancer immunotherapeutics, but their efficacy is hindered by inefficient intracellular delivery to the cytosol where RIG-I is localized. Here, we address this challenge through the synthesis and evaluation of a library of polymeric carriers rationally designed to promote the endosomal escape of 5'-triphosphate RNA (3pRNA) RIG-I agonists. We synthesized a series of PEG-block-(DMAEMA-co-A n MA) polymers, where A n MA is an alkyl methacrylate monomer ranging from n = 2-12 carbons, of variable composition, and examined effects of polymer structure on the intracellular delivery of 3pRNA. Through in vitro screening of 30 polymers, we identified four lead carriers (4-50, 6-40, 8-40, and 10-40, where the first number refers to the alkyl chain length and the second number refers to the percentage of hydrophobic monomer) that packaged 3pRNA into ∼100-nm-diameter particles and significantly enhanced its immunostimulatory activity in multiple cell types. In doing so, these studies also revealed an interplay between alkyl chain length and monomer composition in balancing RNA loading, pH-responsive properties, and endosomal escape, studies that establish new structure-activity relationships for polymeric delivery of 3pRNA and other nucleic acid therapeutics. Importantly, lead carriers enabled intravenous administration of 3pRNA in mice, resulting in increased RIG-I activation as measured by increased levels of IFN-α in serum and elevated expression of Ifnb1 and Cxcl10 in major clearance organs, effects that were dependent on polymer composition. Collectively, these studies have yielded novel polymeric carriers designed and optimized specifically to enhance the delivery and activity of 3pRNA with potential to advance the clinical development of RIG-I agonists.
Collapse
Affiliation(s)
- Max E. Jacobson
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kyle W. Becker
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Christian R. Palmer
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Lucinda E. Pastora
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - R. Brock Fletcher
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kathryn A. Collins
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Olga Fedorova
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Craig L. Duvall
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anna M. Pyle
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06511, United States
| | - John. T. Wilson
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt-Ingram
Cancer Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
32
|
Chen M, Hu S, Li Y, Jiang TT, Jin H, Feng L. Targeting nuclear acid-mediated immunity in cancer immune checkpoint inhibitor therapies. Signal Transduct Target Ther 2020; 5:270. [PMID: 33214545 PMCID: PMC7677403 DOI: 10.1038/s41392-020-00347-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy especially immune checkpoint inhibition has achieved unprecedented successes in cancer treatment. However, there are many patients who failed to benefit from these therapies, highlighting the need for new combinations to increase the clinical efficacy of immune checkpoint inhibitors. In this review, we summarized the latest discoveries on the combination of nucleic acid-sensing immunity and immune checkpoint inhibitors in cancer immunotherapy. Given the critical role of nuclear acid-mediated immunity in maintaining the activation of T cell function, it seems that harnessing the nuclear acid-mediated immunity opens up new strategies to enhance the effect of immune checkpoint inhibitors for tumor control.
Collapse
Affiliation(s)
- Miaoqin Chen
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Shiman Hu
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Yiling Li
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Ting Ting Jiang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310016, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
33
|
Shofolawe-Bakare OT, Stokes LD, Hossain M, Smith AE, Werfel TA. Immunostimulatory biomaterials to boost tumor immunogenicity. Biomater Sci 2020; 8:5516-5537. [PMID: 33049007 PMCID: PMC7837217 DOI: 10.1039/d0bm01183e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy is exhibiting great promise as a new therapeutic modality for cancer treatment. However, immunotherapies are limited by the inability of some tumors to provoke an immune response. These tumors with a 'cold' immunological phenotype are characterized by low numbers of tumor-infiltrating lymphocytes, high numbers of immunosuppressive leukocytes (e.g. regulatory T cells, tumor-associated macrophages), and high production of immune-dampening signals (e.g. IL-10, TGF-β, IDO-1). Strategies to boost the aptitude of tumors to initiate an immune response (i.e. boost tumor immunogenicity) will turn 'cold' tumors 'hot' and augment the anti-tumor efficacy of current immunotherapies. Approaches to boost tumor immunogenicity already show promise; however, multifaceted delivery and immunobiology challenges exist. For instance, systemic delivery of many immune-stimulating agents causes off-target toxicity and/or the development of autoimmunity, limiting the administrable dose below the threshold needed to achieve efficacy. Moreover, once administered in vivo, molecules such as the nucleic acid-based agonists for many pattern recognition receptors are either rapidly cleared or degraded, and don't efficiently traffic to the intracellular compartments where the receptors are located. Thus, these nucleic acid-based drugs are ineffective without a delivery system. Biomaterials-based approaches aim to enhance current strategies to boost tumor immunogenicity, enable novel strategies, and spare dose-limiting toxicities. Here, we review recent progress to improve cancer immunotherapies by boosting immunogenicity within tumors using immunostimulatory biomaterials.
Collapse
|
34
|
Li L, Yang Z, Chen X. Recent Advances in Stimuli-Responsive Platforms for Cancer Immunotherapy. Acc Chem Res 2020; 53:2044-2054. [PMID: 32877161 DOI: 10.1021/acs.accounts.0c00334] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immunotherapy has attracted significant interest because of its tremendous potential in cancer therapy. The recent advances in the identification of cancer-associated neoantigens, chimeric antigen receptor (CAR) T-cell and immune checkpoint blockade (ICB), have revolutionized the field of cancer immunotherapy. Cancer immunotherapeutic agents typically exhibit strong immune activation or inhibition activity, thereby inducing robust biological effect even when administered at a small dosage. However, in most cases, cancer immunotherapeutic targets are not cancer specific. Some of them are also expressed in nonmalignant normal tissues and the undesired release of the cancer immunotherapeutic agents into these normal tissues may lead to severe side effects. Thus, the on-demand release of the cancer immunotherapeutic agents into the target site is critical to achieving efficient antitumor immune responses while minimizing the side effects.In this Account, we introduce the recent progress of our group and others on the development of stimuli-responsive platforms for cancer immunotherapy. Stimuli-responsive platforms have been constructed for on-demand release of payloads in a temporally and spatially controllable manner. First, we give a brief introduction to the endogenous and exogenous stimuli that are employed to trigger the release of cancer immunotherapeutic agents. The chemical design strategies to construct the specific stimuli-responsive delivery systems are highlighted. Moreover, the recently developed representative stimuli-responsive platforms for the delivery of immune checkpoint inhibitors, indoleamine 2,3-dioxygenase (IDO) inhibitors, stimulator of interferon genes (STING) agonists, and near-infrared photoimmunotherapy (NIR-PIT) agents are discussed in detail. Meanwhile, we summarize the general chemical design for constructing stimuli-responsive delivery platforms targeting immune targets at distinct locations. Lastly, the probable issues on the clinical translation of these stimuli-responsive platforms for cancer immunotherapy are outlined. Since we are still on the way of exploring the immune system and optimizing the chemical design of biomaterials, we hope the information in this account can provide some valuable references for the development of optimal cancer immunotherapeutics.
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) Bethesda, Maryland 20892, United States
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) Bethesda, Maryland 20892, United States
| |
Collapse
|
35
|
Zhou B, Li C, Yang Y, Wang Z. RIG-I Promotes Cell Death in Hepatocellular Carcinoma by Inducing M1 Polarization of Perineal Macrophages Through the RIG-I/MAVS/NF-κB Pathway. Onco Targets Ther 2020; 13:8783-8794. [PMID: 32982277 PMCID: PMC7493023 DOI: 10.2147/ott.s258450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background The development and metastasis of cancer cells are regulated by tumor-associated macrophages (TAMs) present in the surrounding tumor microenvironment. RIG-I is a key pathogen recognition receptor against RNA viruses that regulates innate immunity in cancer progression. Till now, the mechanism of RIG-I regulation of the polarization of TAMs in the progression of hepatocellular carcinoma (HCC) has not been understood. Materials and Methods Levels of RIG-I and the key proteins in the NF-κB pathway in HCC and paired paracancerous tissues were detected by Western blotting. The transfection efficiency of RIG-I was observed by fluorescence microscopy. The M1 and M2 markers were detected by real-time polymerase chain reaction and FACS assays. Apoptosis of RIG-I lentivirus-infected HCC cells was detected by flow cytometry assay. Death of Hepa1-6 and H22 cells was analyzed by lactate dehydrogenase releasing assay. Results The level of RIG-I was decreased in HCC tissues as compared to that in the paired paracancerous tissues. Overexpression of RIG-I in mouse peritoneal macrophages increased the expression of the biomarkers CD16/32 and CD11c associated with M1 macrophages. The relative levels of IL-1β, TNF-α, IL-6, and iNOS were significantly increased in RIG-I lentivirus-infected macrophages, whereas the levels of Arg-1 and IL-10 were not significantly different in RIG-I-overexpressed peritoneal macrophages. Moreover, overexpression of RIG-I in peritoneal macrophages promoted apoptosis of Hepa1-6 and H22 cells. Furthermore, overexpression of RIG-I increased the levels of phosphorylated p65 and p-IκB and decreased the level of IκB in peritoneal macrophages. Importantly, the expression of MAVS and TRAF2 was significantly increased in RIG-I lentivirus-infected macrophages. Conclusion Our results demonstrate that overexpression of RIG-I promoted apoptosis and death of HCC cells. Moreover, RIG-I promoted the polarization of M1 through the RIG-I/MAVS/TRAF2/NF-κB pathway in mice peritoneal macrophages, suggesting that RIG-I may be a novel target in the immunotherapy of HCC.
Collapse
Affiliation(s)
- Bei Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Cuiping Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Yun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Zhuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| |
Collapse
|
36
|
He W, Xing X, Wang X, Wu D, Wu W, Guo J, Mitragotri S. Nanocarrier‐Mediated Cytosolic Delivery of Biopharmaceuticals. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.201910566] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/16/2020] [Indexed: 01/04/2025]
Abstract
AbstractBiopharmaceuticals have emerged to play a vital role in disease treatment and have shown promise in the rapidly expanding pharmaceutical market due to their high specificity and potency. However, the delivery of these biologics is hindered by various physiological barriers, owing primarily to the poor cell membrane permeability, low stability, and increased size of biologic agents. Since many biological drugs are intended to function by interacting with intracellular targets, their delivery to intracellular targets is of high relevance. In this review, the authors summarize and discuss the use of nanocarriers for intracellular delivery of biopharmaceuticals via endosomal escape and, especially, the routes of direct cytosolic delivery by means including the caveolae‐mediated pathway, contact release, intermembrane transfer, membrane fusion, direct translocation, and membrane disruption. Strategies with high potential for translation are highlighted. Finally, the authors conclude with the clinical translation of promising carriers and future perspectives.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xuyang Xing
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xiaoling Wang
- School of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Debra Wu
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of Ministry of Education of China School of Pharmacy Fudan University Shanghai 201203 China
| | - Junling Guo
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
37
|
pH-Responsive Nanoparticles for Cancer Immunotherapy: A Brief Review. NANOMATERIALS 2020; 10:nano10081613. [PMID: 32824578 PMCID: PMC7466692 DOI: 10.3390/nano10081613] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 01/06/2023]
Abstract
Immunotherapy has recently become a promising strategy for the treatment of a wide range of cancers. However, the broad implementation of cancer immunotherapy suffers from inadequate efficacy and toxic side effects. Integrating pH-responsive nanoparticles into immunotherapy is a powerful approach to tackle these challenges because they are able to target the tumor tissues and organelles of antigen-presenting cells (APCs) which have a characteristic acidic microenvironment. The spatiotemporal control of immunotherapeutic drugs using pH-responsive nanoparticles endows cancer immunotherapy with enhanced antitumor immunity and reduced off-tumor immunity. In this review, we first discuss the cancer-immunity circle and how nanoparticles can modulate the key steps in this circle. Then, we highlight the recent advances in cancer immunotherapy with pH-responsive nanoparticles and discuss the perspective for this emerging area.
Collapse
|
38
|
Co-delivery of antigen and dual adjuvants by aluminum hydroxide nanoparticles for enhanced immune responses. J Control Release 2020; 326:120-130. [PMID: 32585230 DOI: 10.1016/j.jconrel.2020.06.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
Adjuvants that contain pathogen-associated molecular patterns (PAMPs) can enhance vaccination efficacy by binding to pattern recognition receptors (PRRs), thereby stimulating immune responses. Particularly effective may be the combination of multiple PAMPs that activate different PRRs, which occurs with natural pathogens. Here we hypothesized the enhanced effects would occur in two adjuvants that stimulate different PRRs: CpG oligodeoxynucleotide (CpG-ODN), which is Toll-like receptor 9 agonist; and 5'-triphosphate, short, double-stranded RNA (3pRNA), which activates retinoic acid-inducible gene I (RIG-I). The model antigen ovalbumin (OVA) was loaded and adjuvants were surface-adsorbed to aluminum hydroxide nanoparticles (hereafter NP-3pRNA-CpG) by electrostatic interaction with an average size of 120 nm and a negative surface charge for targeting lymph nodes. These nanoparticles were efficiently internalized by antigen-presenting cells (APCs) in the lymph nodes, and the resulting APC activation and antigen cross-presentation generated strong humoral immunity and cytotoxic T lymphocyte responses and IFN-γ secretion. NP-3pRNA-CpG significantly suppressed B16-OVA tumor growth and prolonged survival of tumor-bearing mice in therapeutic and prophylactic models, illustrating the enhanced effects of CpG-ODN and 3pRNA. Our study highlights the potential of combining multiple adjuvants for effective vaccine design.
Collapse
|
39
|
Eppler HB, Jewell CM. Biomaterials as Tools to Decode Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903367. [PMID: 31782844 PMCID: PMC7124992 DOI: 10.1002/adma.201903367] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/23/2019] [Indexed: 05/02/2023]
Abstract
The immune system has remarkable capabilities to combat disease with exquisite selectivity. This feature has enabled vaccines that provide protection for decades and, more recently, advances in immunotherapies that can cure some cancers. Greater control over how immune signals are presented, delivered, and processed will help drive even more powerful options that are also safe. Such advances will be underpinned by new tools that probe how immune signals are integrated by immune cells and tissues. Biomaterials are valuable resources to support this goal, offering robust, tunable properties. The growing role of biomaterials as tools to dissect immune function in fundamental and translational contexts is highlighted. These technologies can serve as tools to understand the immune system across molecular, cellular, and tissue length scales. A common theme is exploiting biomaterial features to rationally direct how specific immune cells or organs encounter a signal. This precision strategy, enabled by distinct material properties, allows isolation of immunological parameters or processes in a way that is challenging with conventional approaches. The utility of these capabilities is demonstrated through examples in vaccines for infectious disease and cancer immunotherapy, as well as settings of immune regulation that include autoimmunity and transplantation.
Collapse
Affiliation(s)
- Haleigh B Eppler
- Fischell Department of Bioengineering, 8278 Paint Brach Drive, College Park, MD, 20742, USA
- Biological Sciences Training Program, 1247 Biology Psychology Building, College Park, MD, 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, 8278 Paint Brach Drive, College Park, MD, 20742, USA
- Biological Sciences Training Program, 1247 Biology Psychology Building, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD, 21201, USA
| |
Collapse
|
40
|
Knight FC, Gilchuk P, Kumar A, Becker KW, Sevimli S, Jacobson ME, Suryadevara N, Wang-Bishop L, Boyd KL, Crowe JE, Joyce S, Wilson JT. Mucosal Immunization with a pH-Responsive Nanoparticle Vaccine Induces Protective CD8 + Lung-Resident Memory T Cells. ACS NANO 2019; 13:10939-10960. [PMID: 31553872 PMCID: PMC6832804 DOI: 10.1021/acsnano.9b00326] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tissue-resident memory T cells (TRM) patrol nonlymphoid organs and provide superior protection against pathogens that commonly infect mucosal and barrier tissues, such as the lungs, intestine, liver, and skin. Thus, there is a need for vaccine technologies that can induce a robust, protective TRM response in these tissues. Nanoparticle (NP) vaccines offer important advantages over conventional vaccines; however, there has been minimal investigation into the design of NP-based vaccines for eliciting TRM responses. Here, we describe a pH-responsive polymeric nanoparticle vaccine for generating antigen-specific CD8+ TRM cells in the lungs. With a single intranasal dose, the NP vaccine elicited airway- and lung-resident CD8+ TRM cells and protected against respiratory virus challenge in both sublethal (vaccinia) and lethal (influenza) infection models for up to 9 weeks after immunization. In elucidating the contribution of material properties to the resulting TRM response, we found that the pH-responsive activity of the carrier was important, as a structurally analogous non-pH-responsive control carrier elicited significantly fewer lung-resident CD8+ T cells. We also demonstrated that dual-delivery of protein antigen and nucleic acid adjuvant on the same NP substantially enhanced the magnitude, functionality, and longevity of the antigen-specific CD8+ TRM response in the lungs. Compared to administration of soluble antigen and adjuvant, the NP also mediated retention of vaccine cargo in pulmonary antigen-presenting cells (APCs), enhanced APC activation, and increased production of TRM-related cytokines. Overall, these data suggest a promising vaccine platform technology for rapid generation of protective CD8+ TRM cells in the lungs.
Collapse
Affiliation(s)
- Frances C. Knight
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Amrendra Kumar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Kyle W. Becker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Max E. Jacobson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Naveenchandra Suryadevara
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Lihong Wang-Bishop
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Kelli L. Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E. Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John T. Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Corresponding Author:
| |
Collapse
|
41
|
Zhang M, Liu K, Wang M. Development of cancer immunotherapy based on PD-1/PD-L1 pathway blockade. RSC Adv 2019; 9:33903-33911. [PMID: 35528929 PMCID: PMC9073714 DOI: 10.1039/c9ra04590b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022] Open
Abstract
Programmed death receptor 1 (PD-1)/programmed death ligand 1 (PD-L1) blockade therapy has achieved considerable success in various tumours. However, only a fraction of patients benefit from its clinical application, and some patients might be suffer from tumour resistance against PD-1/PD-L1 blockade therapy after the original response. In this review, we summarized the main reasons that caused the low response rate of PD-/PD-L1 blockade therapy: firstly, the off-target of PD-1/PD-L1 blocking agents, which is also the main factor of the side effect of autoimmune disorders; secondly, the insufficient infiltration of T cells in a tumour microenvironment; thirdly, the low immunogenicity of tumor cells; fourth, other immunosuppressive components impairing the therapeutic efficacy of the immunotherapy based on the PD-/PD-L1 blockade, and introducing some updated the delivery system of PD-1/PD-L1 blocking agents and the combination therapy based on PD-1/PD-L1 inhibitors and other therapeutics that can complement and promote each other to achieve improved immune response.
Collapse
Affiliation(s)
- Min Zhang
- College of Food Science and Technology, Shanghai Ocean University 999 Hucheng Ring Road Shanghai 201306 China
| | - Kehai Liu
- College of Food Science and Technology, Shanghai Ocean University 999 Hucheng Ring Road Shanghai 201306 China
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University 999 Hucheng Ring Road Shanghai 201306 China
- University Hong Kong, School of Biological Sciences Pokfulam Road Hong Kong 999077 China
| |
Collapse
|
42
|
Abstract
The 2018 Nobel Prize in Physiology or Medicine was awarded to pioneers in the field of cancer immunotherapy, as the utility of leveraging a patient's coordinated and adaptive immune system to fight the patient's unique tumour has now been validated robustly in the clinic. Still, the proportion of patients who respond to immunotherapy remains modest (~15% objective response rate across indications), as tumours have multiple means of immune evasion. The immune system is spatiotemporally controlled, so therapies that influence the immune system should be spatiotemporally controlled as well, in order to maximize the therapeutic index. Nanoparticles and biomaterials enable one to program the location, pharmacokinetics and co-delivery of immunomodulatory compounds, eliciting responses that cannot be achieved upon administration of such compounds in solution. The convergence of cancer immunotherapy, nanotechnology, bioengineering and drug delivery is opportune, as each of these fields has matured independently to the point that it can now be used to complement the others substantively and rationally, rather than modestly and empirically. As a result, unmet needs increasingly can be addressed with deductive intention. This Review explores how nanotechnology and related approaches are being applied to augmenting both endogenous leukocytes and adoptively transferred ones by informing specificity, influencing localization and improving function.
Collapse
|
43
|
Garland KM, Sevimli S, Kilchrist KV, Duvall CL, Cook RS, Wilson JT. Microparticle Depots for Controlled and Sustained Release of Endosomolytic Nanoparticles. Cell Mol Bioeng 2019; 12:429-442. [PMID: 31719925 DOI: 10.1007/s12195-019-00571-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction Nucleic acids have gained recognition as promising immunomodulatory therapeutics. However, their potential is limited by several drug delivery barriers, and there is a need for technologies that enhance intracellular delivery of nucleic acid drugs. Furthermore, controlled and sustained release is a significant concern, as the kinetics and localization of immunomodulators can influence resultant immune responses. Here, we describe the design and initial evaluation of poly(lactic-co-glycolic) acid (PLGA) microparticle (MP) depots for enhanced retention and sustained release of endosomolytic nanoparticles that enable the cytosolic delivery of nucleic acids. Methods Endosomolytic p[DMAEMA]10kD-bl-[PAA0.3-co-DMAEMA0.3-co-BMA0.4]25kD diblock copolymers were synthesized by reversible addition-fragmentation chain transfer polymerization. Polymers were electrostatically complexed with nucleic acids and resultant nanoparticles (NPs) were encapsulated in PLGA MPs. To modulate release kinetics, ammonium bicarbonate was added as a porogen. Release profiles were quantified in vitro and in vivo via quantification of fluorescently-labeled nucleic acid. Bioactivity of released NPs was assessed using small interfering RNA (siRNA) targeting luciferase as a representative nucleic acid cargo. MPs were incubated with luciferase-expressing 4T1 (4T1-LUC) breast cancer cells in vitro or administered intratumorally to 4T1-LUC breast tumors, and silencing via RNA interference was quantified via longitudinal luminescence imaging. Results Endosomolytic NPs complexed to siRNA were effectively loaded into PLGA MPs and release kinetics could be modulated in vitro and in vivo via control of MP porosity, with porous MPs exhibiting faster cargo release. In vitro, release of NPs from porous MP depots enabled sustained luciferase knockdown in 4T1 breast cancer cells over a five-day treatment period. Administered intratumorally, MPs prolonged the retention of nucleic acid within the injected tumor, resulting in enhanced and sustained silencing of luciferase relative to a single bolus administration of NPs at an equivalent dose. Conclusion This work highlights the potential of PLGA MP depots as a platform for local release of endosomolytic polymer NPs that enhance the cytosolic delivery of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Kyle M Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Kameron V Kilchrist
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Rebecca S Cook
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN USA.,Cancer Biology Program, Vanderbilt University, Nashville, TN USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA.,Cancer Biology Program, Vanderbilt University, Nashville, TN USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
44
|
Baljon JJ, Dandy A, Wang-Bishop L, Wehbe M, Jacobson ME, Wilson JT. The efficiency of cytosolic drug delivery using pH-responsive endosomolytic polymers does not correlate with activation of the NLRP3 inflammasome. Biomater Sci 2019; 7:1888-1897. [PMID: 30843539 PMCID: PMC6478565 DOI: 10.1039/c8bm01643g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inefficient cytosolic delivery has limited the development of many promising biomacromolecular drugs, a long-standing challenge that has prompted extensive development of drug carriers that facilitate endosomal escape. Although many such carriers have shown considerable promise for cytosolic delivery of a diversity of therapeutics, the rupture or destabilization of endo/lysosomal membranes has also been associated with activation of the inflammasome with attendant risk of inflammation and toxicity. In this study, we investigated relationships between pH-dependent membrane destabilization, cytosolic drug delivery, and inflammasome activation using a series of well-defined poly[(ethylene glycol)-block-[(2-(dimethylamino)ethyl methacrylate)-co-(butyl methacrylate)] copolymers of variable second block composition and pH-responsive properties. We found that polymers that demonstrated the most potent membrane-destabilizing activity at early endosomal pH values in an erythrocyte hemolysis assay were most efficient at delivery of siRNA, yet tended to be associated with the least amount of NOD-like related protein 3 (NLRP3) inflammasome activation. By contrast, polymers that displayed minimal hemolysis activity and poor siRNA knockdown, and instead mediated lysosomal rupture likely due to a proton sponge mechanism, strongly induced NLPR3 inflammasome activation in a caspase- and cathepsin-dependent manner. Collectively, these findings reinforce the importance of early endosomal escape in minimizing inflammasome activation and also demonstrate the ability to tune the degree inflammasome activation via control of polymer structure with potential implications for design of vaccine adjuvants and immunotherapeutics.
Collapse
|
45
|
Caster JM, Callaghan C, Seyedin SN, Henderson K, Sun B, Wang AZ. Optimizing Advances in Nanoparticle Delivery for Cancer Immunotherapy. Adv Drug Deliv Rev 2019; 144:3-15. [PMID: 31330165 PMCID: PMC11849717 DOI: 10.1016/j.addr.2019.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022]
Abstract
Cancer immunotherapy is one of the fastest growing and most promising fields in clinical oncology. T-cell checkpoint inhibitors are revolutionizing the management of advanced cancers including non-small cell lung cancer and melanoma. Unfortunately, many common cancers are not responsive to these drugs and resistance remains problematic. A growing number of novel cancer immunotherapies have been discovered but their clinical translation has been limited by shortcomings of conventional drug delivery. Immune signaling is tightly-regulated and often requires simultaneous or near-simultaneous activation of multiple signals in specific subpopulations of immune cells. Nucleic acid therapies, which require intact intracellular delivery, are among the most promising approaches to modulate the tumor microenvironment to a pro-immunogenic phenotype. Advanced nanomedicines can be precisely engineered to overcome many of these limitations and appear well-poised to enable the clinical translation of promising cancer immunotherapies.
Collapse
Affiliation(s)
- Joseph M Caster
- Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Cameron Callaghan
- Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Steven N Seyedin
- Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kelly Henderson
- Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Bo Sun
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, Lineberger Comprehensive Cancer Center, Department of Radiation Oncology, University of North Carolina at Chapel Hill, USA
| | - Andrew Z Wang
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, Lineberger Comprehensive Cancer Center, Department of Radiation Oncology, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|