1
|
Adeyanju AA, Akinwunmi EA, Karigidi ME, Agboola OO, Elekofehinti OO. Cinnamic acid abrogates bisphenol A-induced hepatotoxicity via suppression of pro-inflammatory cytokine and modulation of gene expressions of antioxidant enzymes in rats. Toxicol Rep 2025; 14:101995. [PMID: 40226809 PMCID: PMC11986462 DOI: 10.1016/j.toxrep.2025.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/23/2024] [Accepted: 03/09/2025] [Indexed: 04/15/2025] Open
Abstract
Bisphenol A (BPA) is regularly used to produce plastic products. Its hepatotoxicity has been unveiled. The effects of cinnamic acid on BPA exposure have not been comprehensively studied, and the key mechanism of action is yet to be unraveled. Rats were allocated into 5 groups. Group 1 (control) was given corn oil. Group 2 received BPA for 14 consecutive days. Group 3 received cinnamic acid at 50 mg/kg in co-administration with BPA while group 4 received cinnamic acid at 100 mg/kg, in co-administration with BPA. Cinnamic acid (CA) only (100 mg/kg) was given to group 5. BPA exposure significantly decreased catalase, glutathione-S-transferase, and superoxide dismutase activities and non-significantly diminished glutathione level. A reduction in the gene expression of catalase accompanied this. Our result showed significant gene elevation at the mRNA level of tumor necrosis factor-α and elevated malondialdehyde by BPA. The significantly elevated alanine transaminase and aspartate transaminase activities in addition to increased levels of total cholesterol, triglycerides, and very low-density lipoprotein with reduced high-density lipoprotein reflected the detrimental effect of BPA in the liver. Our results revealed that cinnamic acid could alleviate the increased pro-inflammatory cytokine level and oxidative stress by downregulating tumor necrosis factor-α gene. The histopathological evaluation confirmed the biochemical results. Hepatic alterations were ameliorated when cinnamic acid was co-administered with BPA. These findings suggest that downregulation of the TNF-α gene induced by cinnamic acid may participate in suppressing the BPA-induced oxidative stress. This offers a new idea to unmask the mechanism underlying cinnamic acid's interference with BPA-induced hepatic damage.
Collapse
Affiliation(s)
- Anne Adebukola Adeyanju
- Department of Biological Sciences, Faculty of Applied Sciences, KolaDaisi University, Km 18, Oyo Express Road, Ibadan, Oyo, Nigeria
| | - Emmanuel Ayomitide Akinwunmi
- Department of Biological Sciences, Faculty of Applied Sciences, KolaDaisi University, Km 18, Oyo Express Road, Ibadan, Oyo, Nigeria
| | - Mojisola Esther Karigidi
- Department of Biological Sciences, Faculty of Applied Sciences, KolaDaisi University, Km 18, Oyo Express Road, Ibadan, Oyo, Nigeria
| | | | | |
Collapse
|
2
|
Türkez H, Özdemir Tozlu Ö, Saraçoğlu M, Yıldız E, Baba C, Bayram C, Çınar B, Yıldırım S, Kılıçlıoğlu M, Gözegir B, Çadırcı K. Colemanite and biological disruptions: Behavioral, neurological, and physiological findings. Regul Toxicol Pharmacol 2025; 161:105840. [PMID: 40324558 DOI: 10.1016/j.yrtph.2025.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/07/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Colemanite (COL), a boron-containing mineral, has shown potential therapeutic applications, particularly in the fields of drug delivery and bone health. However, despite its promising bioactive properties, there is a lack of comprehensive toxicological data on its safety, especially regarding its potential medical use. Previous studies have primarily focused on its industrial applications, with limited investigation into its biological effects. This gap in knowledge prompted the current study, which aimed to investigate the subacute toxicity of colemanite in rats using behavioral, hematological, biochemical, genotoxic, and histopathological analyses. Over a 7-day period, rats were treated with doses of 10, 30, and 300 mg/kg. Behavioral assessments, including locomotor activity and elevated plus maze tests, indicated enhanced exploratory behaviors, indicating heightened curiosity or activity and no alterations in motor coordination or anxiety-like behaviors. Hematological findings revealed dose-dependent reductions in hematocrit, hemoglobin, and red blood cell counts, while biochemical analyses showed elevated aspartate aminotransferase, lactate dehydrogenase, and cholesterol levels at higher doses, suggesting hepatotoxicity and lipid metabolism disruption. Genotoxicity analysis demonstrated increased micronucleus formation at 30 and 300 mg/kg, indicative of chromosomal instability possibly linked to oxidative stress. Histopathological evaluations revealed mild hepatocyte degeneration and hyperemia in the liver and brain tissues at the highest dose. Importantly, no significant toxic effects were observed at the 10 mg/kg dose. These findings highlight the dose-dependent toxicity of colemanite, with low doses exhibiting a favorable safety profile. This study underscores the need for dose optimization and further research to elucidate the molecular mechanisms underlying colemanite's toxicological effects, including its impact on various organs over both short-term and long-term exposures. Additionally, future studies should focus on assessing the human relevance of these effects to ensure its safe and effective therapeutic application.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Özlem Özdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Melik Saraçoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Edanur Yıldız
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Cem Baba
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey; Trustlife Labs, Drug Research & Development Center, Istanbul, Turkey
| | - Cemil Bayram
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burak Çınar
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey; Department of Pathology, Faculty of Veterinary Medicine, Kyrgyzstan-Turkey Manas University, Bishkek, Kyrgyzstan
| | - Metin Kılıçlıoğlu
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Berrah Gözegir
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Kenan Çadırcı
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum, Turkey
| |
Collapse
|
3
|
Ulus G, Özbek EN, Yılmaz H, Keselik E, Sarıcaoğlu M, Akyol Bahçeci S, İşel E, Debeleç Bütüner B, Yetik Anacak G, Koparal AT. Borax pentahydrate as a promising boron-based angiogenesis inhibitor. J Trace Elem Med Biol 2025; 89:127640. [PMID: 40203787 DOI: 10.1016/j.jtemb.2025.127640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Boron, a trace element, is involved in various physiological and metabolic processes, and recent studies suggest that boron compounds may have potential in cancer prevention and treatment. In this study, the antiangiogenic effects of a boron compound, borax pentahydrate (BPH), were investigated. Angiogenesis is a tightly regulated biological process responsible for the formation of new blood vessels from existing vasculatures. This process plays a critical role in cancer progression, making it an important target for cancer therapy. Pancreatic and kidney cancers are difficult to treat because they are aggressive and resistant to chemotherapy. METHODS The antiproliferative activity was evaluated using the MTT assay, while antiangiogenic effects were tested through in vitro tube formation assays and in ovo chick chorioallantoic membrane (CAM) assay. The effect of BPH on VEGF levels was determined using Western blot analysis in HUVEC, ACHN, PANC-1 cells. The effect of BPH on tumor angiogenesis was investigated with an in vivo Ehrlich ascites carcinoma model (EAC). RESULTS BPH exhibited potent antiproliferative and antiangiogenic activities, inhibiting the proliferation of ACHN, PANC-1, and HUVECs, disrupting endothelial tube formation, and inhibiting vascular formation on the CAM surface in a dose-dependent manner. VEGF levels were significantly decreased in ACHN, PANC-1 and HUVECs. There was also a decrease in VEGF and TGF-β1 levels in BPH-treated tumor groups. In addition, BPH caused a decrease in tumor size. CONCLUSION These findings suggest that BPH may be a new antiangiogenic and antitumoral agent. BPH may contribute to drug development studies targeting angiogenesis-related diseases as a promising new therapeutic agent.
Collapse
Affiliation(s)
- G Ulus
- Republic of Türkiye, Ministry of Education, Şerife Bacı Vocational and Technical High School, Izmir 35090, Turkiye.
| | - E N Özbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir 35100, Turkiye
| | - H Yılmaz
- Republic of Türkiye, Ministry of Education, Mimar Sinan Vocational and Technical High School, Izmir 35090, Turkiye
| | - E Keselik
- Department of Histology and Embryology, Faculty of Medicine, Katip Çelebi University, Izmir 35100, Turkiye
| | - M Sarıcaoğlu
- Department of Histology and Embryology, Faculty of Medicine, Katip Çelebi University, Izmir 35100, Turkiye
| | - S Akyol Bahçeci
- Department of Histology and Embryology, Faculty of Medicine, Katip Çelebi University, Izmir 35100, Turkiye
| | - E İşel
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir 35100, Turkiye
| | - B Debeleç Bütüner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir 35100, Turkiye
| | - G Yetik Anacak
- Department of Pharmacology, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkiye
| | - A T Koparal
- Yunus Emre Vocational School of Health Services, Anadolu University, Eskisehir 26470, Turkiye
| |
Collapse
|
4
|
Tekin S, Bolat M, Atasever A, Bolat İ, Çinar B, Shadidizaji A, Dağ Y, Şengül E, Yildirim S, Hacimuftuoglu A, Warda M. Mechanistic insights into the P-coumaric acid protection against bisphenol A-induced hepatotoxicity in in vivo and in silico models. Sci Rep 2025; 15:11023. [PMID: 40164713 PMCID: PMC11958805 DOI: 10.1038/s41598-025-87099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/16/2025] [Indexed: 04/02/2025] Open
Abstract
Bisphenol A (BPA), commonly found in plastic containers and epoxy resins used for food products, presents substantial health risks, particularly in relation to hepatic toxicity. This study investigates BPA-induced liver damage and explores the mechanistic dose-dependent protective effects of P-coumaric acid (PCA). 50 male rats were divided into control, BPA-treated, BPA + PCA50, BPA + PCA100, and PCA100 groups. BPA exposure for 14 days induced oxidative stress, evidenced by elevated malondialdehyde levels and decreased activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Higher doses of PCA effectively mitigated these effects by restoring redox balance and enhancing antioxidant enzyme activities. Additionally, BPA disrupted inflammation and apoptosis pathways, inhibiting anti-inflammatory markers and interfering with the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway. PCA exhibited dose-dependent protection against these disruptions. Computational analyses revealed that BPA inhibits cyclooxygenase-1 through stable hydrogen bonding with threonine at position 322. PCA's dual protective effect was confirmed by attenuating inflammatory pathways, including TNF-α inhibition and suppression of the Kelch-like ECH-associated protein 1 (KEAP1) and Nrf2 signaling pathway. Histopathological assessments confirmed that PCA alleviated significant hepatic damage induced by BPA. Immunohistochemical and immunofluorescence analyses further supported PCA's protective role against BPA-induced apoptosis and cellular hepatotoxicity. These findings underscore PCA's protective potential against BPA-induced hepatotoxicity and highlight novel mechanistic interactions that warrant further investigation in applied nutritional biochemistry.
Collapse
Affiliation(s)
- Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Aslıhan Atasever
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burak Çinar
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Azizeh Shadidizaji
- Department of Plant Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Yusuf Dağ
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Emin Şengül
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Ertürk Gürkan S, Gürkan M, Sarıtunç V, İbiş EC, Güneş B. Evaluation of Possible Toxic Effects of Boric Acid in Palourde Clam (Ruditapes decussatus) Through Histological Changes and Oxidative Responses. Biol Trace Elem Res 2025; 203:1151-1161. [PMID: 38743317 PMCID: PMC11750883 DOI: 10.1007/s12011-024-04230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The extensive utilization of boric acid, particularly in industrial and agricultural sectors, also engenders concerns regarding the toxicity of boron and its derivatives. Particularly, the behavior of boric acid at increasing concentrations in aquatic ecosystems remains poorly understood. In light of these concerns, this study aimed to investigate the toxicity of boric acid in bivalves, which occupy a critical position in the food chain. Specimens of Ruditapes decussatus, which had not been previously exposed to any pollutants and were cultivated under controlled conditions, were subjected to three different concentrations of boric acid (0.05 mg/L, 0.5 mg/L, and 5 mg/L) in vitro for 96 h. Following the exposure period, the specimens were assessed for histological changes (the mantle, gill, and digestive gland) and specific oxidative parameters (the gill and digestive gland), including superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase, and lipid peroxidation (LPO). The research findings indicated that boric acid primarily induced oxidative damage at the applied concentrations and increased antioxidant levels (p < 0.05). Moreover, although no significant histopathological abnormalities were observed in the examined histological sections, subtle changes were noted. This study evaluated the potential adverse effects of boric acid on bivalves, which are crucial components of the aquatic food chain, utilizing histological and specific physiological parameters following its introduction into aquatic environments. It is anticipated that the findings of this study will contribute to the development of new insights and perspectives regarding the extensive use of boric acid.
Collapse
Affiliation(s)
- Selin Ertürk Gürkan
- Department of Biology, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Mert Gürkan
- Department of Biology, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Volkan Sarıtunç
- School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ezgi Can İbiş
- School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Berkay Güneş
- School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
6
|
Youssef OM, Goda NIA, Hassan MA, Helal NE. Selenium modulates bisphenol A-induced intestinal apoptosis, oxidative stress and autophagy in rats: A biochemical, histological and immunohistochemical study. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2025; 79:301-313. [PMID: 39862151 DOI: 10.1080/19338244.2025.2455098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Bisphenol A (BPA) is a hazardous endocrine disruptor released into the environment during the production of certain plastics used for covering of food and beverage cans. In this work, we examined the protective benefits of selenium (Se) against intestinal damage induced by BPA in male rats. Rats were distributed randomly into four groups. The first group received corn oil and served as the control. The second group was administered Se (1 mg/kg body weight; BW). The third group was given oral BPA (50 mg/kg BW). In the fourth group, Se (1 mg/kg BW) and BPA (50 mg/kg BW) were administered simultaneously. This experiment lasted for eight weeks. Specimens from the large intestine were subjected to biochemical analysis of antioxidants and oxidative stress biomarkers, histological observation under light and transmission electron microscopy and immunohistochemistry to autophagy and apoptosis markers. The BPA-exposed group showed significantly elevated oxidative stress markers associated with significant decline of antioxidants in intestinal tissues. BPA resulted in histological alterations such as severe mucosal necrosis with massive inflammatory cell infiltration. Ultra-structurally, the same group showed severe loss of the cell organelles, shrunken nuclei, and abundant autophagosomes. Immunohistochemistry results demonstrated a strong reactivity of caspase-3 and LC3 in the BPA group in contrast to the reaction to p62, which was markedly diminished. These effects were mitigated in the BPA+Se group. We concluded that BPA's harmful effects on the large intestine are caused by apoptosis and autophagy. Se may protect intestinal cells from these effects and could be a useful and trustworthy approach for reducing BPA toxicity.
Collapse
Affiliation(s)
- Ola Mohammed Youssef
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nehal I A Goda
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona A Hassan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nora Elshehawy Helal
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Lee SY, Yoo CN, Woo SY, Park SB, Chun HS. Determination of the occurrence of and exposure to bisphenol A and its analogues in carbonated beverages and canned tuna using liquid chromatography - tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1521-1532. [PMID: 39226450 DOI: 10.1080/19440049.2024.2397526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Bisphenol A (BPA), a known endocrine disruptor, is commonly used in food containers and packaging. Recently, alternatives such as bisphenol AF (BPAF), bisphenol B (BPB), and bisphenol E (BPE) have been introduced to replace BPA. However, these substitutes have been reported to exhibit toxicity levels similar to BPA. In this study, we developed and validated a method for the analysis of trace bisphenols (BPA, BPAF, BPB, and BPE) in food using immunoaffinity column (IAC) clean-up. The method demonstrated satisfactory accuracy and precision. We applied this validated method to analyze 56 carbonated beverage samples and 30 canned tuna samples. In the carbonated beverages, average concentrations of BPA and BPAF were 0.4 and 0.2 μg kg-1, respectively. In canned tuna, BPA and BPAF were found at average concentrations of 22.2 and 0.7 μg kg-1, respectively, while BPB and BPE were not detected in any samples. Estimated exposure levels ranged from 0.13 to 0.18 ng kg bw-1 day-1 in the general population and from 205.2 to 232.0 ng kg bw-1 day-1 among consumers. The commercial IAC-based analytical method used in this study can contribute to the safety management of BPA, BPAF, BPB, and BPE.
Collapse
Affiliation(s)
- Sang Yoo Lee
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Cha Nee Yoo
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - So Young Woo
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Su Bin Park
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Hyang Sook Chun
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
8
|
Zhao W, Zheng X, Jiang F, Liu J, Wang S, Ou J. Safe concentration, unsafe effects: Impact of BPA on antioxidant function in the hepatopancreas and ovarian gene expression in oriental river prawns (Macrobrachium nipponense). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107103. [PMID: 39305710 DOI: 10.1016/j.aquatox.2024.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 11/12/2024]
Abstract
This study investigated the effects of Bisphenol A (BPA), a common endocrine-disrupting chemical, on the antioxidant enzyme activities in the hepatopancreas and the expression of genes related to ovarian development in oriental river prawns (Macrobrachium nipponense). The 24hLC50 and 48hLC50 values for BPA were 80.59 mg/L and 63.90 mg/L, respectively, with a safe concentration of 12.06 mg/L. Prawns were exposed to low (4.85 mg/L), safe (12.06 mg/L), and high (30.00 mg/L) concentrations of BPA for 10 days to measure enzyme activities, and for 20 days followed by 7 days in BPA-free water to measure gene expression. Short-term exposure (12 h, 1d, 3d) to low concentration BPA did not significantly affect superoxide dismutase (SOD) activity in the hepatopancreas (P > 0.05), but long-term exposure (6d, 10d) significantly reduced SOD activity (P < 0.05). Catalase (CAT) activity showed no significant changes throughout the low concentration exposure period (P > 0.05). At safe and high concentrations, SOD and CAT activities significantly decreased after 12 h of exposure (P < 0.05). BPA affected heat shock protein 90 (HSP90) expression in the ovary, with low concentration BPA significantly upregulating HSP90 after 1 day (P < 0.05), but returning to normal levels after 10 and 20 days. At the safe concentration, HSP90 was significantly upregulated at all three sampling points (1d, 10d, 20d) (P < 0.05), while high concentration exposure led to significant upregulation only on day 10 (P < 0.05). Low concentration BPA had no significant effect on Cathepsin B (CB) and Cathepsin L (CL) gene expression in the ovaries (P > 0.05). However, safe concentration exposure promoted CB expression on days 1, 10, and 20 (P < 0.05), while high concentration exposure significantly increased CB expression on day 1 (P < 0.05), with levels returning to normal on days 10 and 20. CL expression significantly increased after 20 days of exposure to both safe and high concentrations (P < 0.05). Gene expression levels in the ovaries returned to normal after transfer to BPA-free water, with HSP90 and CB normalizing by day 1, and CL by day 7. These results indicate that even safe concentrations of BPA impose stress on the hepatopancreas and increase the expression of HSP90, CB, and CL genes in the ovaries, affecting ovarian development. And, these effects are reversible within a certain period after the removal of BPA.
Collapse
Affiliation(s)
- Weihong Zhao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xirui Zheng
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fengjuan Jiang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jintao Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Shuhao Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jiangtao Ou
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
9
|
Turkez H, Tozlu OO, Arslan ME, Baba C, Saracoglu MM, Yıldız E, Tatar A, Mardinoglu A. Boric Acid and Borax Protect Human Lymphocytes from Oxidative Stress and Genotoxicity Induced by 3-Monochloropropane-1,2-diol. Biol Trace Elem Res 2024; 202:5006-5016. [PMID: 38216793 PMCID: PMC11442522 DOI: 10.1007/s12011-024-04060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
3-chloro-1,2-propanediol (3-MCPD) is a member of the group of pollutants known as chloropropanols and is considered a genotoxic carcinogen. Due to the occurrence of 3-MCPD, which cannot be avoided in multiplexed food processes, it is necessary to explore novel agents to reduce or prevent the toxicity of 3-MCPD. Many recent studies on boron compounds reveal their superior biological roles such as antioxidant, anticancer, and antigenotoxic properties. In the current investigation, we have evaluated in vitro cytotoxic, oxidative, and genotoxic damage potential of 3-MCPD on human whole blood cultures and the alleviating effect of boric acid (BA) and borax (BX) for 72 h. In our in vitro experiments, we have treated blood cells with BA and BX (2.5, 5, and 10 mg/L) and 3-MCPD (at IC50 of 11.12 mg/l) for 72 h to determine the cytotoxic damage potential by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and lactate dehydrogenase (LDH) release assays. Oxidative damage was assessed using total antioxidant capacity (TAC) and malondialdehyde (MDA) levels. Genotoxicity evaluations were performed using chromosome aberrations (CAs) and 8-hydroxy deoxyguanosine (8-OHdG) assays. The result of our experiments showed that the 3-MCPD compound induced cytotoxicity, oxidative stress, and genotoxicity in a clear concentration-dependent manner. BA and BX reduced cytotoxicity, oxidative stress, and genotoxicity induced by 3-MCPD. In conclusion, BA and BX are safe and non-genotoxic under the in vitro conditions and can alleviate cytotoxic, oxidative, and genetic damage induced by 3-MCPD in the human blood cells. Our findings suggest that dietary boron supplements may offer a novel strategy for mitigating hematotoxicity induced by xenobiotics, including 3-MCPD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Cem Baba
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Muhammed Melik Saracoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Edanur Yıldız
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
10
|
Zhang Q, Li M, Wang P, Lin X, Lai KP, Ding Z. Integrated analysis reveals the immunotoxicity mechanism of BPs on human lymphocytes. Chem Biol Interact 2024; 399:111148. [PMID: 39004390 DOI: 10.1016/j.cbi.2024.111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Bisphenol A (BPA) is a well-documented endocrine-disrupting chemical widely used in plastic products. In addition to its endocrine-disrupting effects, BPA exhibits immunotoxicity. Many countries have banned BPA because of its adverse effects on human health. In recent years, many chemicals such as bisphenol B (BPB), bisphenol E (BPE), bisphenol S (BPS), and bisphenol fluorene (BHPF) have been used to replace BPA. Because these replacement chemicals have chemical structures similar to that of BPA, they may also harm human health. However, their immunotoxicity and the molecular mechanisms underlying their toxicity remain largely unknown. The aim of this study was to investigate the immunotoxicity of BPA and its replacement chemicals, as well as the underlying mechanisms by exposing primary human lymphocytes to BPA and its replacement chemicals. Our results showed that exposure to BPA and its replacement chemicals altered the interleukin (IL) and cytokine production, such as IL-1b, IL-5, IL-6, IL-8, interferon alfa-2b (IFN-a2B), and tumor necrosis factor alpha (TNF-α), in the lymphocytes. Among these, BPA and BHPF caused a greater inhibition. Using comparative transcriptomic analysis, we further investigated the biological processes and signaling pathways altered by BHPF exposure. Our data highlighted alterations in the immune response, T cell function, and cytokine-cytokine receptor interactions in human lymphocytes through the deregulation of gene clusters. In addition, the results of ingenuity pathway analysis demonstrated the inhibition of T lymphocyte function, including differentiation, movement, and infiltration. Our results, for the first time, delineate the mechanisms underlying the immunotoxicity of BHPF in human lymphocytes.
Collapse
Affiliation(s)
- Qiujin Zhang
- Department of Immunology, Guilin Medical University, Guilin, China
| | - Mengzhen Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Ping Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China.
| | - Zhixiang Ding
- Department of Ophthalmology, Affiliated Hospital of Guilin Medical University, Guilin, China.
| |
Collapse
|
11
|
Karaman E, Onder GO, Goktepe O, Karakas E, Mat OC, Bolat D, Koseoglu E, Tur K, Baran M, Ermis M, Balcioglu E, Yay A. Protective Effects of Boric Acid Taken in Different Ways on Experimental Ovarian İschemia and Reperfusion. Biol Trace Elem Res 2024; 202:2730-2743. [PMID: 37743417 DOI: 10.1007/s12011-023-03871-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Ovarian ischemia is a gynecological emergency that occurs as a result of ovarian torsion, affects women of reproductive age, and reduces ovarian reserve. The current study was designed to investigate the effect of boric acid taken in different ways on histopathological changes, autophagy, oxidative stress, and DNA damage caused by ischemia and reperfusion in the ovary of adult female rats. We established seven groups of 70 adult female rats: untreated control, intraperitoneal boric acid group (IpBA), oral boric acid group (OBA), ischemia/reperfusion group (ischemia/2 h reperfusion; OIR), ischemia/reperfusion and local boric acid group (OIR + LBA), ischemia/reperfusion and intraperitoneal boric acid group (OIR + IpBA), and ischemia/reperfusion and oral boric acid group (OIR + OBA). On the 31st day of the experimental procedure, both ovaries were harvested for histologic (hematoxylen and eosin and Masson trichrom), biochemical (ELISA and AMH, MDA, SOD, and CAT analyses), and comet evaluation. In the OIR group, hemorrhage, edema, inflammation, and diminished follicle reserve were seen in the ovary. Boric acid treatment reduced the ovarian ischemia/reperfusion damage, and the follicles exhibited similar morphological features to the control group. Moreover, boric acid treatment decreased the levels of Hsp70, NF-KB, COX-2, and CD31, which increased as a result of OIR. On the other hand, SCF and AMH levels, which decreased as a result of OIR, increased with boric acid treatment. The levels of autophagy markers (Beclin-1, LC3, and p62) reached values close to those of the control group. According to the biochemical findings, it was concluded that boric acid is also effective on oxidative stress, and the AMH level was particularly high in the OIR + OBA group, consistent with the immunohistochemical staining result. In addition, it was observed that the DNA damage caused by OIR reached values close to those of the control group, especially in the OBA after OIR. This study showed the therapeutic effects of boric acid on OIR injuries; thus, boric acid may be a potential therapeutic agent for ovarian protection and fertility preservation in cases that may cause ovarian torsion.
Collapse
Affiliation(s)
- Enes Karaman
- Department of Gynecology and Obstetrics, Savur Prof Dr Aziz Sancar District State Hospital, Mardin, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ozge Goktepe
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Erol Karakas
- Department of Gynecology and Obstetrics, Kayseri State Hospital, Kayseri, Turkey
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Demet Bolat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Eda Koseoglu
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Kardelen Tur
- Department of Biophysics, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Mustafa Ermis
- Experimental Researches and Application Center, Erciyes University, Kayseri, Turkey
| | - Esra Balcioglu
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey.
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
| |
Collapse
|
12
|
Chen H, Zhang T, Yan S, Zhang S, Fu Q, Xiong C, Zhou L, Ma X, Wang R, Chen G. Protective effects of the bioactive peptide from maggots against skin flap ischemia‒reperfusion injury in rats. Heliyon 2024; 10:e29874. [PMID: 38694094 PMCID: PMC11058300 DOI: 10.1016/j.heliyon.2024.e29874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Ischemia‒reperfusion (I/R) injury is a frequently observed complication after flap surgery, and it affects skin flap survival and patient prognosis. Currently, there are no proven safe and effective treatment options to treat skin flap I/R injury. Herein, the potential efficacies of the bioactive peptide from maggots (BPM), as well as its underlying mechanisms, were explored in a rat model of skin flap I/R injury and LPS- or H2O2-elicited RAW 264.7 cells. We demonstrated that BPM significantly ameliorated the area of flap survival, and histological changes in skin tissue in vivo. Furthermore, BPM could markedly restore or enhance Nrf2 and HO-1 levels, and suppress the expression of pro-inflammatory cytokines, including TLR4, p-IκB, NFκB p65, p-p65, IL-6, and TNF-α in I/R-injured skin flaps. In addition, BPM treatment exhibited excellent biocompatibility with an adequate safety profile, while it exhibited superior ROS-scavenging ability and the upregulation of antioxidant enzymes in vitro. Mechanistically, the above benefits related to BPM involved the activation of Nrf2/HO-1 and suppression of TLR4/NF-κB pathway. Taken together, this study may provide a scientific basis for the potential therapeutic effect of BPM in the prevention of skin flap I/R injury and other related diseases.
Collapse
Affiliation(s)
- Hao Chen
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Tianqi Zhang
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Su Yan
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Shan Zhang
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Qiuyue Fu
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Chuchu Xiong
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Lina Zhou
- Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, PR China
| | - Xiao Ma
- Yixing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Yixing, Jiangsu, PR China
| | - Rong Wang
- College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Gang Chen
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| |
Collapse
|
13
|
Tekin S, Sengul E, Yildirim S, Aksu EH, Bolat İ, Çınar B, Shadidizaji A, Çelebi F, Warda M. Molecular insights into the antioxidative and anti-inflammatory effects of P-coumaric acid against bisphenol A-induced testicular injury: In vivo and in silico studies. Reprod Toxicol 2024; 125:108579. [PMID: 38513920 DOI: 10.1016/j.reprotox.2024.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
This study investigated the protective effects of p-coumaric acid (PCA) against bisphenol A (BPA)-induced testicular toxicity in male rats. The rats were divided into control, BPA, BPA+PCA50, BPA+PCA100, and PCA100 groups. Following a 14-day treatment period, various analyses were conducted on epididymal sperm quality and testicular tissues. PCA exhibited dose-dependent cytoprotective, antioxidant, and anti-inflammatory effects, ameliorating the decline in sperm quality induced by BPA. The treatment elevated antioxidant enzyme activities (SOD, GPx, CAT) and restored redox homeostasis by increasing cellular glutathione (GSH) and reducing malondialdehyde (MDA) levels. PCA also mitigated BPA-induced proinflammatory responses while reinstating anti-inflammatory IL-10 levels. Apoptotic parameters (p53 and p38-MAPK) were normalized by PCA in BPA-treated testicular tissue. Immunohistochemical and immunofluorescent analyses confirmed the cytoprotective and anti-inflammatory effects of PCA, evidenced by the upregulation of HO-1, Bcl-2, and Nrf-2 and the downregulation of the proapoptotic gene Bax in BPA-induced testicular intoxication. PCA corrected the disturbance in male reproductive hormone levels and reinstated testosterone biosynthetic capacity after BPA-induced testicular insult. In silico analyses suggested PCA's potential modulation of the oxidative stress KEAP1/NRF2/ARE pathway, affirming BPA's inhibitory impact on P450scc. This study elucidates BPA's molecular disruption of testosterone biosynthesis and highlights PCA's therapeutic potential in mitigating BPA's adverse effects on testicular function, showcasing its cytoprotective, anti-inflammatory, and hormone-regulating properties. The integrated in vivo and in silico approach offers a comprehensive understanding of complex mechanisms, paving the way for future research in reproductive health and toxicology, and underscores the importance of employing BPA-free plastic wares in semen handling.
Collapse
Affiliation(s)
- Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Emin Sengul
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Emrah Hicazi Aksu
- Department of Andrology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burak Çınar
- Department of Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Azizeh Shadidizaji
- Department of Plant Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Fikret Çelebi
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey; Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
14
|
Jin R, Hu W, Zhou M, Lin F, Xu A. Caffeic acid derivative WSY6 protects melanocytes from oxidative stress by reducing ROS production and MAPK activation. Heliyon 2024; 10:e24843. [PMID: 38304822 PMCID: PMC10831733 DOI: 10.1016/j.heliyon.2024.e24843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Purpose Vitiligo is a chronic depigmentation disease caused by a loss of functioning melanocytes and melanin from the epidermis. Oxidative stress-induced damage to melanocytes is key in the pathogenesis of vitiligo. WSY6 is a caffeic acid derivative synthesized from epigallocatechin-3-gallate (EGCG). This study is to investigate whether the new chemical WSY6 protected melanocytes from H2O2-induced cell damage and to elucidate the underlying molecular mechanism. Patients and methods The present study compared the antioxidative potential of WSY6 with EGCG in hydrogen peroxide (H2O2)-treated PIG1 cells. Western blotting was used to study the protein expression of cyto-c, cleaved-caspase3, cleaved-caspase9, and the activation of MAPK family members, including p38, ERK1/2, JNK and their phosphorylation in melanocytes. ROS assay kit to detect intracellular reactive oxygen species production; CCK8 and lactate dehydrogenase leak assay to detect cytotoxicity. Results EGCG and WSY6 ameliorated H2O2-induced oxidative stress damage in PIG1 cells in a does-dependent manner, while WSY6 was much more effective. WSY6 reduced cellular ROS production, cytochrome c release, downregulated caspase-3 and caspase-9 activation. MAPK pathway signaling including phosphorylated p38, ERK and JNK were observed under oxidative stress and can be much protected by pre-treatment of WSY6. Conclusion These results indicated that WSY6 could be a more powerful antioxidant than EGCG and protect melanocytes against oxidative cytotoxicity.
Collapse
Affiliation(s)
| | | | - Miaoni Zhou
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, PR China
| | - Fuquan Lin
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, PR China
| | - Aie Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, PR China
| |
Collapse
|
15
|
Nagarajan M, Maadurshni GB, Manivannan J. Bisphenol A (BPA) exposure aggravates hepatic oxidative stress and inflammatory response under hypertensive milieu - Impact of low dose on hepatocytes and influence of MAPK and ER stress pathways. Food Chem Toxicol 2024; 183:114197. [PMID: 38029875 DOI: 10.1016/j.fct.2023.114197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Human exposure to the hazardous chemical, Bisphenol A (BPA), is almost ubiquitous. Due to the prevalence of hypertension (CVD risk factor) in the aged human population, it is necessary to explore its adverse effect in hypertensive subjects. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME) induced hypertensive Wistar rats to human exposure relevant low dose of BPA (50 μg/kg) for 30 days period. The liver biochemical parameters, histopathology, immunohistochemistry, gene expression (RT-qPCR), trace elements (ICP-MS), primary rat hepatocytes cell culture and metabolomic (1H NMR) assessments were performed. Results illustrate that BPA exposure potentiates/aggravates hypertension induced tissue abnormalities (hepatic fibrosis), oxidative stress, ACE activity, malfunction of the antioxidant system, lipid abnormalities and inflammatory factor (TNF-α and IL-6) expression. Also, in cells, BPA increased ROS generation, mitochondrial dysfunction and lipid peroxidation without any impact on cytotoxicity and caspase 3 and 9 activation. Notably, BPA exposure modulate lipid metabolism (cholesterol and fatty acid) in primary hepatocytes. Finally, the influence of ERK1/2, p38MAPK, ER stress and oxidative stress during relatively high dose of BPA elicited cytotoxicity was observed. Therefore, a precise hazardous risk investigation of BPA exposure in hypertensive populations is highly recommended.
Collapse
Affiliation(s)
- Manikandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
16
|
Gür F, Cengiz M, Gür B, Cengiz O, Sarıçiçek O, Ayhancı A. Therapeutic role of boron on acrylamide-induced nephrotoxicity, cardiotoxicity, neurotoxicity, and testicular toxicity in rats: Effects on Nrf2/Keap-1 signaling pathway and oxidative stress. J Trace Elem Med Biol 2023; 80:127274. [PMID: 37562273 DOI: 10.1016/j.jtemb.2023.127274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/24/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Acrylamide (ACR) is a heat-related carcinogen used in cooking some foods as well as in other thermal treatments. The present study aims to investigate the possible protective effect of boron (BA) against ACR-induced toxicity of kidney, brain, heart, testis, and bladder tissues in rats. METHODS Rats have been divided into 5 equal groups: Control (saline), ACR (38.27 mg/kg), BA (20 mg/kg), BA+ ACR (10 mg/kg + ACR), and BA+ ACR (20 mg/kg BA+ACR). Kidney tissue from rats was collected and the levels of malondialdehyde (MDA), glutathione (GSH), and the activity of superoxide dismutase (SOD) were measured. In addition, the kidneys of these animals, as well as the brain, heart, testes, and bladder tissues were examined for possible histological changes. Total Nrf2 and Keap-1 protein expression in kidney, heart, and testis tissues was examined by immunohistochemistry. RESULTS While significant increases in MDA levels were observed in the kidneys of rats receiving ACR alone, significant decreases in antioxidant markers (SOD and GSH) were observed. Besides, kidney, brain, heart, and testicular tissues were analyzed and damage was observed in the groups receiving ACR. However, no significant histologic changes were noted in the bladder tissue. Both dosages of BA in combination with ACR improved the changes in ACR-induced antioxidant tissue parameters. Despite the fact that MDA levels were decreased with these two dosages, histological structural abnormalities were found to be greatly improved. CONCLUSION Our results show that BA has a strong protective effect on ACR-induced multi-organ toxicity. The study results show that BA could be a potential element to reduce ACR toxicity to which we are often exposed.
Collapse
Affiliation(s)
- Fatma Gür
- Department of Biochemistry, Vocational School of Health Services, Ataturk University, Erzurum, Turkiye
| | - Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, Siirt, Turkiye.
| | - Bahri Gür
- Department of Biochemistry, Faculty of Sciences and Arts, Iğdır University, Iğdır, Turkiye.
| | - Osman Cengiz
- Department of Cardiology, Eskişehir City Hospital, Eskişehir, Turkiye
| | - Osman Sarıçiçek
- Department of Biology, Faculty of Arts and Science, Eskişehir Osmangazi University, Eskisehir, Turkiye
| | - Adnan Ayhancı
- Department of Biology, Faculty of Arts and Science, Eskişehir Osmangazi University, Eskisehir, Turkiye
| |
Collapse
|
17
|
Allam AM, AbuBakr HO, Yassin AM, Abdel-Razek AS, Khattab MS, Gouda EM, Mousa SZ. Potential chemopreventive effects of Broccoli extract supplementation against 7, 12 dimethyl Benz(a)anthracene (DMBA) -induced toxicity in female rats. Sci Rep 2023; 13:17234. [PMID: 37821474 PMCID: PMC10567736 DOI: 10.1038/s41598-023-43629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Dietary components have recently received rapidly expanding attention for their potential to halt or reverse the development of many oxidative stress-mediated diseases after exposure to environmental toxicants. 7, 12 dimethylbenz(a)anthracene (DMBA) is one of the most common environmental pollutants. The present study aimed to evaluate the chemo-preventive effects of broccoli as a nutritional component against DMBA intoxication in rats. A daily dose of aqueous (1 ml/rat) and methanolic (150 mg/kg) broccoli extracts, respectively, was given to 50-day-old female rats for 26 successive weeks after carcinogen intoxication with a single dose of 20 mg/ml of DMBA. DMBA intoxication resulted in a redox imbalance (a decreased GSH level and an increased MDA level) and increased DNA fragmentation in the liver, kidney, and brain. Besides, it affected the level of expression of the bcl2 gene in the liver, kidney, and brain tissue but didn't affect cfos gene expression accompanied by histopathological changes. The aqueous and methanolic broccoli extract supplements ameliorated the adverse effects by increasing the level of GSH, decreasing the MDA level, and reducing DNA fragmentation. Besides, broccoli extracts decreased the expression of bcl2 in the liver and brain and up-regulated bcl2 expression in the kidney, accompanied by lowering NF-κβ 65 expression in the liver and brain and γ-catenin expression in the liver and kidney. In conclusion, broccoli as a dietary component had a strong chemoprotective effect against oxidative stress, DNA damage, and genotoxicity induced by DMBA intoxication in rats.
Collapse
Affiliation(s)
- Aya M Allam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed S Abdel-Razek
- Department of Microbial Chemistry, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki- Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman M Gouda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Said Z Mousa
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
18
|
Zhao FF, Wang XL, Lei YT, Li HQ, Li ZM, Hao XX, Ma WW, Wu YH, Wang SY. A systematic review: on the mercaptoacid metabolites of acrylamide, N-acetyl-S-(2-carbamoylethyl)-L-cysteine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88350-88365. [PMID: 37458885 DOI: 10.1007/s11356-023-28714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023]
Abstract
Acrylamide is widely found in a variety of fried foods and cigarettes and is not only neurotoxic and carcinogenic, but also has many potential toxic effects. The current assessment of acrylamide intake through dietary questionnaires is confounded by a variety of factors, which poses limitations to safety assessment. In this review, we focus on the levels of AAMA, the urinary metabolite of acrylamide in humans, and its association with other diseases, and discuss the current research gaps in AAMA and the future needs. We reviewed a total of 25 studies from eight countries. In the general population, urinary AAMA levels were higher in smokers than in non-smokers, and higher in children than in adults; the highest levels of AAMA were found in the population from Spain, compared with the general population from other countries. In addition, AAMA is associated with several diseases, especially cardiovascular system diseases. Therefore, AAMA, as a biomarker of internal human exposure, can reflect acrylamide intake in the short term, which is of great significance for tracing acrylamide-containing foods and setting the allowable intake of acrylamide in foods.
Collapse
Affiliation(s)
- Fang-Fang Zhao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Xiao-Li Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Ya-Ting Lei
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Hong-Qiu Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Zhi-Ming Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Xiao-Xiao Hao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Wei-Wei Ma
- Harbin Railway Center for Disease Control and Prevention, Harbin, People's Republic of China
| | - Yong-Hui Wu
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Sheng-Yuan Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China.
| |
Collapse
|
19
|
Chotphruethipong L, Chanvorachote P, Reudhabibadh R, Singh A, Benjakul S, Roytrakul S, Hutamekalin P. Chitooligosaccharide from Pacific White Shrimp Shell Chitosan Ameliorates Inflammation and Oxidative Stress via NF-κB, Erk1/2, Akt and Nrf2/HO-1 Pathways in LPS-Induced RAW264.7 Macrophage Cells. Foods 2023; 12:2740. [PMID: 37509832 PMCID: PMC10379839 DOI: 10.3390/foods12142740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Chitooligosaccharide (COS), found in both insects and marine sources, has several bioactivities, such as anti-inflammation and antioxidant activities. However, the mechanism of shrimp shell COS on retardation of inflammatory and antioxidant effects is limited. Therefore, the aim of this study is to examine the mechanism of the aforementioned activities of COS in LPS-activated RAW264.7 macrophage cells. COS significantly improved cell viability in LPS-activated cells. COS at the level of 500 µg/mL could reduce the TNF-α, NO and IL-6 generations in LPS-activated cells (p < 0.05). Furthermore, COS could reduce ROS formation, NF-κB overactivation, phosphorylation of Erk1/2 and Akt and Nrf2/HO-1 in LPS-exposed cells. These results indicate that COS manifests anti-inflammatory activity and antioxidant action via NF-κB, Erk1/2, Akt and Nrf2/HO-1 signaling with an increasing relevance for inflammatory disorders.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- Department of Food Science, Faculty of Science, Burapha University, Mueang Chonburi, Chonburi 20131, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| |
Collapse
|
20
|
Drafi F, Bauerova K, Chrastina M, Taghdisiesfejír M, Rocha J, Direito R, Figueira ME, Sepodes B, Ponist S. Rhodiola rosea L. Extract, a Known Adaptogen, Evaluated in Experimental Arthritis. Molecules 2023; 28:5053. [PMID: 37446715 DOI: 10.3390/molecules28135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Rhodiola rosea L. extract (RSE) is mostly known for its adaptogen properties, but not for its antiarthritic activities, therefore monotherapy and combination with low-dose methotrexate (MTX) was studied. The collagen-induced arthritis (CIA) model was used to measure the functional score, and the change in hind paw volume (HPV). Both parameters had significant antiarthritic effects. Based on these preliminary results, an adjuvant arthritis (AA) model was further applied to assess another parameters. The experiment included these animal groups: healthy controls, untreated AA, AA administered with RSE (150 mg/kg b.w. daily, p.o.), AA administered by MTX (0.3 mg/kg b.w. twice a week, p.o.), and AA treated with the combination of RSE+MTX. The combination of RSE+MTX significantly reduced the HPV and increased the body weight. The combination significantly decreased HPV when compared to MTX monotherapy. The plasmatic levels of inflammatory markers (IL-6, IL-17A, MMP-9 and CRP) were significantly decreased by MTX+RSE treatment. The RSE monotherapy didn't influence any of the inflammatory parameters studied. In CIA, the RSE monotherapy significantly decreased the arthritic parameters studied. In summary, the combination of RSE and sub-therapeutic MTX was significantly effective in AA by improving inflammatory and arthritic parameters.
Collapse
Affiliation(s)
- Frantisek Drafi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
| | - Katarina Bauerova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
| | - Martin Chrastina
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 10701/4A, 036 01 Martin, Slovakia
| | - Mohsen Taghdisiesfejír
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - João Rocha
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rosa Direito
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Eduardo Figueira
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bruno Sepodes
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Silvester Ponist
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia
| |
Collapse
|
21
|
Zu XY, Liu WB, Xiong GQ, Liao T, Li HL. Isolation, Identification, and Biological Activity Analysis of Swim Bladder Polypeptides from Acipenser schrencki. Foods 2023; 12:foods12101934. [PMID: 37238751 DOI: 10.3390/foods12101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Swim bladder polypeptides (SBPs) of Acipenser schrencki were analyzed for their antioxidant activity and physicochemical properties. The results showed the optimal enzymatic conditions were alkaline protease with a solid-to-liquid ratio of 1:20, an incubation time of 4 h, a temperature of 55 °C, and an enzyme dosage of 5000 U/g. Three different molecular weight fractions (F1, F2, and F3) were obtained via ultrafiltration. F3 (912.44-2135.82 Da) showed 77.90%, 72.15%, and 66.25% removal of O2•-, DPPH•, and •OH, respectively, at 10 mg/mL, which was significantly higher than the F1 and F2 fractions (p < 0.05). F3 contained proline (6.17%), hydroxyproline (5.28%), and hydrophobic amino acids (51.39%). The UV spectrum of F3 showed maximum absorption at 224 nm. Peptide sequence analysis showed that F3 contained antioxidant peptides (MFGF, GPPGPRGPPGL, and GPGPSGERGPPGPM) and exhibited inhibitory activities on angiotensin-converting enzyme and dipeptidyl peptidase III/IV (FRF, FPFL and LPGLF). F3 was considered a good raw material for obtaining bioactive peptides.
Collapse
Affiliation(s)
- Xiao-Yan Zu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wen-Bo Liu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Guang-Quan Xiong
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hai-Lan Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
22
|
Pan Z, Huang J, Hu T, Zhang Y, Zhang L, Zhang J, Cui D, Li L, Wang J, Wu Q. Protective Effects of Selenium Nanoparticles against Bisphenol A-Induced Toxicity in Porcine Intestinal Epithelial Cells. Int J Mol Sci 2023; 24:ijms24087242. [PMID: 37108405 PMCID: PMC10139072 DOI: 10.3390/ijms24087242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Bisphenol A (BPA) is widely used to harden plastics and polycarbonates and causes serious toxic effects in multiple organs, including the intestines. Selenium, as an essential nutrient element for humans and animals, exhibits a predominant effect in various physiological processes. Selenium nanoparticles have attracted more and more attention due to their outstanding biological activity and biosafety. We prepared chitosan-coated selenium nanoparticles (SeNPs) and further compared the protective effects, and investigated the underlying mechanism of SeNPs and inorganic selenium (Na2SeO3) on BPA-induced toxicity in porcine intestinal epithelial cells (IPEC-J2). The particle size, zeta potential, and microstructure of SeNPs were detected by using a nano-selenium particle size meter and a transmission electron microscope. IPEC-J2 cells were exposed to BPA alone or simultaneously exposed to BPA and SeNPs or Na2SeO3. The CCK8 assay was performed to screen the optimal concentration of BPA exposure and the optimal concentration of SeNPs and Na2SeO3 treatment. The apoptosis rate was detected by flow cytometry. Real-time PCR and Western blot methods were used to analyze the mRNA and protein expression of factors related to tight junctions, apoptosis, inflammatory responses and endoplasmic reticulum stress. Increased death and morphological damage were observed after BPA exposure, and these increases were attenuated by SeNPs and Na2SeO3 treatment. BPA exposure disturbed the tight junction function involved with decreased expression of tight junction protein Zonula occludens 1 (ZO-1), occludin, and claudin-1 proteins. Proinflammatory response mediated by the transcription factor nuclear factor-k-gene binding (NF-κB), such as elevated levels of interleukin-1β(IL-1β), interleukin-6 (IL-6), interferon-γ (IFN-γ), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α) expression was induced at 6 and 24 h after BPA exposure. BPA exposure also disturbed the oxidant/antioxidant status and led to oxidative stress. IPEC-J2 cell apoptosis was induced by BPA exposure, as indicated by increased BCL-2-associated X protein (Bax), caspase 3, caspase 8, and caspase 9 expression and decreased B-cell lymphoma-2 (Bcl-2) and Bcl-xl expression. BPA exposure activated the endoplasmic reticulum stress (ERS) mediated by the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), Inositol requiring enzyme 1 (IRE1α), and activating transcription factor 6 (ATF6). We found that treatment with SeNPs and Na2SeO3 can alleviate the intestinal damage caused by BPA. SeNPs were superior to Na2SeO3 and counteracted BPA-induced tight junction function injury, proinflammatory response, oxidative stress, apoptosis, and ERS stress. Our findings suggest that SeNPs protect intestinal epithelial cells from BPA-induced damage, partly through inhibiting ER stress activation and subsequently attenuating proinflammatory responses and oxidative stress and suppressing apoptosis, thus enhancing the intestinal epithelial barrier function. Our data indicate that selenium nanoparticles may represent an effective and reliable tool for preventing BPA toxicity in animals and humans.
Collapse
Affiliation(s)
- Zaozao Pan
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ting Hu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Yonghong Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Lingyu Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Jiaxi Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Defeng Cui
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| |
Collapse
|
23
|
Low Dose of BPA Induces Liver Injury through Oxidative Stress, Inflammation and Apoptosis in Long-Evans Lactating Rats and Its Perinatal Effect on Female PND6 Offspring. Int J Mol Sci 2023; 24:ijms24054585. [PMID: 36902016 PMCID: PMC10002922 DOI: 10.3390/ijms24054585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Bisphenol A (BPA) is a phenolic compound used in plastics elaboration for food protection or packaging. BPA-monomers can be released into the food chain, resulting in continuous and ubiquitous low-dose human exposure. This exposure during prenatal development is especially critical and could lead to alterations in ontogeny of tissues increasing the risk of developing diseases in adulthood. The aim was to evaluate whether BPA administration (0.036 mg/kg b.w./day and 3.42 mg/kg b.w./day) to pregnant rats could induce liver injury by generating oxidative stress, inflammation and apoptosis, and whether these effects may be observed in female postnatal day-6 (PND6) offspring. Antioxidant enzymes (CAT, SOD, GR, GPx and GST), glutathione system (GSH/GSSG) and lipid-DNA damage markers (MDA, LPO, NO, 8-OHdG) were measured using colorimetric methods. Inducers of oxidative stress (HO-1d, iNOS, eNOS), inflammation (IL-1β) and apoptosis (AIF, BAX, Bcl-2 and BCL-XL) were measured by qRT-PCR and Western blotting in liver of lactating dams and offspring. Hepatic serum markers and histology were performed. Low dose of BPA caused liver injury in lactating dams and had a perinatal effect in female PND6 offspring by increasing oxidative stress levels, triggering an inflammatory response and apoptosis pathways in the organ responsible for detoxification of this endocrine disruptor.
Collapse
|
24
|
Kucukkurt I, Ince S, Eryavuz A, Demirel HH, Arslan-Acaroz D, Zemheri-Navruz F, Durmus I. The effects of boron-supplemented diets on adipogenesis-related gene expressions, anti-inflammatory, and antioxidative response in high-fat fed rats. J Biochem Mol Toxicol 2023; 37:e23257. [PMID: 36419211 DOI: 10.1002/jbt.23257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
The fatty liver syndrome caused by nutritional factors is a common cause of hepatic dysfunction globally. This research was designed to study the shielding effect of boron in rats fed a diet having high fat. Overall, 40 Wistar albino male rats were placed into one control and four treatment groups, that is, each having eight rats. Group I was provided with a standard rat diet while group II was only provided a high-fat diet for 60 days. Groups III, IV, and V were provided with 5, 10, and 20 mg/kg/day boron, respectively, by gastric gavage besides a high-fat diet for 60 days. Malondialdehyde was increased significantly in rats' blood and tissue because of high-fat diets. Glutathione was decreased significantly in blood and tissues because of a high-fat diet. Moreover, the activities of superoxide dismutase (SOD) and catalase (CAT) were decreased in the blood and tissues of the high-fat-fed rats. The genes expression for C-reactive protein, interleukin-1β, leptin, and tumor necrosis factor-α were increased while gene expression for peroxisome proliferator-activated receptors was decreased in the liver of rats fed with a high-fat diet. Contrariwise, boron supplementation improves antioxidative response in terms of increased SOD and CAT activities, gene expression regulation, and improved anti-inflammatory activities. In a nutshell, boron has dose-dependent shielding antioxidative and tissue regenerative effects in rats.
Collapse
Affiliation(s)
- Ismail Kucukkurt
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Abdullah Eryavuz
- Department of Physiology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Hasan H Demirel
- Bayat Vocational School, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | | | - Fahriye Zemheri-Navruz
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Ibrahim Durmus
- Suhut Vocational School, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
25
|
Khaliq H, Ke X, Keli Y, Lei Z, Jing W, Pengpeng S, Zhong J, Peng K. Morphological and Transcriptomic Analysis of the Supplemental Boron in the Liver of Ostrich Chicks. Biol Trace Elem Res 2023:10.1007/s12011-022-03489-9. [PMID: 36600166 DOI: 10.1007/s12011-022-03489-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/13/2022] [Indexed: 01/06/2023]
Abstract
African ostrich chicks (Struthio camelus) were divided into six groups, and each received different levels of boric acid (source of boron) in the drinking water (0, 40, 80, 160, 320, and 640 mg/L respectively) to examine the histological, apoptotic, biochemical, and transcriptomic parameters. Morphological analysis in different groups was assessed by hematoxylin and eosin (H&E) staining, periodic acid Schiff (PAS) staining, and terminal deoxynucleotide transferase dUTP Nick-End Labeling (TUNEL) assay. The biochemical profile was evaluated spectrophotometrically. Detailed RNA-Seq of the data was performed using the transcriptomic method. H&E staining showed well-developed liver structure up to the 160 mg/L boric acid (BA) supplement groups, while BA doses (320 mg/L and 640 mg/L) caused changes in hepatocytes and portal triads. PAS staining showed that glycogen levels were optimal in the 80 mg/L BA dose group, but a reduction in glycogen levels was observed after this group, particularly in the 640 mg/L BA supplement group. Cellular apoptosis showed a biphasic pattern, and the BA dose above 160 mg/L enhanced cell death. In addition, serum analysis showed that doses of 80-160 mg BA were beneficial for ostrich liver. Then, the transcriptome analysis of the 80 mg dose also showed mainly positive effects on the liver. These results demonstrated that chronic BA exposure (320-640 mg) can cause significant histological, apoptotic, and biochemical changes in African ostrich liver, while the adequate dose of supplementation (particularly 80 mg BA) promotes liver growth.
Collapse
Affiliation(s)
- Haseeb Khaliq
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Department of Anatomy & Histology, CUVAS, Bahawalpur, 63100, Pakistan.
| | - Xiao Ke
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Keli
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Wang Jing
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sun Pengpeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juming Zhong
- College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Kemei Peng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
26
|
Al-Griw MA, Zaed SM, Hdud IM, Shaibi T. Vitamin D ameliorates liver pathology in mice caused by exposure to endocrine disruptor bisphenol A. Open Vet J 2023; 13:90-98. [PMID: 36777431 PMCID: PMC9897508 DOI: 10.5455/ovj.2023.v13.i1.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/18/2022] [Indexed: 02/05/2023] Open
Abstract
Background Increasing evidence suggests that bisphenol A (BPA) induces liver pathological changes. Further, an association between BPA and circulating vitamin D (VitD) levels were documented. Aim The role of VitD in BPA-induced liver pathological changes was explored in this study. Methods Healthy 4.5-week-old male (n = 35) and female (n = 35) Swiss albino mice were used in this study. The animals were randomly divided into control and treated groups. The control groups were further divided into sham (no treatment) and vehicle (corn oil), whereas the treated groups were also divided into VitD (2195 U/kg), BPA (50 μg/kg), and BPA + VitD (50 μg/kg + 2195 U/kg) groups. For 6 weeks (twice a week), the animals were dosed intraperitoneally. One week later (at 10.5-weeks-old), the animals were sacrificed for biochemical and histological analyses. Results BPA produced a considerable rise in the body and liver weights in both genders of mice when compared to control mice. BPA also caused significant increases in the liver damage markers alanine transaminase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT). It also induced liver histopathological changes, including higher apoptotic indices in both genders. On the other hand, treatment with VitD considerably reduced liver damage and slightly decreased the apoptotic index rate. The ALP, ALT, and GGT levels were also markedly reduced. VitD has been proven to have a protective effect on both genders. Conclusions According to our findings, VitD protects mice from BPA-induced liver damage, possibly via suppressing liver damage markers.
Collapse
Affiliation(s)
- Mohamed A. Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Suhila M. Zaed
- Zoology Department, Faculty of Science, University of Tripoli, Tripoli, Libya
| | - Ismail M. Hdud
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Taher Shaibi
- Zoology Department, Faculty of Science, University of Tripoli, Tripoli, Libya,Corresponding Author: Taher Shaibi. Zoology Department, Faculty of Science, University of Tripoli, Tripoli, Libya.
| |
Collapse
|
27
|
Sharma A, Chauhan P, Sharma K, Kalotra V, Kaur A, Chadha P, Kaur S, Kaur A. An endophytic Schizophyllum commune possessing antioxidant activity exhibits genoprotective and organprotective effects in fresh water fish Channa punctatus exposed to bisphenol A. BMC Microbiol 2022; 22:291. [PMID: 36474157 PMCID: PMC9724346 DOI: 10.1186/s12866-022-02713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oxidative stress is responsible for the onset of several chronic and degenerative diseases. Exogenous supply of antioxidants is reported to neutralize the effects of oxidative stress. Several synthetic antioxidants suffer from various side effects which necessitates the exploration of antioxidant compounds from natural sources. Endophytic fungi residing in the plants are gaining the attention of researchers as a source of novel antioxidants. Majority of the research conducted so far on endophytic fungi has been restricted to the members of phylum ascomycota. Basidiomycota, inspite of their immense bioactive potential remain relatively unexploited. This study aimed to assess the ameliorative effects of an endophytic Schizophyllum commune (basidiomycetous fungus) against oxidative stress associated altered antioxidant levels, genotoxicity and cellular damage to different organs in bisphenol A exposed fresh water fish Channa punctatus. RESULTS Good antioxidant and genoprotective potential was exhibited by S. commune extract in in vitro studies conducted using different antioxidant, DNA damage protection, and cytokinesis blocked micronuclei assays. In vivo studies were performed in fresh water fish Channa punctatus exposed to bisphenol A. A significant decrease in the considered parameters for DNA damage (% micronuclei and comet assay) were recorded in fish treated with S. commune extract on comparison with untreated bisphenol A exposed group. The S. commune extract treated fish also exhibited an increase in the level of antioxidant enzymes viz. catalase, superoxide dismutase and glutathione reductase as well as histoprotective effect on various organs. GC-MS analysis revealed the presence of 3-n-propyl-2,4-pentanedione, n-heptadecanol-1, trans-geranylgeraniol, 3-ethyl-2-pentadecanone, 1-heneicosanol and squalene as some of the compounds in S. commune extract. CONCLUSION The study highlights the significance of an endophytic basidiomycetous fungus S. commune as a source of antioxidant compounds with possible therapeutic potential.
Collapse
Affiliation(s)
- Avinash Sharma
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, 143005 Amritsar, Punjab India
| | - Pooja Chauhan
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, 143005 Amritsar, Punjab India
| | - Khushboo Sharma
- grid.411894.10000 0001 0726 8286Department of Zoology, Guru Nanak Dev University, 143005 Amritsar, Punjab India
| | - Vishali Kalotra
- grid.411894.10000 0001 0726 8286Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab India
| | - Anupam Kaur
- grid.411894.10000 0001 0726 8286Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab India
| | - Pooja Chadha
- grid.411894.10000 0001 0726 8286Department of Zoology, Guru Nanak Dev University, 143005 Amritsar, Punjab India
| | - Sukhraj Kaur
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, 143005 Amritsar, Punjab India
| | - Amarjeet Kaur
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, 143005 Amritsar, Punjab India
| |
Collapse
|
28
|
Yuan H, Xu F, Tian X, Wei H, Zhang R, Ge Y, Xu H. Oxidative stress and inflammation caused by 1-tetradecyl-3-methylimidazolium tetrafluoroborate in rat livers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86680-86691. [PMID: 35799001 DOI: 10.1007/s11356-022-21495-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to elucidate the mechanism underlying toxicity in the livers of male and female rats after treatment with 1-tetradecyl-3-methylimidazolium tetrafluoroborate ([C14mim]BF4, 0 [control], 12.5, 25, or 50 mg/kg) for 90 days. The results showed that [C14mim]BF4 exposure led to a high level of ROS and MDA in rat livers and the lower expression of Nrf2 and its downstream related antioxidant proteins. In addition, the expression of NF-κB p65 and the levels of inflammatory cytokines were upregulated in exposure groups rats' liver. After 30 days of cessation of exposure, the liver injury of rats in the 50 mg/kg exposure group was alleviated, and the above indicators were improved to varying degrees. The paper shows that [C14mim]BF4 could damage rat liver through oxidative stress and inflammatory pathway.
Collapse
Affiliation(s)
- Huafei Yuan
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Feng Xu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xingxing Tian
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Haiyan Wei
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Rui Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yueyue Ge
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hongmei Xu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
29
|
Lycopene protects against Bisphenol A induced toxicity on the submandibular salivary glands via the upregulation of PPAR-γ and modulation of Wnt/β-catenin signaling. Int Immunopharmacol 2022; 112:109293. [DOI: 10.1016/j.intimp.2022.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
|
30
|
Elbakry MMM, Mansour SZ, Helal H, Ahmed ESA. Nattokinase attenuates bisphenol A or gamma irradiation-mediated hepatic and neural toxicity by activation of Nrf2 and suppression of inflammatory mediators in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75086-75100. [PMID: 35648353 PMCID: PMC9550699 DOI: 10.1007/s11356-022-21126-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 05/05/2023]
Abstract
Nattokinase (NK), a protease enzyme produced by Bacillus subtilis, has various biological effects such as lipid-lowering activity, antihypertensive, antiplatelet/anticoagulant, and neuroprotective effects. Exposure to environmental toxicants such as bisphenol A (BPA) or γ-radiation (IR) causes multi-organ toxicity through several mechanisms such as impairment of oxidative status, signaling pathways, and hepatic and neuronal functions as well as disruption of the inflammatory responses. Therefore, this study is designed to evaluate the ameliorative effect of NK against BPA- or IR-induced liver and brain damage in rats. Serum ammonia level and liver function tests were measured in addition to brain oxidative stress markers, amyloid-beta, tau protein, and neuroinflammatory mediators. Moreover, relative quantification of brain nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) genes, as well as apoptotic markers in brain tissue, was carried out in addition to histopathological examination. The results showed that NK improved liver functions, impaired oxidative status, the cholinergic deficits, and minified the misfolded proteins aggregates. Furthermore, NK alleviated the neuroinflammation via modulating NF-κB/Nrf2/HO-1 pathway and glial cell activation in addition to their antiapoptotic effect. Collectively, the current results revealed the protective effect of NK against hepatic and neurotoxicity derived from BPA or IR.
Collapse
Affiliation(s)
- Mustafa M M Elbakry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt
| | - Hamed Helal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| |
Collapse
|
31
|
Sahu C, Jena G. Dietary zinc deficient condition increases the Bisphenol A toxicity in diabetic rat testes. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 882:503547. [PMID: 36155143 DOI: 10.1016/j.mrgentox.2022.503547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/08/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is a widely used endocrine disrupter that causes male reproductive dysfunction in humans and rodents. Diabetes-induced hyperglycemia alters spermatogenesis and antioxidant status, which negatively impacts male fertility in adults. Zinc (Zn) deficiency is a global health concern maintaining the testicular structure and functions in developing gonads. The present experiment was designed to investigate the role of Zn deficiency on BPA-induced germ cell and male gonadal toxicity in diabetic conditions. Rats were randomly divided into eight different groups - control (normal feed and water), BPA (10 mg/kg/day), ZDD (fed with a Zn-deficient diet), DIA (diabetic), BPA+ZDD, BPA+DIA, ZDD+DIA and BPA+ZDD+DIA for four weeks. Animals' body and organ weight, sperm count, motility and sperm morphology were examined; testes and epididymis histopathology were investigated. Testicular DNA damage and sperm apoptosis were evaluated by halo and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays respectively. Testicular catalase and octamer-binding transcription factor 4 (OCT4) expressions were evaluated by western blot analysis. The present results demonstrated that dietary Zn-deficient condition significantly increased the BPA-induced testicular, epididymal and sperm toxicity in diabetic rats due to hypogonadism, increased sperm abnormalities, epididymis, testicular structure and DNA damages, sperm apoptosis as well as decreased testicular catalase and OCT4 expressions. The present results revealed that dietary Zn-deficient condition exacerbated the BPA-induced testicular and epididymal toxicity as well as perturbed the general male reproductive health in diabetic rats.
Collapse
Affiliation(s)
- Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| |
Collapse
|
32
|
Brouard V, Drouault M, Elie N, Guénon I, Hanoux V, Bouraïma-Lelong H, Delalande C. Effects of bisphenol A and estradiol in adult rat testis after prepubertal and pubertal exposure. Reprod Toxicol 2022; 111:211-224. [PMID: 35700937 DOI: 10.1016/j.reprotox.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Over the past few decades, male fertility has been decreasing worldwide. Many studies attribute this outcome to endocrine disruptors exposure such as bisphenol A (BPA), which is a chemical compound used in plastics synthesis and exhibiting estrogenic activity. In order to assess how the window of exposure modulates the effects of BPA on the testis, prepubertal (15 dpp to 30 dpp) and pubertal (60 dpp to 75 dpp) male Sprague-Dawley rats were exposed to BPA (50 µg/kg bw/day), 17-β-estradiol (E2) (20 µg/kg bw/day) as a positive control, or to a combination of these compounds. For both periods of exposure, the rats were sacrificed and their testes were collected at 75 dpp. The histological analysis and the quantification of the gene expression of testis cell markers by RT-qPCR confirmed the complete spermatogenesis in all groups for both periods of exposure. However, our results suggest a deleterious effect of BPA on the blood-testis barrier in adults after pubertal exposure as BPA and BPA+E2 treatments induced a decrease in caveolin-1 and connexin-43 gene expression; which are proteins of the junctional complexes. As none of these effects were found after a prepubertal exposure, these results suggested the reversibility of BPA's effects. Caution must be taken when transposing this finding to humans and further studies are needed in this regard. However, from a regulatory perspective, this study emphasizes the importance of taking into account different periods of exposure, as they present different sensitivities to BPA exposure.
Collapse
Affiliation(s)
| | | | - Nicolas Elie
- Normandie Univ, UNICAEN, SF 4206 ICORE, CMABIO3, 14000 Caen, France
| | | | | | | | | |
Collapse
|
33
|
Ďurovcová I, Kyzek S, Fabová J, Makuková J, Gálová E, Ševčovičová A. Genotoxic potential of bisphenol A: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119346. [PMID: 35489531 DOI: 10.1016/j.envpol.2022.119346] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA), as a major component of some plastic products, is abundant environmental pollutant. Due to its ability to bind to several types of estrogen receptors, it can trigger multiple cellular responses, which can contribute to various manifestations at the organism level. The most studied effect of BPA is endocrine disruption, but recently its prooxidative potential has been confirmed. BPA ability to induce oxidative stress through increased ROS production, altered activity of antioxidant enzymes, or accumulation of oxidation products of biomacromolecules is observed in a wide range of organisms - estrogen receptor-positive and -negative. Subsequently, increased intracellular oxidation can lead to DNA damage induction, represented by oxidative damage, single- and double-strand DNA breaks. Importantly, BPA shows several mechanisms of action and can trigger adverse effects on all organisms inhabiting a wide variety of ecosystem types. Therefore, the main aim of this review is to summarize the genotoxic effects of BPA on organisms across all taxa.
Collapse
Affiliation(s)
- Ivana Ďurovcová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Stanislav Kyzek
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jana Fabová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jana Makuková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Eliška Gálová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Andrea Ševčovičová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| |
Collapse
|
34
|
Abdel-Wahab A, Ibrahim SS, El-Anwar AH, Mabrook EA, Ibrahim TB, Abdel-Razik ARH. Effects of dietary boron supplementation on the testicular function and thyroid activity in male goats: involvement of CYP17A1 gene. Reprod Domest Anim 2022; 57:1353-1362. [PMID: 35864721 DOI: 10.1111/rda.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
The physiological effects of dietary boron (B) supplementation for farm animals specifically goat on male fertility are still scarce and need deep investigation. Thus, the current study was designed to investigate how adding B to the diet of male goats affected their testicular and thyroid activity. For that purpose, twelve male goats were divided randomly into two groups (6 animals each); control group that was feed on the basal diet and B group that was fed the basal diet containing 70 mg B/kg diet for 6 months. Serum samples were collected at different intervals, while testicular biopsies were obtained at the end of the experiment. The results showed that 6 months of dietary B supplementation resulted in a significant increment in serum B concentration. The results of repeated measure analysis showed that there were significant GROUP and TIME x GROUP interactions effects on blood testosterone levels (F= 119.408, p=0.000, and F= 6.794, p=0.013, respectively), demonstrating that compared to control, B supplementation caused a significant rise in serum testosterone levels over time. However, the mean animal body weights and the serum levels of triiodothyronine (T3) and thyroxine (T4) were kept comparable to the control ones at the different time points. The most striking finding is that B supplementation increased significantly the mRNA expression of the CYP17A1 which is essential for steroidogenesis (P<0.001). In addition, a histological examination of testicular tissue corroborated our findings and demonstrated that B supplementation had a positive effect. As a result, B might be considered an excellent food supplement that could be safely added to the male goats' diet at the current dose to improve their reproductive capacity.
Collapse
Affiliation(s)
- Ahmed Abdel-Wahab
- Physiology Department, Faculty of Veterinary Medicine, Minia University, El-Minia, 61519, Egypt
| | - Shawky S Ibrahim
- Physiology Department, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Ahmed H El-Anwar
- Physiology Department, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Eid A Mabrook
- Physiology Department, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Taha B Ibrahim
- Small and large ruminant farm, faculty of agriculture, Minia University, El-Minia, 61519, Egypt
| | | |
Collapse
|
35
|
Histone deacetylase 2 inhibitor valproic acid attenuates bisphenol A-induced liver pathology in male mice. Sci Rep 2022; 12:10258. [PMID: 35715448 PMCID: PMC9205966 DOI: 10.1038/s41598-022-12937-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
Accumulating evidence indicates the role of endocrine disruptor bisphenol A (BPA) in many pathological conditions. Histone deacetylase (HDAC) inhibition has potential for the treatment of many diseases/abnormalities. Using a mouse BPA exposure model, this study investigated the hepatoprotective effects of the Food and Drug Administration–approved HDAC2 inhibitor valproic acid (VPA) against BPA-induced liver pathology. We randomly divided 30 adult male Swiss albino mice (8 weeks old; N = 6) into five groups: group 1, no treatment (sham control (SC)); group 2, only oral sterile corn oil (vehicle control (VC)); group 3, 4 mg/kg/day of oral BPA (single dose (BPA group)); group 4, 0.4% oral VPA (VPA group); and group 5, oral BPA + VPA (BPA + VPA group). At the age of 10 weeks, the mice were euthanized for biochemical and histological examinations. BPA promoted a significant decrease in the body weight (BW), an increase in the liver weight, and a significant increase in the levels of liver damage markers aspartate aminotransferase and alanine aminotransferase in the BPA group compared to SC, as well as pathological changes in liver tissue. We also found an increase in the rate of apoptosis among hepatocytes. In addition, BPA significantly increased the levels of oxidative stress indices, malondialdehyde, and protein carbonylation but decreased the levels of reduced glutathione (GSH) in the BPA group compared to SC. In contrast, treatment with the HDAC2 inhibitor VPA significantly attenuated liver pathology, oxidative stress, and apoptosis and also enhanced GSH levels in VPA group and BPA + VPA group. The HDAC2 inhibitor VPA protects mice against BPA-induced liver pathology, likely by inhibiting oxidative stress and enhancing the levels of antioxidant-reduced GSH.
Collapse
|
36
|
Wu M, Cong Y, Wang K, Yu H, Zhang X, Ma M, Duan Z, Pei X. Bisphenol A impairs macrophages through inhibiting autophagy via AMPK/mTOR signaling pathway and inducing apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113395. [PMID: 35298966 DOI: 10.1016/j.ecoenv.2022.113395] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is a widespread endocrine disruptor that induces the impairment of immune cells, but the mechanism remains unknown. Macrophages are one of the most important immune cells in innate and adaptive immunity. In this study, we aimed to probe the effects of BPA on the damage of RAW264.7 cells and its mechanisms of action, especially focusing on the relationship between autophagy and apoptosis. Cells were pretreated with 10 mg/L LPS, or added autophagy activator RAPA, autophagy inhibitor 3-MA or Bcl-2 inhibitor ABT-737, then treated with BPA (0, 10, 100 and 200 μmol/L) for 12 h. Results have shown that BPA decreased the cell viability and disrupted secretory function by promoting pro-inflammatory cytokines TNF-α and IL-6 and reducing anti-inflammatory cytokines IL-10 TGF-β, as well as phagocytic ability. Moreover, autophagy was inhibited by BPA through decreasing p-AMPK/AMPK and increasing p-mTOR/mTOR, and further down-regulating autophagy proteins ATG6, LC3II/I ratio, and up-regulating autophagy flux protein p62. Additionally, BPA significantly increased Bax/Bcl-2 ratio, Caspase-3 expression and apoptosis rate. We found that RAPA ameliorated the cell viability, Bax/Bcl-2 ratio, and macrophage function damage induced by BPA. Intriguingly, ABT-737 might promote ATG6 expression. In summary, our study demonstrated that the effects of BPA on macrophages seemed to be mediated by inhibiting AMPK/mTOR-dependent autophagy and inducing apoptosis via endogenous mitochondrial pathway. Both Bcl-2 and ATG6 were involved in the regulation of apoptosis and autophagy by BPA. These findings provide a broader perspective for understanding the interaction between autophagy and apoptosis in BPA-induced immune cell injury.
Collapse
Affiliation(s)
- Mingfei Wu
- Shenyang Medical College, Shenyang 110034, China.
| | - Yan Cong
- Shenyang Medical College, Shenyang 110034, China.
| | - Kailu Wang
- Shenyang Medical College, Shenyang 110034, China.
| | - Haiyang Yu
- Shenyang Medical College, Shenyang 110034, China.
| | - Xuan Zhang
- Shenyang Medical College, Shenyang 110034, China.
| | - Mingyue Ma
- Shenyang Medical College, Shenyang 110034, China.
| | - Zhiwen Duan
- Shenyang Medical College, Shenyang 110034, China.
| | - Xiucong Pei
- Shenyang Medical College, Shenyang 110034, China.
| |
Collapse
|
37
|
Cao XL, Zhou S, Popovic S, Dabeka R. Bisphenol S in individual and composite meat and meat products and implication for its sources. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:572-579. [PMID: 35085040 DOI: 10.1080/19440049.2021.2023765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, the occurrence of bisphenol S (BPS) in the meat and meat products from a recent Canadian Total Diet Study (TDS) was investigated in more detail. In addition to their composite samples, the individual raw meat and meat products were also analysed for BPS to investigate the variations of BPS levels and provide some information on the potential sources for BPS in meat. BPS was detected in all the 11 composite samples of different meat and meat products, with the highest level in roast beef (118.23 ng/g) and lowest in cured pork (0.14 ng/g) and cold cuts luncheon meats (0.18 ng/g). BPS was also detected in all the 84 individual raw meat and meat products, with the highest level of 257.61 ng/g in roast beef, followed by 190.41 ng/g in organ meats, 110.15 ng/g in beef steak, 27.91 ng/g in veal cutlets, 17.63 ng/g in wieners & sausages, and 15.27 ng/g in ground beef. However, significant variations of BPS levels were observed in the individual meat and meat product samples under the same category collected from different stores. This may indicate that packaging is unlikely the sources for BPS in meat otherwise BPS levels would have been more or less the same with the same type of packaging (Styrofoam and cling film) regardless where they were collected. Thus, sources other than food packaging, such as the contaminated feed and farming environment (e.g. grass) for animals (e.g. cow), may be possible and should be investigated in future studies.
Collapse
Affiliation(s)
- Xu-Liang Cao
- Food Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Simon Zhou
- Food Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Svetlana Popovic
- Food Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Robert Dabeka
- Food Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Dökmeci AH, Karaboğa İ, Güzel S, Erboğa ZF, Yılmaz A. Toxicological assessment of low-dose bisphenol A, lead and endosulfan combination: chronic toxicity study in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10558-10574. [PMID: 34523106 DOI: 10.1007/s11356-021-16407-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/04/2021] [Indexed: 05/26/2023]
Abstract
In the present study, toxic effects, both alone and combined, of bisphenol A (BPA), lead (Pb) and endosulfan (ES) in the low doses were investigated in rat liver and kidney functions. In the study, bisphenol A (BPA), lead (Pb) and endosulfan (ES) were chosen because although they are the chemicals people are most frequently exposed to, no combined toxic effect studies were conducted with these chemicals. Sixty-four male Wistar albino rats were used in the study, and they were randomly divided into eight groups (n = 8 per group); control, BPA (5 mg/kg), Pb (100 ppm), ES (0.61 mg/kg), BPA+Pb, BPA+ES, Pb+ES and BPA+P+ES. The rats were sacrificed after 65 days of treatment. Severe histopathological changes in the liver and kidney tissues were observed in the rats exposed to BPA+Pb+ES combination. Elevated malondialdehyde (MDA) in the liver and decreased superoxide dismutase activity (SOD) in the kidney tissue were detected in the BPA+Pb+ES group compared to those of the control group. It was found that serum alanine aminotransferase (ALT) and blood urea nitrogen (BUN) and creatinine (CREA) levels were higher in the BPA+Pb+ES combination group than the control group. Also, combined exposure of BPA, Pb and ES caused apoptotic cell numbers and inducible nitric oxide (iNOS) to increase in the liver and kidney tissues. The results of the present study suggested that the BPA, Pb and ES caused more dramatic changes to both histological architecture and cell apoptosis in the liver and kidney tissues when there was a combined exposure.
Collapse
Affiliation(s)
- Ayşe Handan Dökmeci
- School of Health, Department of Emergency and Disaster Management, Tekirdag Namik Kemal University, 59030, Tekirdağ, Turkey
| | - İhsan Karaboğa
- School of Health, Department of Emergency and Disaster Management, Tekirdag Namik Kemal University, 59030, Tekirdağ, Turkey.
| | - Savaş Güzel
- Faculty of Medicine, Department of Medical Biochemistry, Tekirdag Namik Kemal University, Tekirdağ, Turkey
| | - Zeynep Fidanol Erboğa
- Faculty of Medicine, Department of Histology and Embryology, Tekirdag Namik Kemal University, Tekirdağ, Turkey
| | - Ahsen Yılmaz
- Faculty of Medicine, Department of Medical Biochemistry, Tekirdag Namik Kemal University, Tekirdağ, Turkey
| |
Collapse
|
39
|
Baralić K, Bozic D, Živančević K, Milenković M, Javorac D, Marić Đ, Antonijević Miljaković E, Buha Djordjevic A, Vukomanović P, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Integrating in silico with in vivo approach to investigate phthalate and bisphenol A mixture-linked asthma development: Positive probiotic intervention. Food Chem Toxicol 2021; 158:112671. [PMID: 34793900 DOI: 10.1016/j.fct.2021.112671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
The aim of this study was to explore the mechanisms of bis(2- ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and bisphenol A (BPA) mixture-induced asthma development and test probiotic as a potential positive intervention. Comparative Toxicogenomics Database (CTD) and ToppGene Suite were used as the main tools for in silico analysis. In vivo 28-day experiment was conducted on rats - seven groups (n = 6): (1) Control: corn oil, (2) P: probiotic (8.78 * 108 CFU/kg/day); (3) DEHP: 50 mg/kg b.w./day, (4) DBP: 50 mg/kg b.w./day, (5) BPA: 25 mg/kg b.w./day; (6) MIX: DEHP + DBP + BPA; (7) MIX + P. Lungs, thymus and kidneys were extracted and prepared for redox status and essential metals analysis. By conducting additional in vitro experiment, probiotic phthalate and BPA binding ability was explored. There were 24 DEHP, DBP and BPA asthma-related genes, indicating the three most probable mechanisms - apoptosis, inflammation and oxidative stress. In vivo experiment confirmed that significant changes in redox status/essential metal parameters were either prominent, or only present in the MIX group, indicating possible additive effects. In vitro experiment confirmed the ability of the multy-strain probiotic to bind DEHP/DBP/BPA mixture, while probiotic administration ameliorated mixture-induced changes in rat tissue.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Dragica Bozic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Milan Milenković
- Department of Drug Analysis, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia; Institute of Public Health of Serbia Dr Milan Jovanovic Batut, dr Subotića 5, 112113, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Predrag Vukomanović
- Medical Sanitary School of Applied Sciences "Visan", 11080, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
40
|
Turkez H, Arslan ME, Tatar A, Mardinoglu A. Promising potential of boron compounds against Glioblastoma: In Vitro antioxidant, anti-inflammatory and anticancer studies. Neurochem Int 2021; 149:105137. [PMID: 34293392 DOI: 10.1016/j.neuint.2021.105137] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GB) is the most common and aggressive primary malignant astrocytoma correlated with poor patient survival. There are no curative treatments for GB, and it becomes resistant to chemotherapy, radiation therapy, and immunotherapy. Resistance in GB cells is closely related to their states of redox imbalance, and the role of reactive oxygen species and its impact on cancer cell survival is still far from elucidation. Boron-containing compounds, especially boric acid (BA) and borax (BX) exhibited interesting biological effects involving antibacterial, antiviral, anti-cancerogenic, anti-mutagenic, anti-inflammatory as well as anti-oxidative features. Recent studies indicated that certain boron compounds could be cytotoxic on human GB. Nevertheless, there is gap of knowledge in the literature on exploring the underlying mechanisms of anti-GB action by boron compounds. Here, we identified and compared the potential anti-GB effect of both BA and BX, and revealed their underlying anti-GB mechanism. We performed cell viability, oxidative alterations, oxidative DNA damage potential assays, and explored the inflammatory responses and gene expression changes by real-time PCR using U-87MG cells. We found that BA and BX led to a remarkable reduction in U-87MG cell viability in a concentration-dependent manner. We also found that boron compounds increased the total oxidative status and MDA levels along with the SOD and CAT enzyme activities and decreased total antioxidant capacity and GSH levels in U-87MG cells without inducing DNA damage. The cytokine levels of cancer cells were also altered. We verified the selectivity of the compounds using a normal cell line, HaCaT and found an exact opposite condition after treating HaCaT cells with BA and BX. BA applications were more effective than BX on U-87MG cell line in terms of increasing MDA levels, SOD and CAT enzyme activities, and decreasing Interleukin-1α, Interleukin-6 and Tumor necrosis factor- α (TNF- α) levels. We finally observed that anticancer effect of BA and BX were associated with the BRAF/MAPK, PTEN and PI3K/AKT signaling pathways in respect of downregulatory manner. Especially, BA application was found more favorable because of its inhibitory effect on PIK3CA, PIK3R1, PTEN and RAF1 genes. In conclusion, our analysis indicated that boron compounds may be safe and promising for effective treatment of GB.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, 25250; Erzurum Technical University, Erzurum, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Ataturk University, 25240; Erzurum, Turkey
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden.
| |
Collapse
|
41
|
Cano R, Pérez JL, Dávila LA, Ortega Á, Gómez Y, Valero-Cedeño NJ, Parra H, Manzano A, Véliz Castro TI, Albornoz MPD, Cano G, Rojas-Quintero J, Chacín M, Bermúdez V. Role of Endocrine-Disrupting Chemicals in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: A Comprehensive Review. Int J Mol Sci 2021; 22:4807. [PMID: 34062716 PMCID: PMC8125512 DOI: 10.3390/ijms22094807] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder, affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been carried out in recent years in order to clarify its pathogenesis and create new prevention strategies. Currently, the essential role of environmental pollutants in NAFLD development is recognized. Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls, and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a mechanism involving this group of substances with the disruption of hepatic metabolism, which promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations supporting these effects in humans are required.
Collapse
Affiliation(s)
- Raquel Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - José L. Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Lissé Angarita Dávila
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción 4260000, Chile;
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Nereida Josefina Valero-Cedeño
- Carrera de Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Estatal del Sur de Manabí, Jipijapa E482, Ecuador; (N.J.V.-C.); (T.I.V.C.)
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Teresa Isabel Véliz Castro
- Carrera de Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Estatal del Sur de Manabí, Jipijapa E482, Ecuador; (N.J.V.-C.); (T.I.V.C.)
| | - María P. Díaz Albornoz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Gabriel Cano
- Insitute für Pharmazie, Freie Universitänt Berlin, Königin-Louise-Strabe 2-4, 14195 Berlin, Germany;
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud. Barranquilla, Universidad Simón Bolívar, Barranquilla 55-132, Colombia;
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud. Barranquilla, Universidad Simón Bolívar, Barranquilla 55-132, Colombia;
| |
Collapse
|
42
|
Mansour SZ, Moawed FSM, Badawy MMM, Mohamed HE. Boswellic Acid Synergizes With Low-Level Ionizing Radiation to Modulate Bisphenol Induced-Lung Toxicity in Rats by Inhibiting JNK/ERK/c-Fos Pathway. Dose Response 2020; 18:1559325820969597. [PMID: 33192203 PMCID: PMC7607778 DOI: 10.1177/1559325820969597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bisphenol A (BPA) is a low molecular weight chemical compound that has a deleterious effect on the endocrine system. It was used in plastics manufacturing with injurious effects on different body systems. Occupational exposure to low-level ionizing radiation (<1 Gy) is shown to attenuate an established inflammatory process and therefore enhance cell protection. Therefore, the objective of this study was to investigate the protective effect of boswellic acid (BA) accompanied by whole-body low-dose gamma radiation (γ-R) against BPA-induced lung toxicity in male albino rats. BPA intoxication induced with 500 mg/kg BW. Rats received 50 mg BA/kg BW by gastric gavage concomitant with 0.5 Gy γ-R over 4 weeks. The immunoblotting and biochemical results revealed that BA and/or γ-R inhibited BPA-induced lung toxicity by reducing oxidative damage biomolecules; (MDA and NADPH oxidase gene expression), inflammatory indices (MPO, TNF-α, IL-6, and gene expression of CXCR-4). Moreover, BA and or/γ-R ameliorated the lung inflammation via regulation of the JNK/ERK/c-Fos and Nrf2/ HO-1 signaling pathways. Interestingly, our data demonstrated that BA in synergistic interaction with γ-R is efficacious control against BPA-induced lung injury via anti-oxidant mediated anti-inflammatory activities.
Collapse
Affiliation(s)
- Somya Z Mansour
- Department of Radiation Biology, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Fatma S M Moawed
- Department of Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Monda M M Badawy
- Department of Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| | - Hebatallah E Mohamed
- Department of Radiation Biology, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), Egypt
| |
Collapse
|
43
|
Zhu K, Zhao Y, Yang Y, Bai Y, Zhao T. Icariin Alleviates Bisphenol A Induced Disruption of Intestinal Epithelial Barrier by Maintaining Redox Homeostasis In Vivo and In Vitro. ACS OMEGA 2020; 5:20399-20408. [PMID: 32832793 PMCID: PMC7439398 DOI: 10.1021/acsomega.0c02364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/20/2020] [Indexed: 05/17/2023]
Abstract
Bisphenol A (BPA), a globally prevalent environmental contaminant, has been shown to have the potential to disrupt intestinal barrier function. This study explored the mechanisms of BPA-induced intestinal barrier dysfunction. In addition, the protective effect of the natural product icariin (ICA) on BPA-induced intestinal barrier dysfunction was evaluated. BPA relieved oxidative stress (reactive oxygen species (ROS), reactive nitrogen species (RNS), malondialdehyde (MDA), and hydrogen peroxide (H2O2)), suppressed antioxidant enzyme (superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and total antioxidant capacity (T-AOC)) activity, and increased gene expression and protein content of p38 mitogen-activated protein kinase (MAPK), giving rise to the dysfunctional gut in mice. ICA therapy effectively eased intestinal barrier dysfunction caused by BPA in vivo and in vitro. Treatment with p38 MAPK inhibitor (SB203580) significantly rescued the MODE-K cell barrier function disrupted by BPA challenge. However, treatment with p38 MAPK activator (anisomycin) did not attenuate the MODE-K cell barrier function impaired by BPA challenge. Overall, our data suggested that BPA disrupted intestinal barrier function in a p38 MAPK-dependent manner. Furthermore, we demonstrated that ICA regulated the redox equilibrium of intestinal epithelial cells by inhibiting the expression of p38 MAPK, thereby alleviating BPA-induced disruption of intestinal barrier function. These findings contributed to a better understanding of the mechanisms of BPA-induced intestinal barrier dysfunction and provided new insights into the prevention and treatment of BPA-induced intestinal diseases.
Collapse
Affiliation(s)
- Kun Zhu
- Department
of Pharmacy, The Third Hospital of Jilin
University, Xiantai Street
No. 126, Changchun 130021, China
| | - Yanan Zhao
- Department
of Oncology and Hematology, The Third Hospital
of Jilin University, Xiantai Street No. 126, Changchun 130021, China
| | - Yang Yang
- Department
of Oncology and Hematology, The Third Hospital
of Jilin University, Xiantai Street No. 126, Changchun 130021, China
| | - Yuansong Bai
- Department
of Oncology and Hematology, The Third Hospital
of Jilin University, Xiantai Street No. 126, Changchun 130021, China
| | - Tianyu Zhao
- College
of Basic Medical Sciences, Jilin University, Xinmin Street No. 126, Changchun 130021, China
| |
Collapse
|
44
|
Arab-Nozari M, Mohammadi E, Shokrzadeh M, Ahangar N, Amiri FT, Shaki F. Co-exposure to non-toxic levels of cadmium and fluoride induces hepatotoxicity in rats via triggering mitochondrial oxidative damage, apoptosis, and NF-kB pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24048-24058. [PMID: 32304050 DOI: 10.1007/s11356-020-08791-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Fluoride (F) and cadmium (Cd) are two common water pollutants. There is low information about their co-exposure in low doses. So, in this study, we evaluated the combination effects of non-toxic doses of F and Cd and the possible mechanism of their combined interaction. Male rats were exposed to non-toxic doses of sodium fluoride (30 mg/l) and/or cadmium chloride (40 mg/l) in drinking water for 6 weeks. Then, liver tissues were separated and several factors including oxidative stress, mitochondrial toxicity, inflammation, apoptosis, and biochemical and histopathological changes were evaluated. Cd and F alone did not induce any significant changes in evaluated factors compared to control group, while significant elevation in liver enzymes as well as histopathological changes were observed in rats treated with F+Cd. Also, a remarkable increase in oxidative stress markers including reactive oxygen species, lipid peroxidation, and protein carbonyl and also decreasing glutathione and superoxide dismutase levels were detected following co-exposure to F and Cd. Furthermore, a combination of F and Cd resulted in mitochondrial dysfunction, swelling, as well as a reduction in mitochondrial membrane potential in isolated liver mitochondria. On the other hand, TNF-α, IL-1β, and NF-kB inflammatory genes were upregulated in the liver after combined exposure to F and Cd compared to individual treatments. Also, F+Cd treatment increased the Bax expression but decreased the expression of Bcl-2 significantly. These findings suggest that Cd and F can potentiate their individual toxic effects on the liver tissue through disruption of the cellular redox status, inflammation, and apoptosis pathway.
Collapse
Affiliation(s)
- Milad Arab-Nozari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
45
|
Ince S, Kucukkurt I, Demirel HH, Arslan-Acaroz D, Varol N. Boron, a Trace Mineral, Alleviates Gentamicin-Induced Nephrotoxicity in Rats. Biol Trace Elem Res 2020; 195:515-524. [PMID: 31446563 DOI: 10.1007/s12011-019-01875-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/18/2019] [Indexed: 01/05/2023]
Abstract
The present study was considered to assess the protective effects of boron (B) on gentamicin-induced oxidative stress, proinflammatory cytokines, and histopathological changes in rat kidneys. Rats were split into eight equal groups which were as follows: control (fed with low-boron diet); gentamicin group (100 mg/kg, i.p.); B5, B10, and B20 (5, 10, and 20 mg/kg B, i.p.) groups; gentamicin (100 mg/kg, i.p.) plus B5, B10, and B20 (5, 10, and 20 mg/kg B, i.p.) groups. B was given to rats 4 days before the gentamicin treatment and B administration was completed on the 14th day. Gentamicin administration was started on the 4th day and finished on the 12th day. Gentamicin increased malondialdehyde levels, while reduced glutathione levels in the blood and kidney. Furthermore, superoxide dismutase and catalase activities of erythrocyte were decreased. Besides, serum and kidney nitric oxide and 8-dihydroxyguanidine levels were increased by gentamicin. Additionally, serum levels and kidney mRNA expressions of TNF-α, NFκB, IL-1β, and IFN-γ were found to be the highest in the gentamicin group. Histopathologically, interstitial hemorrhage and tubular necrosis were detected in the kidneys of the gentamicin group. Nonetheless, B administration reversed gentamicin-induced lipid peroxidation, antioxidant status, and inflammation. In conclusion, B has a preventive effect against gentamicin-induced nephrotoxicity and ameliorates kidney tissues of the rat.
Collapse
Affiliation(s)
- Sinan Ince
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyon Kocatepe University, TR-03200, Afyonkarahisar, Turkey.
| | - Ismail Kucukkurt
- Faculty of Veterinary Medicine, Department of Biochemistry, Afyon Kocatepe University, TR-03200, Afyonkarahisar, Turkey
| | - Hasan Huseyin Demirel
- Bayat Vocational School, Department of Laboratory and Veterinary Health, Afyon Kocatepe University, TR-03780, Afyonkarahisar, Turkey
| | - Damla Arslan-Acaroz
- Bayat Vocational School, Department of Laboratory and Veterinary Health, Afyon Kocatepe University, TR-03780, Afyonkarahisar, Turkey
| | - Nuray Varol
- Faculty of Medicine, Department of Medical Genetics, Afyonkarahisar Health Science University, TR-03100, Afyonkarahisar, Turkey
| |
Collapse
|
46
|
Arslan-Acaroz D, Bayşu-Sozbilir N. Ameliorative effect of boric acid against formaldehyde-induced oxidative stress in A549 cell lines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4067-4074. [PMID: 31823256 DOI: 10.1007/s11356-019-06986-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Formaldehyde (HCHO) is a reactive agent and the most essential common carcinogenic environmental pollutant. The present study investigated the protective and ameliorative effects of boric acid (BA) against formaldehyde-induced oxidative stress in A549 cell lines. The first group served as a control, the second group was treated with only 100 μM formaldehyde, and the third, fourth, and fifth groups were treated with 2.5, 5, and 10 mM BA, respectively. The sixth, seventh, and eighth groups were treated with 2.5, 5, and 10 mM BA plus 100 μM formaldehyde, respectively. In A549 cell lines, formaldehyde treatment significantly decreased cell viability, glutathione level, and enzyme activities of superoxide dismutase and catalase; however, malondialdehyde levels of the cell lysate were found to increase compared with the control group. In addition, formaldehyde treatment did not significantly alter nitric oxide levels. Meanwhile, mRNA expression levels of Tnf-α, NFĸB, and caspase-3 significantly increased but the Bcl-XL level did not show significant alteration by formaldehyde treatment. In contrast, the BA treatment reversed the formaldehyde-induced alteration in A549 cell lines. Consequently, BA exhibited a protective effect in A549 cell line against formaldehyde-induced lipid peroxidation. Furthermore, it ameliorated the antioxidant status and mRNA expression levels of proinflammatory cytokines.
Collapse
Affiliation(s)
| | - Nalan Bayşu-Sozbilir
- Department of Biochemistry, Veterinary Faculty, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
47
|
Kim JJ, Kumar S, Kumar V, Lee YM, Kim YS, Kumar V. Bisphenols as a Legacy Pollutant, and Their Effects on Organ Vulnerability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E112. [PMID: 31877889 PMCID: PMC6982222 DOI: 10.3390/ijerph17010112] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
Bisphenols are widely used in the synthesis of polycarbonate plastics, epoxy resins, and thermal paper, which are used in manufacturing items of daily use. Packaged foods and drinks are the main sources of exposure to bisphenols. These chemicals affect humans and animals by disrupting the estrogen, androgen, progesterone, thyroid, and aryl hydrocarbon receptor functions. Bisphenols exert numerous harmful effects because of their interaction with receptors, reactive oxygen species (ROS) formation, lipid peroxidation, mitochondrial dysfunction, and cell signal alterations. Both cohort and case-control studies have determined an association between bisphenol exposure and increased risk of cardiovascular diseases, neurological disorders, reproductive abnormalities, obesity, and diabetes. Prenatal exposure to bisphenols results in developmental disorders in animals. These chemicals also affect the immune cells and play a significant role in initiating the inflammatory response. Exposure to bisphenols exhibit age, gender, and dose-dependent effects. Even at low concentrations, bisphenols exert toxicity, and hence deserve a critical assessment of their uses. Since bisphenols have a global influence on human health, the need to discover the underlying pathways involved in all disease conditions is essential. Furthermore, it is important to promote the use of alternatives for bisphenols, thereby restricting their uses.
Collapse
Affiliation(s)
- Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| | - Surendra Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Vinay Kumar
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh 758307, Vietnam;
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| | - You-Sam Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| |
Collapse
|
48
|
Jiang W, Zhao H, Zhang L, Wu B, Zha Z. Maintenance of mitochondrial function by astaxanthin protects against bisphenol A-induced kidney toxicity in rats. Biomed Pharmacother 2019; 121:109629. [PMID: 31733573 DOI: 10.1016/j.biopha.2019.109629] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA), a global environmental pollutant, has been reported to have the potential to induced organs toxicity. This study explored the potential benefits of astaxanthin (ATX), a natural antioxidant, against BPA toxicity in the kidney, and explored whether mitochondria are involved in this condition. Male Wistar rats were fed with a vehicle, BPA, BPA plus ATX, ATX and were evaluated after five weeks. ATX treatment significantly reversed BPA-induced changes in body weight, kidney/body weight, and renal function related markers. When treated simultaneously with ATX, the imbalance of the oxidative-antioxidant status caused by BPA was also alleviated. The high expression of BPA-induced pro-inflammatory cytokines were inhibited by ATX treatment. ATX treatment also lessened the effects of BPA-induced caspase-3, -8, -9 and -10 gene expression and enzyme activity. The benefits of ATX were associated with enhanced mitochondrial function, which led to increased mitochondrial-encoded gene expression, mitochondrial copy number, and increased mitochondrial respiratory chain complex enzyme activity. Our results demonstrate the efficacy of ATX in protecting BPA-induced kidney damage, in part by regulating oxidative imbalance and improving mitochondrial function. Collectively, these findings provide a new perspective for the rational use of ATX in the treatment of BPA-induced kidney disease.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Urology, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China.
| | - Hu Zhao
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| | - Lijin Zhang
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| | - Bin Wu
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| | - Zhenlei Zha
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| |
Collapse
|
49
|
Feng L, Chen S, Zhang L, Qu W, Chen Z. Bisphenol A increases intestinal permeability through disrupting intestinal barrier function in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112960. [PMID: 31394344 DOI: 10.1016/j.envpol.2019.112960] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 05/28/2023]
Abstract
That an alteration of the intestinal permeability is associated with gut barrier function has been increasingly evident, which plays an important role in human and animal health. Bisphenol A (BPA), an industrial compound used worldwide, has recently been classified as an environmental pollutant. One of our earlier studies has demonstrated that BPA disrupts the intestinal barrier function by inducing apoptosis and inhibiting cell proliferation in the human colonic epithelial cells line. In this study, we investigated the effects of dietary BPA uptake on the colonic barrier function in mice, as well as the intestinal permeability. Dietary BPA uptake was observed to destroy the morphology of the colonic epithelium and increase the pathology score. The levels of endotoxin, diamine peroxidase, D-lactate, and zonulin were found to have been significantly elevated in both plasma and colonic mucosa. A decline in the number of intestinal goblet cells and in mucin 2 gene expression was observed in the mice belonging to the BPA group. The results of immunohistochemistry revealed that the expression of tight junction proteins (ZO-1, occludin, and claudin-1) in colonic epithelium of BPA mice decreased significantly, and their gene abundance was also inhibited. Moreover, dietary BPA uptake was also found to have significantly reduced colonic microbial diversity and altered microbial structural composition. The functional profiles of colonic bacterial community exhibited adverse effects of dietary BPA intake on the endocrine and digestive systems, as well as the transport and catabolism functions. Collectively, our study highlighted that dietary BPA increased the colonic permeability, and this effect was closely related to the disruption of intestinal chemistry and physical and biological barrier functions.
Collapse
Affiliation(s)
- Ling Feng
- Jiangyin Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangyin 214400, Jiangsu, China.
| | - Sijin Chen
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People's Republic of China.
| | - Lijin Zhang
- Department of Urinary Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People's Republic of China.
| | - Wei Qu
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People's Republic of China.
| | - Zhigao Chen
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People's Republic of China.
| |
Collapse
|
50
|
Bisphenol A induces apoptosis, oxidative stress and inflammatory response in colon and liver of mice in a mitochondria-dependent manner. Biomed Pharmacother 2019; 117:109182. [DOI: 10.1016/j.biopha.2019.109182] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
|