1
|
Yu N, Xiang Y, Cheng P, Li J, Ma Y, Zhang X, Xu M, Kong L. Inhibition of manganese ion migration and dissolution by selective ions sieving effect of MOF-based solid electrolytes. J Colloid Interface Sci 2025; 686:776-784. [PMID: 39922167 DOI: 10.1016/j.jcis.2025.01.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Lithium manganese oxide (LiMn2O4) is a promising cathode material for Li-ion batteries due to its abundant reserves and high discharge voltage. However, the dissolution and migration of transition metal Mn ions during the cycling process will cause a significant deterioration of capacity. In this study, a MOF-based quasi-solid electrolyte (UiO-QSE) is proposed to tackle this issue. The large specific surface area and open metal sites of UiO-QSE facilitate the adsorption of Mn ions, thereby inhibiting their migration. Furthermore, the disproportionation of Mn3+ on LiMn2O4 is suppressed by maintaining a highly concentrated Mn2+ layer around the cathode surface, thereby providing cathode protection in accordance with Le Chatelier's principle. The excellent inhibitory effect of UiO-QSE on the dissolution and migration of Mn ions is reflected in the fact that the prepared LiMn2O4|UiO-QSE|Li battery exhibits high discharge capacity (100.2 mAh·g-1 after 100 cycles), which is much higher than LiMn2O4|LE|Li (78.1 mAh·g-1), and a high capacity retention of 97.91 % after 50 cycles at a high-temperature of 45 °C. The Li|Li symmetrical cell exhibits an ultralong cycle life of more than 1300 h even at a high current density of 1 mA cm-2 due to the uniform Li-ion transport channel and high Young's modulus in the UiO-QSE. This study is the first to employ the MOF-QSE strategy to inhibit the dissolution and migration of manganese during cycling, providing a new perspective on the development and enhancement of lithium-manganese-based batteries.
Collapse
Affiliation(s)
- Ning Yu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215 China; School of Materials and Energy, Southwest University, Chongqing 400715 China
| | - Yang Xiang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215 China; School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 China
| | - Pu Cheng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215 China
| | - Jianbo Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215 China; School of Materials and Energy, Southwest University, Chongqing 400715 China
| | - Yandong Ma
- School of Materials and Energy, Southwest University, Chongqing 400715 China
| | - Xuan Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215 China.
| | - Maowen Xu
- School of Materials and Energy, Southwest University, Chongqing 400715 China.
| | - Lingbin Kong
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 China.
| |
Collapse
|
2
|
He L, Naren T, Zhang L, Kang F, Yang J, Chen Z, Yu A, Li DS, Chen L, Zhang Q. Interweaving Covalent Organic Polymer Chains Into Two-Dimensional Networks: Synthesis, Single Crystal Structure, and Application for Stabilizing Lithium Metal Anode. Angew Chem Int Ed Engl 2025:e202506036. [PMID: 40321149 DOI: 10.1002/anie.202506036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/21/2025] [Accepted: 05/05/2025] [Indexed: 05/17/2025]
Abstract
Macroscopic weaving has been proven to be the most enduring and effective method for manufacturing fabrics to meet the practical needs of humanity for thousands of years. However, the construction of molecular structures with exquisite topologies and specific properties based on molecular weaving is still in its infancy. Herein, we designed and fabricated a two-dimensional (2D) woven covalent organic polymer (COP) network (named as CityU-46) driven by the dative N→B bonds between the 1,4-bis(benzodioxa-borole)benzene (BACT) and 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (BPT). The complex woven topology of CityU-46 was determined using a single-crystal X-ray diffraction technique, revealing that it features a well-defined two-over and two-under interweaving pattern at the molecular level. Due to its structural merits, CityU-46 can be used as an artificial organic solid-electrolyte interphase layer on the surface of Li metal anodes, significantly improving the stability and long-term performance of lithium metal cells.
Collapse
Affiliation(s)
- Lizhong He
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an, 710048, P.R. China
| | - Tuoya Naren
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P.R. China
| | - Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Zihao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P.R. China
| | - Libao Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P.R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P.R. China
| |
Collapse
|
3
|
Gao Z, Tan Q, Zhu L, Dan J, Tang L, Li J, Hussain N, Gao X, Lou X, Zhang X, Luo S, Zhou L, Zhong L, Chen B, Liu T. A Fully Flame-Retardant Electrolyte with Laminated SEI for Exceptionally Safe, Long-Life, and High-Voltage Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500971. [PMID: 40195922 DOI: 10.1002/smll.202500971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/22/2025] [Indexed: 04/09/2025]
Abstract
Designing an electrolyte that exhibits intrinsic nonflammability, superior compatibility with lithium metal anodes, and excellent tolerance to high-voltage cathodes is a pivotal, yet highly challenging task for the development of high-energy lithium metal batteries. Herein, these three desirable features are simultaneously achieved by incorporating a fire-retardant diluent, ethoxy(pentafluoro)cyclotriphosphazene, together with a trace additive trioxane into triethylphosphate-based electrolytes. Ethoxy(pentafluoro)cyclotriphosphazene and trioxane both compete against triethylphosphate for the coordination of Li+, inducing the formation of a unique laminated solid-electrolyte interphase (SEI) for reversible Li plating/stripping reactions. This SEI exhibits an outer layer with interwoven components of trioxane-derived polymers and N/P/F-rich inorganics and a deeper region enriched with LiF. It is shown that this trioxane-triggered laminated SEI is essential for effectively inhibiting the unwanted TEP decomposition at the anode, resulting in a record-high Coulombic Efficiency of 99.7% in Li||Cu cells. The Li||NCM811 full cells can be cycled steadily at up to 4.8 V, showing outstanding capacity retention of 92% @300th cycle. Importantly, the designed electrolyte is intrinsically nonflammable, and the smoke it releases upon heating can even extinguish open flames. The resulting 1.1 Ah Li||NCM811 pouch cells show no signs of thermal runaway upon heating to 250 °C, demonstrating exceptional safety.
Collapse
Affiliation(s)
- Zongyan Gao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qiuyang Tan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Lei Zhu
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai, 200245, China
| | - Jiabin Dan
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Linbin Tang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Junjian Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Nadeem Hussain
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiang Gao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuechun Lou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaoyu Zhang
- Baskin School of Engineering, University of California, Santa Cruz, CA, 95064, USA
| | - Shijing Luo
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610200, China
| | - Lina Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Li Zhong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5Ah, UK
| | - Tao Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
4
|
Chen T, Zhang A, Li X, Yang M, Ren X, Song L, Hou M, Lian P, Wu ZS. Synergistic Construction of Electrode-Electrolyte Interphases via Electrolyte Cosolvent and Additive Chemistry toward Ultrastable and Fast-Charging Li-Rich Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18359-18370. [PMID: 40067279 DOI: 10.1021/acsami.4c23006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Lithium-rich manganese oxide (LRMO) is a promising high-energy-density material for high-voltage lithium-ion batteries, but its performance is hindered by interfacial side reactions, transition metal dissolution, and oxygen release. To address these issues, we propose a high-voltage electrolyte strategy that utilizes cosolvent and additive synergy to create stable dual interphases at both the cathode and anode. Specifically, lithium difluoro(oxalato)borate (LiDFOB) additive sacrificially decomposes to form a uniform yet stable cathode-electrolyte interphase (CEI) layer, while cosolvent of bis(2,2,2-trifluoroethyl) carbonate (BTFEC) effectively adjusts the solvation structure and synergistically stabilizes the solid-electrolyte interphase (SEI) on the anode, ultimately achieving ultrahigh cycle stability and fast-charging feasibility. The presence of B-F, LiBxOy species derived from LiDFOB exceptionally stabilizes the fast-ion-transfer CEI layer, while the F-rich robust SEI layer inhibits the irregular growth of lithium dendrites. Our electrolyte enables Li||LRMO cells to maintain 95% capacity after 200 cycles at 4.8 V, with a specific capacity of 238 mAh g-1 after 350 cycles at 3C. Importantly, a 5 Ah graphite||LRMO pouch cell achieves a high energy density of 323 Wh kg-1 with 80.4% capacity retention after 150 cycles, demonstrating its practical application potential.
Collapse
Affiliation(s)
- Tongle Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Anping Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xiaofeng Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Mingzhe Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xuanxuan Ren
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Mengyun Hou
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Peichao Lian
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
5
|
Jiang J, Zhang R, Guo J, Zhang S, Min X, Liu Z, Liu N, Cao D, Xu J, Cheng P, Shi W. Defect-Modulated MOF Nanochannels for the Quasi-Solid-State Electrolyte of a Dendrite-Free Lithium Metal Battery. NANO LETTERS 2025. [PMID: 40025777 DOI: 10.1021/acs.nanolett.4c05596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Efficient and selective Li+ transport within the nanochannel is essential for high-performance solid-state electrolytes (SSEs) in lithium metal batteries. Introducing Li+ hopping sites into SSEs shows great potential for promoting Li+ transport; however, it typically reduces the Li+ transport nanochannel size, consequently increasing the energy barrier for Li+ transport. Herein, we present a molecular defect strategy for MOFs to introduce Li+ hopping sites and increase the nanochannel size simultaneously as quasi-solid-state electrolytes (QSSEs). Compared with the defect-free Li@UiO-66-based QSSE, the optimized Li@UiO-66-D2-based QSSE exhibits a remarkable 343% enhancement in Li+ conductivity and improved Li+ selectivity. Furthermore, the 9 cm × 6 cm Li|Li@UiO-66-D2|LFP pouch cell exhibits excellent cycling performance with high capacity retention. An in-depth mechanism study has unveiled the significant impact of both hopping sites and nanochannel size on Li+ transport, emphasizing the importance of a molecular defect strategy in enhancing the overall Li+ transport performance of MOF-based QSSEs.
Collapse
Affiliation(s)
- Jialong Jiang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Runhao Zhang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiachen Guo
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shiqi Zhang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiangtai Min
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ziyang Liu
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ning Liu
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Xu
- School of Materials Science and Engineering & National Institute for Advanced Materials, Center for Rare Earth and Inorganic Functional Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Peng Cheng
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wei Shi
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Li C, Ye Q, Wang J, Huang X, Song T, Zhang K, Li P, Zhang Y, Gong X, Jiang Y, Gao Y, Peng H, Wang B. Ultrathin and capacity-tunable lithium metal wires for lithium-based fiber batteries. Natl Sci Rev 2025; 12:nwae480. [PMID: 39931186 PMCID: PMC11809254 DOI: 10.1093/nsr/nwae480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/22/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Ultrathin lithium (Li) metal wires with tunable capacities have great promise for precise prelithiation of fiber anodes and high-energy-density Li-based fiber batteries. However, the application of Li metal in fiber batteries faces great challenges due to its mechanical fragility and the resulting limited micro-dimension manufacturing capability. These challenges impede the production of ultrathin Li wires with adjustable Li contents to match the capacities of Li-based fiber batteries. Herein, silver-plated aramid yarns (Ag/AYs) are employed to load Li metal for producing ultrathin Li wires. The bundled structure of Ag/AYs leads to the adjustable volume of oriented voids within the fibers, thus resulting in accurately tunable capacities (0.0048-2.4 mAh cm-1) and diameters (20-534 μm) of Li wires. Such thin Li wires are used to precisely compensate for Li loss during the formation cycle of the fiber graphite anodes, thereby improving the initial Coulombic efficiency from ∼88% to ∼100%. Additionally, when employed as anodes, these Li wires enabled the fiber batteries to exhibit exceptional cycling stability for 150 cycles under a relatively low negative/positive ratio of 2.06, while achieving a high energy density of 139.822 Wh kg-1 based on the total mass of the battery.
Collapse
Affiliation(s)
- Chuanfa Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Qian Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Jiaqi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Xinlin Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Tianbing Song
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Kun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Pengzhou Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Yanan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Xiaocheng Gong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Yi Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Yue Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Bingjie Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Mu Y, Liao Z, Chu Y, Zhang Q, Zou L, Yang L, Feng Y, Ren H, Han M, Zeng L. Electron Acceptor-Driven Solid Electrolyte Interphases with Elevated LiF Content for 4.7 V Lithium Metal Batteries. NANO-MICRO LETTERS 2025; 17:163. [PMID: 39992482 PMCID: PMC11850700 DOI: 10.1007/s40820-025-01663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/05/2025] [Indexed: 02/25/2025]
Abstract
High-voltage lithium (Li) metal batteries (LMBs) face substantial challenges, including Li dendrite growth and instability in high-voltage cathodes such as LiNi0.8Mn0.1Co0.1O2 (NCM811), which impede their practical applications and long-term stability. To address these challenges, tris(pentafluorophenyl)borane additive as an electron acceptor is introduced into an ethyl methyl carbonate/fluoroethylene carbonate-based electrolyte. This approach effectively engineers robust dual interfaces on the Li metal anode and the NCM811 cathode, thereby mitigating dendritic growth of Li and enhancing the stability of the cathode. This additive-driven strategy enables LMBs to operate at ultra-high voltages up to 4.7 V. Consequently, Li||Cu cells achieve a coulombic efficiency of 98.96%, and Li||Li symmetric cells extend their cycle life to an impressive 4000 h. Li||NCM811 full cells maintain a high capacity retention of 87.8% after 100 cycles at 4.7 V. Additionally, Li||LNMO full cells exhibit exceptional rate capability, delivering 132.2 mAh g-1 at 10 C and retaining 95.0% capacity after 250 cycles at 1 C and 5 V. As a result, NCM811||graphite pouch cells maintain a 93.4% capacity retention after 1100 cycles at 1 C. These findings underscore the efficacy of additive engineering in addressing Li dendrite formation and instability of cathode under high voltage, thereby paving the road for durable, high-performance LMBs.
Collapse
Affiliation(s)
- Yongbiao Mu
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Zifan Liao
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Youqi Chu
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Qing Zhang
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Lingfeng Zou
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Lin Yang
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Yitian Feng
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Haixiang Ren
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Meisheng Han
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Lin Zeng
- Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China.
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
8
|
Li S, Das P, Wang X, Li C, Wu ZS, Cheng HM. Insights on Fabrication Strategies and Energy Storage Mechanisms of Transition Metal Dichalcogenides Cathodes for Aqueous Zn-Based Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410036. [PMID: 39853866 DOI: 10.1002/smll.202410036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/22/2024] [Indexed: 01/26/2025]
Abstract
Aqueous zinc-based batteries (AZBs) are gaining widespread attention owing to their intrinsic safety, relatively low electrode potential, and high theoretical capacity. Transition metal dichalcogenides (TMDs) have convenient 2D ion diffusion channels, so they have been identified as promising host materials for AZBs, but face several key challenges such as the narrow interlayer spacing and the lack of in-deep understanding energy storage mechanisms. This review presents a comprehensive summary and discussion of the intrinsic structure, charge storage mechanisms, and key fabrication strategies of TMD-based cathodes for AZBs. Firstly, the structural features including phase types and electrical properties of TMDs are underscored. Then, the charge storage mechanisms and activation principles in TMDs are elaborated along with the discussions about their influence on electrochemical performance. Afterward, specific attention is focused on the fabrication strategies of high-performance TMD cathodes, including interlayer expansion, defect creation, phase transition, and heteroatom doping. Finally, the key challenges are considered and potential effective strategies are proposed to design high-performance aqueous Zn-TMDs batteries.
Collapse
Affiliation(s)
- Shengwei Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiao Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chenyang Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hui-Ming Cheng
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
| |
Collapse
|
9
|
Liu H, Zhen F, Yin X, Wu Y, Yu K, Kong X, Ding S, Yu W. Ultra-Tough Dynamic Supramolecular Ion-Conducting Elastomer Induced Uniform Li + Transport and Stabilizes Interphase Ensures Dendrite-Free Lithium Metal Anodes. Angew Chem Int Ed Engl 2025; 64:e202414599. [PMID: 39392587 DOI: 10.1002/anie.202414599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Artificial polymer solid electrolyte interphases (SEIs) with microphase-separated structures provide promising solutions to the inhomogeneity and cracking issues of natural SEIs in lithium metal batteries (LMBs). However, achieving homogeneous ionic conductivity, excellent mechanical properties, and superior interfacial stability remains challenging due to interference from hard-phase domains in ion transport and solid-solid interface issues with lithium metal. Herein, we present a dynamic supramolecular ion-conducting poly (urethane-urea) interphase (DSIPI) that achieves these three properties through modulating the hard-phase domains and constructing a composite SEI in situ. The soft-phase polytetrahydrofuran backbone, featuring loose Li+-O coordinating interactions, ensures uniform Li+ transport. Concurrently, sextuple hydrogen bonds in the hard phase dissipate strain energy through sequential bond cleavage, thereby imparting exceptional mechanical properties. Moreover, enriched bis (trifluoromethanesulfonyl) imide anion (TFSI-) in DSIPI promotes the in situ formation of a stable polymer-inorganic composite SEI during cycling. Consequently, the DSIPI-protected lithium anode (DSIPI@Li) enables symmetric cells with exceptional cyclability exceeding 4,000 hours at an ultra-high current density of 20 mA cm-2, thereby demonstrating excellent cycling stability. Furthermore, DSIPI@Li facilitates stable operation of the pouch cells under the constraints of a high-loading LiNi0.8Co0.1Mn0.1O2 cathode and low negative/positive capacity (N/P) ratio. This work presents a powerful strategy for designing artificial SEIs and high-performance LMBs.
Collapse
Affiliation(s)
- Hong Liu
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an, 710049, P.R. China
| | - Fengxu Zhen
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an, 710049, P.R. China
| | - Xiangkai Yin
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an, 710049, P.R. China
| | - Yingbin Wu
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an, 710049, P.R. China
| | - Kailiang Yu
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an, 710049, P.R. China
| | - Xiangpeng Kong
- Research and Development Center, Hunan Desay Battery Co., Ltd, Changsha, Hunan, 410000, P. R. China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an, 710049, P.R. China
| | - Wei Yu
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an, 710049, P.R. China
| |
Collapse
|
10
|
Liu Z, Li P, Hu K, Sun H, Li R, Yang S, Hu X. Organic-Inorganic Dual-Network Composite Separators for Lithium Metal Batteries. Macromol Rapid Commun 2025; 46:e2400644. [PMID: 39401311 DOI: 10.1002/marc.202400644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Indexed: 01/25/2025]
Abstract
The suboptimal ionic conductivity of commercial polyolefin separators exacerbates uncontrolled lithium dendrite formation, deteriorating lithium metal battery performance and posing safety hazards. To address this challenge, a novel organic-inorganic composite separator designed is prepared to enhance ion transport and effectively suppress dendrite growth. This separator features a thermally stable, highly porous poly(m-phenylene isophthalamide) (PMIA) electrospun membrane, coated with ultralong hydroxyapatite (HAP) nanowires that promote "ion flow redistribution." The synergistic effects of the nitrogen atoms in PMIA and the hydroxyl groups in HAP hinder anion transport while facilitating efficient Li+ conduction. Meanwhile, the optimized unilateral pore structure ensures uniform ion transport. These results show that the 19 µm-thick HAP/PMIA composite separator achieves remarkable ionic conductivity (0.68 mS cm-1) and a high lithium-ion transference number (0.51). Lithium symmetric cells using HAP/PMIA separators exhibit a lifespan exceeding 1000 h with low polarization, significantly outperforming commercial polypropylene separators. Furthermore, this separator enables LiFePO4||Li cells to achieve an enhanced retention of 97.3% after 200 cycles at 1 C and demonstrates impressive rate capability with a discharge capacity of 72.7 mAh g-1 at 15 C.
Collapse
Affiliation(s)
- Zetong Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pingan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kangjia Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rongxing Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shanshan Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianluo Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
11
|
Aslam J, Waseem MA, Lu XM, Wu S, Sun W, Wang Y. Unveiling Covalent Triazine Frameworks for Lithium Metal Anodes: Recent Developments and Prospective Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408988. [PMID: 39629523 DOI: 10.1002/smll.202408988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Indexed: 01/23/2025]
Abstract
Lithium metal batteries (LMBs) are distinguished by their elevated energy densities which represent themselves as the formidable contenders for the forthcoming generation of energy storage technologies. Nonetheless, their cycling efficiency is hindered owing to unregulated growth of lithium dendrites and unstable solid electrolyte interphase (SEI). This raises serious safety concerns while rendering LMBs unfeasible for real-world implementation. Covalent Triazine Frameworks (CTFs) have emerged as a promising class of 2D nanomaterials due to their unique properties such as high surface area, chemical stability, tailorable properties, porosity and high N-containing groups. These groups serve as an efficient acceptor for Li. Consequently, the problem of lithium dendrite formation is significantly reduced. This review offers an extensive examination of CTF based anode materials utilized to address the challenges associated with lithium dendrites in LMBs. It is outline future prospects and provide recommendations for the design and engineering of lithium metal anodes (LMAs) and architectures that can make LMBs viable for practical use. This review also highlights promising strategies for surmounting challenges to ensure the safety and efficiency of LMBs.
Collapse
Affiliation(s)
- Junaid Aslam
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Muhammad Ahsan Waseem
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xiao-Meng Lu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Songling Wu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Weiwei Sun
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
12
|
Meng X, Xiao N, Gao C, Zhang R, Sun Z, Cheng Y, Zhang N, Li W, Chen B, He C. In Situ Grown Li 2Te Enhanced Lithium Metal Anode Interfacial Kinetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409195. [PMID: 39648548 DOI: 10.1002/smll.202409195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Lithium metal anode (LMA) is expected to be the ideal anode material for future high-energy-density batteries, but regulating the complex electrolyte-anode interface remains a challenge. In this work, a stable Li2Te coating is formed on the surface of commercial copper mesh (LTCM) using a simple and quick method to improve lithium metal anode interfacial kinetics. Li2Te possesses a strong affinity for both Li+ and TFSI- anions, which reduces the lithium nucleation barrier and guides the formation of inorganic-rich SEI, accelerates the diffusion of Li+, and promotes the growth of lithium metal along the plane. The highly conductive Li2Te and Cu generated by in situ lithiation reaction together constitute an effective electron-conducting network, which synergistically enhances the interfacial kinetics and the cycling stability of LMA. As a result, the LTCM maintains high Coulombic efficiency (98%) even after 2200 cycles at 1 mA cm-2, whereas the symmetric cell has a long cycle life of over 5400 h at 1 mA cm-2. In addition, the full cells with LFP display a high capacity retention ratio (80%) after 480 cycles at 1 C and the corresponding pouch cell can cycle steadily more than 464 cycles at 1 C, which has good application prospects.
Collapse
Affiliation(s)
- Xiao Meng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Nan Xiao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Chenglin Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Rui Zhang
- School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Zongfu Sun
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Yihao Cheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Ning Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Wen Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
13
|
Pan J, Chen Z, Yang Z, Li J, Shi K, Zhang R, Sun X, Liu Q. Tuning the Unloading and Infiltrating Behaviors of Li-Ion by a Multiphases Gradient Interphase for High-Rate Lithium Metal Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408090. [PMID: 39520335 DOI: 10.1002/smll.202408090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The random distribution of organic-phases (OPs) and inorganic-phases (IOPs) in native solid electrolyte interface (SEI) derived a sluggish Li-ion de-solvation and transmission, impairing the high-rate performance of lithium metal anodes (LMAs). Herein, a multiphases gradient distribution hybrid interface is constructed on metallic Li by surface chemical reconstruction. Theoretical simulations and experiments verify that the Li-ion unloading and infiltrating behaviors are tuned by functional complementary effects, enabling speedy kinetics. The upper OPs with polar functional group (─COO-) convert near-surface solvation structure, pushing Li-ion to unload the solvation cluster. Simultaneously, the bottom IOPs with plenty of crystal boundary accelerates Li-ion infiltration. Moreover, flexible OPs cooperate with rigid IOPs to buffer volume fluctuation and suppress dendritic Li growth. Consequently, the lifespan of the composited electrode is significantly prolonged over 520 h at 5 mA cm-2. The full cells also exhibit an exhilarated rate performance and capacity retention even under a low N/P ratio (≈2.5). This work offers a characteristic insight for the rational design of gradient hybrid interface on the practical LMAs.
Collapse
Affiliation(s)
- Jiajie Pan
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zikang Chen
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zihao Yang
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Junhao Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Kaixiang Shi
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, Guangzhou, 510641, China
| | - Rui Zhang
- Beijing Huairou Laboratory, Beijing, 101400, China
| | - Xiaoyan Sun
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Quanbing Liu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, China
| |
Collapse
|
14
|
Shi Z, Zhou H, Fan Z, Guo K, Nie H, Zhou X, Xue Z. Waterborne Polyurethane Micelles Reinforce PEO-Based Electrolytes for Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407293. [PMID: 39422372 DOI: 10.1002/smll.202407293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Although solid polymer electrolytes have been developed for several decades, poly(ethylene oxide) (PEO) or polymers with ethoxy (EO) segments are still one of the most promising candidates for advanced batteries. The low ionic conductivity and lithium-ion transference number as well as the deterioration of mechanical properties after coupling with lithium salts restrict its further adoption. Herein, a serial of PEO-based composite electrolytes optimized by waterborne polyurethane are prepared via blend method. With the assistance of H2O, ionic type waterborne polyurethane assembles into flexible micelles, in which hydrophobic segments as the core and hydrophilic groups as the shell. Utilizing this feature of waterborne polyurethane, PEO and Li salt (LiTFSI) aqueous solution is slowly added to the organic solution of waterborne polyurethane to compound in situ, and polymer composite electrolytes are fabricated. The multilevel (hydrogen bonds with different binding energy) and multiscale (deformation of flexible micelles) dynamic interaction endows the composite electrolyte with attractive mechanical properties. The assembled Li|Li symmetric battery with the molar ratio of EO to Li salts of 8:1 exhibits excellent cycling stability up to 800 h at 0.1 mA cm-2, and the assembled Li|LiFePO4 battery can be stably cycled at 1C for >400 cycles.
Collapse
Affiliation(s)
- Zhen Shi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongru Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zixin Fan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kairui Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Nie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xingping Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
15
|
Zhang Y, Chen Z, Wang J, Fan S, Zhang T, Zhang C, Zhang Y, Chi Q. High-Performance Pure Polymer Electrolytes with Enhanced Ionic Conductivity for Room-Temperature Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405565. [PMID: 39363813 DOI: 10.1002/smll.202405565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/04/2024] [Indexed: 10/05/2024]
Abstract
All-solid-state lithium metal batteries (ASSLMBs) are renowned for their high energy density and safety, positioning them as leading candidates for next-generation energy storage solutions. In this study, pure polymer solid-state electrolytes are developed using the solution casting method, optimized for room temperature operation. The base material, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), is enhanced with succinonitrile (SN) and polyacrylonitrile (PAN) to improve its electrochemical performance at room temperature. The optimized electrolyte, PSP-0.05, demonstrated superior characteristics, including an ionic conductivity (σ) of 3.2 × 10-4 S cm-1 and a wide voltage window of up to 5 V. When integrated into full batteries, PSP-0.05 exhibited exceptional performance in multiplicative cycling tests at room temperature, achieving discharge specific capacities of 132 and 113 mAh g-1 at 3 and 5 C rates, respectively. Additionally, long-term cycling at 1 C rate resulted in an initial discharge-specific capacity of 145.2 mAh g-1 with over 94.9% capacity retention after 1000 cycles. Given the simplicity of the preparation process and its impressive electrochemical properties, the PSP-0.05 electrolyte holds significant potential for practical applications in safer ASSLMBs.
Collapse
Affiliation(s)
- Yongquan Zhang
- Key Laboratory of Engineering Dielectrics and Its Application (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Zengxu Chen
- Key Laboratory of Engineering Dielectrics and Its Application (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Jingshun Wang
- Key Laboratory of Engineering Dielectrics and Its Application (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Shuo Fan
- Key Laboratory of Engineering Dielectrics and Its Application (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Tiandong Zhang
- Key Laboratory of Engineering Dielectrics and Its Application (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Changhai Zhang
- Key Laboratory of Engineering Dielectrics and Its Application (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Yue Zhang
- Key Laboratory of Engineering Dielectrics and Its Application (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Qingguo Chi
- Key Laboratory of Engineering Dielectrics and Its Application (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| |
Collapse
|
16
|
Ghazi ZA, Yin L, Sun Z, Sun C, Shi Y, Shi H, Li F. 2D Microporous Polymers/Reduced Graphene Oxide with Built-In Lithiophilic Sites for Uniform Lithium Deposition in Lithium Metal Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406248. [PMID: 39396373 DOI: 10.1002/smll.202406248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Lithium (Li) metal is an attractive anode material for use in high-energy lithium-sulfur and lithium-air batteries. However, its practical application is severely impeded by excessive dendrite growth, huge volume changes, and severe side reactions. Herein, a novel Li metal anode composed of lithiophilic two dimensional (2D) conjugated microporous polymer (Li-CMP) and reduced graphene oxide (rGO) sandwiches (Li-CMP@rGO) for Li metal batteries (LiMBs) is reported. In the Li-CMP@rGO anode, the conductive rGO facilitates the charge transfer while the functionalized-CMP provides Li nucleation sites within the micropores, thereby preventing dendrite growth. As a result, the Li-CMP@rGO anode can be cycled smoothly at 6 mA cm-2 of current density with a platting capacity of 2 mAh cm-2 for 1000 h. A Coulombic efficiency of 98.4% is achieved over 350 cycles with a low overpotential of 28 mV. In a full cell with LiFePO4 cathode, the Li-CMP@rGO anode also exhibited good cycling stability compared to CMP@rGO and CMP/Super-P. As expected, the simulation results reveal that Li-CMP@rGO has a strong affinity for Li ions compared to CMP@rGO. The strategies adopted in this work can open new avenues for designing hybrid porous host materials for developing safe and stable Li metal anodes.
Collapse
Affiliation(s)
- Zahid Ali Ghazi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, 25120, Pakistan
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Zhenhua Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Chengguo Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yin Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Huifa Shi
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Feng Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| |
Collapse
|
17
|
Xia S, Li C, Yuwono JA, Wang Y, Wang C, Li M, Zhang X, Yang J, Mao J, Zheng S, Guo Z. Scalable Production of Thin and Durable Practical Li Metal Anode for High-Energy-Density Batteries. Angew Chem Int Ed Engl 2024; 63:e202409327. [PMID: 39210499 DOI: 10.1002/anie.202409327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Utilization of thin Li metal is the ultimate pathway to achieving practical high-energy-density Li metal batteries (LMBs), but its practical implementation has been significantly impeded by formidable challenges of poor thinning processability, severe interphase instability and notorious dendritic Li growth. Here we report a practical thin (10-40 μm) Li/Mo/Li2Se with concurrently modulated interphase and mechanical properties, achieved via a scalable mechanical rolling process. The in situ generated Li2Se and Mo not only enhance the mechanical strength enabling the scalable fabrication of thin Li metal, but also promote homogeneous Li electrodeposition. Significantly, the Li/Mo/Li2Se demonstrates ultrahigh-rate performance (15 mA cm-2) and ultralong-lifespan cycling sustainability (2700 cycles) with exceptional anti-pulverization capability. The Li|LiFePO4 cells show substantially prolonged cyclability over 1200 cycles with an ultralow decay rate of ~0.01 % per cycle. Moreover, the Li|LiNi0.8Co0.1Mn0.1O2 pouch cells deliver enhanced cycling stability even under the extremely harsh conditions of low negative-to-positive-capacity (N/P) ratio of ~1.2 and lean electrolyte of ~0.95 g Ah-1, showing an exceptional energy density of 329.2 Wh kg-1. This work sheds light on facile pathway for scalable production of durable thin Li metal anode toward reliable practicability.
Collapse
Affiliation(s)
- Shuixin Xia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Chenrui Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jodie A Yuwono
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Yuehua Wang
- Logistics Engineering College, Shanghai Maritime University, Shanghai, 201306, China
| | - Cheng Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Mingnan Li
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Xun Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jianfeng Mao
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Shiyou Zheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zaiping Guo
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
18
|
Ju Z, Zheng T, Zhang B, Dolocan A, Marschilok AC, Takeuchi ES, Takeuchi KJ, Yu G. Magnetically oriented nanosheet interlayer for dynamic regeneration in lithium metal batteries. Proc Natl Acad Sci U S A 2024; 121:e2413739121. [PMID: 39441637 PMCID: PMC11536145 DOI: 10.1073/pnas.2413739121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Lithium (Li) metal has been recognized as a promising anode to advance the energy density of current Li-based batteries. However, the growth of the solid-electrolyte interphase (SEI) layer and dendritic Li microstructure pose significant challenges for the long-term operation of Li metal batteries (LMBs). Herein, we propose the utilization of a suspension electrolyte with dispersed magnetically responsive nanosheets whose orientation can be manipulated by an external magnetic field during cell operation for realizing in situ regeneration in LMBs. The regeneration mechanism arises from the redistribution of the ion flux and the formation of an inorganic-rich SEI for uniform and compact Li deposition. With the magnetic-field-induced regeneration process, we show that a Li||Li symmetric cell stably operates for 350 h at 2 mA cm-2 and 2 mA h cm-2, ~5 times that of the cell with the pristine electrolyte. Furthermore, the cycling stability can be significantly extended in the Li||NMC full cell of 3 mA h cm-2, showing a capacity retention of 67% after 500 cycles at 1C. The dynamic Li metal regeneration demonstrated here could bring useful design considerations for reviving the operating cells for achieving high-energy, long-duration battery systems.
Collapse
Affiliation(s)
- Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Tianrui Zheng
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Andrei Dolocan
- Texas Materials Institute, University of Texas at Austin, Austin, TX78712
| | - Amy C. Marschilok
- Institute of Energy: Environment, Sustainability and Equity, Stony Brook University, Stony Brook, NY11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY11794
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY11973
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY11794
| | - Esther S. Takeuchi
- Institute of Energy: Environment, Sustainability and Equity, Stony Brook University, Stony Brook, NY11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY11794
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY11973
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY11794
| | - Kenneth J. Takeuchi
- Institute of Energy: Environment, Sustainability and Equity, Stony Brook University, Stony Brook, NY11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY11794
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY11973
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY11794
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
19
|
Gossage ZT, Igarashi D, Fujii Y, Kawaguchi M, Tatara R, Nakamoto K, Komaba S. New frontiers in alkali metal insertion into carbon electrodes for energy storage. Chem Sci 2024:d4sc03203a. [PMID: 39479166 PMCID: PMC11514190 DOI: 10.1039/d4sc03203a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
With rising interest in new electrodes for next-generation batteries, carbon materials remain as top competitors with their reliable performance, low-cost, low voltage reactions, and diverse tunability. Depending on carbon's structure, it can attain high cyclability as with Li+ at crystalline graphite or exceptional capacities with Na+ at amorphous, porous hard carbons. In this review, we discuss key results and research directions using carbon electrodes for alkali ion storage. We start the first section with hard carbon (HC), a leading material of interest for next-generation Na-ion batteries. Methods for tuning the HC structure towards a high capacity pore-filling mechanism are examined. The rate performance of hard carbon electrodes is further discussed. We finish this section with soft carbons that mostly remain as low performing materials compared to other carbons. In the second section, we discuss alkali ion insertion into graphite and graphite-like materials. Though graphite has a long history with Li-ion batteries, it also shows promising characteristics for K-ion batteries. We discuss the significant progress made on improving the electrolyte for high cyclability of graphite with K+. Thereafter, we evaluate B/C/N materials that have a similar structure to graphite but can attain higher capacities for both Li+ and Na+. Finally, we touch on the recent developments using alternative solvents for Na+ cointercalation at graphite and deeper knowledge on the intercalant structure. Despite steady progress, carbon electrodes continue to improve as a key group of materials for alkali energy storage.
Collapse
Affiliation(s)
- Zachary T Gossage
- Department of Applied Chemistry, Tokyo University of Science Tokyo 162-8601 Japan
| | - Daisuke Igarashi
- Department of Applied Chemistry, Tokyo University of Science Tokyo 162-8601 Japan
| | - Yuki Fujii
- Department of Applied Chemistry, Tokyo University of Science Tokyo 162-8601 Japan
| | - Masayuki Kawaguchi
- Fundamental Electronics Research Institute, Osaka Electro-Communication University Neyagawa Osaka 572-8530 Japan
| | - Ryoichi Tatara
- Department of Applied Chemistry, Tokyo University of Science Tokyo 162-8601 Japan
| | - Kosuke Nakamoto
- Department of Applied Chemistry, Tokyo University of Science Tokyo 162-8601 Japan
| | - Shinichi Komaba
- Department of Applied Chemistry, Tokyo University of Science Tokyo 162-8601 Japan
| |
Collapse
|
20
|
Park BN. Unraveling Asymmetric Electrochemical Kinetics in Low-Mass-Loading LiNi 1/ 3Mn 1/ 3Co 1/ 3O 2 (NMC111) Li-Metal All-Solid-State Batteries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5014. [PMID: 39459719 PMCID: PMC11509323 DOI: 10.3390/ma17205014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
In this study, we fabricated a Li-metal all-solid-state battery (ASSB) with a low mass loading of NMC111 cathode electrode, enabling a sensitive evaluation of interfacial electrochemical reactions and their impact on battery performance, using Li1.3Al0.3Ti1.7(PO4)3 (LATP) as the solid electrolyte. The electrochemical behavior of the battery was analyzed to understand how the solid electrolyte influences charge storage mechanisms and Li-ion transport at the electrolyte/electrode interface. Cyclic voltammetry (CV) measurements revealed the b-values of 0.76 and 0.58, indicating asymmetry in the charge storage process. A diffusion coefficient of 1.5 × 10-9 cm2⋅s-1 (oxidation) was significantly lower compared to Li-NMC111 batteries with liquid electrolytes, 1.6 × 10-8cm2⋅s-1 (oxidation), suggesting that the asymmetric charge storage mechanisms are closely linked to reduced ionic transport and increased interfacial resistance in the solid electrolyte. This reduced Li-ion diffusivity, along with the formation of space charge layers at the electrode/electrolyte interface, contributes to the observed asymmetry in charge and discharge processes and limits the rate capability of the solid-state battery, particularly at high charging rates, compared to its liquid electrolyte counterpart.
Collapse
Affiliation(s)
- Byoung-Nam Park
- Department of Materials Science and Engineering, Hongik University, 72-1, Sangsu-dong, Mapo-gu, Seoul 04066, Republic of Korea
| |
Collapse
|
21
|
Ju Z, Zheng T, Zhang B, Yu G. Interfacial chemistry in multivalent aqueous batteries: fundamentals, challenges, and advances. Chem Soc Rev 2024; 53:8980-9028. [PMID: 39158505 DOI: 10.1039/d4cs00474d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
As one of the most promising electrochemical energy storage systems, aqueous batteries are attracting great interest due to their advantages of high safety, high sustainability, and low costs when compared with commercial lithium-ion batteries, showing great promise for grid-scale energy storage. This invited tutorial review aims to provide universal design principles to address the critical challenges at the electrode-electrolyte interfaces faced by various multivalent aqueous battery systems. Specifically, deposition regulation, ion flux homogenization, and solvation chemistry modulation are proposed as the key principles to tune the inter-component interactions in aqueous batteries, with corresponding interfacial design strategies and their underlying working mechanisms illustrated. In the end, we present a critical analysis on the remaining obstacles necessitated to overcome for the use of aqueous batteries under different practical conditions and provide future prospects towards further advancement of sustainable aqueous energy storage systems with high energy and long durability.
Collapse
Affiliation(s)
- Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Tianrui Zheng
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
22
|
To-A-Ran W, Mastoi NR, Song YJ, Kim SH, Kim YJ. Unraveling the Deposition and Dissolution Behavior of the Ag-Modified Li Surface Based on Electrochemical Atomic Force Microscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47406-47415. [PMID: 39222040 PMCID: PMC11404483 DOI: 10.1021/acsami.4c06822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lithium is a promising anode material for advanced batteries because of its high capacity and low redox potential. However, its practical use is hindered by nonuniform Li deposition and dendrite formation, leading to safety concerns in Li metal batteries. Our study shows that Ag-based materials enhance the uniformity of Li deposition on Ag-modified Li (AgLi) surfaces, thereby addressing these key challenges. This improvement is due to the strong affinity of Ag for Li, which promotes uniform deposition and dissolution. Additionally, the AgLi surface demonstrated an improved cycling stability, which is crucial for long-term battery reliability. Emphasizing our analytical approach, we utilized comprehensive techniques such as Kelvin probe force microscopy (KPFM) and electrochemical atomic force microscopy (EC-AFM) to locally analyze the electrical properties and unravel the Li deposition/dissolution mechanisms. KPFM analysis provided crucial insights into surface potential variations, while EC-AFM highlighted topographical changes during the Li deposition and dissolution processes, contributing significantly to the development of safer and more efficient Li metal batteries.
Collapse
Affiliation(s)
- Weerawat To-A-Ran
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Naila Riaz Mastoi
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Jae Song
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong Heon Kim
- Department of Physics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Young-Jun Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Advanced Center for Convergence Energy Storage System, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
23
|
Ma S, Cong L, Fu F, Rumesh Madhusanka SAD, Wang H, Xie H. Revitalization of Diluent Amide-Based Electrolyte for Building High-Voltage Lithium-Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308959. [PMID: 38501792 DOI: 10.1002/smll.202308959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/09/2024] [Indexed: 03/20/2024]
Abstract
Hitherto, highly concentrated electrolyte is the overarching strategy for revitalizing the usage of amide - in lithium-metal batteries (LMBs), which simultaneously mitigates the reactivity of amide toward Li and regulates uniform Li deposition via forming anion-solvated coordinate structure. However, it is undeniable that this would bring the cost burden for practical electrolyte preparation, which stimulates further electrolyte design toward tailoring anion-abundant Li+ solvation structure in stable amide electrolytes under a low salt content. Herein, a distinct method is conceived to design anions-enriched Li+ solvation structure in dilute amide-electrolyte (1 m Li-salt concentration) with the aid of integrating perfluoropolyethers (PFPE-MC) with anion-solvating ability and B/F-involved additives. The optimized electrolyte based on N,N-Dimethyltrifluoroacetamide (FDMAC) exhibits outstanding compatibility with Li and NCM622 cathode, facilitates uniform Li deposition along with robust solid electrolyte interphase (SEI) formation. Accordingly, both the lab-level LMB coin cell and practical pouch cell based on this dilute FDMAC electrolyte deliver remarkable performances with improved capacity and cyclability. This work pioneers the feasibility of diluted amide as electrolyte in LMB, and provides an innovative strategy for highly stable Li deposition via manipulating solvation structure within diluent electrolyte, impelling the electrolyte engineering development for practical high-energy LMBs.
Collapse
Affiliation(s)
- Shunchao Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lina Cong
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Fang Fu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Suwanda Arachchige Don Rumesh Madhusanka
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Hongyu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| | - Haiming Xie
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
24
|
Seo J, Im J, Kim M, Song D, Yoon S, Cho KY. Recent Progress of Advanced Functional Separators in Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312132. [PMID: 38453671 DOI: 10.1002/smll.202312132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
As a representative in the post-lithium-ion batteries (LIBs) landscape, lithium metal batteries (LMBs) exhibit high-energy densities but suffer from low coulombic efficiencies and short cycling lifetimes due to dendrite formation and complex side reactions. Separator modification holds the most promise in overcoming these challenges because it utilizes the original elements of LMBs. In this review, separators designed to address critical issues in LMBs that are fatal to their destiny according to the target electrodes are focused on. On the lithium anode side, functional separators reduce dendrite propagation with a conductive lithiophilic layer and a uniform Li-ion channel or form a stable solid electrolyte interphase layer through the continuous release of active agents. The classification of functional separators solving the degradation stemming from the cathodes, which has often been overlooked, is summarized. Structural deterioration and the resulting leakage from cathode materials are suppressed by acidic impurity scavenging, transition metal ion capture, and polysulfide shuttle effect inhibition from functional separators. Furthermore, flame-retardant separators for preventing LMB safety issues and multifunctional separators are discussed. Further expansion of functional separators can be effectively utilized in other types of batteries, indicating that intensive and extensive research on functional separators is expected to continue in LIBs.
Collapse
Affiliation(s)
- Junhyeok Seo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| | - Juyeon Im
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| | - Minjae Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| | - Dahee Song
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| | - Sukeun Yoon
- Division of Advanced Materials Engineering, Kongju National University, Cheonan, Chungnam, 31080, Republic of Korea
| | - Kuk Young Cho
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| |
Collapse
|
25
|
You J, Wang Q, Wei R, Deng L, Hu Y, Niu L, Wang J, Zheng X, Li J, Zhou Y, Li JT. Boosting High-Voltage Practical Lithium Metal Batteries with Tailored Additives. NANO-MICRO LETTERS 2024; 16:257. [PMID: 39073457 PMCID: PMC11286617 DOI: 10.1007/s40820-024-01479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
The lithium (Li) metal anode is widely regarded as an ideal anode material for high-energy-density batteries. However, uncontrolled Li dendrite growth often leads to unfavorable interfaces and low Coulombic efficiency (CE), limiting its broader application. Herein, an ether-based electrolyte (termed FGN-182) is formulated, exhibiting ultra-stable Li metal anodes through the incorporation of LiFSI and LiNO3 as dual salts. The synergistic effect of the dual salts facilitates the formation of a highly robust SEI film with fast Li+ transport kinetics. Notably, Li||Cu half cells exhibit an average CE reaching up to 99.56%. In particular, pouch cells equipped with high-loading lithium cobalt oxide (LCO, 3 mAh cm-2) cathodes, ultrathin Li chips (25 μm), and lean electrolytes (5 g Ah-1) demonstrate outstanding cycling performance, retaining 80% capacity after 125 cycles. To address the gas issue in the cathode under high voltage, cathode additives 1,3,6-tricyanohexane is incorporated with FGN-182; the resulting high-voltage LCO||Li (4.4 V) pouch cells can cycle steadily over 93 cycles. This study demonstrates that, even with the use of ether-based electrolytes, it is possible to simultaneously achieve significant improvements in both high Li utilization and electrolyte tolerance to high voltage by exploring appropriate functional additives for both the cathode and anode.
Collapse
Affiliation(s)
- Jinhai You
- College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001, Leuven, Belgium
| | - Qiong Wang
- State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Runhong Wei
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001, Leuven, Belgium
| | - Li Deng
- State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yiyang Hu
- College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Li Niu
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, 3001, Leuven, Belgium
| | - Jingkai Wang
- Magnetism Key Laboratory of Zhejiang Province, College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Xiaomei Zheng
- Magnetism Key Laboratory of Zhejiang Province, College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China.
| | - Junwei Li
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.
| | - Yao Zhou
- College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Jun-Tao Li
- College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
26
|
Qu Z, Chen K, Wang W, Dai Y, Lu X, Lyu SS. Interfacial Layers with Desolvation Function Induced Stable Deposition of Lithium Metal for Long-Cycling Lithium Metal Batteries. NANO LETTERS 2024; 24:8055-8062. [PMID: 38904262 DOI: 10.1021/acs.nanolett.4c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The unstable solid electrolyte interface (SEI) formed by uncontrollable electrolyte degradation, which leads to dendrite growth and Coulombic efficiency decay, hinders the development of Li metal anodes. A controllable desolvation process is essential for the formation of stable SEI and improved lithium metal deposition behavior. Here, we show a functional artificial interface protective layer comprised of chondroitin sulfate-reduced graphene oxide (CrG), on which polar functional groups are distributed to effectively reduce the energy barrier for desolvation of Li+ and effectively alienate solvent molecules to avoid solvent involvement in SEI formation, thus promoting the formation of a LiF-rich SEI. Consequently, stable Coulombic efficiencies of 98.4% were achieved after 500 cycles in a Li//Cu cell. Moreover, the LiFePO4 full cells achieve steady circulation (470 cycles at 80%, 1 C) with a negative/positive electrode capacity ratio of 2.87. Our multifunctional artificial interface protective layer provides a new way to advance Li metal batteries.
Collapse
Affiliation(s)
- Zongtao Qu
- School of Materials, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Kaixuan Chen
- School of Materials, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
- Guangdong Engineering Technology Research Centre for Advanced Thermal Control Material and System Integration (ATCMSI), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Wenkang Wang
- School of Materials, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Yao Dai
- School of Materials, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Xia Lu
- School of Materials, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Shu-Shen Lyu
- School of Materials, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
- Guangdong Engineering Technology Research Centre for Advanced Thermal Control Material and System Integration (ATCMSI), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
27
|
Lu Z, Wang M, Chen S, Jiang C, Tang Y, Li H, Wan M, Wang D. MgNiO 2 as a Ceramic Additive To Improve the Durability of Lithium Metal Anode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31201-31208. [PMID: 38857455 DOI: 10.1021/acsami.4c05275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ceramic materials are the most popular additives to regulate the reinless interfacial reaction between lithium and the electrolyte by strengthening the SEI layer or tuning lithium deposition. Here, we propose an exceptional material, MgNiO2, abbreviated as MN, which can improve the durability of lithium metal anode. Since it is undecomposed up to 0 V vs Li/Li+, the MN's particles give some semiconductive characteristics to the SEI layer to tune the interfacial reactions. The addition of MgNiO2 in the protective films lowers interfacial resistance, which is responsible for the improved durability of Li|Cu cells: ∼210 cycles, which is 4 times longer than that of the control. Furthermore, this ceramic is used to modify the carbon film woven with carbon nanofibers (CNF @ MN). The cells with this modified 3-D host present excellent operational lives, as high as ∼2400 h in Li|Li symmetric cells and ∼280 cycles in the Li|NCM811 cells. Our approaches demonstrate that MN is an effective ceramic for stabilizing the lithium anode. It also indicates that the inert nature of the semiconductor to lithium is worth exploring thoroughly.
Collapse
Affiliation(s)
- Zhaoxin Lu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Muqin Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuaishuai Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Chun Jiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Yihan Tang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Hua Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Ming Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Deyu Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| |
Collapse
|
28
|
Liu S, Jiang G, Wang Y, Liu C, Zhang T, Wei Y, An B. Vitrified Metal-Organic Framework Composite Electrolyte Enabling Dendrite-Free and Long-Lifespan Solid-State Lithium Metal Batteries. ACS NANO 2024; 18:14907-14916. [PMID: 38807284 DOI: 10.1021/acsnano.3c11725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Solid-state lithium metal batteries (LMBs) are still plagued with low ionic conductivity and inferior interfacial contact, which hinder their practical implementation. Herein, a quasi-solid-state composite electrolyte, poly(1,3-dioxolane) (PDOL)/glassy ZIF-62 (PGZ) with fast ion transport and intimate interface contact, is fabricated via in situ polymerization. The in situ polymerization of DOL in an electrolyte matrix not only improves the exterior interface between electrolyte/electrode but also optimizes the inner interfaces among glassy particles, rendering PGZ as an uninterrupted ionic conductor. Moreover, PGZ inherits the superior ionic conductivity and the robust dendrite prohibition of glassy MOFs originating from their grain-boundary-free nature, isotropy, and abundant groups containing N species. As expected, our proposed PGZ exhibits a prominent ionic conductivity of 6.3 × 10-4 S cm-1 at 20 °C. Li|PGZ|LiFePO4 delivers an outstanding rate performance (103 mAh g-1 at 4C) and a stable cycling capacity (118 mAh g-1 at 1C over 1000 cycles). PGZ also presents excellent low-temperature cycling performance with 75 mAh g-1 for 480 cycles at -20 °C and excellent flame retardance. Even at a high loading of 12.1 mg cm-2, it can still discharge at 140 mAh g-1 for 100 cycles. Hence, PGZ prepared via in situ polymerization holds enormous prospects as a solid-state electrolyte for high-performance and safe LMBs.
Collapse
Affiliation(s)
- Shouxiang Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Guangshen Jiang
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, China
| | - Yimao Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Chengyang Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Tongyang Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Yanyan Wei
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266000, China
| | - Baigang An
- Key Laboratory of Energy Materials and Electrochemistry Research Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, China
| |
Collapse
|
29
|
Chen J, Lu H, Kong X, Liu J, Liu J, Yang J, Nuli Y, Wang J. Interphase Engineering via Solvent Molecule Chemistry for Stable Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202317923. [PMID: 38536212 DOI: 10.1002/anie.202317923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 05/01/2024]
Abstract
Lithium metal battery has been regarded as promising next-generation battery system aiming for higher energy density. However, the lithium metal anode suffers severe side-reaction and dendrite issues. Its electrochemical performance is significantly dependant on the electrolyte components and solvation structure. Herein, a series of fluorinated ethers are synthesized with weak-solvation ability owing to the duple steric effect derived from the designed longer carbon chain and methine group. The electrolyte solvation structure rich in AGGs (97.96 %) enables remarkable CE of 99.71 % (25 °C) as well as high CE of 98.56 % even at -20 °C. Moreover, the lithium-sulfur battery exhibits excellent performance in a wide temperature range (-20 to 50 °C) ascribed to the modified interphase rich in LiF/LiO2. Furthermore, the pouch cell delivers superior energy density of 344.4 Wh kg-1 and maintains 80 % capacity retention after 50 cycles. The novel solvent design via molecule chemistry provides alternative strategy to adjust solvation structure and thus favors high-energy density lithium metal batteries.
Collapse
Affiliation(s)
- Jiahang Chen
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Huichao Lu
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xirui Kong
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Jian Liu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Jiqiong Liu
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Yang
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanna Nuli
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiulin Wang
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu, 610218, P. R. China Corresponding Author: Jiulin Wang
| |
Collapse
|
30
|
Li JY, Hu HY, Li HW, Liu YF, Su Y, Jia XB, Zhao LF, Fan YM, Gu QF, Zhang H, Pang WK, Zhu YF, Wang JZ, Dou SX, Chou SL, Xiao Y. Interfacial Spinel Local Interlocking Strategy Toward Structural Integrity in P3 Oxide Cathodes. ACS NANO 2024; 18:12945-12956. [PMID: 38717846 DOI: 10.1021/acsnano.4c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
P3-layered transition oxide cathodes have garnered considerable attention owing to their high initial capacity, rapid Na+ kinetics, and less energy consumption during the synthesis process. Despite these merits, their practical application is hindered by the substantial capacity degradation resulting from unfavorable structural transformations, Mn dissolution and migration. In this study, we systematically investigated the failure mechanisms of P3 cathodes, encompassing Mn dissolution, migration, and the irreversible P3-O3' phase transition, culminating in severe structural collapse. To address these challenges, we proposed an interfacial spinel local interlocking strategy utilizing P3/spinel intergrowth oxide as a proof-of-concept material. As a result, P3/spinel intergrowth oxide cathodes demonstrated enhanced cycling performance. The effectiveness of suppressing Mn migration and maintaining local structure of interfacial spinel local interlocking strategy was validated through depth-etching X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and in situ synchrotron-based X-ray diffraction. This interfacial spinel local interlocking engineering strategy presents a promising avenue for the development of advanced cathode materials for sodium-ion batteries.
Collapse
Affiliation(s)
- Jia-Yang Li
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Hai-Yan Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Hong-Wei Li
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Yi-Feng Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Yu Su
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Xin-Bei Jia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Ling-Fei Zhao
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Ya-Meng Fan
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Qin-Fen Gu
- Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Hang Zhang
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Wei Kong Pang
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Yan-Fang Zhu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Jia-Zhao Wang
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Shi-Xue Dou
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Shu-Lei Chou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Yao Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| |
Collapse
|
31
|
Tang L, Peng H, Kang J, Chen H, Zhang M, Liu Y, Kim DH, Liu Y, Lin Z. Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem Soc Rev 2024; 53:4877-4925. [PMID: 38595056 DOI: 10.1039/d3cs00295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Batteries play a pivotal role in various electrochemical energy storage systems, functioning as essential components to enhance energy utilization efficiency and expedite the realization of energy and environmental sustainability. Zn-based batteries have attracted increasing attention as a promising alternative to lithium-ion batteries owing to their cost effectiveness, enhanced intrinsic safety, and favorable electrochemical performance. In this context, substantial endeavors have been dedicated to crafting and advancing high-performance Zn-based batteries. However, some challenges, including limited discharging capacity, low operating voltage, low energy density, short cycle life, and complicated energy storage mechanism, need to be addressed in order to render large-scale practical applications. In this review, we comprehensively present recent advances in designing high-performance Zn-based batteries and in elucidating energy storage mechanisms. First, various redox mechanisms in Zn-based batteries are systematically summarized, including insertion-type, conversion-type, coordination-type, and catalysis-type mechanisms. Subsequently, the design strategies aiming at enhancing the electrochemical performance of Zn-based batteries are underscored, focusing on several aspects, including output voltage, capacity, energy density, and cycle life. Finally, challenges and future prospects of Zn-based batteries are discussed.
Collapse
Affiliation(s)
- Lei Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Haojia Peng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Jiarui Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Yijiang Liu
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
32
|
Zhai L, Wang J, Zhang X, Zhou X, Jiang F, Li L, Sun J. Interface engineering of Li 6.75La 3Zr 1.75Ta 0.25O 12via in situ built LiI/ZnLi x mixed buffer layer for solid-state lithium metal batteries. Chem Sci 2024; 15:7144-7149. [PMID: 38756800 PMCID: PMC11095377 DOI: 10.1039/d4sc00786g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Garnet-type solid-state Li metal batteries (SSLMBs) are viewed as hopeful next-generation batteries due to their high energy density and safety. However, the major obstacle to the development of garnet-type SSLMBs is the lithiophobicity of Li6.75La3Zr1.75Ta0.25O12 (LLZTO), resulting in a large interfacial impedance. Herein, a LiI/ZnLix mixed ion/electron conductive buffer layer is constructed at the interface by an in situ reaction of molten Li metal with ZnI2 film. This mixed buffer layer ensures close contact between the Li metal and garnet, significantly reducing interfacial impedance. As a result, the Li symmetrical cell with the LiI/ZnLix buffer layer shows an interface impedance of 10.3 Ω cm2, much lower than that of the cell with bare LLZTO (1173.4 Ω cm2). The critical current density (CCD) is up to 2.3 mA cm-2, and the symmetric cells present a long cycle life of 2000 h at 0.1 mA cm-2 and 800 h at 1.0 mA cm-2. In addition, the full cells assembled with the LiFePO4 cathode show a capacity of 143.9 mA h g-1 after 200 cycles at 0.5C with a low-capacity decay of 0.021% per cycle. This work reveals a simple, feasible, and practical interface modification strategy for solid-state Li metal batteries.
Collapse
Affiliation(s)
- Lei Zhai
- School of Environment and Material Engineering, Yantai University Yantai 264005 Shandong China
| | - Jinhuan Wang
- School of Environment and Material Engineering, Yantai University Yantai 264005 Shandong China
| | - Xiaoyu Zhang
- School of Environment and Material Engineering, Yantai University Yantai 264005 Shandong China
| | - Xunzhu Zhou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Fuyi Jiang
- School of Environment and Material Engineering, Yantai University Yantai 264005 Shandong China
| | - Lin Li
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
| | - Jianchao Sun
- School of Environment and Material Engineering, Yantai University Yantai 264005 Shandong China
| |
Collapse
|
33
|
Liang Q, Liu X, Tang J, Yan X, He L, Chen E, Wu S, Liu J, Tang M, Chen Z, Wang Z. An Ultrathin Composite Polymer Electrolyte Dual-Reinforced by a Polymer of Intrinsic Microporosity (PIM-1) and Poly(tetrafluoroethylene) (PTFE) Porous Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306994. [PMID: 38098339 DOI: 10.1002/smll.202306994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/06/2023] [Indexed: 05/30/2024]
Abstract
The performances of solid-state polymer electrolytes are urgently required to be further improved for high energy density lithium metal batteries. Herein, a highly reinforced ultrathin composite polymer electrolyte (PLPP) is successfully fabricated in a large scale by densely filling the well-dispersed mixture of polyethylene oxide (PEO), Li-salt (LiTFSI) and a polymer of intrinsic microporosity (PIM-1) into porous poly(tetrafluoroethylene) (PTFE) matrix. Based on the macro-plus-micro synergistic enhancement of the PTFE with excellent mechanical properties and the soluble PIM-1 with suitable functional groups, the PLPP electrolyte exhibits excellent properties including mechanical stress, thermal stability, lithium-ion transference number, voltage window and ionic conductivity, which are all superior to the typical PEO/LiTFSI electrolytes. As a result, the Li/PLPP/Li symmetric cell can stably cycle for > 2000 h, and the LiFePO4/PLPP/Li full cell exhibits excellent rate performance (>10 C) and high cycling stability with an initial capacity of 158.8 mAh g-1 and a capacity retention of 78.8% after 300 cycles. In addition, the excellent mechanical properties as well as the wide voltage window reasonably result in the stable operation of full cells with either high-loading cathode up to 28.1 mg cm-2 or high voltage cathode with high energy density.
Collapse
Affiliation(s)
- Qian Liang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xuezhi Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Junyan Tang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xiao Yan
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Lei He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - En Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Sihan Wu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Junjie Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Mi Tang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zhiquan Chen
- Hubei Key Laboratory of Nuclear Solid State Physics, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Zhengbang Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
34
|
Yuan Y, Zhang Z, Zhang Z, Bang KT, Tian Y, Dang Z, Gu M, Wang R, Tao R, Lu Y, Wang Y, Kim Y. Highly Conductive Imidazolate Covalent Organic Frameworks with Ether Chains as Solid Electrolytes for Lithium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202402202. [PMID: 38375743 DOI: 10.1002/anie.202402202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Poly(ethylene oxide) (PEO)-based electrolytes are often used for Li+ conduction as they can dissociate the Li salts efficiently. However, high entanglement of the chains and lack of pathways for rapid ion diffusion limit their applications in advanced batteries. Recent developments in ionic covalent organic frameworks (iCOFs) showed that their highly ordered structures provide efficient pathways for Li+ transport, solving the limitations of traditional PEO-based electrolytes. Here, we present imidazolate COFs, PI-TMEFB-COFs, having methoxyethoxy chains, synthesized by Debus-Radziszewski multicomponent reactions and their ionized form, Li+@PI-TMEFB-COFs, showing a high Li+ conductivity of 8.81 mS cm-1 and a transference number of 0.974. The mechanism for such excellent electrochemical properties is that methoxyethoxy chains dissociate LiClO4, making free Li+, then those Li+ are transported through the imidazolate COFs' pores. The synthesized Li+@PI-TMEFB-COFs formed a stable interface with Li metal. Thus, employing Li+@PI-TMEFB-COFs as the solid electrolyte to assemble LiFePO4 batteries showed an initial discharge capacity of 119.2 mAh g-1 at 0.5 C, and 82.0 % capacity and 99.9 % Coulombic efficiency were maintained after 400 cycles. These results show that iCOFs with ether chains synthesized via multicomponent reactions can create a new chapter for making solid electrolytes for advanced rechargeable batteries.
Collapse
Affiliation(s)
- Yufei Yuan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zeyu Zhang
- University of Michigan-, Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Zhengyang Zhang
- University of Michigan-, Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Ki-Taek Bang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ye Tian
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhengzheng Dang
- University of Michigan-, Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Muhua Gu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ran Tao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yingying Lu
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Institute of Wenzhou, Zhejiang University, 325006, Wenzhou, China
| | - Yanming Wang
- University of Michigan-, Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
35
|
Li N, Zhang Y, Zhang S, Shi L, Zhang JY, Song KM, Li JC, Zeng FL. Insight into the probability of ethoxy(pentafluoro)cyclotriphosphazene (PFPN) as the functional electrolyte additive in lithium-sulfur batteries. RSC Adv 2024; 14:12754-12761. [PMID: 38645521 PMCID: PMC11027040 DOI: 10.1039/d3ra08379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Enhancing the flame retardancy of electrolytes and the stability of lithium anodes is of great significance to improve the safety performance of lithium-sulfur (Li-S) batteries. It is well known that the most commonly used ether based electrolyte solvents in Li-S batteries have a lower flash point and higher volatility than the ester electrolyte solvents in Li-ion batteries. Hence, lithium-sulfur batteries have greater safety risks than lithium-ion batteries. Herein, ethoxy(pentafluoro)cyclotriphosphazene (PFPN), which is commonly used as a flame retardant for ester electrolytes in lithium-ion batteries, is utilized as both a film-forming electrolyte additive and a flame retardant additive for the ether electrolyte to investigated its applicability in Li-S batteries. It is found that the ether electrolyte containing PFPN not only has good flame retardant properties and a wide potential window of about 5 V, but also can form a stable SEI film on the surface of a lithium anode. As a result, with the ether-based electrolyte containing 10 wt% PFPN, Li-Cu and Li-S batteries all delivered a stable cycling performance with a high coulombic Efficiency and a long-lifespan performance, which were all superior to the batteries using the ether-based electrolyte without PFPN. This study demonstrates an effective solution to solve the problems of flammable ether-based electrolytes and reactive lithium anodes, and it may contribute to the development of safe Li-S batteries.
Collapse
Affiliation(s)
- Ning Li
- School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University Changzhou 213164 China
| | - Yu Zhang
- School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University Changzhou 213164 China
| | - Shun Zhang
- School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University Changzhou 213164 China
| | - Lu Shi
- School of Mechanical Engineering, Jiangsu University Zhenjiang 212013 China
| | - Jie-Yu Zhang
- School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University Changzhou 213164 China
| | - Ke-Meng Song
- School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University Changzhou 213164 China
| | - Jin-Chun Li
- School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University Changzhou 213164 China
| | - Fang-Lei Zeng
- School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University Changzhou 213164 China
| |
Collapse
|
36
|
Wang J, Li G, Zhang X, Zong K, Yang Y, Zhang X, Wang X, Chen Z. Undercoordination Chemistry of Sulfur Electrocatalyst in Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311019. [PMID: 38135452 DOI: 10.1002/adma.202311019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Indexed: 12/24/2023]
Abstract
Undercoordination chemistry is an effective strategy to modulate the geometry-governed electronic structure and thereby regulate the activity of sulfur electrocatalysts. Efficient sulfur electrocatalysis is requisite to overcome the sluggish kinetics in lithium-sulfur (Li-S) batteries aroused by multi-electron transfer and multi-phase conversions. Recent advances unveil the great promise of undercoordination chemistry in facilitating and stabilizing sulfur electrochemistry, yet a related review with systematicness and perspectives is still missing. Herein, it is carefully combed through the recent progress of undercoordination chemistry in sulfur electrocatalysis. The typical material structures and operational strategies are elaborated, while the underlying working mechanism is also detailly introduced and generalized into polysulfide adsorption behaviors, polysulfide conversion kinetics, electron/ion transport, and dynamic reconstruction. Moreover, perspectives on the future development of undercoordination chemistry are further proposed.
Collapse
Affiliation(s)
- Jiayi Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Gaoran Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Department of Chemical Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Xiaomin Zhang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangdong, 510006, China
| | - Kai Zong
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Yi Yang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xiaoyu Zhang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xin Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangdong, 510006, China
| | - Zhongwei Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
37
|
Cui Z, Jia Z, Ruan D, Nian Q, Fan J, Chen S, He Z, Wang D, Jiang J, Ma J, Ou X, Jiao S, Wang Q, Ren X. Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries. Nat Commun 2024; 15:2033. [PMID: 38448427 PMCID: PMC10918083 DOI: 10.1038/s41467-024-46186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024] Open
Abstract
Constraining the electrochemical reactivity of free solvent molecules is pivotal for developing high-voltage lithium metal batteries, especially for ether solvents with high Li metal compatibility but low oxidation stability ( <4.0 V vs Li+/Li). The typical high concentration electrolyte approach relies on nearly saturated Li+ coordination to ether molecules, which is confronted with severe side reactions under high voltages ( >4.4 V) and extensive exothermic reactions between Li metal and reactive anions. Herein, we propose a molecular anchoring approach to restrict the interfacial reactivity of free ether solvents in diluted electrolytes. The hydrogen-bonding interactions from the anchoring solvent effectively suppress excessive ether side reactions and enhances the stability of nickel rich cathodes at 4.7 V, despite the extremely low Li+/ether molar ratio (1:9) and the absence of typical anion-derived interphase. Furthermore, the exothermic processes under thermal abuse conditions are mitigated due to the reduced reactivity of anions, which effectively postpones the battery thermal runaway.
Collapse
Affiliation(s)
- Zhuangzhuang Cui
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhuangzhuang Jia
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Digen Ruan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qingshun Nian
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiajia Fan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shunqiang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zixu He
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Dazhuang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinyu Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xing Ou
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, No.932 South Lushan Road, Changsha, Hunan, 410083, PR China
| | - Shuhong Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qingsong Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Xiaodi Ren
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
38
|
Bi J, Liu Y, Du Z, Wang K, Guan W, Wu H, Ai W, Huang W. Bottom-Up Magnesium Deposition Induced by Paper-Based Triple-Gradient Scaffolds toward Flexible Magnesium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309339. [PMID: 37918968 DOI: 10.1002/adma.202309339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/01/2023] [Indexed: 11/04/2023]
Abstract
The development of advanced magnesium metal batteries (MMBs) has been hindered by longstanding challenges, such as the inability to induce uniform magnesium (Mg) nucleation and the inefficient utilization of Mg foil. This study introduces a novel solution in the form of a flexible, lightweight, paper-based scaffold that incorporates gradient conductivity, magnesiophilicity, and pore size. This design is achieved through an industrially adaptable papermaking process in which the ratio of carboxylated multi-walled carbon nanotubes to softwood cellulose fibers is meticulously adjusted. The triple-gradient structure of the scaffold enables the regulation of Mg ion flux, promoting bottom-up Mg deposition. Owing to its high flexibility, low thickness, and reduced density, the scaffold has potential applications in flexible and wearable electronics. Accordingly, the triple-gradient electrodes exhibit stable operation for over 1200 h at 3 mA cm-2 /3 mAh cm-2 in symmetrical cells, markedly outperforming the non-gradient and metallic Mg alternatives. Notably, this study marks the first successful fabrication of a flexible MMB pouch full cell, achieving an impressive volumetric energy density of 244 Wh L-1 . The simplicity and scalability of the triple-gradient design, which uses readily available materials through an industrially compatible papermaking process, open new doors for the production of flexible, high-energy-density metal batteries.
Collapse
Affiliation(s)
- Jingxuan Bi
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuhang Liu
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhuzhu Du
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wanqing Guan
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haiwei Wu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wei Ai
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
39
|
Bao W, Wang R, Qian C, Shen H, Yu F, Liu H, Guo C, Li J, Sun K. Light-Assisted Lithium Metal Anode Enabled by In Situ Photoelectrochemical Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307179. [PMID: 37857576 DOI: 10.1002/smll.202307179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Rechargeable battery devices with high energy density are highly demanded by the modern society. The use of lithium (Li) anodes is extremely attractive for future rechargeable battery devices. However, the notorious Li dendritic and instability of solid electrolyte interface (SEI) issues pose series of challenge for metal anodes. Here, based on the inspiration of in situ photoelectrochemical engineering, it is showed that a tailor-made composite photoanodes with good photoelectrochemical properties (Li affinity property and photocatalytic property) can significantly improve the electrochemical deposition behavior of Li anodes. The light-assisted Li anode is accommodated in the tailor-made current collector without uncontrollable Li dendrites. The as-prepared light-assisted Li metal anode can achieve the in situ stabilization of SEI layer under illumination. The corresponding in situ formation mechanism and photocatalytic mechanism of composite photoanodes are systematically investigated via DFT theoretical calculation, ex situ UV-vis and ex situ XPS characterization. It is worth mentioning that the as-prepared composite photoanodes can adapt to the ultra-high current density of 15 mA cm-2 and the cycle capacity of 15 mAh cm-2 under light, showing no dendritic morphology and low hysteresis voltage. This work is of great significance for the commercialization of new generation Li metal batteries.
Collapse
Affiliation(s)
- Weizhai Bao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ronghao Wang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Chengfei Qian
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hao Shen
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Feng Yu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - He Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Cong Guo
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jingfa Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Kaiwen Sun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
40
|
Song M, Li Y, Gao L, Zhao R, Xu Y, Han S, Zhu J, Wang L, Zhao Y. A 3D Lithiophilic Host for Dendrite-Free Lithium Metal Anode via One-Step Carbonization of an Energetic Metal-Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306187. [PMID: 37857586 DOI: 10.1002/smll.202306187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Low Coulombic efficiency (CE) and safety issues are huge problems that hinder the practical application of Li metal anodes. Constructing Li host structures decorated with functional species can restrain the growth of Li dendrites and alleviate the great volume change. Here, a 3D porous carbonaceous skeleton modified with rich lithiophilic groups (Zn, ZnO, and Zn(CN)2 ) is synthesized as a Li host via one-step carbonization of a triazole-containing metal-organic framework. The nano lithiophilic groups serve as preferred sites for Li nucleation and growth, regulating a uniform Li+ flux and uniform current density distribution. In addition, the 3D porous network functions as a Li reservoir that provides rich internal space to store Li, thus alleviating the volumetric expansion during Li plating/stripping process. Thanks to these component and structural merits, an ultra-low overpotential for Li deposition is achieved, together with high CE of over 99.5% for more than 500 cycles at 1 mA cm-2 and 1 mAh cm-2 in half cells. The symmetric cells exhibit a prolonged cycling of 900 h at 1 mA cm-2 . The full cells by coupling Zn/ZnO/Zn(CN)2 @C-Li anode with LiFePO4 cathode deliver a high capacity retention of 94.3% after 200 cycles at 1 C.
Collapse
Affiliation(s)
- Manrong Song
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518055, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Gao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Ruo Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518055, China
| | - Yifan Xu
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Songbai Han
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinlong Zhu
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yusheng Zhao
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China
| |
Collapse
|
41
|
Yuan Y, Pu SD, Pérez-Osorio MA, Li Z, Zhang S, Yang S, Liu B, Gong C, Menon AS, Piper LFJ, Gao X, Bruce PG, Robertson AW. Diagnosing the Electrostatic Shielding Mechanism for Dendrite Suppression in Aqueous Zinc Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307708. [PMID: 37879760 DOI: 10.1002/adma.202307708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Aqueous zinc electrolytes offer the potential for cheaper rechargeable batteries due to their safe compatibility with the high capacity metal anode; yet, they are stymied by irregular zinc deposition and consequent dendrite growth. Suppressing dendrite formation by tailoring the electrolyte is a proven approach from lithium batteries; yet, the underlying mechanistic understanding that guides such tailoring does not necessarily directly translate from one system to the other. Here, it is shown that the electrostatic shielding mechanism, a fundamental concept in electrolyte engineering for stable metal anodes, has different consequences for the plating morphology in aqueous zinc batteries. Operando electrochemical transmission electron microscopy is used to directly observe the zinc nucleation and growth under different electrolyte compositions and reveal that electrostatic shielding additive suppresses dendrites by inhibiting secondary zinc nucleation along the (100) edges of existing primary deposits and encouraging preferential deposition on the (002) faces, leading to a dense and block-like zinc morphology. The strong influence of the crystallography of Zn on the electrostatic shielding mechanism is further confirmed with Zn||Ti cells and density functional theory modeling. This work demonstrates the importance of considering the unique aspects of the aqueous zinc battery system when using concepts from other battery chemistries.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Shengda D Pu
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | | | - Zixuan Li
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Shengming Zhang
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Sixie Yang
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Boyang Liu
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Chen Gong
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | | | | | - Xiangwen Gao
- Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Peter G Bruce
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Alex W Robertson
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
42
|
Qiu J, Duan Y, Li S, Zhao H, Ma W, Shi W, Lei Y. Insights into Nano- and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage. NANO-MICRO LETTERS 2024; 16:130. [PMID: 38393483 PMCID: PMC10891041 DOI: 10.1007/s40820-024-01341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024]
Abstract
Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.
Collapse
Affiliation(s)
- Jiajia Qiu
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Yu Duan
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Shaoyuan Li
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Huaping Zhao
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Wenhui Ma
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China.
- School of Science and Technology, Pu'er University, Pu'er, 665000, People's Republic of China.
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany.
| |
Collapse
|
43
|
Dai D, Zhou X, Yan P, Zhang Z, Wang L, Qiao Y, Wu C, Li H, Li W, Jia M, Li B, Liu DH. Interconnected Three-Dimensional Porous Alginate-Based Gel Electrolytes for Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2428-2437. [PMID: 38166369 DOI: 10.1021/acsami.3c17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Lithium batteries have been widely used in our daily lives for their high energy density and long-term stability. However, their safety problems are of paramount concern for consumers, which restricts their scale applications. Gel polymer electrolytes (GPEs) compensate for the defects of liquid leakage and lower ionic conductivity of solid electrolytes, which have attracted a lot of attention. Herein, a 3D interconnected highly porous structural gel electrolyte was prepared with alginate dressing as a host material, poly(ethylene oxide) (PEO), and a commercial liquid electrolyte. With rich polar functional groups and (CH2-CH2-O) segments on the polymer matrix, the transportation of Li+ is faster and uniform; thus, the formations of lithium dendrite were significantly inhibited. The cycle stability of symmetrical Li||Li batteries with modified composite electrolytes (SAA) is greatly improved, and the overpotential remains stable after more than 1000 h. Meanwhile, under the same conditions, the cycle performance of batteries with unmodified electrolytes is inferior and overpotentials are nearly 1 V after 100 h. Additionally, the capacity retention of Li||LiFePO4 with SAA is more than 95% after 200 cycles, while those of the others declined sharply. The alginate dressing-based GPEs can greatly enhance the mechanical and thermal stability of PEO-based GPEs, which provides an environmentally friendly avenue for gel electrolytes' applications in lithium batteries.
Collapse
Affiliation(s)
- Dongmei Dai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinxin Zhou
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengyao Yan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhuangzhuang Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Liang Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yaru Qiao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Canhui Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Haowen Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Weitao Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengmin Jia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bao Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dai-Huo Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
44
|
Su CC, Wu X, Amine K, Bracamonte MV. Probing the Effectiveness in Stabilizing Lithium Metal Anodes through Functional Additives. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59016-59024. [PMID: 38061011 DOI: 10.1021/acsami.3c14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A variety of electrolyte additives were comprehensively evaluated to understand their relative capability in stabilizing lithium metal anode. Although the Li||Cu test is an effective test to rule out ineffective additives, a reliable assessment of individual additives cannot be obtained just by a single evaluation method. Therefore, various methods must be combined to truly assess the stabilization of a lithium anode. Moreover, it was also discovered that a significant depletion of electrolytes occurred during the end-of-life of the lithium batteries, which partially contributed to the sudden failure of the lithium batteries during cycling. However, the main culprit of the sudden failure was identified as the significant increase in the resistance of the lithium metal anode. When used as an additive, cyclic fluorinated carbonates are the most effective in stabilizing the lithium anode and improving the cycling performance of lithium batteries among all the common additives. Despite its cost-effectiveness, the additive in the conventional electrolyte approach provides insufficient protection for lithium metal due to the complete consumption of the additive materials, which is necessary to repair the solid-electrolyte interphase (SEI). Therefore, it is suggested that a larger ratio (>15 wt %) of the SEI former should be employed to achieve effective lithium stabilization.
Collapse
Affiliation(s)
- Chi-Cheung Su
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Xianyang Wu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - María Victoria Bracamonte
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
- Enrique Gaviola Institute of Physics (IFEG), Faculty of Mathematics, Astronomy, Physics and Computing, Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, Córdoba 5000, Argentina
| |
Collapse
|
45
|
Sun S, Wang K, Hong Z, Zhi M, Zhang K, Xu J. Electrolyte Design for Low-Temperature Li-Metal Batteries: Challenges and Prospects. NANO-MICRO LETTERS 2023; 16:35. [PMID: 38019309 PMCID: PMC10687327 DOI: 10.1007/s40820-023-01245-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 11/30/2023]
Abstract
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation. To get the most energy storage out of the battery at low temperatures, improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases. Herein, this review critically outlines electrolytes' limiting factors, including reduced ionic conductivity, large de-solvation energy, sluggish charge transfer, and slow Li-ion transportation across the electrolyte/electrode interphases, which affect the low-temperature performance of Li-metal batteries. Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding. Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared. Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.
Collapse
Affiliation(s)
- Siyu Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Kehan Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhanglian Hong
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Mingjia Zhi
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Kai Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Haihe Laboratory of Sustainable Chemical Transformations, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Jijian Xu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, People's Republic of China.
- Department of Chemical and Biomolecular Engineering, University of Maryland College Park, College Park, MD, 20742, USA.
| |
Collapse
|
46
|
Xie J, Xue J, Wang H, Li J. Spatially isolating Li + reduction from Li deposition via a Li 22Sn 5 alloy protective layer for advanced Li metal anodes. Phys Chem Chem Phys 2023; 25:29797-29807. [PMID: 37886830 DOI: 10.1039/d3cp03713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A Li alloy based artificial coating layer can improve the cyclic performance of Li metal anodes. However, the protective mechanism is not well clarified due to multiple components of the artificial layer and complicated interface in liquid electrolytes. Herein, a single-component Li22Sn5 alloy layer buffered Li anode is paired with a solid-state polymer electrolyte, where a metallic Sn film is sputtered onto the Li anode and the subsequent alloying reaction leads to the formation of a Li22Sn5 phase. During the striping/plating process, the thickness and composition of the Li-Sn alloy passivation layer remain unchanged. Meanwhile, Li+ ions are reduced on the top surface of the Li22Sn5 layer, then the reduced Li atoms immediately pass through the alloy layer, and finally dense Li deposition occurs beneath the protective layer, realizing spatial isolation of the electrochemical reduction of Li+ from Li nucleation/growth. This unique protection mechanism can principally avoid the formation of Li dendrites and efficiently mitigate irreversible reactions between the Li anode and the polymer electrolyte. The synergistic effects lead to a clean and flat surface of the protected Li electrode, enabling a prolonged cycle lifetime over 1300 h at 25 °C at 0.1 mA cm-2 and 0.1 mA h cm-2 in a configuration of symmetrical cells.
Collapse
Affiliation(s)
- Jia Xie
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China.
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Jing Xue
- School of Mathematics and Physics, Weinan Normal University, Weinan 714099, P. R. China.
| | - Hongyi Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Jingze Li
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China.
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| |
Collapse
|
47
|
Sun Z, Wang Y, Shen S, Li X, Hu X, Hu M, Su Y, Ding S, Xiao C. Directing (110) Oriented Lithium Deposition through High-flux Solid Electrolyte Interphase for Dendrite-free Lithium Metal Batteries. Angew Chem Int Ed Engl 2023; 62:e202309622. [PMID: 37606605 DOI: 10.1002/anie.202309622] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Controlling lithium (Li) electrocrystallization with preferred orientation is a promising strategy to realize highly reversible Li metal batteries (LMBs) but lack of facile regulation methods. Herein, we report a high-flux solid electrolyte interphase (SEI) strategy to direct (110) preferred Li deposition even on (200)-orientated Li substrate. Bravais rule and Curie-Wulff principle are expanded in Li electrocrystallization process to decouple the relationship between SEI engineering and preferred crystal orientation. Multi-spectroscopic techniques combined with dynamics analysis reveal that the high-flux CF3 Si(CH3 )3 (F3 ) induced SEI (F3 -SEI) with high LiF and -Si(CH3 )3 contents can ingeniously accelerate Li+ transport dynamics and ensure the sufficient Li+ concentration below SEI to direct Li (110) orientation. The induced Li (110) can in turn further promote the surface migration of Li atoms to avoid tip aggregation, resulting in a planar, dendrite-free morphology of Li. As a result, our F3 -SEI enables ultra-long stability of Li||Li symmetrical cells for more than 336 days. Furthermore, F3 -SEI modified Li can significantly enhance the cycle life of Li||LiFePO4 and Li||NCM811 coin and pouch full cells in practical conditions. Our crystallographic strategy for Li dendrite suppression paves a path to achieve reliable LMBs and may provide guidance for the preferred orientation of other metal crystals.
Collapse
Affiliation(s)
- Zehui Sun
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuankun Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shenyu Shen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyang Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofei Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mingyou Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunhui Xiao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
48
|
Bao W, Wang R, Liu H, Qian C, Liu H, Yu F, Guo C, Li J, Sun K. Photoelectrochemical Engineering for Light-Assisted Rechargeable Metal Batteries: Mechanism, Development, and Future. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303745. [PMID: 37616514 DOI: 10.1002/smll.202303745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Indexed: 08/26/2023]
Abstract
Rechargeable battery devices with high energy density are highly demanded by our modern society. The use of metal anodes is extremely attractive for future rechargeable battery devices. However, the notorious metal dendritic and instability of solid electrolyte interface issues pose a series of challenges for metal anodes. Recently, considering the indigestible dynamical behavior of metal anodes, photoelectrochemical engineering of light-assisted metal anodes have been rapidly developed since they efficiently utilize the integration and synergy of oriented crystal engineering and photocatalysis engineering, which provided a potential way to unlock the interface electrochemical mechanism and deposition reaction kinetics of metal anodes. This review starts with the fundamentals of photoelectrochemical engineering and follows with the state-of-art advance of photoelectrochemical engineering for light-assisted rechargeable metal batteries where photoelectrode materials, working principles, types, and practical applications are explained. The last section summarizes the major challenges and some invigorating perspectives for future research on light-assisted rechargeable metal batteries.
Collapse
Affiliation(s)
- Weizhai Bao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ronghao Wang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hongmin Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Chengfei Qian
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - He Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Feng Yu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Cong Guo
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jingfa Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Kaiwen Sun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
49
|
Yang Y, Wang W, Li M, Zhou S, Zhang J, Wang A. Plant Leaf-Inspired Separators with Hierarchical Structure and Exquisite Fluidic Channels for Dendrite-Free Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301237. [PMID: 37104858 DOI: 10.1002/smll.202301237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Lithium (Li) metal batteries are among the most promising devices for high energy storage applications but suffer from severe and irregular Li dendrite growth. Here, it is demonstrated that the issue can be well tackled by precisely designing the leaf-like membrane with hierarchical structure and exquisite fluidic channels. As a proof of concept, plant leaf-inspired membrane (PLIM) separators are prepared using natural attapulgite nanorods. The PLIM separators feature super-electrolyte-philicity, high thermal stability and high ion-selectivity. Thus, the separators can guide uniform and directed Li growth on the Li anode. The Li//PLIM//Li cell with limited Li anode shows high Coulombic efficiency and cycling stability over 1500 h with small overpotential and interface impedance. The Li//PLIM//S battery exhibits high initial capacity (1352 mAh g-1 ), cycling stability (0.019% capacity decay per cycle at 1 C over 500 cycles), rate performance (673 mAh g-1 at 4 C), and high operating temperature (65 °C). The separators can also effectively improve reversibility and cycling stability of the Li/Li cell and Li//LFP battery with carbonate-based electrolyte. As such, this work provides fresh insights into the design of bioinspired separators for dendrite-free metal batteries.
Collapse
Affiliation(s)
- Yanfei Yang
- Key Laboratory of Clay Mineral Applied Research of Gansu, Province, and Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Wankai Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu, Province, and Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Meisheng Li
- Jiangsu Engineering Laboratory for Environmental Functional Materials, Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, P. R. China
| | - Shouyong Zhou
- Jiangsu Engineering Laboratory for Environmental Functional Materials, Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, P. R. China
| | - Junping Zhang
- Key Laboratory of Clay Mineral Applied Research of Gansu, Province, and Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu, Province, and Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
50
|
Gao Y, Qiao F, Hou W, Ma L, Li N, Shen C, Jin T, Xie K. Radiation effects on lithium metal batteries. Innovation (N Y) 2023; 4:100468. [PMID: 37427353 PMCID: PMC10328994 DOI: 10.1016/j.xinn.2023.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
The radiation tolerance of energy storage batteries is a crucial index for universe exploration or nuclear rescue work, but there is no thorough investigation of Li metal batteries. Here, we systematically explore the energy storage behavior of Li metal batteries under gamma rays. Degradation of the performance of Li metal batteries under gamma radiation is linked to the active materials of the cathode, electrolyte, binder, and electrode interface. Specifically, gamma radiation triggers cation mixing in the cathode active material, which results in poor polarization and capacity. Ionization of solvent molecules in the electrolyte promotes decomposition of LiPF6 along with its decomposition, and molecule chain breaking and cross-linking weaken the bonding ability of the binder, causing electrode cracking and reduced active material utilization. Additionally, deterioration of the electrode interface accelerates degradation of the Li metal anode and increases cell polarization, hastening the demise of Li metal batteries even more. This work provides significant theoretical and technical evidence for development of Li batteries in radiation environments.
Collapse
Affiliation(s)
- Yuliang Gao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, China
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Fahong Qiao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, China
| | - Weiping Hou
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Li Ma
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, China
| | - Nan Li
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Chao Shen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, China
| | - Ting Jin
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, China
| | - Keyu Xie
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, China
- Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|