1
|
Wang B, Tang X, Xiao C, Yu Z, Bo H, Wang J, Wang J. Nucleus-targeted ruthenium(II) complex triggers immunogenic cell death and sensitizes melanoma to anti-PD-1 therapy by activating cGAS-STING pathway. J Inorg Biochem 2025; 267:112871. [PMID: 40022761 DOI: 10.1016/j.jinorgbio.2025.112871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
A significant challenge in the treatment of melanoma with immune checkpoint blockades (ICBs) is the limited T cells response often observed in immunologically "cold" tumors. By leveraging the immunogenicity of immunogenic cell death (ICD), which increases the susceptibility of tumor cells to ICBs, this study investigated the potential of a nucleus-targeted ruthenium(II) complex (Ru1) as an inducer of ICD. Treatment with Ru1 induced DNA damage in melanoma cells, activating the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway. This triggered endoplasmic reticulum (ER) stress, leading to ICD. Ru1-treated dying melanoma cells exhibited characteristics such as cell exposure of calreticulin (CRT) on the cell surface, release of adenosine triphosphate (ATP), and secretion of high-mobility group box 1 (HMGB1). Vaccination with Ru1-treated, dying melanoma cells elicited robust antitumor immune responses, as evidenced by CD8+ T cells activation, reduced Foxp3+ T cells count, and the development of a memory immune response that protected mice from subsequent melanoma challenges. Combining Ru1 with anti-PD-1 therapy significantly promoted T cells infiltration, enhanced dendritic cell activation, and reduced tumor-associated immunosuppressive factors, indicating a reprogramming of the tumor microenvironment. These findings suggest that Ru1 is a promising therapeutic agent for treating "cold" tumors in cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Bishu Wang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xingguo Tang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chuntao Xiao
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhijie Yu
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huaben Bo
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jinquan Wang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Song W, Rahimian N, Hasanzade Bashkandi A. GRP78: A new promising candidate in colorectal cancer pathogenesis and therapy. Eur J Pharmacol 2025; 995:177308. [PMID: 39870235 DOI: 10.1016/j.ejphar.2025.177308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis. This review discusses the expression profile of GRP78 in CRC, highlighting its potential as a prognostic biomarker and its role in modulating the cellular mechanisms of CRC, including ER response regulation, cell proliferation, migration and invasion. The complex molecular interactions of GRP78 with key signaling pathways such as protein kinase B (Akt), Wnt, protein kinase R-like ER kinase (PERK), vascular endothelial growth factor (VEGF), and Kirsten rat sarcoma virus (Kras) are explored, elucidating its contributions to tumor survival, proliferation, invasion, and chemoresistance. GRP78's involvement in autophagy, glycolysis, and immune regulation further underscores its importance in CRC progression. The review also covers the therapeutic potential of targeting GRP78 in CRC, examining various natural products like curcumin, epigallocatechin gallate (EGCG), and aloe-emodin, which modulate GRP78 expression and activity. Additionally, GRP78's role in mediating resistance to chemotherapeutic agents like 5-fluorouracil (5-FU) and oxaliplatin is discussed, emphasizing its significance in the development of resistance mechanisms in CRC. In conclusion, GRP78 emerges as a central player in CRC pathogenesis and a promising target for therapeutic interventions aimed at improving treatment outcomes and overcoming chemoresistance in colorectal cancer.
Collapse
Affiliation(s)
- Wang Song
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China.
| | - Neda Rahimian
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Lu Y, Wang FY, Levine MS, Shi HR, Wang Y, Xiong X, Yang LM, Shi YQ, Zou T, Sessler JL, Liang H, Huang KB. Oxoisoaporphine Alkaloid Iridium(III) Derivative: An Immunogenic Cell Death Inducer That Engages the Autophagy-Dependent Regulator Cathepsin D. J Am Chem Soc 2025. [PMID: 40279467 DOI: 10.1021/jacs.5c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Autophagy has been recognized as one of the pathways for eliciting immunogenic cell death (ICD). However, the specific molecular target responsible for autophagy-mediated ICD has not yet been elucidated. Here, we report that an oxoisoaporphine alkaloid-modified iridium(III) complex (2a) displays autophagy-inducing ICD activity. Through unbiased thermal proteome profiling (TPP), this new complex was found to interact with the lysosomal protease cathepsin D (Cat D). Subsequent cellular and biochemical assays─including the cellular thermal shift assay, isothermal dose-response assay, enzymatic assays, and molecular docking─confirmed that 2a binds to and inhibits Cat D. Further pathway analysis demonstrated that 2a triggers autophagy-dependent ICD via the LKB1-AMPK-ULK1 signaling pathway by inhibiting Cat D. Several other autophagy-dependent ICD inducers were tested and likewise found to inhibit Cat D. In contrast, an earlier reported analogue of 2a, complex 1a, was found to bind and destabilize binding immunoglobulin protein (BiP) and promote its ICD activity through an endoplasmic reticulum stress response. We believe that the findings reported here will enhance the understanding of the novel mechanisms of ICD agents and pave the way for the design of new ICD inducers with high specificity and efficacy.
Collapse
Affiliation(s)
- Yuan Lu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi College Key Laboratory of Innovation Research on Medical and Engineering Integration & Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources Development, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, China
| | - Feng-Yang Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541004, China
| | - Matthew S Levine
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Hai-Rong Shi
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liang-Mei Yang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ya-Qian Shi
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Hong Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ke-Bin Huang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
4
|
Zou JX, Chang MR, Kuznetsov NA, Kee JX, Babak MV, Ang WH. Metal-based immunogenic cell death inducers for cancer immunotherapy. Chem Sci 2025; 16:6160-6187. [PMID: 40160356 PMCID: PMC11949249 DOI: 10.1039/d4sc08495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Immunogenic cell death (ICD) has attracted enormous attention over the past decade due to its unique characteristics in cancer cell death and its role in activating innate and adaptive immune responses against tumours. Many efforts have been dedicated to screening, identifying and discovering ICD inducers, resulting in the validation of several based on metal complexes. In this review, we provide a comprehensive summary of current metal-based ICD inducers, their molecular mechanisms for triggering ICD initiation and subsequent protective antitumour immune responses, along with considerations for validating ICD both in vitro and in vivo. We also aim to offer insights into the future development of metal complexes with enhanced ICD-inducing properties and their applications in potentiating antitumour immunity.
Collapse
Affiliation(s)
- Jiao Xia Zou
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Meng Rui Chang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Nikita A Kuznetsov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
- NUS Graduate School - Integrative Science and Engineering Programme (ISEP), National University of Singapore 21 Lower Kent Ridge Rd Singapore 119077 Singapore
| |
Collapse
|
5
|
Walter NS, Gorki V, Bhardwaj R, Punnakkal P. Endoplasmic Reticulum Stress: Implications in Diseases. Protein J 2025; 44:147-161. [PMID: 40082380 DOI: 10.1007/s10930-025-10264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Endoplasmic reticulum (ER) is a specialized organelle that plays a significant role in cellular function. The major functions of ER include protein synthesis and transport, folding of proteins, biosynthesis of lipids, calcium (Ca2+) storage, and redox balance. The loss of ER integrity results in the induction of ER stress within the cell due to the accumulation of unfolded, improperly folded proteins or changes in Ca2+ metabolism and redox balance of organelle. This ER stress commences the Unfolded Protein Response (UPR) that serves to counteract the ER stress via three sensors inositol requiring protein-1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor-6 (ATF6) that serve to establish ER homeostasis and alleviates ER stress. Severe ER dysfunction ultimately results in the induction of apoptosis. Increasing shreds of evidence suggest the implication of ER stress in the development and progression of several diseases viz. tuberculosis, malaria, Alzheimer's disease, Parkinson's disease, diabetes, and cancer. Activation of ER stress can be beneficial for treating some diseases while inhibiting the process can be useful in others. A deeper understanding of these pathways can provide key insights in designing novel therapeutics to treat these diseases.
Collapse
Affiliation(s)
- Neha Sylvia Walter
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Varun Gorki
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Rishi Bhardwaj
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Pradeep Punnakkal
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
6
|
Liu Z, Liu Q, Zeng A, Song L. Regulatory function of endoplasmic reticulum stress in colorectal cancer: Mechanism, facts, and perspectives. Int Immunopharmacol 2025; 147:114024. [PMID: 39764998 DOI: 10.1016/j.intimp.2025.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/29/2025]
Abstract
Colorectal cancer (CRC) is an exceedingly common and profoundly impactful malignancy of the digestive system, posing a grave threat to human health. Endoplasmic reticulum stress (ERS) is an intracellular biological reaction that mobilizes the unfolded protein response (UPR) to tackling dysregulation in protein homeostasis. This process subtly modulates the cell to either restore normal cellular function or steer it towards apoptosis. The high metabolic demands of CRC cells sculpt a rigorous tumor microenvironment (TME), compelling CRC cells to experience ERS. Adaptive responses induced by mild ERS furnish the necessary conditions for the survival of CRC cells, whereas the cell death mechanisms triggered by sustained ERS could be considered a prospective strategy for cancer therapy. Considering the complex regulation of ERS in cancer development, this article offers a comprehensive review of the molecular mechanisms through which ERS influences CRC fate. It provides crucial insights for exploring the role of ERS in the occurrence and progression of CRC, laying a new theoretical foundation for devising precise therapeutic strategies targeting ERS. Furthermore, by synthesizing extensive clinical and preclinical studies, we delve into therapeutic strategies targeting ERS, including the potential of targeting ERS in immunotherapy, the utilization of native compounds, advancements in proteasome inhibitors, and the potential synergies of these strategies with traditional chemotherapy agents and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Zihan Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Liu X, Zheng H, Peng Y, Ji D, Wang C, Wang D, Jia Z, Chang Y, Cai X, Wang L, Ling Y. Novel Ru(II) Complexes as Type-I/-II Photosensitizers for Multimodal Hypoxia-Tolerant Chemo-Photodynamic/Immune Therapy. Mol Pharm 2025; 22:882-894. [PMID: 39754739 DOI: 10.1021/acs.molpharmaceut.4c01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes 8a,b were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both 8a and 8b exhibited significant phototoxicity against A549 and 4T1 tumor cells via type-I/-II PDT. Among them, 8b exhibited superior oxygen-independent antitumor effects (IC50s = 1.50-1.76 μM) upon laser irradiation, and displayed micromolar-level chemotherapeutic activities, indicating its potential for chemo/photodynamic dual effects. Furthermore, 8b also initiated an ICD cascade, enhancing recruitment and maturation of antigen-presenting cells, thus triggering a CD8+ T cell antitumor immune response. Finally, in vivo antitumor experiments demonstrated that 8b exhibited significant inhibition of lung and breast tumor growth, with inhibition rates of 94.6% and 97.3%, respectively. Therefore, the Ru(II) complexes we designed, as effective type-I/-II photosensitizers and potential immunoactivators, demonstrate multiple antitumor mechanisms, warranting further study.
Collapse
Affiliation(s)
- Xiao Liu
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
- School of Medical, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hongwei Zheng
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yiqian Peng
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Dongliang Ji
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
- School of Medical, Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Chen Wang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Dezhi Wang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Zihan Jia
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yingxue Chang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiangming Cai
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Lei Wang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yong Ling
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
- School of Medical, Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
8
|
Lv M, Zheng Y, Dai X, Zhao J, Hu G, Ren M, Shen Z, Su Z, Wu C, Liu HK, Xue X, Mao ZW. Ruthenium(ii)-Arene Complex Triggers Immunogenic Ferroptosis for Reversing Drug Resistance. J Med Chem 2024; 67:20156-20171. [PMID: 39312756 DOI: 10.1021/acs.jmedchem.4c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chemoresistance remains an arduous challenge in oncology, but ferroptosis shows potential for overcoming it by stimulating the immune system. Herein, a novel high-performance ruthenium(II)-based arene complex [Ru(η6-p-cym)(BTBpy)Cl] (RuBTB) is developed for ferroptosis-enhanced antitumor immunity and drug resistance reversal via glutathione (GSH) metabolism imbalance. RuBTB shows significantly enhanced antiproliferation activity against cisplatin (CDDP)-resistant lung cancer cells (A549R), with 26.35-fold better anticancer effects than CDDP. Immunogenic ferroptosis is induced by GSH depletion/glutathione peroxidase 4 (GPX4) inactivation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in RuBTB-treated cells. Mechanism studies indicate that RuBTB regulates ferroptosis and immune-related pathways, coordinating with GSH metabolism-mediated glutathione S-transferase (GST) inhibition to reverse drug resistance in platinum-combined therapy. Tumor vaccination experiments demonstrate the intensified antitumor effects endowed by highly immunogenic ferroptosis in vivo. This study provides the first example of a metal-arene complex for achieving satisfactory ferroptosis therapeutic effects with efficient immunogenicity to overcome drug resistance in metal-based immunochemotherapy.
Collapse
Affiliation(s)
- Mengdi Lv
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, PR China
| | - Xiangyu Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jingyue Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Guojing Hu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Meng Ren
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhengqi Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhi Su
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Chao Wu
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Hong-Ke Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xuling Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, PR China
| |
Collapse
|
9
|
Engelen Y, Krysko DV, Effimova I, Breckpot K, Versluis M, De Smedt S, Lajoinie G, Lentacker I. Optimizing high-intensity focused ultrasound-induced immunogenic cell-death using passive cavitation mapping as a monitoring tool. J Control Release 2024; 375:389-403. [PMID: 39293525 DOI: 10.1016/j.jconrel.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Over the past decade, ultrasound (US) has gathered significant attention and research focus in the realm of medical treatments, particularly within the domain of anti-cancer therapies. This growing interest can be attributed to its non-invasive nature, precision in delivery, availability, and safety. While the conventional objective of US-based treatments to treat breast, prostate, and liver cancer is the ablation of target tissues, the introduction of the concept of immunogenic cell death (ICD) has made clear that inducing cell death can take different non-binary pathways through the activation of the patient's anti-tumor immunity. Here, we investigate high-intensity focused ultrasound (HIFU) to induce ICD by unraveling the underlying physical phenomena and resulting biological effects associated with HIFU therapy using an automated and fully controlled experimental setup. Our in-vitro approach enables the treatment of adherent cancer cells (B16F10 and CT26), analysis for ICD hallmarks and allows to monitor and characterize in real time the US-induced cavitation activity through passive cavitation detection (PCD). We demonstrate HIFU-induced cell death, CRT exposure, HMGB1 secretion and antigen release. This approach holds great promise in advancing our understanding of the therapeutic potential of HIFU for anti-cancer strategies.
Collapse
Affiliation(s)
- Yanou Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dmitri V Krysko
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Iuliia Effimova
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Translational Oncology Research Center, Department of Biomedical Sciences, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Guillaume Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Sun X, Zhou X, Shi X, Abed OA, An X, Lei YL, Moon JJ. Strategies for the development of metalloimmunotherapies. Nat Biomed Eng 2024; 8:1073-1091. [PMID: 38914800 PMCID: PMC11410547 DOI: 10.1038/s41551-024-01221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/30/2024] [Indexed: 06/26/2024]
Abstract
Metal ions play crucial roles in the regulation of immune pathways. In fact, metallodrugs have a long record of accomplishment as effective treatments for a wide range of diseases. Here we argue that the modulation of interactions of metal ions with molecules and cells involved in the immune system forms the basis of a new class of immunotherapies. By examining how metal ions modulate the innate and adaptive immune systems, as well as host-microbiota interactions, we discuss strategies for the development of such metalloimmunotherapies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Editas Medicine, Cambridge, MA, USA.
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyue Shi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xinran An
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Liu Y, Xu C, Gu R, Han R, Li Z, Xu X. Endoplasmic reticulum stress in diseases. MedComm (Beijing) 2024; 5:e701. [PMID: 39188936 PMCID: PMC11345536 DOI: 10.1002/mco2.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in eukaryotic cells, responsible for a wide range of vital functions, including the modification, folding, and trafficking of proteins, as well as the biosynthesis of lipids and the maintenance of intracellular calcium homeostasis. A variety of factors can disrupt the function of the ER, leading to the aggregation of unfolded and misfolded proteins within its confines and the induction of ER stress. A conserved cascade of signaling events known as the unfolded protein response (UPR) has evolved to relieve the burden within the ER and restore ER homeostasis. However, these processes can culminate in cell death while ER stress is sustained over an extended period and at elevated levels. This review summarizes the potential role of ER stress and the UPR in determining cell fate and function in various diseases, including cardiovascular diseases, neurodegenerative diseases, metabolic diseases, autoimmune diseases, fibrotic diseases, viral infections, and cancer. It also puts forward that the manipulation of this intricate signaling pathway may represent a novel target for drug discovery and innovative therapeutic strategies in the context of human diseases.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| | - Chunling Xu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Renjun Gu
- School of Chinese MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Gastroenterology and HepatologyJinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular BiologyDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziyu Li
- School of Acupuncture and TuinaSchool of Regimen and RehabilitationNanjing University of Chinese MedicineNanjingChina
| | - Xianrong Xu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| |
Collapse
|
12
|
Wang FY, Yang LM, Xiong XL, Yang J, Yang Y, Tang JQ, Gao L, Lu Y, Wang Y, Zou T, Liang H, Huang KB. Rhodium(III) Complex Noncanonically Potentiates Antitumor Immune Responses by Inhibiting Wnt/β-Catenin Signaling. J Med Chem 2024; 67:13778-13787. [PMID: 39134504 DOI: 10.1021/acs.jmedchem.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Metal-based chemoimmunotherapy has recently garnered significant attention for its capacity to stimulate tumor-specific immunity beyond direct cytotoxic effects. Such effects are usually caused by ICD via the activation of DAMP signals. However, metal complexes that can elicit antitumor immune responses other than ICD have not yet been described. Herein, we report that a rhodium complex (Rh-1) triggers potent antitumor immune responses by downregulating Wnt/β-catenin signaling with subsequent activation of T lymphocyte infiltration to the tumor site. The results of mechanistic experiments suggest that ROS accumulation following Rh-1 treatment is a critical trigger of a decrease in β-catenin and enhanced secretion of CCL4, a key mediator of T cell infiltration. Through these properties, Rh-1 exerts a synergistic effect in combination with PD-1 inhibitors against tumor growth in vivo. Taken together, our work describes a promising metal-based antitumor agent with a noncanonical mode of action to sensitize tumor tissues to ICB therapy.
Collapse
Affiliation(s)
- Feng-Yang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liang-Mei Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiao-Lin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jing Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yan Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiu-Qin Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lei Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
13
|
Nair KA, Liu B. Navigating the landscape of the unfolded protein response in CD8 + T cells. Front Immunol 2024; 15:1427859. [PMID: 39026685 PMCID: PMC11254671 DOI: 10.3389/fimmu.2024.1427859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum stress occurs due to large amounts of misfolded proteins, hypoxia, nutrient deprivation, and more. The unfolded protein is a complex intracellular signaling network designed to operate under this stress. Composed of three individual arms, inositol-requiring enzyme 1, protein kinase RNA-like ER kinase, and activating transcription factor-6, the unfolded protein response looks to resolve stress and return to proteostasis. The CD8+ T cell is a critical cell type for the adaptive immune system. The unfolded protein response has been shown to have a wide-ranging spectrum of effects on CD8+ T cells. CD8+ T cells undergo cellular stress during activation and due to environmental insults. However, the magnitude of the effects this response has on CD8+ T cells is still understudied. Thus, studying these pathways is important to unraveling the inner machinations of these powerful cells. In this review, we will highlight the recent literature in this field, summarize the three pathways of the unfolded protein response, and discuss their roles in CD8+ T cell biology and functionality.
Collapse
Affiliation(s)
- Keith Alan Nair
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
14
|
Huang KB, Wang FY, Lu Y, Yang LM, Long N, Wang SS, Xie Z, Levine M, Zou T, Sessler JL, Liang H. Cu(II) complex that synergistically potentiates cytotoxicity and an antitumor immune response by targeting cellular redox homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2404668121. [PMID: 38833473 PMCID: PMC11181140 DOI: 10.1073/pnas.2404668121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/04/2024] [Indexed: 06/06/2024] Open
Abstract
Developing anticancer drugs with low side effects is an ongoing challenge. Immunogenic cell death (ICD) has received extensive attention as a potential synergistic modality for cancer immunotherapy. However, only a limited set of drugs or treatment modalities can trigger an ICD response and none of them have cytotoxic selectivity. This provides an incentive to explore strategies that might provide more effective ICD inducers free of adverse side effects. Here, we report a metal-based complex (Cu-1) that disrupts cellular redox homeostasis and effectively stimulates an antitumor immune response with high cytotoxic specificity. Upon entering tumor cells, this Cu(II) complex enhances the production of intracellular radical oxidative species while concurrently depleting glutathione (GSH). As the result of heightening cellular oxidative stress, Cu-1 gives rise to a relatively high cytotoxicity to cancer cells, whereas normal cells with low levels of GSH are relatively unaffected. The present Cu(II) complex initiates a potent ferroptosis-dependent ICD response and effectively inhibits in vivo tumor growth in an animal model (c57BL/6 mice challenged with colorectal cancer). This study presents a strategy to develop metal-based drugs that could synergistically potentiate cytotoxic selectivity and promote apoptosis-independent ICD responses through perturbations in redox homeostasis.
Collapse
Affiliation(s)
- Ke-Bin Huang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Feng-Yang Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Yuan Lu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Liang-Mei Yang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Nian Long
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Shan-Shan Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Zhiying Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou510006, China
| | - Matthew Levine
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou510006, China
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| | - Hong Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| |
Collapse
|
15
|
Lu Y, Zhu D, Hu B, Chen R, Wang X, Xu X, Wang W, Wu H, Wang Y. pH-Responsive, Self-Assembled Ruthenium Nanodrug: Dual Impact on Lysosomes and DNA for Synergistic Chemotherapy and Immunogenic Cell Death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310636. [PMID: 38412413 DOI: 10.1002/smll.202310636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Several DNA-damaging antitumor agents, including ruthenium complexes, induce immunogenic cell death (ICD). In this study, an arginyl-glycyl-aspartic acid (RGD) peptide-modified carboline ruthenium complex (KS-Ru) is synthesized as a chemotherapeutic nanodrug and an ICD inducer. The RGD peptide, an integrin ligand, provides tumor-specific targeting and promotes self-assembly of the KS-Ru complex. The pH-responsive self-assembly is assessed through transmission and scanning electron microscopy. Additionally, in vitro cytotoxic activity and anti-metastasis ability are evaluated using MTT and Transwell assays, respectively, along with cellular immunofluorescence staining and imaging flow cytometry. The ability of the complex to inhibit primary tumor formation and lung metastasis in vivo is evaluated using Lewis lung cancer and A549 xenograft models. Furthermore, the tumor immune microenvironment is evaluated using single-cell flow mass cytometry. KS-Ru translocates to the nucleus, causing DNA damage and inducing ICD. Within the lysosomes, KS-Ru self-assembled into nanoflowers, leading to lysosomal swelling and apoptosis. Notably, the as-synthesized pH-dependent ruthenium nanomedicine achieves dual functionality-chemotherapy and immunotherapy. Moreover, the pH-responsive self-assembly of KS-Ru enables simultaneous mechanisms in the lysosome and nucleus, thereby lowering the likelihood of drug resistance. This study provides valuable insight for the design of novel ruthenium-based nanoantitumor drugs.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Bo Hu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Rong Chen
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Xin Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Xiaoxue Xu
- Department of Core Facility Center, Capital Medical University, Beijing, 100069, P. R. China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, P. R. China
| | - Hao Wu
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, P. R. China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| |
Collapse
|
16
|
Chen M, Wang D, Fan L, Niu D, Xu J, Liu Y, Liu Y. The copper (II) complex of salicylate phenanthroline induces immunogenic cell death of colorectal cancer cells through inducing endoplasmic reticulum stress. Int Immunopharmacol 2024; 132:111980. [PMID: 38555819 DOI: 10.1016/j.intimp.2024.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND In our previous study, Cu(sal)phen was found to have anti-tumor effects, yet its precise mechanism remains unknown. Research has shown that dying tumor cells release damage-associated molecular patterns (DAMPs) to promote anti-tumor immune response. Therefore, we have further explored the effects and potential molecular mechanisms of Cu(sal)phen-induced immunogenic cell death (ICD) in colorectal cancer (CRC). METHODS ELISA and flow cytometry were used to detect the effects of Cu(sal)phen treatment on ICD markers. The molecular mechanisms of Cu(sal)phen-induced ICD were investigated through the detection of endoplasmic reticulum stress (ERS) and reactive oxygen species (ROS) in vitro using Western blot and flow cytometry. Additionally, a mouse model was constructed to study the effects of Cu(sal)phen on immune cells and anti-tumor-related cytokines in vivo. RESULTS Cu(sal)phen induced the release of calreticulin (CRT), adenosine triphosphate (ATP) and high mobility group box 1 (HMGB1), the main molecular markers of ICD, by promoting the accumulation of ROS and inducing ERS. Furthermore, Cu(sal)phen promoted the maturation of dendritic cells (DCs) and activation of CD8+T cells, as well as the secretion of interleukin-12 (IL-12) and interferon-γ (IFN-γ), while downregulating transforming growth factor-β (TGF-β) levels, thereby activating the anti-tumor immune response. CONCLUSION Cu(sal)phen has the potential to induce ICD in tumors and activate the adaptive immune response to achieve anti-tumor effects. This makes Cu(sal)phen a promising candidate for the treatment of CRC.
Collapse
Affiliation(s)
- Ming Chen
- School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Dong Wang
- School of Medicine, Jianghan University, Wuhan, Hubei 430056, China; Cancer Institute of Jianghan University, Wuhan, Hubei 430056, China
| | - Limei Fan
- School of Medicine, Jianghan University, Wuhan, Hubei 430056, China; Cancer Institute of Jianghan University, Wuhan, Hubei 430056, China
| | - Dongqin Niu
- School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Jinhua Xu
- School of Medicine, Jianghan University, Wuhan, Hubei 430056, China; School of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, Hubei 430415, China
| | - Yuchen Liu
- School of Medicine, Jianghan University, Wuhan, Hubei 430056, China; Cancer Institute of Jianghan University, Wuhan, Hubei 430056, China.
| | - Yunyi Liu
- School of Medicine, Jianghan University, Wuhan, Hubei 430056, China; Cancer Institute of Jianghan University, Wuhan, Hubei 430056, China.
| |
Collapse
|
17
|
Tu L, Li C, Ding Q, Sharma A, Li M, Li J, Kim JS, Sun Y. Augmenting Cancer Therapy with a Supramolecular Immunogenic Cell Death Inducer: A Lysosome-Targeted NIR-Light-Activated Ruthenium(II) Metallacycle. J Am Chem Soc 2024; 146:8991-9003. [PMID: 38513217 DOI: 10.1021/jacs.3c13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with minimal side effects in deep-seated tumors remains challenging. Herein, we introduce a novel self-assembled near-infrared-light-activated ruthenium(II) metallacycle, Ru1105 (λem = 1105 nm), as a first example of a Ru(II) supramolecular ICD inducer. Ru1105 synergistically potentiates immunomodulatory responses and reduces adverse effects in deep-seated tumors through multiple regulated approaches, including NIR-light excitation, increased reactive oxygen species (ROS) generation, selective targeting of tumor cells, precision organelle localization, and improved tumor penetration/retention capabilities. Specifically, Ru1105 demonstrates excellent depth-activated ROS production (∼1 cm), strong resistance to diffusion, and anti-ROS quenching. Moreover, Ru1105 exhibits promising results in cellular uptake and ROS generation in cancer cells and multicellular tumor spheroids. Importantly, Ru1105 induces more efficient ICD in an ultralow dose (10 μM) compared to the conventional anticancer agent, oxaliplatin (300 μM). In vivo experiments further confirm Ru1105's potency as an ICD inducer, eliciting CD8+ T cell responses and depleting Foxp3+ T cells with minimal adverse effects. Our research lays the foundation for the design of secure and exceptionally potent metal-based ICD agents in immunotherapy.
Collapse
Affiliation(s)
- Le Tu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chonglu Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82A, Mohali, Punjab 140306, India
| | - Meiqin Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Junrong Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
18
|
Happl B, Balber T, Heffeter P, Denk C, Welch JM, Köster U, Alliot C, Bonraisin AC, Brandt M, Haddad F, Sterba JH, Kandioller W, Mitterhauser M, Hacker M, Keppler BK, Mindt TL. Synthesis and preclinical evaluation of BOLD-100 radiolabeled with ruthenium-97 and ruthenium-103. Dalton Trans 2024; 53:6031-6040. [PMID: 38470348 DOI: 10.1039/d4dt00118d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BOLD-100 (formerly IT-139, KP1339), a well-established chemotherapeutic agent, is currently being investigated in clinical trials for the treatment of gastric, pancreatic, colorectal, and bile duct cancer. Despite numerous studies, the exact mode of action is still the subject of discussions. Radiolabeled BOLD-100 could be a powerful tool to clarify pharmacokinetic pathways of the compound and to predict therapy responses in patients using nuclear molecular imaging prior to the therapy. In this study, the radiosyntheses of carrier-added (c.a.) [97/103Ru]BOLD-100 were performed with the two ruthenium isotopes ruthenium-103 (103Ru; β-, γ) and ruthenium-97 (97Ru; EC, γ), of which in particular the latter isotope is suitable for imaging by single-photon emission computed tomography (SPECT). To identify the best tumor-to-background ratio for diagnostic imaging, biodistribution studies were performed with two different injected doses of c.a. [103Ru]BOLD-100 (3 and 30 mg kg-1) in Balb/c mice bearing CT26 allografts over a time period of 72 h. Additionally, ex vivo autoradiography of the tumors (24 h p.i.) was conducted. Our results indicate that the higher injected dose (30 mg kg-1) leads to more unspecific accumulation of the compound in non-targeted tissue, which is likely due to an overload of the albumin transport system. It was also shown that lower amounts of injected c.a. [103Ru]BOLD-100 resulted in a relatively higher tumor uptake and, therefore, a better tumor-to-background ratio, which are encouraging results for future imaging studies using c.a. [97Ru]BOLD-100.
Collapse
Affiliation(s)
- B Happl
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
| | - T Balber
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - P Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Research cluster "Translational Cancer Therapy Research", Währinger Straße 42, 1090 Vienna, Austria
| | - C Denk
- Institute of Applied Synthetic Chemistry, Technische Universität (TU) Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Vienna, Austria
| | - J M Welch
- Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Vienna, Austria
| | - U Köster
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - C Alliot
- GIP ARRONAX, 1 rue Aronnax, CS10112, 44817, Saint-Herblain Cedex, France
- CRCI2NA, Inserm/CNRS/Nantes Université, 8 quai Moncousu, 44007, Nantes Cedex 1, France
| | - A-C Bonraisin
- GIP ARRONAX, 1 rue Aronnax, CS10112, 44817, Saint-Herblain Cedex, France
| | - M Brandt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - F Haddad
- GIP ARRONAX, 1 rue Aronnax, CS10112, 44817, Saint-Herblain Cedex, France
- Laboratoire Subatech, UMR 6457, IMT Nantes Atlantique/CNRS-IN2P3/Nantes Université, 4 Rue A. Kastler, BP 20722, 44307, Nantes Cedex 3, France
| | - J H Sterba
- Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Vienna, Austria
| | - W Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Research cluster "Translational Cancer Therapy Research", Währinger Straße 42, 1090 Vienna, Austria
| | - M Mitterhauser
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - M Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - B K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Research cluster "Translational Cancer Therapy Research", Währinger Straße 42, 1090 Vienna, Austria
| | - T L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Yuan S, She D, Jiang S, Deng N, Peng J, Ma L. Endoplasmic reticulum stress and therapeutic strategies in metabolic, neurodegenerative diseases and cancer. Mol Med 2024; 30:40. [PMID: 38509524 PMCID: PMC10956371 DOI: 10.1186/s10020-024-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
The accumulation of unfolded or misfolded proteins within the endoplasmic reticulum (ER), due to genetic determinants and extrinsic environmental factors, leads to endoplasmic reticulum stress (ER stress). As ER stress ensues, the unfolded protein response (UPR), comprising three signaling pathways-inositol-requiring enzyme 1, protein kinase R-like endoplasmic reticulum kinase, and activating transcription factor 6 promptly activates to enhance the ER's protein-folding capacity and restore ER homeostasis. However, prolonged ER stress levels propels the UPR towards cellular demise and the subsequent inflammatory cascade, contributing to the development of human diseases, including cancer, neurodegenerative disorders, and diabetes. Notably, increased expression of all three UPR signaling pathways has been observed in these pathologies, and reduction in signaling molecule expression correlates with decreased proliferation of disease-associated target cells. Consequently, therapeutic strategies targeting ER stress-related interventions have attracted significant research interest. In this review, we elucidate the critical role of ER stress in cancer, metabolic, and neurodegenerative diseases, offering novel therapeutic approaches for these conditions.
Collapse
Affiliation(s)
- Siqi Yuan
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Dan She
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shangming Jiang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Nan Deng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiayi Peng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
20
|
Xu W, Liu W, Yang J, Lu J, Zhang H, Ye D. Stimuli-responsive nanodelivery systems for amplifying immunogenic cell death in cancer immunotherapy. Immunol Rev 2024; 321:181-198. [PMID: 37403660 DOI: 10.1111/imr.13237] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Immunogenic cell death (ICD) is a special pattern of tumor cell death, enabling to elicit tumor-specific immune response via the release of damage-associated molecular patterns and tumor-associated antigens in the tumor microenvironment. ICD-induced immunotherapy holds the promise for completely eliminating tumors and long-term protective antitumor immune response. Increasing ICD inducers have been discovered for boosting antitumor immunity via evoking ICD. Nonetheless, the utilization of ICD inducers remains insufficient owing to serious toxic reactions, low localization efficiency within the tumor microenvironmental niche, etc. For overcoming such limitations, stimuli-responsive multifunctional nanoparticles or nanocomposites with ICD inducers have been developed for improving immunotherapeutic efficiency via lowering toxicity, which represent a prospective scheme for fostering the utilization of ICD inducers in immunotherapy. This review outlines the advances in near-infrared (NIR)-, pH-, redox-, pH- and redox-, or NIR- and tumor microenvironment-responsive nanodelivery systems for ICD induction. Furthermore, we discuss their clinical translational potential. The progress of stimuli-responsive nanoparticles in clinical settings depends upon the development of biologically safer drugs tailored to patient needs. Moreover, an in-depth comprehending of ICD biomarkers, immunosuppressive microenvironment, and ICD inducers may accelerate the advance in smarter multifunctional nanodelivery systems to further amplify ICD.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Wangrui Liu
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Yang
- Department of Surgery, ShangNan Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahe Lu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| |
Collapse
|
21
|
D’Amato A, Mariconda A, Iacopetta D, Ceramella J, Catalano A, Sinicropi MS, Longo P. Complexes of Ruthenium(II) as Promising Dual-Active Agents against Cancer and Viral Infections. Pharmaceuticals (Basel) 2023; 16:1729. [PMID: 38139855 PMCID: PMC10747139 DOI: 10.3390/ph16121729] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Poor responses to medical care and the failure of pharmacological treatment for many high-frequency diseases, such as cancer and viral infections, have been widely documented. In this context, numerous metal-based substances, including cisplatin, auranofin, various gold metallodrugs, and ruthenium complexes, are under study as possible anticancer and antiviral agents. The two Ru(III) and Ru(II) complexes, namely, BOLD-100 and RAPTA-C, are presently being studied in a clinical trial and preclinical studies evaluation, respectively, as anticancer agents. Interestingly, BOLD-100 has also recently demonstrated antiviral activity against SARS-CoV-2, which is the virus responsible for the COVID-19 pandemic. Over the last years, much effort has been dedicated to discovering new dual anticancer-antiviral agents. Ru-based complexes could be very suitable in this respect. Thus, this review focuses on the most recent studies regarding newly synthesized Ru(II) complexes for use as anticancer and/or antiviral agents.
Collapse
Affiliation(s)
- Assunta D’Amato
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| |
Collapse
|
22
|
Baier D, Mendrina T, Schoenhacker‐Alte B, Pirker C, Mohr T, Rusz M, Regner B, Schaier M, Sgarioto N, Raynal NJ, Nowikovsky K, Schmidt WM, Heffeter P, Meier‐Menches SM, Koellensperger G, Keppler BK, Berger W. The Lipid Metabolism as Target and Modulator of BOLD-100 Anticancer Activity: Crosstalk with Histone Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301939. [PMID: 37752764 PMCID: PMC10646284 DOI: 10.1002/advs.202301939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/18/2023] [Indexed: 09/28/2023]
Abstract
The leading first-in-class ruthenium-complex BOLD-100 currently undergoes clinical phase-II anticancer evaluation. Recently, BOLD-100 is identified as anti-Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD-100-resistant colon and pancreatic carcinoma cells. Acute BOLD-100 treatment reduces lipid droplet contents of BOLD-100-sensitive but not -resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD-100-resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame-shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl-coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell-free BOLD-100-CoA adduct formation suggesting acetyl-CoA depletion as mechanism bridging BOLD-100-induced lipid metabolism alterations and histone acetylation-mediated gene expression deregulation. Indeed, BOLD-100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de-acetylation as central mode-of-action of BOLD-100 and metabolic programs stabilizing histone acetylation as relevant Achilles' heel of acquired BOLD-100-resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD-100 responsiveness. Summarizing, BOLD-100 is identified as epigenetically active substance acting via targeting several onco-metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD-100 resistance opens novel strategies to tackle therapy failure.
Collapse
Affiliation(s)
- Dina Baier
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Theresa Mendrina
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Beatrix Schoenhacker‐Alte
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Thomas Mohr
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWaehringer Str. 38Vienna1090Austria
- ScienceConsultGuntramsdorf2351Austria
| | - Mate Rusz
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Benedict Regner
- Anna Spiegel Center of Translational ResearchDepartment of Medicine IMedical University ViennaLazarettgasse 14Vienna1090Austria
| | - Martin Schaier
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Nicolas Sgarioto
- Départment de pharmacologie et physiologieFaculté de médecineCentre de recherché de l hôpitalUniversité de MontréalSaint‐Justine (7.17.020), 3175 Chemin de la Côte Ste‐CatherineQuebecH3T1C5Canada
| | - Noël J.‐M. Raynal
- Départment de pharmacologie et physiologieFaculté de médecineCentre de recherché de l hôpitalUniversité de MontréalSaint‐Justine (7.17.020), 3175 Chemin de la Côte Ste‐CatherineQuebecH3T1C5Canada
| | - Karin Nowikovsky
- Unit of Physiology and BiophysicsDepartment of Biomedical SciencesUniversity of Veterinary Medicine ViennaVeterinaerplatz 1Vienna1210Austria
| | - Wolfgang M. Schmidt
- Neuromuscular Research DepartmentCenter for Anatomy and Cell BiologyMedical University of ViennaWähringer Str. 13Vienna1090Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Samuel M. Meier‐Menches
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWaehringer Str. 38Vienna1090Austria
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Gunda Koellensperger
- Institute of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 38Vienna1090Austria
| | - Bernhard K. Keppler
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 42Vienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8aVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”Vienna1090Austria
| |
Collapse
|
23
|
Bresciani G, Vančo J, Funaioli T, Zacchini S, Malina T, Pampaloni G, Dvořák Z, Trávníček Z, Marchetti F. Anticancer Potential of Diruthenium Complexes with Bridging Hydrocarbyl Ligands from Bioactive Alkynols. Inorg Chem 2023; 62:15875-15890. [PMID: 37713240 PMCID: PMC10548421 DOI: 10.1021/acs.inorgchem.3c01731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Indexed: 09/16/2023]
Abstract
Diruthenacyclopentenone complexes of the general composition [Ru2Cp2(CO)2{μ-η1:η3-CH═C(C(OH)(R))C(═O)}] (2a-c; Cp = η5-C5H5) were synthesized in 94-96% yields from the reactions of [Ru2Cp2(CO)2{μ-η1:η3-C(Ph)═C(Ph)C(═O)}] (1) with 1-ethynylcyclopentanol, 17α-ethynylestradiol, and 17-ethynyltestosterone, respectively, in toluene at reflux. Protonation of 2a-c by HBF4 afforded the corresponding allenyl derivatives [Ru2Cp2(CO)3{μ-η1:η2-CH═C═R}]BF4 (3a-c) in 85-93% yields. All products were thoroughly characterized by elemental analysis, mass spectrometry, and IR, UV-vis, and nuclear magnetic resonance spectroscopy. Additionally, 2a and 3a were investigated by cyclic voltammetry, and the single-crystal diffraction method was employed to establish the X-ray structures of 2b and 3a. The cytotoxicity in vitro of 2b and 3a-c was evaluated against nine human cancer cell lines (A2780, A2780R, MCF-7, HOS, A549, PANC-1, Caco-2, PC-3, and HeLa), while the selectivity was assessed on normal human lung fibroblast (MRC-5). Overall, complexes exert stronger cytotoxicity than cisplatin, and 3b (comprising 17α-estradiol derived ligand) emerged as the best-performing complex. Inductively coupled plasma mass spectrometry cellular uptake studies in A2780 cells revealed a higher level of internalization for 3b and 3c compared to 2b, 3a, and the reference compound RAPTA-C. Experiments conducted on A2780 cells demonstrated a noteworthy impact of 3a and 3b on the cell cycle, leading to the majority of the cells being arrested in the G0/G1 phase. Moreover, 3a moderately induced apoptosis and oxidative stress, while 3b triggered autophagy and mitochondrial membrane potential depletion.
Collapse
Affiliation(s)
- Giulio Bresciani
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Ján Vančo
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Tiziana Funaioli
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University
of Bologna, Dipartimento di Chimica Industriale
“Toso Montanari”, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Tomáš Malina
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Guido Pampaloni
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Zdeněk Dvořák
- Department
of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779
00 Olomouc, Czech
Republic
| | - Zdeněk Trávníček
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Fabio Marchetti
- University
of Pisa, Dipartimento di Chimica e Chimica
Industriale, Via G. Moruzzi
13, I-56124 Pisa, Italy
| |
Collapse
|
24
|
Zhao Z, Wang X, Wang J, Li Y, Lin W, Lu K, Chen J, Xia W, Mao ZW. A Nanobody-Bioorthogonal Catalyst Conjugate Triggers Spatially Confined Prodrug Activation for Combinational Chemo-immunotherapy. J Med Chem 2023; 66:11951-11964. [PMID: 37590921 DOI: 10.1021/acs.jmedchem.3c00557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Checkpoint inhibitors have been used with chemotherapy to improve antitumor efficacy. However, overcoming the immunosuppressive effect of chemotherapeutics remains a challenge. We report a nanobody-catalyst conjugate Ru-PD-L1 by fusing a ruthenium catalyst to an anti-PD-L1 nanobody. After administration of Ru-PD-L1 and a doxorubicin (DOX) prodrug, Ru-PD-L1 disrupts the PD-L1/PD-1 interaction and catalyzes the uncaging of the DOX prodrug. The spatially confined release of DOX reduces its systemic toxicity and leads to immunogenic cell death (ICD). The induced ICD triggers antitumor immune responses, which are further amplified by PD-L1 blockade to elicit synergistic chemo-immunotherapy, substantially increasing the number of tumor-infiltrating T-cells by 49.7% compared with the controls, thereby exhibiting high antitumor activity and low cytotoxicity in murine models. The combinational treatment could inhibit the growth of mice tumors by 67.7% compared to the control group. This combinational approach circumvents the negative immunogenic effects of chemotherapeutics and provides a potential chemo-immunotherapy strategy for human cancer treatment.
Collapse
Affiliation(s)
- Zhennan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinyu Wang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinhui Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiyi Li
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenkai Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Chen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
25
|
Amiri M, Molavi O, Sabetkam S, Jafari S, Montazersaheb S. Stimulators of immunogenic cell death for cancer therapy: focusing on natural compounds. Cancer Cell Int 2023; 23:200. [PMID: 37705051 PMCID: PMC10500939 DOI: 10.1186/s12935-023-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
A growing body of evidence indicates that the anticancer effect of the immune system can be activated by the immunogenic modulation of dying cancer cells. Cancer cell death, as a result of the activation of an immunomodulatory response, is called immunogenic cell death (ICD). This regulated cell death occurs because of increased immunogenicity of cancer cells undergoing ICD. ICD plays a crucial role in stimulating immune system activity in cancer therapy. ICD can therefore be an innovative route to improve anticancer immune responses associated with releasing damage-associated molecular patterns (DAMPs). Several conventional and chemotherapeutics, as well as preclinically investigated compounds from natural sources, possess immunostimulatory properties by ICD induction. Natural compounds have gained much interest in cancer therapy owing to their low toxicity, low cost, and inhibiting cancer cells by interfering with different mechanisms, which are critical in cancer progression. Therefore, identifying natural compounds with ICD-inducing potency presents agents with promising potential in cancer immunotherapy. Naturally derived compounds are believed to act as immunoadjuvants because they elicit cancer stress responses and DAMPs. Acute exposure to DAMP molecules can activate antigen-presenting cells (APCs), such as dendritic cells (DCs), which leads to downstream events by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs). Natural compounds as inducers of ICD may be an interesting approach to ICD induction; however, parameters that determine whether a compound can be used as an ICD inducer should be elucidated. Here, we aimed to discuss the impact of multiple ICD inducers, mainly focusing on natural agents, including plant-derived, marine molecules, and bacterial-based compounds, on the release of DAMP molecules and the activation of the corresponding signaling cascades triggering immune responses. In addition, the potential of synthetic agents for triggering ICD is also discussed.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, university of Kyrenia, Kyrenia, Northern Cyprus
- Department of Anatomy and histopathology, Faculty of medicine, Tabriz medical sciences, Islamic Azad University, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Yu S, Xiao H, Ma L, Zhang J, Zhang J. Reinforcing the immunogenic cell death to enhance cancer immunotherapy efficacy. Biochim Biophys Acta Rev Cancer 2023; 1878:188946. [PMID: 37385565 DOI: 10.1016/j.bbcan.2023.188946] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Immunogenic cell death (ICD) has been a revolutionary modality in cancer treatment since it kills primary tumors and prevents recurrent malignancy simultaneously. ICD represents a particular form of cancer cell death accompanied by production of damage-associated molecular patterns (DAMPs) that can be recognized by pattern recognition receptors (PRRs), which enhances infiltration of effector T cells and potentiates antitumor immune responses. Various treatment methods can elicit ICD involving chemo- and radio-therapy, phototherapy and nanotechnology to efficiently convert dead cancer cells into vaccines and trigger the antigen-specific immune responses. Nevertheless, the efficacy of ICD-induced therapies is restrained due to low accumulation in the tumor sites and damage of normal tissues. Thus, researchers have been devoted to overcoming these problems with novel materials and strategies. In this review, current knowledge on different ICD modalities, various ICD inducers, development and application of novel ICD-inducing strategies are summarized. Moreover, the prospects and challenges are briefly outlined to provide reference for future design of novel immunotherapy based on ICD effect.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyang Xiao
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li Ma
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiarong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
27
|
Zhang Y, Doan BT, Gasser G. Metal-Based Photosensitizers as Inducers of Regulated Cell Death Mechanisms. Chem Rev 2023; 123:10135-10155. [PMID: 37534710 DOI: 10.1021/acs.chemrev.3c00161] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Over the last few decades, various forms of regulated cell death (RCD) have been discovered and were found to improve cancer treatment. Although there are several reviews on RCD induced by photodynamic therapy (PDT), a comprehensive summary covering metal-based photosensitizers (PSs) as RCD inducers has not yet been presented. In this review, we systematically summarize the works on metal-based PSs that induce different types of RCD, including ferroptosis, immunogenic cell death (ICD), and pyroptosis. The characteristics and mechanisms of each RCD are explained. At the end of each section, a summary of the reported commonalities between different metal-based PSs inducing the same RCD is emphasized, and future perspectives on metal-based PSs inducing novel forms of RCD are discussed at the end of the review. Considering the essential roles of metal-based PSs and RCD in cancer therapy, we hope that this review will provide the stage for future advances in metal-based PSs as RCD inducers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 75005 Paris, France
| | - Bich-Thuy Doan
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory of Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis, 75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 75005 Paris, France
| |
Collapse
|
28
|
Pereira SAP, Romano-deGea J, Barbosa AI, Costa Lima SA, Dyson PJ, Saraiva MLMFS. Fine-tuning the cytotoxicity of ruthenium(II) arene compounds to enhance selectivity against breast cancers. Dalton Trans 2023; 52:11679-11690. [PMID: 37552495 PMCID: PMC10442743 DOI: 10.1039/d3dt02037a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Ruthenium-based complexes have been suggested as promising anticancer drugs exhibiting reduced general toxicity compared to platinum-based drugs. In particular, Ru(η6-arene)(PTA)Cl2 (PTA = 1,3,5-triaza-7-phosphaadamantane), or RAPTA, complexes have demonstrated efficacy against breast cancer by suppressing metastasis, tumorigenicity, and inhibiting the replication of the human tumor suppressor gene BRCA1. However, RAPTA compounds have limited cytotoxicity, and therefore comparatively high doses are required. This study explores the activity of a series of RAPTA-like ruthenium(II) arene compounds against MCF-7 and MDA-MB-231 breast cancer cell lines and [Ru(η6-toluene)(PPh3)2Cl]+ was identified as a promising candidate. Notably, [Ru(η6-toluene)(PPh3)2Cl]Cl was found to be remarkably stable and highly cytotoxic, and selective to breast cancer cells. The minor groove of DNA was identified as a relevant target.
Collapse
Affiliation(s)
- Sarah A P Pereira
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jan Romano-deGea
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Ana Isabel Barbosa
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| |
Collapse
|
29
|
Xu Z, Xu M, Wu X, Guo S, Tian Z, Zhu D, Yang J, Fu J, Li X, Song G, Liu Z, Song X. A Half-Sandwich Ruthenium(II) (N^N) Complex: Inducing Immunogenic Melanoma Cell Death in Vitro and in Vivo. ChemMedChem 2023; 18:e202300131. [PMID: 37226330 DOI: 10.1002/cmdc.202300131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Efficacy of clinical chemotherapeutic agents depends not only on direct cytostatic and cytotoxic effects but also involves in eliciting (re)activation of tumour immune effects. One way to provoke long-lasting antitumour immunity is coined as immunogenic cell death (ICD), exploiting the host immune system against tumour cells as a "second hit". Although metal-based antitumour complexes hold promise as potential chemotherapeutic agents, ruthenium (Ru)-based ICD inducers remain sparse. Herein, we report a half-sandwich complex Ru(II) bearing aryl-bis(imino) acenaphthene chelating ligand with ICD inducing properties for melanoma in vitro and in vivo. Complex Ru(II) displays strong anti-proliferative potency and potential cell migration inhibition against melanoma cell lines. Importantly, complex Ru(II) drives the multiple biochemical hallmarks of ICD in melanoma cells, i. e., the elevated expression of calreticulin (CRT), high mobility group box 1 (HMGB1), Hsp70 and secretion of ATP, followed by the decreased expression of phosphorylation of Stat3. In vivo the inhibition of tumour growth in prophylactic tumour vaccination model further confirms that mice with complex Ru(II)-treated dying cells lead to activate adaptive immune responses and anti-tumour immunity by the activation of ICD in melanoma cells. Mechanisms of action studies show that complex Ru(II)-induced ICD could be associated with mitochondrial damage, ER stress and impairment of metabolic status in melanoma cells. We believe that the half-sandwich complex Ru(II) as an ICD inducer in this work will help to design new half-sandwich Ru-based organometallic complexes with immunomodulatory response in melanoma treatments.
Collapse
Affiliation(s)
- Zhishan Xu
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
| | - Mengke Xu
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
| | - Xueya Wu
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
| | - Sheng Guo
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
| | - Zhongwei Tian
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
| | - Di Zhu
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
| | - Jixuan Yang
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
| | - Jiyun Fu
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
| | - Xi Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
| | - Guozhen Song
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Xiangfeng Song
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 453000, Henan, P. R. China
| |
Collapse
|
30
|
Liao LS, Chen Y, Hou C, Liu YH, Su GF, Liang H, Chen ZF. Potent Zinc(II)-Based Immunogenic Cell Death Inducer Triggered by ROS-Mediated ERS and Mitochondrial Ca 2+ Overload. J Med Chem 2023; 66:10497-10509. [PMID: 37498080 DOI: 10.1021/acs.jmedchem.3c00603] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Zn1 and Zn2 are Zn-based complexes that activate the immunogenic cell death (ICD) effect by Ca2+-mediated endoplasmic reticulum stress (ERS) and mitochondrial dysfunction. Compared with Zn1, Zn2 effectively caused reactive oxidative species (ROS) overproduction in the early phase, leading to ERS response. Severe ERS caused the release of Ca2+ from ER to cytoplasm and further to mitochondria. Excessive Ca2+ in mitochondria triggered mitochondrial dysfunction. The damage-associated molecular patterns (DAMPs) of CRT, HMGB1, and ATP occurred in T-24 cells exposed to Zn1 and Zn2. The vaccination assay demonstrated that Zn1 and Zn2 efficiently suppressed the growth of distant tumors. The elevated CD8+ cytotoxic T cells and decreased Foxp3+ cells in vaccinated mice supported our conclusion. Moreover, Zn1 and Zn2 improved the survival rate of mice compared with oxaliplatin. Collectively, our findings provided a new design strategy for a zinc-based ICD inducer via ROS-induced ERS and mitochondrial Ca2+ overload.
Collapse
Affiliation(s)
- Lan-Shan Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, China
| | - Yin Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Cheng Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yang-Han Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
31
|
Schoeller M, Piroš M, Litecká M, Koňariková K, Jozefíková F, Šagátová A, Zahradníková E, Valentová J, Moncol J. Bipyridine Ruthenium(II) Complexes with Halogen-Substituted Salicylates: Synthesis, Crystal Structure, and Biological Activity. Molecules 2023; 28:4609. [PMID: 37375164 DOI: 10.3390/molecules28124609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Ruthenium complexes currently represent a perspective subject of investigation in terms of potential anticancer therapeutics. Eight novel octahedral ruthenium(II) complexes are the subject of this article. Complexes contain 2,2'-bipyridine molecules and salicylates as ligands, differing in position and type of halogen substituent. The structure of the complexes was determined via X-ray structural analysis and NMR spectroscopy. All complexes were characterized by spectral methods-FTIR, UV-Vis, ESI-MS. Complexes show sufficient stability in solutions. Therefore, their biological properties were studied. Binding ability to BSA, interaction with DNA, as well as in vitro antiproliferative effects against MCF-7 and U-118MG cell lines were investigated. Several complexes showed anticancer effects against these cell lines.
Collapse
Affiliation(s)
- Martin Schoeller
- Department of Inorganic Chemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Milan Piroš
- Department of Inorganic Chemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Miroslava Litecká
- Department of Materials Chemistry, Institute of Inorganic Chemistry of the CAS, Husinec-Řež č.p. 1001, 250 68 Řež, Czech Republic
| | - Katarína Koňariková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Flóra Jozefíková
- Department of Inorganic Chemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, 832 32 Bratislava, Slovakia
| | - Alexandra Šagátová
- Department of Inorganic Chemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Eva Zahradníková
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jindra Valentová
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, 832 32 Bratislava, Slovakia
| | - Ján Moncol
- Department of Inorganic Chemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
32
|
Xiong X, Wang Y, Zou T. Towards Understanding the Molecular Mechanisms of Immunogenic Cell Death. Chembiochem 2023; 24:e202200621. [PMID: 36445798 DOI: 10.1002/cbic.202200621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
The discovery of immunogenic cell death (ICD) by small molecules (e. g., chemotherapeutic drugs) intrigued medicinal chemists and led them to exploit anticancer agents with such a trait because ICD agents provoke anticancer immune responses in addition to their cytotoxicity. However, the unclear molecular mechanism of ICD hampers further achievements in drug development. Fortunately, increasing efforts have been made in this area in recent years by using either chemical or biological approaches. Here, we review the current achievements towards understanding the mechanisms of small molecule-induced ICD effects. Based on the established role of the unfolded protein response (UPR) in ICD, we classify the mechanisms of different inducers by their dependency on UPR. Key proteins and pathways with important implications are discussed in depth. We also give our perspectives on the research strategies for future investigation in this field.
Collapse
Affiliation(s)
- Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
33
|
Juszczak M, Das S, Kosińska A, Rybarczyk-Pirek AJ, Wzgarda-Raj K, Tokarz P, Vasudevan S, Chworos A, Woźniak K, Rudolf B. Piano-stool ruthenium(II) complexes with maleimide and phosphine or phosphite ligands: synthesis and activity against normal and cancer cells. Dalton Trans 2023; 52:4237-4250. [PMID: 36897334 DOI: 10.1039/d2dt04083b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In these studies, we designed and investigated cyto- and genotoxic potential of five ruthenium cyclopentadienyl complexes bearing different phosphine and phosphite ligands. All of the complexes were characterized with spectroscopic analysis (NMR, FT-IR, ESI-MS, UV-vis, fluorescence and XRD (for two compounds)). For biological studies, we used three types of cells - normal peripheral blood mononuclear (PBM) cells, leukemic HL-60 cells and doxorubicin-resistance HL-60 cells (HL-60/DR). We compared the results obtained with those obtained for the complex with maleimide ligand CpRu(CO)2(η1-N-maleimidato) 1, which we had previously reported. We observed that the complexes CpRu(CO)(PPh3)(η1-N-maleimidato) 2a and CpRu(CO)(P(OEt)3)(η1-N-maleimidato) 3a were the most cytotoxic for HL-60 cells and non-cytotoxic for normal PBM cells. However, complex 1 was more cytotoxic for HL-60 cells than complexes 2a and 3a (IC50 = 6.39 μM vs. IC50 = 21.48 μM and IC50 = 12.25 μM, respectively). The complex CpRu(CO)(P(OPh)3)(η1-N-maleimidato) 3b is the most cytotoxic for HL-60/DR cells (IC50 = 104.35 μM). We found the genotoxic potential of complexes 2a and 3a only in HL-60 cells. These complexes also induced apoptosis in HL-60 cells. Docking studies showed that complexes 2a and CpRu(CO)(P(Fu)3)(η1-N-maleimidato) 2b have a small ability to degrade DNA, but they may cause a defect in DNA damage repair mechanisms leading to cell death. This hypothesis is corroborated with the results obtained in the plasmid relaxation assay in which ruthenium complexes bearing phosphine and phosphite ligands induce DNA breaks.
Collapse
Affiliation(s)
- Michał Juszczak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Genetics, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Sujoy Das
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403 Lodz, Poland.
| | - Aneta Kosińska
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403 Lodz, Poland.
| | - Agnieszka J Rybarczyk-Pirek
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Pomorska 163/165, 90-236 Lodz, Poland
| | - Kinga Wzgarda-Raj
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Pomorska 163/165, 90-236 Lodz, Poland
| | - Paulina Tokarz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Genetics, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Saranya Vasudevan
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Katarzyna Woźniak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Genetics, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Bogna Rudolf
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403 Lodz, Poland.
| |
Collapse
|
34
|
Zhang L, Montesdeoca N, Karges J, Xiao H. Immunogenic Cell Death Inducing Metal Complexes for Cancer Therapy. Angew Chem Int Ed Engl 2023; 62:e202300662. [PMID: 36807420 DOI: 10.1002/anie.202300662] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/23/2023]
Abstract
Cancer is one of the deadliest diseases worldwide. Recent statistics have shown that metastases and tumor relapse are the leading causes of cancer-associated deaths. While traditional treatments are able to efficiently remove the primary tumor, secondary tumors remain poorly accessible. Capitalizing on this there is an urgent need for novel treatment modalities. Among the most promising approaches, increasing research interest has been devoted to immunogenic cell death inducing agents that are able to trigger localized cell death of the cancer cells as well as induce an immune response inside the whole organism. Preliminary studies have shown that immunogenic cell death inducing compounds could be able to overcome metastatic and relapsing tumors. Herein, the application of metal complexes as immunogenic cell death inducing compounds is systematically reviewed.
Collapse
Affiliation(s)
- Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| |
Collapse
|
35
|
Zhao J, Gao Y, He W, Wang W, Hu W, Sun Y. Synthesis, characterization and biological evaluation of two cyclometalated iridium(III) complexes containing a glutathione S-transferase inhibitor. J Inorg Biochem 2023; 238:112050. [PMID: 36332411 DOI: 10.1016/j.jinorgbio.2022.112050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
The cyclometalated iridium(III) compounds have been intensively studied for health-related applications due to their outstanding luminescent properties and multiple anticancer modes of action. Herein, two iridium(III) compounds Ir-1 and Ir-3 containing glutathione S-transferase inhibitor (GSTi) were developed and studied together with two unfunctionalized compounds Ir-2 and Ir-4 as a comparison. Biological study indicated that GSTi-bearing complexes Ir-1 and Ir-3 exert a synergistic effect on the inhibition of cancer cells. The photophysical properties of Ir-1 ∼ Ir-4 were investigated by UV/vis absorption and fluorescence spectroscopy and rationalized with TD-DFT calculations. As expected, GSTi-bearing complexes Ir-1 and Ir-3 exhibited considerable cytotoxicity against both A549 and cisplatin-resistant A549/cis cancer cells, much higher than the unfunctionalized iridium compounds Ir-2 and Ir-4. Further study indicated that Ir-1 and Ir-3 mainly localize in the mitochondria of tumor cells, and exert their cytotoxicity via generating ROS and inhibiting GST activity. The flow cytometry investigations demonstrated that Ir-1 and Ir-3 can arrest the cell cycle in S phase and induce the cell death through apoptosis process. Overall, the complexation of GST inhibitors with cyclometalated iridium(III) agents provides an effective way for potentiating the cytotoxicity of iridium(III) anticancer agents and resensitizing the efficacy against cisplatin resistant cancer cells.
Collapse
Affiliation(s)
- Jian Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ya Gao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Weiyu He
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Weiwei Hu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
36
|
Utilization of Cancer Cell Line Screening to Elucidate the Anticancer Activity and Biological Pathways Related to the Ruthenium-Based Therapeutic BOLD-100. Cancers (Basel) 2022; 15:cancers15010028. [PMID: 36612025 PMCID: PMC9817855 DOI: 10.3390/cancers15010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BOLD-100 (sodium trans-[tetrachlorobis(1H indazole)ruthenate(III)]) is a ruthenium-based anticancer compound currently in clinical development. The identification of cancer types that show increased sensitivity towards BOLD-100 can lead to improved developmental strategies. Sensitivity profiling can also identify mechanisms of action that are pertinent for the bioactivity of complex therapeutics. Sensitivity to BOLD-100 was measured in a 319-cancer-cell line panel spanning 24 tissues. BOLD-100's sensitivity profile showed variation across the tissue lineages, including increased response in esophageal, bladder, and hematologic cancers. Multiple cancers, including esophageal, bile duct and colon cancer, had higher relative response to BOLD-100 than to cisplatin. Response to BOLD-100 showed only moderate correlation to anticancer compounds in the Genomics of Drug Sensitivity in Cancer (GDSC) database, as well as no clear theme in bioactivity of correlated hits, suggesting that BOLD-100 may have a differentiated therapeutic profile. The genomic modalities of cancer cell lines were modeled against the BOLD-100 sensitivity profile, which revealed that genes related to ribosomal processes were associated with sensitivity to BOLD-100. Machine learning modeling of the sensitivity profile to BOLD-100 and gene expression data provided moderative predictive value. These findings provide further mechanistic understanding around BOLD-100 and support its development for additional cancer types.
Collapse
|
37
|
Lu Y, Zhu D, Le Q, Wang Y, Wang W. Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. NANOSCALE 2022; 14:16339-16375. [PMID: 36341705 DOI: 10.1039/d2nr02994d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ruthenium complex is an important compound group for antitumor drug research and development. NAMI-A, KP1019, TLD1433 and other ruthenium complexes have entered clinical research. In recent years, the research on ruthenium antitumor drugs has not been limited to single chemotherapy drugs; other applications of ruthenium complexes have emerged such as in combination therapy. During the development of ruthenium complexes, drug delivery forms of ruthenium antitumor drugs have also evolved from single-molecule drugs to nanodrug delivery systems. The review summarizes the following aspects: (1) ruthenium complexes from monotherapy to combination therapy, including the development of single-molecule compounds, carrier nanomedicine, and self-assembly of carrier-free nanomedicine; (2) ruthenium complexes in the process of ADME in terms of absorption, distribution, metabolism and excretion; (3) the applications of ruthenium complexes in combination therapy, including photodynamic therapy (PDT), photothermal therapy (PTT), photoactivated chemotherapy (PACT), immunotherapy, and their combined application; (4) the future prospects of ruthenium-based antitumor drugs.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Quynh Le
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Wei Wang
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| |
Collapse
|
38
|
Xie D, Wang Q, Wu G. Research progress in inducing immunogenic cell death of tumor cells. Front Immunol 2022; 13:1017400. [PMID: 36466838 PMCID: PMC9712455 DOI: 10.3389/fimmu.2022.1017400] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 08/29/2023] Open
Abstract
Immunogenic cell death (ICD) is a regulated cell death (RCD) pathway. In response to physical and chemical signals, tumor cells activate specific signaling pathways that stimulate stress responses in the endoplasmic reticulum (ER) and expose damage-associated molecular patterns (DAMPs), which promote antitumor immune responses. As a result, the tumor microenvironment is altered, and many tumor cells are killed. The ICD response in tumor cells requires inducers. These inducers can be from different sources and contribute to the development of the ICD either indirectly or directly. The combination of ICD inducers with other tumor treatments further enhances the immune response in tumor cells, and more tumor cells are killed; however, it also produces side effects of varying severity. New induction methods based on nanotechnology improve the antitumor ability and significantly reduces side effects because they can target tumor cells precisely. In this review, we introduce the characteristics and mechanisms of ICD responses in tumor cells and the DAMPs associated with ICD responses, summarize the current methods of inducing ICD response in tumor cells in five distinct categories: chemical sources, physical sources, pathogenic sources, combination therapies, and innovative therapies. At the same time, we introduce the limitations of current ICD inducers and make a summary of the use of ICD responses in clinical trials. Finally, we provide an outlook on the future of ICD inducer development and provide some constructive suggestions.
Collapse
Affiliation(s)
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
39
|
Salvagno C, Mandula JK, Rodriguez PC, Cubillos-Ruiz JR. Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends Cancer 2022; 8:930-943. [PMID: 35817701 PMCID: PMC9588488 DOI: 10.1016/j.trecan.2022.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
Abstract
The tumor microenvironment (TME) provokes endoplasmic reticulum (ER) stress in malignant cells and infiltrating immune populations. Sensing and responding to ER stress is coordinated by the unfolded protein response (UPR), an integrated signaling pathway governed by three ER stress sensors: activating transcription factor (ATF6), inositol-requiring enzyme 1α (IRE1α), and protein kinase R (PKR)-like ER kinase (PERK). Persistent UPR activation modulates malignant progression, tumor growth, metastasis, and protective antitumor immunity. Hence, therapies targeting ER stress signaling can be harnessed to elicit direct tumor killing and concomitant anticancer immunity. We highlight recent findings on the role of the ER stress responses in onco-immunology, with an emphasis on genetic vulnerabilities that render tumors highly sensitive to therapeutic UPR modulation.
Collapse
Affiliation(s)
- Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jessica K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.
| |
Collapse
|
40
|
Levina A, Chetcuti ARM, Lay PA. Controversial Role of Transferrin in the Transport of Ruthenium Anticancer Drugs. Biomolecules 2022; 12:biom12091319. [PMID: 36139158 PMCID: PMC9496346 DOI: 10.3390/biom12091319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ruthenium complexes are at the forefront of developments in metal-based anticancer drugs, but many questions remain open regarding their reactivity in biological media, including the role of transferrin (Tf) in their transport and cellular uptake. A well-known anticancer drug, KP1019 ((IndH)[RuIIICl4(Ind)2], where Ind = indazole) and a reference complex, [RuIII(nta)2]3- (nta = nitrilotriacetato(3-)) interacted differently with human apoTf, monoFeTf, or Fe2Tf. These reactions were studied by biolayer interferometry (BLI) measurements of Ru-Fe-Tf binding to recombinant human transferrin receptor 1 (TfR1) in conjunction with UV-vis spectroscopy and particle size analysis. Cellular Ru uptake in human hepatoma (HepG2) cells was measured under the conditions of the BLI assays. The mode of Tf binding and cellular Ru uptake were critically dependent on the nature of Ru complex, availability of Fe(III) binding sites of Tf, and the presence of proteins that competed for metal binding, particularly serum albumin. Cellular uptake of KP1019 was not Tf-mediated and occurred mostly by passive diffusion, which may also be suitable for treatments of inoperable cancers by intratumoral injections. High cellular Ru uptake from a combination of [RuIII(nta)2]3- and Fe2Tf in the absence of significant Ru-Tf binding was likely to be due to trapping of Ru(III) species into the endosome during TfR1-mediated endocytosis of Fe2Tf.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (A.L.); (P.A.L.)
| | | | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- School of Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (A.L.); (P.A.L.)
| |
Collapse
|
41
|
Murali M, Latha J, Prakash PA, Sangeetha S, Selvakumaran B, Jaabir MSM. Characterization of [Ru(bpy)2(diamine)]2+ complexes and their DNA binding and cleavage, BSA interaction, cytotoxic, and anticancer mechanistic properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Cervinka J, Gobbo A, Biancalana L, Markova L, Novohradsky V, Guelfi M, Zacchini S, Kasparkova J, Brabec V, Marchetti F. Ruthenium(II)-Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis. J Med Chem 2022; 65:10567-10587. [PMID: 35913426 PMCID: PMC9376960 DOI: 10.1021/acs.jmedchem.2c00722] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
While ruthenium arene complexes have been widely investigated
for
their medicinal potential, studies on homologous compounds containing
a tridentate tris(1-pyrazolyl)methane ligand are almost absent in
the literature. Ruthenium(II) complex 1 was obtained
by a modified reported procedure; then, the reactions with a series
of organic molecules (L) in boiling alcohol afforded novel complexes 2–9 in 77–99% yields. Products 2–9 were fully structurally characterized. They are
appreciably soluble in water, where they undergo partial chloride/water
exchange. The antiproliferative activity was determined using a panel
of human cancer cell lines and a noncancerous one, evidencing promising
potency of 1, 7, and 8 and
significant selectivity toward cancer cells. The tested compounds
effectively accumulate in cancer cells, and mitochondria represent
a significant target of biological action. Most notably, data provide
convincing evidence that the mechanism of biological action is mediated
by the inhibiting of mitochondrial calcium intake.
Collapse
Affiliation(s)
- Jakub Cervinka
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biochemistry, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Alberto Gobbo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.,Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Massimo Guelfi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biophysics, Palacky University in Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
43
|
Kasparkova J, Kostrhunova H, Novohradsky V, Ma L, Zhu G, Milaeva ER, Shtill AA, Vinck R, Gasser G, Brabec V, Nazarov AA. Is antitumor Pt(IV) complex containing two axial lonidamine ligands a true dual- or multi-action prodrug? METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6618656. [PMID: 35759404 DOI: 10.1093/mtomcs/mfac048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022]
Abstract
This work studied the mechanism of action of a Pt(IV) complex 2 bearing two axial lonidamine ligands, which are selective inhibitors of aerobic glycolysis. The presence of two lonidamine ligands in 2 compared to the parent Pt(II) complex increased its antiproliferative activity, cellular accumulation, and changed its cell cycle profile and mechanism of cell death. In 3D cell culture, 2 showed exceptional antiproliferative activity with IC50 values as low as 1.6 μM in MCF7 cells. The study on the influence of the lonidamine ligands in the Pt complex on glycolysis showed only low potency of ligands to affect metabolic processes in cancer cells, making the investigated complex, not a dual- or multi-action prodrug. However, the Pt(IV) prodrug effectively delivers the cytotoxic Pt(II) complex into cancer cells.
Collapse
Affiliation(s)
- Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Lili Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Elena R Milaeva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Alexender A Shtill
- Blokhin Cancer Center, Russian Academy of Medical Sciences, 115478 Moscow, Russian Federation
| | - Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Alexey A Nazarov
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| |
Collapse
|
44
|
Xiang Y, Liu M, Yang Y, Wang Y, Qiu Y, Tu S, Jiang Y, Nan Y, Zhang X, Huang Q. Nanodrugs Manipulating Endoplasmic Reticulum Stress for Highly Effective Antitumor Therapy. Front Pharmacol 2022; 13:949001. [PMID: 35903337 PMCID: PMC9315921 DOI: 10.3389/fphar.2022.949001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide due to high morbidity and mortality. Many attempts and efforts have been devoted to fighting cancer. Owing to the significant role of the endoplasmic reticulum (ER) in cell function, inducing ER stress can be promising for cancer treatment. However, the sustained activation of cytoprotective unfolded protein response (UPR) presents a tremendous obstacle for drugs in inducing unsolved ER stress in tumor cells, especially small-molecule drugs with poor bioavailability. Therefore, many emerging nanodrugs inducing and amplifying ER stress have been developed for efficient cancer treatment. More importantly, the novel discovery of ER stress in immunogenic cell death (ICD) makes it possible to repurpose antitumor drugs for immunotherapy through nanodrug-based strategies amplifying ER stress. Therefore, this mini-review aims to provide a comprehensive summary of the latest developments of the strategies underlying nanodrugs in the treatment of cancer via manipulating ER stress. Meanwhile, the prospects of ER stress–inducing nanodrugs for cancer treatment are systematically discussed, which provide a sound platform for novel therapeutic insights and inspiration for the design of nanodrugs in treating cancer.
Collapse
Affiliation(s)
- Yuting Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunrong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yubo Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yige Qiu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Shiqi Tu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yayun Nan
- Geriatric Medical Center, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xiaojie Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- *Correspondence: Qiong Huang, ; Xiaojie Zhang,
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qiong Huang, ; Xiaojie Zhang,
| |
Collapse
|
45
|
Xiong X, Huang KB, Wang Y, Cao B, Luo Y, Chen H, Yang Y, Long Y, Liu M, Chan ASC, Liang H, Zou T. Target Profiling of an Iridium(III)-Based Immunogenic Cell Death Inducer Unveils the Engagement of Unfolded Protein Response Regulator BiP. J Am Chem Soc 2022; 144:10407-10416. [PMID: 35658433 DOI: 10.1021/jacs.2c02435] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical chemotherapeutic drugs have occasionally been observed to induce antitumor immune responses beyond the direct cytotoxicity. Such effects are coined as immunogenic cell death (ICD), representing a "second hit" from the host immune system to tumor cells. Although chemo-immunotherapy is highly promising, ICD inducers remain sparse with vague drug-target mechanisms. Here, we report an endoplasmic reticulum stress-inducing cyclometalated Ir(III)-bisNHC complex (1a) as a new ICD inducer, and based on this compound, a clickable photoaffinity probe was designed for target identification, which unveiled the engagement of the master regulator protein BiP (binding immunoglobulin protein)/GRP78 of the unfolded protein response pathway. This has been confirmed by a series of cellular and biochemical studies including fluorescence microscopy, cellular thermal shift assay, enzymatic assays, and so forth, showing the capability of 1a for BiP destabilization. Notably, besides 1a, the previously reported ICD inducers including KP1339, mitoxantrone, and oxaliplatin were also found to engage BiP interaction, suggesting the important role of BiP in eliciting anticancer immunity. We believe that the ICD-related target information in this work will help to understand the mode of action of ICD that is beneficial to designing new ICD agents with high specificity and improved efficacy.
Collapse
Affiliation(s)
- Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Yunli Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Huowen Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yan Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yan Long
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Moyi Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Albert S C Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
46
|
Ferraro MG, Piccolo M, Misso G, Santamaria R, Irace C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022; 14:pharmaceutics14050954. [PMID: 35631543 PMCID: PMC9147010 DOI: 10.3390/pharmaceutics14050954] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum—and their bioactivity and mechanisms of action—are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Gabriella Misso
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (G.M.); (C.I.)
| | - Rita Santamaria
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
- Correspondence: (G.M.); (C.I.)
| |
Collapse
|
47
|
Li ZY, Shen QH, Mao ZW, Tan CP. A Rising Interest in the Development of Metal Complexes in Cancer Immunotherapy. Chem Asian J 2022; 17:e202200270. [PMID: 35419865 DOI: 10.1002/asia.202200270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Indexed: 11/07/2022]
Abstract
Metal complexes have shown great potential in cancer immunotherapy. This review briefly introduces the basic concepts and strategies of cancer immunotherapy and summarizes the recent discoveries on the immune effects of traditional platinum-based anticancer compounds. In addition, we also outline the latest research progresses on metal complexes for cancer immunotherapy focusing on platinum, ruthenium, iridium, rhenium and copper complexes. Finally, the research perspectives and unsolved problems on the applications of metallo-anticancer agents in cancer immunotherapy are purposed.
Collapse
Affiliation(s)
- Zhi-Yuan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Qing-Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
48
|
Levina A, Crans DC, Lay PA. Advantageous Reactivity of Unstable Metal Complexes: Potential Applications of Metal-Based Anticancer Drugs for Intratumoral Injections. Pharmaceutics 2022; 14:790. [PMID: 35456624 PMCID: PMC9026487 DOI: 10.3390/pharmaceutics14040790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Injections of highly cytotoxic or immunomodulating drugs directly into the inoperable tumor is a procedure that is increasingly applied in the clinic and uses established Pt-based drugs. It is advantageous for less stable anticancer metal complexes that fail administration by the standard intravenous route. Such hydrophobic metal-containing complexes are rapidly taken up into cancer cells and cause cell death, while the release of their relatively non-toxic decomposition products into the blood has low systemic toxicity and, in some cases, may even be beneficial. This concept was recently proposed for V(V) complexes with hydrophobic organic ligands, but it can potentially be applied to other metal complexes, such as Ti(IV), Ga(III) and Ru(III) complexes, some of which were previously unsuccessful in human clinical trials when administered via intravenous injections. The potential beneficial effects include antidiabetic, neuroprotective and tissue-regenerating activities for V(V/IV); antimicrobial activities for Ga(III); and antimetastatic and potentially immunogenic activities for Ru(III). Utilizing organic ligands with limited stability under biological conditions, such as Schiff bases, further enhances the tuning of the reactivities of the metal complexes under the conditions of intratumoral injections. However, nanocarrier formulations are likely to be required for the delivery of unstable metal complexes into the tumor.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Debbie C. Crans
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
49
|
Sen S, Won M, Levine MS, Noh Y, Sedgwick AC, Kim JS, Sessler JL, Arambula JF. Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future. Chem Soc Rev 2022; 51:1212-1233. [PMID: 35099487 PMCID: PMC9398513 DOI: 10.1039/d1cs00417d] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer is the deadliest disease in the world behind heart disease. Sadly, this remains true even as we suffer the ravages of the Covid-19 pandemic. Whilst current chemo- and radiotherapeutic treatment strategies have significantly improved the patient survival rate, disease reoccurrence continues to pose a deadly risk for all too many patients. Incomplete removal of tumour cells from the body increases the chances of metastasis and developing resistance against current treatments. Immunotherapy represents a therapeutic modality that has helped to overcome these limitations in recent decades. However, further progress is needed. So-called immunogenic cell death (ICD) is a recently discovered and unique mode of cell death that could trigger this necessary further progress. ICD involves stimulation of a tumour-specific immune response as a downstream effect. Facilitated by certain treatment modalities, cells undergoing ICD can trigger the IFN-γ mediated immune response involving cytotoxic T cells (CTLs) and γδ T cells that eradicate residual tumour cells. In recent years, there has been a significant increase in the number of small-molecules being tested as potential ICD inducers. A large number of these ICD inducers are metal-based complexes. In fact, anticancer metal drugs based on Pt, Ru, Ir, Cu, and Au are now known to give rise to an immune response against tumour cells as the result of ICD. Advances have also been made in terms of exploiting combinatorial and delivery strategies. In favourable cases, these approaches have been shown to increase the efficacy of otherwise ICD "silent" metal complexes. Taken in concert, rationally designed novel anticancer metal complexes that can act as ICD inducers show promise as potential new immunotherapies for neoplastic disease. This Tutorial Review will allow the readers to assess the progress in this fast-evolving field thus setting the stage for future advances.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Matthew S Levine
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Yuvin Noh
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
- OncoTEX, Inc. 3800 North Lamar Blvd., Austin, Texas 78756, USA
| |
Collapse
|
50
|
Relevance of Fluorinated Ligands to the Design of Metallodrugs for Their Potential Use in Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14020402. [PMID: 35214133 PMCID: PMC8874657 DOI: 10.3390/pharmaceutics14020402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Fluorination of pharmaceutical agents has afforded crucial modifications to their pharmacological profiles, leading to important advances in medicinal chemistry. On the other hand, metallodrugs are considered to be valuable candidates in the treatment of several diseases, albeit with the caveat that they may exhibit pharmacological disadvantages, such as poor water solubility, low bioavailability and short circulating time. To surmount these limitations, two approaches have been developed: one based on the design of novel metallodrug-delivering carriers and the other based on optimizing the structure of the ligands bound to the metal center. In this context, fluorination of the ligands may bring beneficial changes (physicochemical and biological) that can help to elude the aforementioned drawbacks. Thus, in this review, we discuss the use of fluorinated ligands in the design of metallodrugs that may exhibit potential anticancer activity.
Collapse
|