1
|
Alagarsamy KN, Saleth LR, Diedkova K, Zahorodna V, Gogotsi O, Pogorielov M, Dhingra S. MXenes in healthcare: transformative applications and challenges in medical diagnostics and therapeutics. NANOSCALE 2025. [PMID: 40261131 DOI: 10.1039/d4nr04853a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
MXenes, a novel class of two-dimensional transition metal carbides, exhibit exceptional physicochemical properties that make them highly promising for biomedical applications. Their application has been explored in bioinstrumentation, tissue engineering, and infectious disease management. In bioinstrumentation, MXenes enhance the sensitivity and response time of wearable sensors, including piezoresistive, electrochemical, and electrophysiological sensors. They also function effectively as contrast agents in MRI and CT imaging for cancer diagnostics and therapy. In tissue engineering, MXenes contribute to both hard and soft tissue regeneration, playing a key role in neural, cardiac, skin and bone repair. Additionally, they offer innovative solutions in combating infectious and inflammatory diseases by facilitating antimicrobial surfaces and immune modulation. Despite their potential, several challenges hinder the clinical translation of MXene-based technologies. Issues related to synthesis, scalability, biocompatibility, and long-term safety must be addressed to ensure their practical implementation in medical applications. This review provides a comprehensive overview of MXenes in next-generation medical diagnostics, including the role they play in wearable sensors and imaging contrast agents. It further explores their applications in tissue engineering and infectious disease management, highlighting their antimicrobial and immunomodulatory properties. Finally, we discuss the key barriers to clinical translation and propose strategies for overcoming these limitations. This review aims to bridge current advancements with future opportunities for integration of MXenes in healthcare.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| | - Kateryna Diedkova
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, Riga, Latvia, LV-1004
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
| | - Veronika Zahorodna
- Materials Research Center, 19/33A Yaroslaviv Val/O.Honchara str, Kyiv, 01034, Ukraine
| | - Oleksiy Gogotsi
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
- Materials Research Center, 19/33A Yaroslaviv Val/O.Honchara str, Kyiv, 01034, Ukraine
| | - Maksym Pogorielov
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, Riga, Latvia, LV-1004
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| |
Collapse
|
2
|
Elbeltagi S, Al-Zharani M, Nasr FA, Ismail AM, El-Tohamy HM, Abdelbased KM, Eldin ZE. Multifunctional sorafenib-loaded MXene for enhanced cancer therapy: In vitro and in vivo study based on chemotherapy/photothermal therapy approach. Int J Pharm 2025; 674:125492. [PMID: 40118352 DOI: 10.1016/j.ijpharm.2025.125492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
Cancer, characterized by uncontrolled cell proliferation, remains one of the deadliest diseases. Multifunctional hybrid nanosystems that combine drugs with photothermal therapy (PTT) offer enhanced tumor treatment options through localized thermal increase and smart drug delivery (SDD). MXene, a 2D inorganic nanomaterial consisting of titanium carbide (Ti3C2), has garnered significant interest for cancer applications. MXene was combined with the metal-organic framework MOF-UiO-67 to create MX-Uio-67. The anticancer drug sorafenib (SN) was then load onto MX-UiO-67 and coated with chitosan (CS) to form SN-MX-UiO-67@CS aiming to improve chemo-PTT mediated by near-infrared (NIR) laser irradiation. The release of SN from SN-MX-UiO-67@CS was studied at pH 4.6 and pH 7.4 conditions, both with and without NIR, over a period of 96 h. The cumulative release of SN from MX-UiO-67@CS reached 80.16 % at pH 7.4 and 93.77 % at pH 4.6 under NIR irradiation. MTT assay results demonstrated significant cytotoxicity against HepG2 cells, with SN-MX-UiO-67@CS (chemo-PTT) displaying an IC50 value of 22.4 µg/mL and achieving a necrosis was 36.1 % and apoptosis rate of 50.94 %, highlighting its potential as an effective anticancer agent. Furthermore, in vivo PTT via xenograft model and biodistribution studies were performed in healthy BALB/c mice under NIR. A bio-analytical technique was established utilizing HepG2 cells for the quantitative examination of SN in mice plasma, spleen, liver, heart, kidneys, tumor and lungs. A highly significant difference was observed in the plasma concentration-time curves and pharmacokinetic parameters of SN, SN-MX, and SN-MX-UiO-67following the intravenous administration of SN-MX-UiO-67@CS. Notably, the formulation exhibited higher key pharmacokinetic parameters, involving Cmax and AUC(0-72).
Collapse
Affiliation(s)
- Shehab Elbeltagi
- Department of Physics, Faculty of Science, New Valley University, El-Kharga 72511, Egypt.
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,11623, Saudi Arabia
| | - Fahd A Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh,11623, Saudi Arabia
| | - A M Ismail
- Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Hagar M El-Tohamy
- Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Khaled M Abdelbased
- Unit of Scientific Research, Applied College, Qassim University, Saudi Arabia
| | - Zienab E Eldin
- Center for Material Science, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt
| |
Collapse
|
3
|
Qian L, Rahmati F, Li F, Zhang T, Wang T, Zhang H, Yan S, Zheng Y. Recent advances in 2D MXene-based heterostructures for gas sensing: mechanisms and applications in environmental and biomedical fields. NANOSCALE 2025; 17:8975-8998. [PMID: 40108976 DOI: 10.1039/d4nr04681a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
MXenes, a unique class of 2D transition metal carbides, have gained attention for gas sensing applications due to their distinctive properties. Since the synthesis of Ti3C2Tx MXene in 2011, significant progress has been made in using MXenes as chemiresistive sensors. Their layered structure, abundant surface groups, hydrophilicity, tunable conductivity, and excellent thermal properties make MXenes ideal for low-power, flexible, room temperature gas sensors, fostering scalable and reproducible applications in portable devices. This review evaluates the latest advancements in MXene-based gas sensors, beginning with an overview of the elemental compositions, structures, and typical fabrication process of MXenes. We subsequently examine their applications in gas sensing domains, evaluating the proposed mechanisms for detecting common volatile organic compounds such as acetone, formaldehyde, ethanol, ammonia, and nitrogen oxides. To set this apart from similar reviews, our focus centered on the mechanistic interactions between MXene sensing materials and analytes (particularly for chemiresistive gas sensors), leveraging the distinct functionalities of MXene chemistries, which can be finely tuned for specific applications. Ultimately, we examine the current limitations and prospective research avenues concerning the utilization of MXenes in environmental and biomedical applications.
Collapse
Affiliation(s)
- Lanting Qian
- Institute of New Energy Materials and Engineering, College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, Fuzhou University, Fuzhou 350108, P. R. China.
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Farnood Rahmati
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Fengchao Li
- Shandong Weifang Ecological Environment Monitoring Center, Weifang 261000, P. R. China
| | - Tianzhu Zhang
- Institute of New Energy Materials and Engineering, College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Tao Wang
- Institute of New Energy Materials and Engineering, College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Haoze Zhang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Shuo Yan
- Department of Materials and Engineering, University of Ottawa, ON K1N 6N5, Canada
| | - Yun Zheng
- Institute of New Energy Materials and Engineering, College of Materials Science and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|
4
|
Dutta T, Alam P, Mishra SK. MXenes and MXene-based composites for biomedical applications. J Mater Chem B 2025; 13:4279-4312. [PMID: 40079066 DOI: 10.1039/d4tb02834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
MXenes, a novel class of two-dimensional materials, have recently emerged as promising candidates for biomedical applications due to their specific structural features and exceptional physicochemical and biological properties. These materials, characterized by unique structural features and superior conductivity, have applications in tissue engineering, cancer detection and therapy, sensing, imaging, drug delivery, wound treatment, antimicrobial therapy, and medical implantation. Additionally, MXene-based composites, incorporating polymers, metals, carbon nanomaterials, and metal oxides, offer enhanced electroactive and mechanical properties, making them highly suitable for engineering electroactive organs such as the heart, skeletal muscle, and nerves. However, several challenges, including biocompatibility, functional stability, and scalable synthesis methods, remain critical for advancing their clinical use. This review comprehensively overviews MXenes and MXene-based composites, their synthesis, properties, and broad biomedical applications. Furthermore, it highlights the latest progress, ongoing challenges, and future perspectives, aiming to inspire innovative approaches to harnessing these versatile materials for next-generation medical solutions.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Howrah, W.B. - 711103, India
| | - Parvej Alam
- Space and Reslinent Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels, Spain.
| | - Satyendra Kumar Mishra
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China.
| |
Collapse
|
5
|
Li T, Qiang W, Lei B. Bioactive surface-functionalized MXenes for biomedicine. NANOSCALE 2025; 17:4854-4891. [PMID: 39873617 DOI: 10.1039/d4nr04260c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
MXenes, with their good biocompatibility, excellent photovoltaic properties, excellent physicochemical properties, and desirable bioactivity, have broad application prospects in the field of tissue regeneration. MXenes have been used in a wide range of applications including biosensing, bioimaging, tumour/infection therapy, bone regeneration and wound repair. By applying bioactive materials to modify the surface of MXenes, a series of multifunctional MXene-based nanomaterials can be designed for different biomedical applications to achieve better therapeutic effects or more desirable biological functions. This paper reviews the existing studies on MXene-based bioactivities, surface modification strategies and biomedical applications. Finally, the challenges, trends and prospects of MXene nanomaterials are discussed. We expect that more and more well-designed MXene-based biomaterials will have a wider range of biomedical applications, thus providing favourable information for the clinical translation of nanomedicine.
Collapse
Affiliation(s)
- Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Weipeng Qiang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. 710061, China
| |
Collapse
|
6
|
Shao K, Yang Y, Gong X, Chen K, Liao Z, Ojha SC. Staphylococcal Drug Resistance: Mechanisms, Therapies, and Nanoparticle Interventions. Infect Drug Resist 2025; 18:1007-1033. [PMID: 39990781 PMCID: PMC11847421 DOI: 10.2147/idr.s510024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
The increasing incidence of antibiotic resistance in Staphylococcus aureus (S. aureus) poses a substantial threat to global public health. In recent decades, the evolution of bacteria and the misuse of antibiotics have led to a progressive development in drug resistance of S. aureus, resulting in a worldwide rise in methicillin-resistant S. aureus (MRSA) infection rates. Understanding the molecular mechanisms underlying staphylococcal drug resistance, the treatments for staphylococcal infections, and the efficacy of nanomaterials in addressing multi-drug resistance is crucial. This review explores the resistance mechanisms, which include limiting drug uptake, target modification, drug inactivation through the production of degrading enzymes, and active efflux of drugs. It also examines the current therapeutic strategies, such as antibiotic combination therapy, phage therapy, monoclonal antibody therapy, and nanoparticle therapy, with a particular emphasis on the role of silver-based nanomaterials. Nanoparticles possess the ability to overcome multi-drug resistance, offering a novel avenue for the management of drug-resistant bacteria. The nanomaterials have demonstrated potent antibacterial activity against S. aureus through various mechanisms, including cell membrane disruption, generation of reactive oxygen species (ROS), and inhibition of essential cellular processes. It also highlights the need for further research to optimize nanoparticle design, enhance their antibacterial potency, and ensure their biocompatibility and biodegradability. The review ultimately concludes by emphasizing the importance of a multifaceted approach to treatment, including the development of new antibiotics, investment in stewardship programs to prevent antibiotic misuse, and the exploration of natural compounds and bacteriocins as potential antimicrobial agents.
Collapse
Affiliation(s)
- Kunyu Shao
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yuxun Yang
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xuankai Gong
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Ke Chen
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Infectious Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Zixiang Liao
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
7
|
Vojoudi H, Soroush M. Isolation of Biomolecules Using MXenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415160. [PMID: 39663732 DOI: 10.1002/adma.202415160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Biomolecule isolation is a crucial process in diverse biomedical and biochemical applications, including diagnostics, therapeutics, research, and manufacturing. Recently, MXenes, a novel class of two-dimensional nanomaterials, have emerged as promising adsorbents for this purpose due to their unique physicochemical properties. These biocompatible and antibacterial nanomaterials feature a high aspect ratio, excellent conductivity, and versatile surface chemistry. This timely review explores the potential of MXenes for isolating a wide range of biomolecules, such as proteins, nucleic acids, and small molecules, while highlighting key future research trends and innovative applications poised to transform the field. This review provides an in-depth discussion of various synthesis methods and functionalization techniques that enhance the specificity and efficiency of MXenes in biomolecule isolation. In addition, the mechanisms by which MXenes interact with biomolecules are elucidated, offering insights into their selective adsorption and customized separation capabilities. This review also addresses recent advancements, identifies existing challenges, and examines emerging trends that may drive the next wave of innovation in this rapidly evolving area.
Collapse
Affiliation(s)
- Hossein Vojoudi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Amara U, Xu L, Hussain I, Yang K, Hu H, Ho D. MXene Hydrogels for Soft Multifunctional Sensing: A Synthesis-Centric Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405047. [PMID: 39501918 DOI: 10.1002/smll.202405047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Indexed: 01/11/2025]
Abstract
Intelligent wearable sensors based on MXenes hydrogels are rapidly advancing the frontier of personalized healthcare management. MXenes, a new class of transition metal carbon/nitride synthesized only a decade ago, have proved to be a promising candidate for soft sensors, advanced human-machine interfaces, and biomimicking systems due to their controllable and high electrical conductivity, as well as their unique mechanical properties as derived from their atomistically thin layered structure. In addition, MXenes' biocompatibility, hydrophilicity, and antifouling properties render them particularly suitable to synergize with hydrogels into a composite for mechanoelectrical functions. Nonetheless, while the use of MXene as a multifunctional surface or an electrical current collector such as an energy device electrode is prevalent, its incorporation into a gel system for the purpose of sensing is vastly less understood and formalized. This review provides a systematic exposition to the synthesis, property, and application of MXene hydrogels for intelligent wearable sensors. Specific challenges and opportunities on the synthesis of MXene hydrogels and their adoption in practical applications are explicitly analyzed and discussed to facilitate cross gemination across disciplines to advance the potential of MXene multifunctional sensing hydrogels.
Collapse
Affiliation(s)
- Umay Amara
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lingtian Xu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Kai Yang
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Haibo Hu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Derek Ho
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| |
Collapse
|
9
|
Koyappayil A, Chavan SG, Lee MH. MXenes in photothermal cancer therapy: applications and advances. NANOPHOTOTHERAPY 2025:283-298. [DOI: 10.1016/b978-0-443-13937-6.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Hu X, Fan Q, Wang S, Chen Y, Wang D, Chen K, Ge F, Zhou W, Liang K. Two-Dimensional MXenes: Innovative Materials for Efficient Thermal Management and Safety Solutions. RESEARCH (WASHINGTON, D.C.) 2024; 7:0542. [PMID: 39703779 PMCID: PMC11658421 DOI: 10.34133/research.0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
MXenes, a class of 2-dimensional transition metal carbides and nitrides, have garnered important attention due to their remarkable electrical and thermal conductivity, high photothermal conversion efficiency, and multifunctionality. This review explores the potential of MXene materials in various thermal applications, including thermal energy storage, heat dissipation in electronic devices, and the mitigation of electromagnetic interference in wearable technologies. Recent advancements in MXene composites, such as MXene/bacterial cellulose aerogel films and MXene/polymer composites, have demonstrated enhanced performance in phase change thermal storage and electromagnetic interference shielding, underscoring their versatility and effectiveness. Although notable progress has been made, challenges remain, including the need for a deeper understanding of photothermal conversion mechanisms, improvements in mechanical properties, exploration of diverse MXene types, and the development of sustainable synthesis methods. This paper discusses these aspects and outlines future research directions, emphasizing the growing importance of MXenes in addressing energy efficiency, health, and safety concerns in modern applications.
Collapse
Affiliation(s)
- XiaoYan Hu
- School of Materials Science and Chemical Engineering,
Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengchao Wang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanxin Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Degao Wang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Ke Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- Qianwan Institute of CNITECH, Ningbo 315336, P. R. China
| | - Fangfang Ge
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- Qianwan Institute of CNITECH, Ningbo 315336, P. R. China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences,
Central South University, Changsha 410013, P. R. China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Pang C, Tan Y, Ling J, Hong L. Synergetic antibacterial nanosheet based on Ti 3C 2T x photothermal therapy and cationic polymer to eradicate drug-resistant bacterial biofilms. NANOSCALE 2024; 16:21856-21868. [PMID: 39495172 DOI: 10.1039/d4nr03888f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Drug-resistant bacteria infection and biofilm formation on the wound still pose a tremendous challenge in post-antibiotic era. It has been proposed that multimode synergetic antibacterial strategies may be employed to eradicate drug-resistant bacteria and biofilms effectively. In this study, we synthesized non-invasive antibacterial two-dimension (2D) composite nanosheet BPG using Ti3C2Tx MXene and cationic borneol-guanidine based polymers (B-PGMA-Gu) via simple electrostatically co-assemble. BPG can target bacteria and efficiently eliminate Gram-positive bacteria Staphylococcus aureus (S. aureus), Gram-negative bacteria Escherichia coli (E. coli), and methicillin-resistant Staphylococcus aureus (MRSA) under 808 nm radiation. By combining the photothermal properties of Ti3C2Tx MXene and the excellent membrane penetration ability of B-PGMA-Gu, MRSA biofilms can be effectively removed at 100 μg mL-1 under laser irradiation, resulting in a bactericidal efficiency of 99.1%. This method offers a more effective and rapid non-antibiotic method for removing biofilms.
Collapse
Affiliation(s)
- Chuming Pang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yingxin Tan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jiahao Ling
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Liangzhi Hong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Paramasivam G, Yadavali SP, Atchudan R, Arya S, Sundramoorthy AK. Recent advances in the medical applications of two-dimensional MXene nanosheets. Nanomedicine (Lond) 2024; 19:2633-2654. [PMID: 39552604 DOI: 10.1080/17435889.2024.2422806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
MXene-based materials are gaining significant attention due to their exceptional properties and adaptability, leading to diverse advanced applications. In 3D printing, MXenes enhance the performance of photoblockers, photocurable inks, and composites, enabling the creation of precise, flexible and durable structures. MXene/siloxane composites offer both flexibility and resilience, while MXene/spidroin scaffolds provide excellent biocompatibility and mechanical strength, making them ideal for tissue engineering. Sustainable inks such as MXene/cellulose nano inks, alginate/MXene and MXene/emulsion underscore their role in high-performance printed materials. In cancer therapy, MXenes enable innovative photothermal and photodynamic therapies, where nanosheets generate heat and reactive oxygen species to destroy cancer cells. MXene theranostic nanoprobes combine imaging and treatment, while MXene/niobium composites support hyperthermia therapy and MXene/cellulose hydrogels allow controlled drug release. Additionally, MXene-based nanozymes enhance catalytic activity, and MXene/gold nanorods enable near-infrared-triggered drug release for noninvasive treatments. In antimicrobial applications, MXene composites enhance material durability and hygiene, providing anticorrosive protection for metals. For instance, MXene/graphene, MXene/polycaprolactone nanofibers and MXene/chitosan hydrogels exhibit significant antibacterial activity. Additionally, MXene sensors have been developed to detect antibiotic residues. MXene cryogels also promote tissue regeneration, while MXene nanohybrids facilitate photocatalytic antibacterial therapy. These advancements underscore the potential of MXenes in regenerative medicine and other fields.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Yadavali
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu, Jammu & Kashmir, 180006, India
| | - Ashok K Sundramoorthy
- Department of Prosthodontics & Materials Science, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
13
|
Le TA, Huynh TP. Hemicellulose-Based Sensors: When Sustainability Meets Complexity. ACS Sens 2024; 9:4975-5001. [PMID: 39344466 DOI: 10.1021/acssensors.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hemicelluloses (HCs) are promising sustainable biopolymers with a great natural abundance, excellent biocompatibility, and biodegradability. Yet, their potential sensing applications remain limited due to intrinsic challenges in their heterogeneous chemical composition, structure, and physicochemical properties. Herein, recent advances in the development of HC-based sensors for different chemical analytes and physical stimuli using different transduction mechanisms are reviewed and discussed. HCs can be utilized as carbonaceous precursors, reducing, capping, and stabilizing agents, binders, and active components for sensing applications. In addition, different strategies to develop and improve the sensing capacity of HC-based sensors are also highlighted.
Collapse
Affiliation(s)
- Trung-Anh Le
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Tan-Phat Huynh
- Laboratory of Molecular Sciences and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
14
|
Xiao X, Ni W, Yang Y, Chen Q, Zhang Y, Sun Y, Liu Q, Zhang GJ, Yao Q, Chen S. Platinum nanowires/MXene nanosheets/porous carbon ternary nanocomposites for in situ monitoring of dopamine released from neuronal cells. Talanta 2024; 278:126496. [PMID: 38996563 DOI: 10.1016/j.talanta.2024.126496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Dopamine is an important neurotransmitter in the body and closely related to many neurodegenerative diseases. Therefore, the detection of dopamine is of great significance for the diagnosis and treatment of diseases, screening of drugs and unraveling of relevant pathogenic mechanisms. However, the low concentration of dopamine in the body and the complexity of the matrix make the accurate detection of dopamine challenging. Herein, an electrochemical sensor is constructed based on ternary nanocomposites consisting of one-dimensional Pt nanowires, two-dimensional MXene nanosheets, and three-dimensional porous carbon. The Pt nanowires exhibit excellent catalytic activity due to the abundant grain boundaries and highly undercoordinated atoms; MXene nanosheets not only facilitate the growth of Pt nanowires, but also enhance the electrical conductivity and hydrophilicity; and the porous carbon helps induce significant adsorption of dopamine on the electrode surface. In electrochemical tests, the ternary nanocomposite-based sensor achieves an ultra-sensitive detection of dopamine (S/N = 3) with a low limit of detection (LOD) of 28 nM, satisfactory selectivity and excellent stability. Furthermore, the sensor can be used for the detection of dopamine in serum and in situ monitoring of dopamine release from PC12 cells. Such a highly sensitive nanocomposite sensor can be exploited for in situ monitoring of important neurotransmitters at the cellular level, which is of great significance for related drug screening and mechanistic studies.
Collapse
Affiliation(s)
- Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Wei Ni
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China
| | - Yulin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, China
| | - Yujie Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95060, USA
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, China.
| | - Qunfeng Yao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
15
|
Nasser S, Elkodous MA, Tawfik R, Tohamy H, El-Kammar M, Nouh S, Elkhenany H. Concentration-Dependent Effects of MXene Nanocomposite-Loaded Carboxymethyl Cellulose on Wound Healing. Biotechnol J 2024; 19:e202400448. [PMID: 39380501 DOI: 10.1002/biot.202400448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
Nanoparticles (NPs) have emerged as a promising solution for many biomedical applications. Although not all particles have antimicrobial or regenerative properties, certain NPs show promise in enhancing wound healing by promoting tissue regeneration, reducing inflammation, and preventing infection. Integrating various NPs can further enhance these effects. Herein, the zinc oxide (ZnO)-MXene-Ag nanocomposite was prepared, and the conjugation of its three components was confirmed through scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) mapping analysis. In vitro analysis using the agar well diffusion technique demonstrated that ZnO-MXene-Ag nanocomposite exhibited high antimicrobial efficacy, significantly inhibiting Escherichia coli, Salmonella, and Candida albicans, and showing enhanced potency when combined with tetracycline, resulting in a 2.6-fold increase against Staphylococcus and a 2.4-fold increase against Pseudomonas. The efficacy of nanocomposite-loaded carboxymethyl cellulose (CMC) gel on wound healing was investigated using varying concentrations (0, 1, 5, and 10 mg/mL). Wound healing was monitored over 21 days, with results indicating that wounds treated with 1 mg/mL ZnO-MXene-Ag gel exhibited superior healing compared to the control group (0 mg/mL), with significant improvements noted from Day 3 onward. Conversely, higher concentrations (10 mg/mL) resulted in reduced healing efficiency, particularly notable on Day 15. In conclusion, the ZnO-MXene-Ag nanocomposite-loaded CMC gel is a promising agent for enhanced wound healing and antimicrobial applications. These findings highlight the importance of optimizing NP concentration to maximize therapeutic benefits while minimizing potential cytotoxicity.
Collapse
Affiliation(s)
- Salma Nasser
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Rasha Tawfik
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Hossam Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud El-Kammar
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Samir Nouh
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
Chen Y, Liu F, Pal S, Hu Q. Proteolysis-targeting drug delivery system (ProDDS): integrating targeted protein degradation concepts into formulation design. Chem Soc Rev 2024; 53:9582-9608. [PMID: 39171633 DOI: 10.1039/d4cs00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a revolutionary paradigm in drug discovery and development, offering a promising avenue to tackle challenging therapeutic targets. Unlike traditional drug discovery approaches that focus on inhibiting protein function, TPD aims to eliminate proteins of interest (POIs) using modular chimeric structures. This is achieved through the utilization of proteolysis-targeting chimeras (PROTACs), which redirect POIs to E3 ubiquitin ligases, rendering them for degradation by the cellular ubiquitin-proteasome system (UPS). Additionally, other TPD technologies such as lysosome-targeting chimeras (LYTACs) and autophagy-based protein degraders facilitate the transportation of proteins to endo-lysosomal or autophagy-lysosomal pathways for degradation, respectively. Despite significant growth in preclinical TPD research, many chimeras fail to progress beyond this stage in the drug development. Various factors contribute to the limited success of TPD agents, including a significant hurdle of inadequate delivery to the target site. Integrating TPD into delivery platforms could surmount the challenges of in vivo applications of TPD strategies by reshaping their pharmacokinetics and pharmacodynamic profiles. These proteolysis-targeting drug delivery systems (ProDDSs) exhibit superior delivery performance, enhanced targetability, and reduced off-tissue side effects. In this review, we will survey the latest progress in TPD-inspired drug delivery systems, highlight the importance of introducing delivery ideas or technologies to the development of protein degraders, outline design principles of protein degrader-inspired delivery systems, discuss the current challenges, and provide an outlook on future opportunities in this field.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
17
|
Protyai MIH, Bin Rashid A. A comprehensive overview of recent progress in MXene-based polymer composites: Their fabrication processes, advanced applications, and prospects. Heliyon 2024; 10:e37030. [PMID: 39319124 PMCID: PMC11419932 DOI: 10.1016/j.heliyon.2024.e37030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
MXenes are a group of 2D transition metal carbonitrides, nitrides and carbides that have become widely recognized as useful materials since they were first discovered in 2011. MXenes, with their exceptional layered structures and splendid external chemistries, have excellent electrical, optical, and thermal properties, making them suitable for catalysis, biomedical uses, environmental remediation, energy storage, and EMI shielding. Over forty MXene compounds with surface terminations like hydroxyl, oxygen, or fluorine are hydrophilic and easily integrated into various applications. Advanced synthesis methods, including selective etching and etchant modifications, have broadened MXene surface chemistries for customized mechanical, thermal, and electrical applications. Integrating MXenes into polymer composites has demonstrated notable promise, enhancing the host polymers' electrical conductivity, thermal stability and mechanical strength. The MXene-polymer composites demonstrate remarkable prospective on behalf of advanced purposes, including flexible electronics, high-performance EMI shielding materials, and lightweight structural components. MXenes have the desirable characteristic of being able to create flexible and translucent films, as well as improve the properties of polymer matrices. This makes them very suitable for use in advanced technological applications. This review summarizes MXene research, methods, and insights, highlighting key discoveries and future directions. This also highlights the importance of ongoing research to fill in the gaps in current knowledge and improve the practical uses of MXenes.
Collapse
Affiliation(s)
- Md Injamamul Haque Protyai
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Adib Bin Rashid
- Department of Mechanical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| |
Collapse
|
18
|
Kim SB, Kim CH, Lee SY, Park SJ. Carbon materials and their metal composites for biomedical applications: A short review. NANOSCALE 2024; 16:16313-16328. [PMID: 39110002 DOI: 10.1039/d4nr02059f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Carbon materials and their hybrid metal composites have garnered significant attention in biomedical applications due to their exceptional biocompatibility. This biocompatibility arises from their inherent chemical stability and low toxicity within biological systems. This review offers a comprehensive overview of carbon nanomaterials and their metal composites, emphasizing their biocompatibility-focused applications, including drug delivery, bioimaging, biosensing, and tissue engineering. The paper outlines advancements in surface modifications, coatings, and functionalization techniques designed to enhance the biocompatibility of carbon materials, ensuring minimal adverse effects in biological systems. A comprehensive investigation into hybrid composites integrating carbon nanomaterials is conducted, categorizing them as fullerenes, carbon quantum dots, carbon nanotubes, carbon nanofibers, graphene, and diamond-like carbon. The concluding section addresses regulatory considerations and challenges associated with integrating carbon materials into medical devices. This review culminates by providing insights into current achievements, challenges, and future directions, underscoring the pivotal role of carbon nanomaterials and their metal composites in advancing biocompatible applications.
Collapse
Affiliation(s)
- Su-Bin Kim
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| | - Choong-Hee Kim
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
19
|
Avinashi SK, Mishra RK, Singh R, Shweta, Rakhi, Fatima Z, Gautam CR. Fabrication Methods, Structural, Surface Morphology and Biomedical Applications of MXene: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47003-47049. [PMID: 39189322 DOI: 10.1021/acsami.4c07894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recently, two-dimensional (2-D) layered materials have revealed outstanding properties and play a crucial role for numerous advanced applications. The emerging transition metal carbides and nitrides, known as MXene with empirical formula Mn+1XnTx, have generated widespread attention and demonstrated impressive potential in various fields. The fabrication of 2-D novel MXene and its composites and their characterizations are applicable to vast applications in different areas such as energy storage, gas sensors, catalysis, and biomedical applications. In this review, the main focus is on the various synthesis methods, their properties, and biomedical applications. This review provides detailed illustrations of MXenes for many biomedical applications, including bioimaging, drug delivery, therapies, biosensors, tissue engineering, and antibacterial reagents. The challenges and future prospects were highlighted in a comprehensive manner, and the existing problems and potential for MXene-based biomaterials were analyzed with the goal of accelerating their use in the biomedical field.
Collapse
Affiliation(s)
- Sarvesh Kumar Avinashi
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rajat Kumar Mishra
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rahul Singh
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Shweta
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Rakhi
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Zaireen Fatima
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Chandki Ram Gautam
- Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| |
Collapse
|
20
|
Li F, Mei S, Ye X, Yuan H, Li X, Tan J, Zhao X, Wu T, Chen X, Wu F, Xiang Y, Pan H, Huang M, Xue Z. Enhancing Lithium-Sulfur Battery Performance with MXene: Specialized Structures and Innovative Designs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404328. [PMID: 39052873 PMCID: PMC11423101 DOI: 10.1002/advs.202404328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Established in 1962, lithium-sulfur (Li-S) batteries boast a longer history than commonly utilized lithium-ion batteries counterparts such as LiCoO2 (LCO) and LiFePO4 (LFP) series, yet they have been slow to achieve commercialization. This delay, significantly impacting loading capacity and cycle life, stems from the long-criticized low conductivity of the cathode and its byproducts, alongside challenges related to the shuttle effect, and volume expansion. Strategies to improve the electrochemical performance of Li-S batteries involve improving the conductivity of the sulfur cathode, employing an adamantane framework as the sulfur host, and incorporating catalysts to promote the transformation of lithium polysulfides (LiPSs). 2D MXene and its derived materials can achieve almost all of the above functions due to their numerous active sites, external groups, and ease of synthesis and modification. This review comprehensively summarizes the functionalization advantages of MXene-based materials in Li-S batteries, including high-speed ionic conduction, structural diversity, shuttle effect inhibition, dendrite suppression, and catalytic activity from fundamental principles to practical applications. The classification of usage methods is also discussed. Finally, leveraging the research progress of MXene, the potential and prospects for its novel application in the Li-S field are proposed.
Collapse
Affiliation(s)
- Fei Li
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| | - Shijie Mei
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xing Ye
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Haowei Yuan
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xiaoqin Li
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Jie Tan
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xiaoli Zhao
- School of Materials Science and EngineeringXihua UniversityChengdu610039China
| | - Tongwei Wu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xiehang Chen
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| | - Fang Wu
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| | - Yong Xiang
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| | - Hong Pan
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Ming Huang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Zhiyu Xue
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| |
Collapse
|
21
|
Bugyna L, Bilská K, Boháč P, Pribus M, Bujdák J, Bujdáková H. Anti-Biofilm Effect of Hybrid Nanocomposite Functionalized with Erythrosine B on Staphylococcus aureus Due to Photodynamic Inactivation. Molecules 2024; 29:3917. [PMID: 39202995 PMCID: PMC11357139 DOI: 10.3390/molecules29163917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Resistant biofilms formed by Staphylococcus aureus on medical devices pose a constant medical threat. A promising alternative to tackle this problem is photodynamic inactivation (PDI). This study focuses on a polyurethane (PU) material with an antimicrobial surface consisting of a composite based on silicate, polycation, and erythrosine B (EryB). The composite was characterized using X-ray diffraction and spectroscopy methods. Anti-biofilm effectiveness was determined after PDI by calculation of CFU mL-1. The liquid PU precursors penetrated a thin silicate film resulting in effective binding of the PU/silicate composite and the PU bulk phases. The incorporation of EryB into the composite matrix did not significantly alter the spectral properties or photoactivity of the dye. A green LED lamp and laser were used for PDI, while irradiation was performed for different periods. Preliminary experiments with EryB solutions on planktonic cells and biofilms optimized the conditions for PDI on the nanocomposite materials. Significant eradication of S. aureus biofilm on the composite surface was achieved by irradiation with an LED lamp and laser for 1.5 h and 10 min, respectively, resulting in a 10,000-fold reduction in biofilm growth. These results demonstrate potential for the development of antimicrobial polymer surfaces for modification of medical materials and devices.
Collapse
Affiliation(s)
- Larysa Bugyna
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (L.B.); (K.B.)
| | - Katarína Bilská
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (L.B.); (K.B.)
| | - Peter Boháč
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (P.B.); (M.P.); (J.B.)
| | - Marek Pribus
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (P.B.); (M.P.); (J.B.)
| | - Juraj Bujdák
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (P.B.); (M.P.); (J.B.)
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia; (L.B.); (K.B.)
| |
Collapse
|
22
|
Pandey S, Oh Y, Ghimire M, Son JW, Lee M, Jun Y. Value addition of MXenes as photo-/electrocatalysts in water splitting for sustainable hydrogen production. Chem Commun (Camb) 2024; 60:8789-8805. [PMID: 39081173 DOI: 10.1039/d4cc01811g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The energy transition from fossil fuel-based to renewable energy is a global agenda. At present, a major concern in the green hydrogen economy is the demand for clean fuels and non-noble materials to produce hydrogen through water splitting. Researchers are focusing on addressing this concern with the help of the development of appropriate non-noble-based photo-/electrocatalytic materials. A new class of two-dimensional materials, MXenes, have recently shown tremendous potential for water splitting to produce H2via a photoelectrochemical process. The unique properties of emerging 2D MXene materials, such as hydrophilic surface functionalities, higher surface-to-volume ratios, and inherent flexibility, present these materials as appropriate photo-/electrocatalytic materials. Unique value addition and innovative strategies such as the introduction of end-group modification, heterojunctions, and nanostructure engineering have shown the potential of MXene materials as emerging photo-/electrocatalysts for water splitting. When integrated with conventional noble metal catalysts, MXene-based catalysts demonstrated a lower overpotential for hydrogen and oxygen evolution reactions and a remarkable boost in performance for enhanced H2 production rates surpassing those of pristine noble metal-based catalysts. These promote future perspectives for the utilization of chemically synthesized MXenes as alternative photo-/electrocatalysts. Future research direction should focus on MXene synthesis and utilization for surface modification, composite formation, stabilization, and optimization in synthesis methods and post-synthesis treatments. This review highlights the progress in the understanding of fundamental mechanisms and issues associated with water splitting, influencing factors of MXenes, their value addition role, and application strategies for water splitting, including performance, challenges, and outlook of MXene-based photo-/electrocatalysts, in the last five years.
Collapse
Affiliation(s)
- Sudeshana Pandey
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yongsuk Oh
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Mukesh Ghimire
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Ji-Won Son
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
- Energy Materials Research Center, Clean Energy Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Minoh Lee
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yongseok Jun
- Department of Energy Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea.
- Energy Materials Research Center, Clean Energy Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
23
|
Zahra T, Javeria U, Jamal H, Baig MM, Akhtar F, Kamran U. A review of biocompatible polymer-functionalized two-dimensional materials: Emerging contenders for biosensors and bioelectronics applications. Anal Chim Acta 2024; 1316:342880. [PMID: 38969417 DOI: 10.1016/j.aca.2024.342880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/07/2024]
Abstract
Bioelectronics, a field pivotal in monitoring and stimulating biological processes, demands innovative nanomaterials as detection platforms. Two-dimensional (2D) materials, with their thin structures and exceptional physicochemical properties, have emerged as critical substances in this research. However, these materials face challenges in biomedical applications due to issues related to their biological compatibility, adaptability, functionality, and nano-bio surface characteristics. This review examines surface modifications using covalent and non-covalent-based polymer-functionalization strategies to overcome these limitations by enhancing the biological compatibility, adaptability, and functionality of 2D nanomaterials. These surface modifications aim to create stable and long-lasting therapeutic effects, significantly paving the way for the practical application of polymer-functionalized 2D materials in biosensors and bioelectronics. The review paper critically summarizes the surface functionalization of 2D nanomaterials with biocompatible polymers, including g-C3N4, graphene family, MXene, BP, MOF, and TMDCs, highlighting their current state, physicochemical structures, synthesis methods, material characteristics, and applications in biosensors and bioelectronics. The paper concludes with a discussion of prospects, challenges, and numerous opportunities in the evolving field of bioelectronics.
Collapse
Affiliation(s)
- Tahreem Zahra
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Umme Javeria
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Hasan Jamal
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Mirza Mahmood Baig
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan; Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Farid Akhtar
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden.
| | - Urooj Kamran
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden; Institute of Advanced Machinery Design Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Hameed S, Sharif S, Ovais M, Xiong H. Emerging trends and future challenges of advanced 2D nanomaterials for combating bacterial resistance. Bioact Mater 2024; 38:225-257. [PMID: 38745587 PMCID: PMC11090881 DOI: 10.1016/j.bioactmat.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The number of multi-drug-resistant bacteria has increased over the last few decades, which has caused a detrimental impact on public health worldwide. In resolving antibiotic resistance development among different bacterial communities, new antimicrobial agents and nanoparticle-based strategies need to be designed foreseeing the slow discovery of new functioning antibiotics. Advanced research studies have revealed the significant disinfection potential of two-dimensional nanomaterials (2D NMs) to be severed as effective antibacterial agents due to their unique physicochemical properties. This review covers the current research progress of 2D NMs-based antibacterial strategies based on an inclusive explanation of 2D NMs' impact as antibacterial agents, including a detailed introduction to each possible well-known antibacterial mechanism. The impact of the physicochemical properties of 2D NMs on their antibacterial activities has been deliberated while explaining the toxic effects of 2D NMs and discussing their biomedical significance, dysbiosis, and cellular nanotoxicity. Adding to the challenges, we also discussed the major issues regarding the current quality and availability of nanotoxicity data. However, smart advancements are required to fabricate biocompatible 2D antibacterial NMs and exploit their potential to combat bacterial resistance clinically.
Collapse
Affiliation(s)
- Saima Hameed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ovais
- BGI Genomics, BGI Shenzhen, Shenzhen, 518083, Guangdong, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
25
|
Wu Y, Li X, Fu X, Huang X, Zhang S, Zhao N, Ma X, Saiding Q, Yang M, Tao W, Zhou X, Huang J. Innovative Nanotechnology in Drug Delivery Systems for Advanced Treatment of Posterior Segment Ocular Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403399. [PMID: 39031809 PMCID: PMC11348104 DOI: 10.1002/advs.202403399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Indexed: 07/22/2024]
Abstract
Funduscopic diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), significantly impact global visual health, leading to impaired vision and irreversible blindness. Delivering drugs to the posterior segment of the eye remains a challenge due to the presence of multiple physiological and anatomical barriers. Conventional drug delivery methods often prove ineffective and may cause side effects. Nanomaterials, characterized by their small size, large surface area, tunable properties, and biocompatibility, enhance the permeability, stability, and targeting of drugs. Ocular nanomaterials encompass a wide range, including lipid nanomaterials, polymer nanomaterials, metal nanomaterials, carbon nanomaterials, quantum dot nanomaterials, and so on. These innovative materials, often combined with hydrogels and exosomes, are engineered to address multiple mechanisms, including macrophage polarization, reactive oxygen species (ROS) scavenging, and anti-vascular endothelial growth factor (VEGF). Compared to conventional modalities, nanomedicines achieve regulated and sustained delivery, reduced administration frequency, prolonged drug action, and minimized side effects. This study delves into the obstacles encountered in drug delivery to the posterior segment and highlights the progress facilitated by nanomedicine. Prospectively, these findings pave the way for next-generation ocular drug delivery systems and deeper clinical research, aiming to refine treatments, alleviate the burden on patients, and ultimately improve visual health globally.
Collapse
Affiliation(s)
- Yue Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xin Li
- Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xueyu Fu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | | | - Nan Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaowei Ma
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Mei Yang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| |
Collapse
|
26
|
Wang Q, Jiu R, Wang Y, Li Z, Chen J, Liu H, Liu J, Cao J. Degradation and detection of organophosphorus pesticides based on peptides and MXene-peptide composite materials. Analyst 2024; 149:3951-3960. [PMID: 38940008 DOI: 10.1039/d4an00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Safety problems caused by organophosphorus pesticide (OP) residues are constantly occurring, so the development of new methods for the degradation and detection of OPs is of great scientific significance. In the present study, β-sheet peptides and β-hairpin peptides for catalyzing the hydrolysis of OPs were designed and synthesized. The peptide sequences with the highest hydrolytic activity (EHSGGVTVDPPLTVEHSAG) were screened by investigating the effect of the location of the active sites of the peptide and the peptide's structure on the degradation of OPs. In addition, the relationship between the peptides' conformation and hydrolytic activity was further analyzed based on density functional theory calculations. The noncovalent interactions of the peptides with the OPs and the electrostatic potential on the molecular surface and molecular docking properties were also investigated. It was found that peptides with approximate active amino acids consisting of the catalytic triad and with the hairpin structure had enhanced hydrolytic activity toward the hydrolysis of OPs. To develop an electrochemical sensor technique to detect OPs, the conductive MXene (Ti3C2) material was first immobilized with a caffeic acid monolayer via enediol-metal complex chemistry and then bound with the β-hairpin peptide (EHSGGVTVDPPLTVEHSAG) via carboxy-amine condensation chemistry between the -COOH of caffeic acid and the -NH2 of the peptide to prepare a MXene-peptide composite. Then, the prepared composite was modified on the surface of a glassy carbon electrode to construct an electrochemical sensor for the detection of OPs. The developed technique could be used to monitor OPs within 15 min with a two orders of linear working range and with a detection limit of 0.15 μM. Meanwhile, the sensor showed good reliability for the detection of OPs in real vegetables.
Collapse
Affiliation(s)
- Qiuying Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Ruiqing Jiu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yunyao Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Zongda Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jianan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Haochi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jia Cao
- Tianjin Vocational College of Bioengineering, China
| |
Collapse
|
27
|
Nguyen TT, Wang H, Sun G, Kong J, Zhang X. Ultrasensitive electrochemical microRNA-21 detection based on MXene and ATRP photocatalytic strategy. Mikrochim Acta 2024; 191:472. [PMID: 39028442 DOI: 10.1007/s00604-024-06542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
A Ti3C2TxMXene-based biosensor has been developed and the photocatalytic atom transfer radical polymerization (photo ATRP) amplification strategy applied to detect target miRNA-21 (tRNA). Initially, Ti3C2TxMXene nanosheets were synthesized from the Ti3AlC2 MAX precursor via selective aluminum etching. Then, functionalization of Ti3C2TxMXene nanosheets with 3-aminopropyl triethoxysilane (APTES) via silylation reactions to facilitate covalent bonding with hairpin DNA biomolecules specifically designed for tRNA detection. Upon binding with the tRNA, the hairpin DNA liberated the azide (N₃) group, initiating a click reaction to affix to the photo ATRP initiator. Through the ATRP photoreaction, facilitated by an organic photoredox catalyst and light, a significant amount of ferrocenyl methyl methacrylate (FMMA) monomer was immobilized on the electrode. Therefore, the electrochemical signal is amplified. The electrochemical efficacy of the biosensor was assessed using square wave voltammetry (SWV). Under optimized conditions, the biosensor demonstrated remarkable sensitivity in detecting tRNA, with a linear detection range from 0.01 fM to 10 pM and a detection limit of 2.81 aM. The findings elucidate that the developed biosensor, in conjunction with the photo ATRP strategy, offers reproducibility, stability, and increased sensitivity, underscoring its potential applications within the experimental medical sector of the biomolecular industry.
Collapse
Affiliation(s)
- Thao Thi Nguyen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Huifang Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, 518060, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Li B, Fu G, Liu C, Lu Y, Mi Y, Yan D, Wu J, Dai X, Cao D, Liu W, Liu X. Ti 2C 3 MXene-based nanocomposite as an intelligent nanoplatform for efficient mild hyperthermia treatment. J Colloid Interface Sci 2024; 665:389-398. [PMID: 38537587 DOI: 10.1016/j.jcis.2024.03.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Photothermal therapy (PTT) has attracted much attention due to its less invasive, controllable and highly effective nature. However, PTT also suffers from intrinsic cancer resistance mediated by cell survival pathways. These survival pathways are regulated by a variety of proteins, among which heat shock protein (HSP) triggers thermotolerance and protects tumor cells from hyperthermia-induced apoptosis. Confronted by this challenge, we propose and validate here a novel MXene-based HSP-inhibited mild photothermal platform, which significantly enhances the sensitivity of tumor cells to heat-induced stress and thus improves the PPT efficacy. The Ti3C2@Qu nanocomposites are constructed by utilizing the high photothermal conversion ability of Ti3C2 nanosheets in combination with quercetin (Qu) as an inhibitor of HSP70. Qu molecules are loaded onto the nanoplatform in a pH-sensitive controlled release manner. The acidic environment of the tumor causes the burst-release of Qu molecules, which deplete the level of heat shock protein 70 (HSP70) in tumor cells and leave the tumor cells out from the protection of the heat-resistant survival pathway in advance, thus sensitizing the hyperthermia efficacy. The nanostructure, photothermal properties, pH-responsive controlled release, synergistic photothermal ablation of tumor cells in vitro and in vivo, and hyperthermia effect on subcellular structures of the Ti3C2@Qu nanocomposites were systematically investigated.
Collapse
Affiliation(s)
- Bai Li
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Gege Fu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Chao Liu
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yang Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yingqian Mi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jiahang Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xinhua Dai
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Dianbo Cao
- Department of Radiology, The First Hospital of Jilin University. Chang Chun 130021, China.
| | - Wanchao Liu
- Anesthesia Department, Jilin Provincial Armed Police Corps Hospital, Changchun 130052, China.
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| |
Collapse
|
29
|
Wu P, Li Y, Yang A, Tan X, Chu J, Zhang Y, Yan Y, Tang J, Yuan H, Zhang X, Xiao S. Advances in 2D Materials Based Gas Sensors for Industrial Machine Olfactory Applications. ACS Sens 2024; 9:2728-2776. [PMID: 38828988 DOI: 10.1021/acssensors.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Aijun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Xiangyu Tan
- Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan 650217, China
| | - Jifeng Chu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Yifan Zhang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongxu Yan
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Ju Tang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
30
|
Rasheed T, Ferry DB, Iqbal ZF, Imran M, Usman M. Cutting-edge developments in MXene-derived functional hybrid nanostructures: A promising frontier for next-generation water purification membranes. CHEMOSPHERE 2024; 357:141955. [PMID: 38614403 DOI: 10.1016/j.chemosphere.2024.141955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
A novel family of multifunctional nanomaterials called MXenes is quickly evolving, and it has potential applications that are comparable to those of graphene. This article provides a current explanation of the design and performance assessment of MXene-based membranes. The production of MXenes nanosheets are first described, with an emphasis on exfoliation, dispersion stability, and processability, which are essential elements for membrane construction. Further, critical discussion is also given to MXenes potential applications in Vacuum assisted filtration, casting method, Hot press method, electrospinning and electrochemical deposition and layer-by-layer assembly for the creation of MXene and MXene derived nanocomposite membranes. Additionally, the discussion is carried forward to give an insight to the modification methods for the construction of MXene-based membrane are described in the literature, including pure or intercalated nanomaterials, surface modifiers and miscellaneous two-dimensional nanomaterials. Furthermore, the review article highlights the potential utilization of MXene and MXene based membranes in separation and purification processes including removal of small organic molecules, heavy metals, oil-water separation and desalination. Finally, the perspective use of MXenes strong catalytic activity and electrical conductivity for specialized applications that are difficult for other nanomaterials to accomplish are discussed in conclusion and future prospectus section of the manuscript. Overall, important information is given to help the communities of materials science and membranes to better understand the potential of MXenes for creating cutting-edge separation and purification membranes.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Darim Badur Ferry
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Zeenat Fatima Iqbal
- Department of Chemistry, The University of Engineering and Technology, Lahore-54000, Punjab, Pakistan
| | - Muhammad Imran
- Research center for Advanced Materials Science (RCAMS), Department of chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
31
|
Ahmad K, Raza W, Khan RA. Ti 3AlC 2 MAX Phase Modified Screen-Printed Electrode for the Fabrication of Hydrazine Sensor. MICROMACHINES 2024; 15:633. [PMID: 38793207 PMCID: PMC11122756 DOI: 10.3390/mi15050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Hydrazine is considered a powerful reducing agent and catalyst, showing diverse applications in agricultural industries, toxic degradation research, and wastewater management. Additionally, hydrazine can trigger some specific reactions when combined with suitable oxidants. Due to its highly polar nature, hydrazine can easily dissolve in alcohol, water, and various other polar solvents. Therefore, it can be extensively utilized in different areas of application and industries such as rocketry and various chemical applications. Despite its beneficial properties, hydrazine is unstable, posing significant risk due to its highly toxic nature. It is extremely hazardous to both human health and the environment. It can cause various illnesses and symptoms such as dizziness, temporary blindness, damage to the central nervous system, and even death when inhaled in sufficient quantities. Therefore, it is highly important to monitor the level of hydrazine to prevent its toxic and hazardous effects on human beings and the environment. In the present study, we discuss the simple fabrication of a disposable cost-effective and eco-friendly hydrazine sensor. We used a screen-printed carbon electrode, i.e., SPCE, as a base for the construction of a hydrazine sensor. The Ti3AlC2 MAX has been used as a suitable and efficient electrode material for the fabrication of disposable hydrazine sensors. We modified the active surface of the SPCE using a drop-casting approach. The resulting Ti3AlC2 MAX modified SPCE (Ti3AlC2@SPCE) has been utilized as an efficient and low-cost hydrazine sensor. Cyclic voltammetry, i.e., CV, and linear sweep voltammetry, viz., LSV, was employed as a sensing technique in this study. The optimization of pH and electrode material loading was conducted. The Ti3AlC2@SPCE exhibited excellent sensing performance toward hydrazine oxidation. A reasonable detection limit (0.01 µM) was achieved for hydrazine sensing. The fabricated sensor also demonstrated a reasonable linear range of 1-50 µM. This work provides the design and fabrication of simple disposable Ti3AlC2@SPCE as a suitable electrode for the determination of hydrazine using LSV technology.
Collapse
Affiliation(s)
- Khursheed Ahmad
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Waseem Raza
- Department of Materials Science and Engineering, WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
32
|
Rizwan M, Roy VAL, Abbasi R, Irfan S, Khalid W, Atif M, Ali Z. Novel 2D MXene Cobalt Ferrite (CoF@Ti 3C 2) Composite: A Promising Photothermal Anticancer In Vitro Study. ACS Biomater Sci Eng 2024; 10:2074-2087. [PMID: 38111288 DOI: 10.1021/acsbiomaterials.3c01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In search of materials with superior capability of light-to-heat (photothermal) conversion, biocompatibility, and confinement of active photothermal materials within the cells, novel magnetic MXene-based nanocomposites are found to possess all of these criteria. The CoF@Ti3C2 composite is fabricated by a simple two-step method, including an exfoliation strategy followed by sonochemical method. MXene composite has been modified with polyvinylpyrrolidone (PVP) to improve the stability in physiological conditions. The synthesized composite was characterized with multiple analytical tools. In vitro photothermal conversion efficiency of composite was determined by the time constant method and achieved η = 34.2% with an NIR 808 nm laser. In vitro, cytotoxicity studies conducted on human malignant melanoma (Ht144) and cells validated the photothermal property of the CoF@Ti3C2-PVP composite in the presence of an NIR laser (808 nm, 1.0 W cm-2), with significantly increased cytotoxicity. Calculated IC50 values were 86 μg/mL with laser, compared to 226 μg/mL without the presence of NIR laser. Microscopic results demonstrated increased apoptosis in the presence of NIR laser. Additionally, hemolysis assay confirmed biocompatibility of CoF@Ti3C2-PVP composite for intravenous applications at the IC50 concentration. The research described in this work expands the potential applications of MXene-based nanoplatforms in the biomedical field, particularly in photothermal therapy (PTT). Furthermore, the addition of cobalt ferrite serves as a magnetic nanocomposite, which eventually helps to confine therapeutic photothermal materials inside the cells, provides enhanced photothermal conversion efficiency, and creates externally controlled theranostic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong
| | - Rashda Abbasi
- Institute of Biomedical and Genetic Engineering, 24 Mauve Area, Sector G-9/1, Islamabad 44000, Pakistan
| | - Sumaira Irfan
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Waqas Khalid
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Muhammad Atif
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| | - Zulqurnain Ali
- Functional Materials Lab, Department of Physics, Air University, Sector E-9, Islamabad 44000, Pakistan
| |
Collapse
|
33
|
Iravani S, Varma RS. MXenes for Bioinspired Soft Actuators: Advancements in Angle-Independent Structural Colors and Beyond. NANO-MICRO LETTERS 2024; 16:142. [PMID: 38436795 PMCID: PMC10912076 DOI: 10.1007/s40820-024-01367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics, biomedical devices, and biomimetic systems. These actuators mimic the natural movements of living organisms, aiming to attain enhanced flexibility, adaptability, and versatility. On the other hand, angle-independent structural color has been achieved through innovative design strategies and engineering approaches. By carefully controlling the size, shape, and arrangement of nanostructures, researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle. One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical, electrical, and optical properties. The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities. Overcoming material compatibility issues, improving color reproducibility, scalability, durability, power supply efficiency, and cost-effectiveness will play vital roles in advancing these technologies. This perspective appraises the development of bioinspired MXene-centered soft actuators with angle-independent structural color in soft robotics.
Collapse
Affiliation(s)
- Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
34
|
Silva FALS, Chang HP, Incorvia JAC, Oliveira MJ, Sarmento B, Santos SG, Magalhães FD, Pinto AM. 2D Nanomaterials and Their Drug Conjugates for Phototherapy and Magnetic Hyperthermia Therapy of Cancer and Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306137. [PMID: 37963826 DOI: 10.1002/smll.202306137] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Indexed: 11/16/2023]
Abstract
Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Hui-Ping Chang
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jean Anne C Incorvia
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- IUCS - CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| |
Collapse
|
35
|
Li B, Yang W, Shu R, Yang H, Yang F, Dai W, Chen W, Chan YK, Bai D, Deng Y. Antibacterial and Angiogenic (2A) Bio-Heterojunctions Facilitate Infectious Ischemic Wound Regeneration via an Endogenous-Exogenous Bistimulatory Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307613. [PMID: 37848208 DOI: 10.1002/adma.202307613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
In infectious ischemic wounds, a lack of blood perfusion significantly worsens microbe-associated infection symptoms and frequently complicates healing. To overcome this daunting issue, antibacterial and angiogenic (2A) bio-heterojunctions (bio-HJs) consisting of CuS/MXene heterojunctions and a vascular endothelial growth factor (VEGF)-mimicking peptide (VMP) are devised and developed to accelerate infectious cutaneous regeneration by boosting angiogenesis via an endogenous-exogenous bistimulatory (EEB) strategy. Assisted by near-infrared irradiation, the bio-HJ platform exhibits versatile synergistic photothermal, photodynamic, and chemodynamic effects for robust antibacterial efficacy. In addition, copper ions liberated from 2A bio-HJs elevate VEGF secretion from fibroblasts, which provokes VEGF receptors (VEGFR) activation through an endogenous pathway, whereas VMP itself promotes an exogenous pathway to facilitate endothelial cell multiplication and tube formation by directly activating the VEGFR signaling pathway. Moreover, employing an in vivo model of infectious ischemic wounds, it is confirmed that the EEB strategy can considerably boost cutaneous regeneration through pathogen elimination, angiogenesis promotion, and collagen deposition. As envisaged, this work leads to the development of a powerful 2A bio-HJ platform that can serve as an effective remedy for bacterial invasion-induced ischemic wounds through the EEB strategy.
Collapse
Affiliation(s)
- Bin Li
- West China Hospital of Stomatology, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Weizhong Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Hang Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Wanxi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- West China Hospital of Stomatology, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
36
|
Ye S, Zhang H, Lai H, Xu J, Yu L, Ye Z, Yang L. MXene: A wonderful nanomaterial in antibacterial. Front Bioeng Biotechnol 2024; 12:1338539. [PMID: 38361792 PMCID: PMC10867285 DOI: 10.3389/fbioe.2024.1338539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Increasing bacterial infections and growing resistance to available drugs pose a serious threat to human health and the environment. Although antibiotics are crucial in fighting bacterial infections, their excessive use not only weakens our immune system but also contributes to bacterial resistance. These negative effects have caused doctors to be troubled by the clinical application of antibiotics. Facing this challenge, it is urgent to explore a new antibacterial strategy. MXene has been extensively reported in tumor therapy and biosensors due to its wonderful performance. Due to its large specific surface area, remarkable chemical stability, hydrophilicity, wide interlayer spacing, and excellent adsorption and reduction ability, it has shown wonderful potential for biopharmaceutical applications. However, there are few antimicrobial evaluations on MXene. The current antimicrobial mechanisms of MXene mainly include physical damage, induced oxidative stress, and photothermal and photodynamic therapy. In this paper, we reviewed MXene-based antimicrobial composites and discussed the application of MXene in bacterial infections to guide further research in the antimicrobial field.
Collapse
Affiliation(s)
- Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huichao Zhang
- Stomatology College of Chifeng University, Chifeng, China
| | - Huiyan Lai
- College of Chemistry and Chemical Engineering, Xiamen University, and Discipline of Intelligent Instrument and Equipment, Xiamen, China
| | - Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
37
|
Rashid B, Sridewi N, Anwar A, Shahabbudin S, Mon AA. A review on human cancer and potential role of MXenes in cancer therapy. E3S WEB OF CONFERENCES 2024; 488:03021. [DOI: 10.1051/e3sconf/202448803021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Cancer is the second leading cause of death worldwide and is having a serious impact on the global economy. Various treatment modalities are in use to treat cancer but none of the techniques is risk-free. Recently, various nanomaterials such as gold, boron, and other compounds have been investigated for radiotherapy and as anti-cancer drug carriers with promising results. MXenes are 2D novel nanomaterials and their biomedical and anticancer properties are gaining interest due to their high biomedical activity, less bio-toxicity, and photo-responsive nature. However, the biological properties of MXense have not been studied extensively, therefore, limited data is published on its in-vitro and in-vivo anticancer activities, drug loading efficacy, targeted release, and on its photothermal therapy response. In this review, we have discussed the use of nanoparticles and MXenen nanomaterial in cancer therapy. Furthermore, the role of Mxene as a photothermal agent and drug carrier has also been emphasized, along with the present challenges for the use of nanomaterials in the treatment of cancer.
Collapse
|
38
|
Gao F, Xue C, Zhang T, Zhang L, Zhu GY, Ou C, Zhang YZ, Dong X. MXene-Based Functional Platforms for Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302559. [PMID: 37142810 DOI: 10.1002/adma.202302559] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Recently, 2D transition metal carbide, nitride, and carbonitrides (MXenes) materials stand out in the field of tumor therapy, particularly in the construction of functional platforms for optimal antitumor therapy due to their high specific surface area, tunable performance, strong absorption of near-infrared light as well as preferable surface plasmon resonance effect. In this review, the progress of MXene-mediated antitumor therapy is summarized after appropriate modifications or integration procedures. The enhanced antitumor treatments directly performed by MXenes, the significant improving effect of MXenes on different antitumor therapies, as well as the MXene-mediated imaging-guided antitumor strategies are discussed in detail. Moreover, the existing challenges and future development directions of MXenes in tumor therapy are presented.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chun Xue
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Tian Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Lu Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Guo-Yin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Changjin Ou
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yi-Zhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
39
|
Farasati Far B, Rabiee N, Iravani S. Environmental implications of metal-organic frameworks and MXenes in biomedical applications: a perspective. RSC Adv 2023; 13:34562-34575. [PMID: 38024989 PMCID: PMC10668918 DOI: 10.1039/d3ra07092a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Metal-organic frameworks (MOFs) and MXenes have demonstrated immense potential for biomedical applications, offering a plethora of advantages. MXenes, in particular, exhibit robust mechanical strength, hydrophilicity, large surface areas, significant light absorption potential, and tunable surface terminations, among other remarkable characteristics. Meanwhile, MOFs possess high porosity and large surface area, making them ideal for protecting active biomolecules and serving as carriers for drug delivery, hence their extensive study in the field of biomedicine. However, akin to other (nano)materials, concerns regarding their environmental implications persist. The number of studies investigating the toxicity and biocompatibility of MXenes and MOFs is growing, albeit further systematic research is needed to thoroughly understand their biosafety issues and biological effects prior to clinical trials. The synthesis of MXenes often involves the use of strong acids and high temperatures, which, if not properly managed, can have adverse effects on the environment. Efforts should be made to minimize the release of harmful byproducts and ensure proper waste management during the production process. In addition, it is crucial to assess the potential release of MXenes into the environment during their use in biomedical applications. For the biomedical applications of MOFs, several challenges exist. These include high fabrication costs, poor selectivity, low capacity, the quest for stable and water-resistant MOFs, as well as difficulties in recycling/regeneration and maintaining chemical/thermal/mechanical stability. Thus, careful consideration of the biosafety issues associated with their fabrication and utilization is vital. In addition to the synthesis and manufacturing processes, the ultimate utilization and fate of MOFs and MXenes in biomedical applications must be taken into account. While numerous reviews have been published regarding the biomedical applications of MOFs and MXenes, this perspective aims to shed light on the key environmental implications and biosafety issues, urging researchers to conduct further research in this field. Thus, the crucial aspects of the environmental implications and biosafety of MOFs and MXenes in biomedicine are thoroughly discussed, focusing on the main challenges and outlining future directions.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology Tehran 1684611367 Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University Sydney New South Wales 2109 Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University Perth WA 6150 Australia
| | | |
Collapse
|
40
|
Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. JOURNAL OF MATERIOMICS 2023; 9:930-958. [DOI: 10.1016/j.jmat.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Abstract
MXenes with their unique electronic, optical, chemical, and mechanical properties have shown great promise in soft robotics. MXene-based soft actuators have been designed to display ultrafast actuations and recovery speeds as well as angle-independent structural colors in response to vapor. Several studies have developed soft actuators by combining MXenes with other materials to mimic the movement of natural organisms. Thus, MXene-based soft actuators have the potential to revolutionize the field of soft robotics and flexible electronics (e.g., wearable devices and artificial muscles). MXene-based artificial muscles have been explored for use in kinetic soft robotics as actuators in microsystems requiring exceptional compliance. MXene-based sensors and actuators have already been developed for human-like sensors and photodetection. However, there are still challenges that need to be addressed in such applications, such as the design of stretchable and compliant robotic skins with a high-level functional integration for soft robotics. The integration of various devices, such as power sources, sensors, and actuators, into soft robotics is another crucial challenge. Despite the excellent stretchability and tensile strength of MXene-based composites, there is a vital need to develop their mechanical and electrochemical features and grant them multi-functionalities. Herein, recent developments pertaining to the applications of MXenes and their composites in soft robotics are discussed with a focus on the important challenges and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| |
Collapse
|
42
|
Fusco L, Gazzi A, Shuck CE, Orecchioni M, Ahmed EI, Giro L, Zavan B, Yilmazer A, Ley K, Bedognetti D, Gogotsi Y, Delogu LG. V 4 C 3 MXene Immune Profiling and Modulation of T Cell-Dendritic Cell Function and Interaction. SMALL METHODS 2023; 7:e2300197. [PMID: 37291737 DOI: 10.1002/smtd.202300197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Indexed: 06/10/2023]
Abstract
Although vanadium-based metallodrugs are recently explored for their effective anti-inflammatory activity, they frequently cause undesired side effects. Among 2D nanomaterials, transition metal carbides (MXenes) have received substantial attention for their promise as biomedical platforms. It is hypothesized that vanadium immune properties can be extended to MXene compounds. Therefore, vanadium carbide MXene (V4 C3 ) is synthetized, evaluating its biocompatibility and intrinsic immunomodulatory effects. By combining multiple experimental approaches in vitro and ex vivo on human primary immune cells, MXene effects on hemolysis, apoptosis, necrosis, activation, and cytokine production are investigated. Furthermore, V4 C3 ability is demonstrated to inhibit T cell-dendritic cell interactions, evaluating the modulation of CD40-CD40 ligand interaction, two key costimulatory molecules for immune activation. The material biocompatibility at the single-cell level on 17 human immune cell subpopulations by single-cell mass cytometry is confirmed. Finally, the molecular mechanism underlying V4 C3 immune modulation is explored, demonstrating a MXene-mediated downregulation of antigen presentation-associated genes in primary human immune cells. The findings set the basis for further V4 C3 investigation and application as a negative modulator of the immune response in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Laura Fusco
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35121, Italy
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| | - Arianna Gazzi
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35121, Italy
| | - Christopher E Shuck
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | | | - Eiman I Ahmed
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| | - Linda Giro
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35121, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, 48033, Italy
| | - Açelya Yilmazer
- Stem Cell Institute, Ankara University, Ankara, 06520, Turkey
- Department of Biomedical Engineering, Ankara University, Ankara, 06830, Turkey
| | - Klaus Ley
- La Jolla Institute for Immunology, San Diego, CA, 92037, USA
| | - Davide Bedognetti
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, 16132, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Lucia Gemma Delogu
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35121, Italy
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
43
|
Ganesan S, Ramajayam K, Kokulnathan T, Palaniappan A. Recent Advances in Two-Dimensional MXene-Based Electrochemical Biosensors for Sweat Analysis. Molecules 2023; 28:4617. [PMID: 37375172 DOI: 10.3390/molecules28124617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Sweat, a biofluid secreted naturally from the eccrine glands of the human body, is rich in several electrolytes, metabolites, biomolecules, and even xenobiotics that enter the body through other means. Recent studies indicate a high correlation between the analytes' concentrations in the sweat and the blood, opening up sweat as a medium for disease diagnosis and other general health monitoring applications. However, low concentration of analytes in sweat is a significant limitation, requiring high-performing sensors for this application. Electrochemical sensors, due to their high sensitivity, low cost, and miniaturization, play a crucial role in realizing the potential of sweat as a key sensing medium. MXenes, recently developed anisotropic two-dimensional atomic-layered nanomaterials composed of early transition metal carbides or nitrides, are currently being explored as a material of choice for electrochemical sensors. Their large surface area, tunable electrical properties, excellent mechanical strength, good dispersibility, and biocompatibility make them attractive for bio-electrochemical sensing platforms. This review presents the recent progress made in MXene-based bio-electrochemical sensors such as wearable, implantable, and microfluidic sensors and their applications in disease diagnosis and developing point-of-care sensing platforms. Finally, the paper discusses the challenges and limitations of MXenes as a material of choice in bio-electrochemical sensors and future perspectives on this exciting material for sweat-sensing applications.
Collapse
Affiliation(s)
- Selvaganapathy Ganesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Kalaipriya Ramajayam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Arunkumar Palaniappan
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
44
|
Yao M, Zhang G, Shao D, Ding S, Li L, Li H, Zhou C, Luo B, Lu L. Preparation of chitin/MXene/poly(L-arginine) composite aerogel spheres for specific adsorption of bilirubin. Int J Biol Macromol 2023:125140. [PMID: 37270125 DOI: 10.1016/j.ijbiomac.2023.125140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Currently, hemoperfusion is clinically the most rapid and effective treatment for removing toxins from the blood. The core of hemoperfusion is the sorbent inside the hemoperfusion device. Due to the complex composition of the blood, adsorbents tend to adsorb substances such as proteins in the blood (non-specific adsorption) while adsorbing toxins. Hyperbilirubinemia is caused by excessive levels of bilirubin in the human blood, causing irreversible damage to the patient's brain and nervous system, and even leading to death. High adsorption and high biocompatibility adsorbents with specific bilirubin adsorption are urgently needed to treat hyperbilirubinemia. Herein, poly(L-arginine) (PLA) which can specifically adsorb bilirubin, was introduced into chitin/MXene (Ch/MX) composite aerogel spheres. Ch/MX/PLA prepared by supercritical CO2 technology had higher mechanical properties than Ch/MX and can withstand 50,000 times its own weight. The in vitro simulated hemoperfusion test showed that the adsorption capacity of Ch/MX/PLA was as high as 596.31 mg/g, which was 15.38 % higher than that of Ch/MX. Binary and ternary competitive adsorption tests showed that Ch/MX/PLA also had good adsorption capacity in the presence of a variety of interfering molecules. In addition, hemolysis rate testing and CCK-8 testing confirmed that Ch/MX/PLA had better biocompatibility and hemocompatibility. Ch/MX/PLA can meet the required properties of clinical hemoperfusion sorbents and has the ability to produce mass production. It has good application potential in the clinical treatment of hyperbilirubinemia.
Collapse
Affiliation(s)
- Mengru Yao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Guiyin Zhang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Danchun Shao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Shan Ding
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Lihua Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Hong Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Binghong Luo
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Lu Lu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
45
|
Su Y, Ye B, Zhang Z, Gao Q, Zeng L, Wan Y, Sun W, Chen S, Quan D, Yu J, Guo X. Photocatalytic oxygen evolution and antibacterial biomimetic repair membrane for diabetes wound repair via HIF1-α pathway. Mater Today Bio 2023; 20:100616. [PMID: 37025556 PMCID: PMC10070145 DOI: 10.1016/j.mtbio.2023.100616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/26/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
Diabetic wounds always have puzzled patients and caused serious social problems. Due to the lack of local blood vessels, severe hypoxia is generated in the defect area, which is an essential reason for the difficulty of wound healing. We have constructed a photocatalytic oxygen evolution and antibacterial biomimetic repair membrane to solve the problems of wound repair. A scanning electron microscope and transmission electron microscope characterized the biomimetic repair membrane. The oxygen evolution of the biomimetic membrane was tested by an oxygen meter. The excellent antibacterial performance of the biomimetic repair membrane was also verified by co-culture with Staphylococcus aureus and Escherichia coli. It was confirmed that the expression of collagen and HIF1-α in fibroblasts was significantly increased in vitro. And the mitochondrial activity of the vascular and nerve was increased considerably. In vivo, the healing time of diabetes wounds treated with the biomimetic repair membrane was significantly reduced, the collagen and the number of pores were increased considerably, and vascular regeneration was enhanced. The biomimetic repair membrane has an excellent performance in photocatalytic oxygen evolution and antibacterial and can significantly promote the repair of diabetes wounds. This will provide a promising treatment for diabetes wound repair.
Collapse
Affiliation(s)
- Yanlin Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
| | - Bing Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ziming Zhang
- Department of Orthopedics, Zaoyang First People's Hospital, Zaoyang, Hubei, 430022, China
| | - Qing Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
| | - Lian Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yizhou Wan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wenzhe Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daping Quan
- PCFM Lab, School of Chemistry and School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510000, China
| | - Jialin Yu
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 430022, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
46
|
Yang M, Wang L, Lu H, Dong Q. Advances in MXene-Based Electrochemical (Bio)Sensors for Neurotransmitter Detection. MICROMACHINES 2023; 14:mi14051088. [PMID: 37241710 DOI: 10.3390/mi14051088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Neurotransmitters are chemical messengers that play an important role in the nervous system's control of the body's physiological state and behaviour. Abnormal levels of neurotransmitters are closely associated with some mental disorders. Therefore, accurate analysis of neurotransmitters is of great clinical importance. Electrochemical sensors have shown bright application prospects in the detection of neurotransmitters. In recent years, MXene has been increasingly used to prepare electrode materials for fabricating electrochemical neurotransmitter sensors due to its excellent physicochemical properties. This paper systematically introduces the advances in MXene-based electrochemical (bio)sensors for the detection of neurotransmitters (including dopamine, serotonin, epinephrine, norepinephrine, tyrosine, NO, and H2S), with a focus on their strategies for improving the electrochemical properties of MXene-based electrode materials, and provides the current challenges and future prospects for MXene-based electrochemical neurotransmitter sensors.
Collapse
Affiliation(s)
- Meiqing Yang
- Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, China
| | - Lu Wang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haozi Lu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qizhi Dong
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
47
|
Zhang C, Zhang Y, Gu X, Ma C, Wang Y, Peng J, Zhai M, Kuang M, Ma H, Zhang X. Radiation synthesis of MXene/Ag nanoparticle hybrids for efficient photothermal conversion of polyurethane films. RSC Adv 2023; 13:15157-15164. [PMID: 37213340 PMCID: PMC10193123 DOI: 10.1039/d3ra02799f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023] Open
Abstract
Flexible conductive films based on light-to-heat conversion are promising for the next-generation electronic devices. A flexible waterborne polyurethane composite film (PU/MA) with excellent photothermal conversion performance was obtained by combination of PU and silver nanoparticle decorated MXene (MX/Ag). The silver nanoparticles (AgNPs) uniformly decorated on the MXene surface by γ-ray irradiation induced reduction. Because of the synergistic effect of MXene with outstanding light-to-heat conversion efficiency and the AgNPs with plasmonic effect, the surface temperature of the PU/MA-II (0.4%) composite with lower MXene content increased from room temperature to 60.7 °C at 5 min under 85 mW cm-2 light irradiation. Besides, the tensile strength of PU/MA-II (0.4%) increased from 20.9 MPa (pure PU) to 27.5 MPa. The flexible PU/MA composite film shows great potential in the field of thermal management of flexible wearable electronic devices.
Collapse
Affiliation(s)
- Chenghao Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Youwei Zhang
- Beijing Institute of Aeronautical Materials Beijing 100095 China
| | - Xiaoxia Gu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Cankun Ma
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Yicheng Wang
- Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jing Peng
- Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Minxuan Kuang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Huiling Ma
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Xiuqin Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| |
Collapse
|
48
|
Guo R, Hu D, Liu D, Jiang Q, Qiu J. MXene nanomaterials in biomedicine: A bibliometric perspective. Front Bioeng Biotechnol 2023; 11:1184275. [PMID: 37152656 PMCID: PMC10154466 DOI: 10.3389/fbioe.2023.1184275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose: MXene is two-dimensional (2D) nanomaterials that comprise transition metal carbides, nitrides, and carbonitrides. Their unique nanostructure attributes it a special role in medical applications. However, bibliometric studies have not been conducted in this field. Therefore, the aim of the present study was to conduct a bibliometric analysis to evaluate the global scientific output of MXene in biomedical research, explore the current situation of this field in the past years and predicte its research hotpots. Methods: We utilized visual analysis softwares Citespace and Bibliometrix to analyze all relevant documents published in the period of 2011-2022. The bibliometric records were obtained from the Web of Science Core Collection. Results: A total of 1,489 publications were analyzed in this study. We observed that China is the country with the largest number of publications, with Sichuan University being the institution with the highest number of publications in this field. The most publications on MXene medicine research in the past year were found primarily in journals about Chemistry/Materials/Physics. Moreover, ACS Applied Materials and Interfaces was found to be the most productive journal in this field. Co-cited references and keyword cluster analysis revealed that #antibacterial# and #photothermal therapy# are the research focus keyword and burst detection suggested that driven wearable electronics were newly-emergent research hot spots. Conclusion: Our bibliometric analysis indicates that research on MXene medical application remains an active field of study. At present, the research focus is on the application of MXene in the field of antibacterial taking advantage of its photothermal properties. In the future, wearable electronics is the research direction of MXene medical application.
Collapse
Affiliation(s)
- Runying Guo
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical College, Nanchang University, Nanchang, China
| | - Daorun Hu
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical College, Nanchang University, Nanchang, China
| | - Danrui Liu
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical College, Nanchang University, Nanchang, China
| | - Qingkun Jiang
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaxuan Qiu
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
49
|
Noor U, Mughal MF, Ahmed T, Farid MF, Ammar M, Kulsum U, Saleem A, Naeem M, Khan A, Sharif A, Waqar K. Synthesis and applications of MXene-based composites: a review. NANOTECHNOLOGY 2023; 34:262001. [PMID: 36972572 DOI: 10.1088/1361-6528/acc7a8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/26/2023] [Indexed: 06/18/2023]
Abstract
Recently, there has been considerable interest in a new family of transition metal carbides, carbonitrides, and nitrides referred to as MXenes (Ti3C2Tx) due to the variety of their elemental compositions and surface terminations that exhibit many fascinating physical and chemical properties. As a result of their easy formability, MXenes may be combined with other materials, such as polymers, oxides, and carbon nanotubes, which can be used to tune their properties for various applications. As is widely known, MXenes and MXene-based composites have gained considerable prominence as electrode materials in the energy storage field. In addition to their high conductivity, reducibility, and biocompatibility, they have also demonstrated outstanding potential for applications related to the environment, including electro/photocatalytic water splitting, photocatalytic carbon dioxide reduction, water purification, and sensors. This review discusses MXene-based composite used in anode materials, while the electrochemical performance of MXene-based anodes for Li-based batteries (LiBs) is discussed in addition to key findings, operating processes, and factors influencing electrochemical performance.
Collapse
Affiliation(s)
- Umar Noor
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Furqan Mughal
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, Riphah International University Islamabad, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Fayyaz Farid
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ammar
- Department of Chemical Engineering Technology, Government College University, Faisalabad 38000, Pakistan
| | - Umme Kulsum
- Department of Chemistry, Aligarh Muslim University, 202002, Aligarh, India
| | - Amna Saleem
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Mahnoor Naeem
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Aqsa Khan
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Ammara Sharif
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Kashif Waqar
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Pakistan
| |
Collapse
|
50
|
Zhang H, Wei T, Qiu Y, Zhang S, Liu Q, Hu G, Luo J, Liu X. Recent Progress in Metal Phosphorous Chalcogenides: Potential High-Performance Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207249. [PMID: 36605005 DOI: 10.1002/smll.202207249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Since the discovery of graphene, research on the family of 2D materials has been a thriving field. Metal phosphorous chalcogenides (MPX3 ) have attracted renewed attention due to their distinctive physical and chemical properties. The advantages of MPX3 , such as tunable layered structures, unique electronic properties, thermodynamically appropriate band alignments and abundant catalytic active sites on the surface, make MPX3 material great potential in electrocatalysis. In this review, the applications of MPX3 electrocatalysts in recent years, including hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction, are summarized. Structural regulation, chemical doping and multi-material composite that are often effective and practical research methods to further optimize the catalytic properties of these materials, are introduced. Finally, the challenges and opportunities for electrocatalytic applications of MPX3 materials are discussed. This report aims to advance future efforts to develop MPX3 and related materials for electrocatalysis.
Collapse
Affiliation(s)
- Hao Zhang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tianran Wei
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| | - Yuan Qiu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Guangzhi Hu
- School of Chemical Science and Technology, School of Energy, Yunnan University, Kunming, 650091, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|