1
|
Kim H, Noh B, Lee CB, Park EY, Lee G, Choi H, Kim Y, Kim K, Jeon NJ, Lee KJ, Song S. Nanoscopic Parylene Layer: Enhancing Perovskite Solar Cells Through Parylene-D Passivation. SMALL METHODS 2025:e2500395. [PMID: 40388647 DOI: 10.1002/smtd.202500395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/07/2025] [Indexed: 05/21/2025]
Abstract
The development of eco-friendly energy sources has advanced photovoltaic technologies, with perovskite solar cells (PSCs) emerging as promising alternatives owing to their high efficiency, low fabrication costs, and excellent optical and electronic properties. However, their commercialization is hindered by stability issues, such as ion migration, defect-induced degradation, and nonuniformity of the solution process over large areas, particularly at the perovskite/hole-transporting layer (HTL) interface. To address these challenges, chemical vapor deposition (CVD) is employed to introduce an ultrathin, uniform parylene-D layer at the perovskite/HTL interface. Parylene-D, containing additional chlorine functional groups compared to parylene-C, supports bidentate chelation, enabling effective interaction with uncoordinated Pb2⁺ and perovskite surface defects. This passivation layer significantly reduces nonradiative recombination and suppresses ion migration without affecting the morphology or electrical properties of large-area perovskites. The optimized parylene-D treatment yields PSCs with 23.75% efficiency and enhanced open-circuit voltage and fill factor. Stability tests demonstrate that the parylene-D-treated devices retain their initial efficiency after 1500 h under 10% relative humidity at room temperature and maintain 80% efficiency after 1200 h at 65 °C in a nitrogen environment. Furthermore, the scalability of this approach is validated by fabricating a large-area module (25 cm2 aperture area), achieving module and active area efficiencies of 19.44% and 20.59%, respectively. These results highlight the potential of parylene-D passivation via CVD as a practical and scalable strategy to enhance PSC performance and stability.
Collapse
Affiliation(s)
- Heesu Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Byeongil Noh
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Cheong Beom Lee
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Eun Young Park
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Gunoh Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyuntae Choi
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yeji Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyeounghak Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Nam Joong Jeon
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seulki Song
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
2
|
Xiao GB, Suo ZY, Mu X, Wu H, Dong R, Song F, Gao X, Ding L, Wu Y, Cao J. Achieving >23% Efficiency Perovskite Solar Minimodules with Surface Conductive Coordination Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2407225. [PMID: 40207856 DOI: 10.1002/adma.202407225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/24/2025] [Indexed: 04/11/2025]
Abstract
Despite the reported high efficiencies of small-area perovskite photovoltaic cells, the deficiency in large-area modules has impeded the commercialization of perovskite photovoltaics. Enhancing the surface/interface conductivity and carrier-transport in polycrystalline perovskite films presents significant potential for boosting the efficiency of perovskite solar modules (PSMs) by mitigating voltage losses. This is particularly critical for multi-series connected sub-cell modules, where device resistance significantly impacts performance compared to small-area cells. Here, an effective approach is reported for decreasing photovoltage loss through surface/interface modulation of perovskite film with a surface conductive coordination polymer. With post-treatment of meso-tetra pyridine porphyrin on perovskite film, PbI2 on perovskite film reacts with pyridine units in porphyrins to generate an iso-structural 2D coordination polymer with a layered surface conductivity as high as 1.14 × 102 S m-1, due to the effect of surface structure reconstruction. Modified perovskite film exhibits greatly increased surface/interface conductivity. The champion PSM obtains a record efficiency up to 23.39% (certified 22.63% with an aperture area of 11.42 cm2) featuring only 0.33-volt voltage loss. Such a modification also leads to substantially improved operational device stability.
Collapse
Affiliation(s)
- Guo-Bin Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhen-Yang Suo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Houen Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Runmin Dong
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Fei Song
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Xingyu Gao
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yiying Wu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
3
|
Vona C, Dankl M, Boziki A, Bircher MP, Rothlisberger U. Force-Matching-Based Approach for the Generation of Polarizable and Nonpolarizable Force Fields Applied to CsPbI 3. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:3040-3053. [PMID: 39968331 PMCID: PMC11831672 DOI: 10.1021/acs.jpcc.4c04979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 02/20/2025]
Abstract
Lead halide perovskites have emerged as highly efficient solar cell materials. However, to date, the most promising members of this class are polymorphs in which a wide-band-gap δ phase competes with the photoactive perovskite α form and the intrinsic physical interactions that stabilize one phase over the other are currently not well understood. Classical molecular dynamics simulations based on suitably parametrized force fields (FF) enable computational studies over broad temperature (and pressure) ranges and can help to identify the underlying factors that govern relative phase stability at the atomic level. In this article, we present a force-matching-based approach for the automatized generation of polarizable (pol) as well as nonpolarizable (npol) FFs from high-level reference data and apply it to the all-inorganic lead halide material CsPbI3 as a prototype system exhibiting a δ/α polymorphism. These force-matched npol and pol FFs have been determined based on extensive reference data from first-principles molecular dynamics simulations over a wide range of temperatures. While both FFs are able to describe the perovskite as well as the nonperovskite δ phase, finer structural details, as well as the relative phase stability, are better reproduced with the polarizable version. A comparison of these ab initio-derived interatomic potentials allows direct insight into the physical origin of the interactions that govern the interplay between the two competing phases. It turns out that explicit polarization is the essential factor that stabilizes the strongly anisotropic δ phase over the high-symmetry (cubic) perovskite α phase at lower temperatures. This fundamental difference between α and δ phases appears universal and might thus also hold for other perovskite compounds with δ/α polymorphism providing rational guidance for synthetic efforts to stabilize the photoactive perovskite phase at room temperature.
Collapse
Affiliation(s)
- Cecilia Vona
- Laboratory of Computational
Chemistry and Biochemistry, Ecole Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mathias Dankl
- Laboratory of Computational
Chemistry and Biochemistry, Ecole Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ariadni Boziki
- Laboratory of Computational
Chemistry and Biochemistry, Ecole Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Martin P. Bircher
- Laboratory of Computational
Chemistry and Biochemistry, Ecole Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational
Chemistry and Biochemistry, Ecole Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Ullah F, Hasrat K, Iqbal S, Wang S. Design and Development of D-A-D Organic Material for Solution-Processed Organic/Si Hybrid Solar Cells with 17.5% Power Conversion Efficiency. Molecules 2024; 29:5369. [PMID: 39598757 PMCID: PMC11596426 DOI: 10.3390/molecules29225369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Organic/silicon hybrid solar cells have attracted much interest due to their cheap fabrication process and simple device structure. A category of organic substances, Dibenzothiophene-Spirobifluorene-Dithiophene (DBBT-mTPA-DBT), comprises dibenzo [d,b] thiophene and 3-(3-methoxyphenyl)-6-(4-methoxyphenyl)-9H-Carbazole, which function as electron donors. In contrast, methanone is an electron acceptor, with an ∆Est of 3.19 eV. This work focused on hybrid solar cells based on the guest-host phenomena of DBBT-mTPA-DBT and CBP. Using a Si/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) hybrid solar cell with an ultra-thin Dibenzothiophene-Spirobifluorene-Dithienothiophene (DBBT-mTPA-DBT) interlayer between Si and Al led to a PCE of 17.5 ± 2.5%. The DBBT-mTPA-DBT interlayer substantially improved the Si/Al interface, reducing contact resistance from 6.5 × 10⁻1 Ω·cm2 to 3.5 × 10⁻2 Ω·cm2. This improvement increases electron transport efficiency from silicon to aluminum and reduces carrier recombination. The solar cell containing the DBBT-mTPA-DBT/Al double-layer cathode shows a 10.85% increase in power conversion efficiency relative to the standard Al cathode device.
Collapse
Affiliation(s)
- Fahim Ullah
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Kamran Hasrat
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China;
| | - Sami Iqbal
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China;
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
5
|
Sun C, Zhang H, Cheng S, Chen J, Xing Y, Nan Z, Yang P, Wang Y, Zhao X, Xie L, Tian C, Wei Z. Multidentate Fullerenes Enable Tunable and Robust Interfacial Bonding for Efficient Tin-Based Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410248. [PMID: 39235546 DOI: 10.1002/adma.202410248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Improving the efficiency of tin-based perovskite solar cells (TPSCs) is significantly hindered by energy level mismatch and weak interactions at the interface between the tin-based perovskite and fullerene-based electron transport layers (ETLs). In this study, four well-defined multidentate fullerene molecules with 3, 4, 5, and 6 diethylmalonate groups, labeled as FM3, FM4, FM5, and FM6 are synthesized, and employed as interfacial layers in TPSCs. It is observed that increasing the number of functional groups in these fullerenes leads to shallower lowest unoccupied molecular orbital (LUMO) energy levels and enhance interfacial chemical interactions. Notably, FM5 exhibits a suitable energy level and robust interaction with the perovskite, effectively enhancing electron extraction and defect passivation. Additionally, the unique molecular structure of FM5 allows the exposed carbon cage to be tightly stacked with the upper fullerene cage after interaction with the perovskite, facilitating efficient charge transfer and protecting the perovskite from moisture and oxygen damage. As a result, the FM5-based device achieves a champion efficiency of 15.05%, significantly surpassing that of the PCBM-based (11.77%), FM3-based (13.54%), FM4-based (14.34%), and FM6-based (13.75%) devices. Moreover, the FM5-based unencapsulated device exhibits excellent stability, maintaining over 90% of its initial efficiency even after 300 h of air exposure.
Collapse
Affiliation(s)
- Chao Sun
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Hui Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Shuo Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jingfu Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yiming Xing
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ziang Nan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Panpan Yang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ying Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xinjing Zhao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Liqiang Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Chengbo Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
6
|
Gao D, Li B, Liu Q, Zhang C, Yu Z, Li S, Gong J, Qian L, Vanin F, Schutt K, Davis MA, Palmstrom AF, Harvey SP, Long NJ, Luther JM, Zeng XC, Zhu Z. Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 2024; 386:187-192. [PMID: 39388552 DOI: 10.1126/science.adq8385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Robust contact schemes that boost stability and simplify the production process are needed for perovskite solar cells (PSCs). We codeposited perovskite and hole-selective contact while protecting the perovskite to enable deposition of SnOx/Ag without the use of a fullerene. The SnOx, prepared through atomic layer deposition, serves as a durable inorganic electron transport layer. Tailoring the oxygen vacancy defects in the SnOx layer led to power conversion efficiencies (PCEs) of >25%. Our devices exhibit superior stability over conventional p-i-n PSCs, successfully meeting several benchmark stability tests. They retained >95% PCE after 2000 hours of continuous operation at their maximum power point under simulated AM1.5 illumination at 65°C. Additionally, they boast a certified T97 lifetime exceeding 1000 hours.
Collapse
Affiliation(s)
- Danpeng Gao
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Bo Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Qi Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Chunlei Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Zexin Yu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Shuai Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Jianqiu Gong
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Liangchen Qian
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Francesco Vanin
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Chemistry, Imperial College London, London W12 0BZ, UK
| | - Kelly Schutt
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | | | | | | | - Nicholas J Long
- Department of Chemistry, Imperial College London, London W12 0BZ, UK
| | | | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong
| |
Collapse
|
7
|
Zhao C, Zhou Z, Almalki M, Hope MA, Zhao J, Gallet T, Krishna A, Mishra A, Eickemeyer FT, Xu J, Yang Y, Zakeeruddin SM, Redinger A, Savenije TJ, Emsley L, Yao J, Zhang H, Grätzel M. Stabilization of highly efficient perovskite solar cells with a tailored supramolecular interface. Nat Commun 2024; 15:7139. [PMID: 39164254 PMCID: PMC11335880 DOI: 10.1038/s41467-024-51550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
The presence of defects at the interface between the perovskite film and the carrier transport layer poses significant challenges to the performance and stability of perovskite solar cells (PSCs). Addressing this issue, we introduce a dual host-guest (DHG) complexation strategy to modulate both the bulk and interfacial properties of FAPbI3-rich PSCs. Through NMR spectroscopy, a synergistic effect of the dual treatment is observed. Additionally, electro-optical characterizations demonstrate that the DHG strategy not only passivates defects but also enhances carrier extraction and transport. Remarkably, employing the DHG strategy yields PSCs with power conversion efficiencies (PCE) of 25.89% (certified at 25.53%). Furthermore, these DHG-modified PSCs exhibit enhanced operational stability, retaining over 96.6% of their initial PCE of 25.55% after 1050 hours of continuous operation under one-sun illumination, which was the highest initial value in the recently reported articles. This work establishes a promising pathway for stabilizing high-efficiency perovskite photovoltaics through supramolecular engineering, marking a significant advancement in the field.
Collapse
Affiliation(s)
- Chenxu Zhao
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, P. R. China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, China
| | - Zhiwen Zhou
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Masaud Almalki
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Future Energy Technology Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh, Saudi Arabia
| | - Michael A Hope
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jiashang Zhao
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Thibaut Gallet
- Scanning Probe Microscopy Laboratory, Department of Physics and Materials Science, University of, Luxembourg, Luxembourg
| | - Anurag Krishna
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aditya Mishra
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix T Eickemeyer
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jia Xu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, P. R. China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, P. R. China
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alex Redinger
- Scanning Probe Microscopy Laboratory, Department of Physics and Materials Science, University of, Luxembourg, Luxembourg
| | - Tom J Savenije
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Lyndon Emsley
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jianxi Yao
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, P. R. China.
| | - Hong Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, China.
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Shen C, Ye T, Yang P, Chen G. All-Inorganic Perovskite Solar Cells: Defect Regulation and Emerging Applications in Extreme Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401498. [PMID: 38466354 DOI: 10.1002/adma.202401498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/23/2024] [Indexed: 03/13/2024]
Abstract
All-inorganic perovskite solar cells (PSCs), such as CsPbX3, have garnered considerable attention recently, as they exhibit superior thermodynamic and optoelectronic stabilities compared to the organic-inorganic hybrid PSCs. However, the power conversion efficiency (PCE) of CsPbX3 PSCs is generally lower than that of organic-inorganic hybrid PSCs, as they contain higher defect densities at the interface and within the perovskite light-absorbing layers, resulting in higher non-radiative recombination and voltage loss. Consequently, defect regulation has been adopted as an important strategy to improve device performance and stability. This review aims to comprehensively summarize recent progresses on the defect regulation in CsPbX3 PSCs, as well as their cutting-edge applications in extreme scenarios. The underlying fundamental mechanisms leading to the defect formation in the crystal structure of CsPbX3 PSCs are firstly discussed, and an overview of literature-adopted defect regulation strategies in the context of interface, internal, and surface engineering is provided. Cutting-edge applications of CsPbX3 PSCs in extreme environments such as outer space and underwater situations are highlighted. Finally, a summary and outlook are presented on future directions for achieving higher efficiencies and superior stability in CsPbX3 PSCs.
Collapse
Affiliation(s)
- Cong Shen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Tengling Ye
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Peixia Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guanying Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
9
|
Wang Y, Chen J, Zhang Y, Tan WL, Ku Z, Yuan Y, Chen Q, Huang W, McNeill CR, Cheng YB, Lu J. Ordered Perovskite Structure with Functional Units for High Performance and Stable Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401416. [PMID: 38571375 DOI: 10.1002/adma.202401416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Ion migration is one of the most critical challenges that affects the stability of metal-halide perovskite solar cells (PSCs). However, the current arsenal of available strategies for solving this issue is limited. Here, novel perovskite active layers following the concept of ordered structures with functional units (OSFU) to intrinsically suppress ion migration, in which a three-dimensional (3D) perovskite layer is deposited by vapor deposition for light absorption and a 2D layer is deposited by solution process for ion inhibition, are constructed. As a promising result, the activation energy of ion migration increases from 0.36 eV for the conventional perovskite to 0.54 eV for the OSFU perovskite. These devices exhibit substantially enhanced operational stability in comparison with the conventional ones, retaining >85% of their initial efficiencies after 1200 h under ISOS-L-1. Moreover, the OSFU devices show negligible fatigue behavior with a robust performance under light/dark cycling aging test (ISOS-LC-1 protocol), which demonstrates the promising application of functional motif theory in this field.
Collapse
Affiliation(s)
- Yulong Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiahui Chen
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuxi Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Victoria, Clayton, 3800, Australia
- Australian Synchrotron, Australian Nuclear Science and Technology Organization (ANSTO), Clayton, Victoria, 3168, Australia
| | - Zhiliang Ku
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongbo Yuan
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Qi Chen
- i-Lab, CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wenchao Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Victoria, Clayton, 3800, Australia
| | - Yi-Bing Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianfeng Lu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
10
|
Wang Z, Gao H, Wu D, Meng J, Deng J, Cui M. Defects and Defect Passivation in Perovskite Solar Cells. Molecules 2024; 29:2104. [PMID: 38731595 PMCID: PMC11085331 DOI: 10.3390/molecules29092104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Perovskite solar cells have made significant strides in recent years. However, there are still challenges in terms of photoelectric conversion efficiency and long-term stability associated with perovskite solar cells. The presence of defects in perovskite materials is one of the important influencing factors leading to subpar film quality. Adopting additives to passivate defects within perovskite materials is an effective approach. Therefore, we first discuss the types of defects that occur in perovskite materials and the mechanisms of their effect on performance. Then, several types of additives used in perovskite solar cells are discussed, including ionic compounds, organic molecules, polymers, etc. This review provides guidance for the future development of more sustainable and effective additives to improve the performance of solar cells.
Collapse
Affiliation(s)
| | - Hongli Gao
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
| | | | | | | | | |
Collapse
|
11
|
Li T, Zhang Y, Ren M, Mu Y, Zhang J, Yuan Y, Zhang M, Wang P. Triisocyanate Derived Interlayer and High-Melting-Point Doping Promoter Boost Operational Stability of Perovskite Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202401604. [PMID: 38414115 DOI: 10.1002/anie.202401604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Formamidinium lead triiodide serves as the optimal light-absorbing layer in single-junction perovskite solar cells. However, achieving operational stability of high-efficiency n-i-p type devices at elevated temperatures remains challenging. In this work, we implemented effective surface modifications on microcrystalline perovskite films. This involved the nucleophilic addition of formamidinium cations and coordination of residual PbI2 with triphenylmethane triisocyanate as well as subsequent polymerization. The in situ growth of a cross-linking network chemically anchored on the perovskite film in this approach effectively reduced trap densities, favorably altered surface work function, suppressing interface charge recombination and thus enhancing cell efficiency. Coupled with a high-melting-point air-doping promoter, we fabricated n-i-p type perovskite solar cells surpassing 25 % efficiency, demonstrating excellent operational stability at 65 °C.
Collapse
Affiliation(s)
- Tianyu Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yuyan Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ming Ren
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yanfei Mu
- Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yi Yuan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Min Zhang
- Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Peng Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Suo J, Yang B, Mosconi E, Bogachuk D, Doherty TAS, Frohna K, Kubicki DJ, Fu F, Kim Y, Er-Raji O, Zhang T, Baldinelli L, Wagner L, Tiwari AN, Gao F, Hinsch A, Stranks SD, De Angelis F, Hagfeldt A. Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. NATURE ENERGY 2024; 9:172-183. [PMID: 38419691 PMCID: PMC10896729 DOI: 10.1038/s41560-023-01421-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 11/21/2023] [Indexed: 03/02/2024]
Abstract
The stabilization of grain boundaries and surfaces of the perovskite layer is critical to extend the durability of perovskite solar cells. Here we introduced a sulfonium-based molecule, dimethylphenethylsulfonium iodide (DMPESI), for the post-deposition treatment of formamidinium lead iodide perovskite films. The treated films show improved stability upon light soaking and remains in the black α phase after two years ageing under ambient condition without encapsulation. The DMPESI-treated perovskite solar cells show less than 1% performance loss after more than 4,500 h at maximum power point tracking, yielding a theoretical T80 of over nine years under continuous 1-sun illumination. The solar cells also display less than 5% power conversion efficiency drops under various ageing conditions, including 100 thermal cycles between 25 °C and 85 °C and an 1,050-h damp heat test.
Collapse
Affiliation(s)
- Jiajia Suo
- Department of Chemistry–Ångström Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bowen Yang
- Department of Chemistry–Ångström Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Edoardo Mosconi
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche ‘Giulio Natta’ (CNR-SCITEC), Perugia, Italy
| | - Dmitry Bogachuk
- Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany
- Department of Sustainable Systems Engineering (INATECH), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Solarlab Aiko Europe GmbH, Freiburg, Germany
| | - Tiarnan A. S. Doherty
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Kyle Frohna
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Dominik J. Kubicki
- Department of Physics, University of Warwick, Coventry, UK
- Present Address: School of Chemistry, University of Birmingham, Edgbaston, UK
| | - Fan Fu
- Laboratory for Thin Films and Photovoltaics, Empa−Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, Switzerland
| | - YeonJu Kim
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Oussama Er-Raji
- Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany
- Department of Sustainable Systems Engineering (INATECH), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Tiankai Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Lorenzo Baldinelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Lukas Wagner
- Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany
- Physics of Solar Energy Conversion Group, Department of Physics, Philipps-University Marburg, Marburg, Germany
| | - Ayodhya N. Tiwari
- Laboratory for Thin Films and Photovoltaics, Empa−Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, Switzerland
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Andreas Hinsch
- Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany
| | - Samuel D. Stranks
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Filippo De Angelis
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche ‘Giulio Natta’ (CNR-SCITEC), Perugia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- Department of Natural Sciences and Mathematics, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Dhahran, Saudi Arabia
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Korea
| | - Anders Hagfeldt
- Department of Chemistry–Ångström Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Gao Z, Leng C, Zhao H, Wei X, Shi H, Xiao Z. The Electrical Behaviors of Grain Boundaries in Polycrystalline Optoelectronic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304855. [PMID: 37572037 DOI: 10.1002/adma.202304855] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Indexed: 08/14/2023]
Abstract
Polycrystalline optoelectronic materials are widely used for photoelectric signal conversion and energy harvesting and play an irreplaceable role in the semiconductor field. As an important factor in determining the optoelectronic properties of polycrystalline materials, grain boundaries (GBs) are the focus of research. Particular emphases are placed on the generation and height of GB barriers, how carriers move at GBs, whether GBs act as carrier transport channels or recombination sites, and how to change the device performance by altering the electrical behaviors of GBs. This review introduces the evolution of GB theory and experimental observation history, classifies GB electrical behaviors from the perspective of carrier dynamics, and summarizes carrier transport state under external conditions such as bias and illumination and the related band bending. Then the carrier scattering at GBs and the electrical differences between GBs and twin boundaries are discussed. Last, the review describes how the electrical behaviors of GBs can be influenced and modified by treatments such as passivation or by consciously adjusting the distribution of grain boundary elements. By studying the carrier dynamics and the relevant electrical behaviors of GBs in polycrystalline materials, researchers can develop optoelectronics with higher performance.
Collapse
Affiliation(s)
- Zheng Gao
- Research Center for Quantum Information, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Research Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chongqian Leng
- Research Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hongquan Zhao
- Research Center for Quantum Information, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xingzhan Wei
- Research Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Haofei Shi
- Research Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zeyun Xiao
- Research Center for Quantum Information, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
- Research Center for Thin Film Solar Cells, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| |
Collapse
|
14
|
Liu X, Guo Y, Cheng Y, Lu S, Li R, Chen J. Advances in chloride additives for high-efficiency perovskite solar cells: multiple points of view. Chem Commun (Camb) 2023; 59:13394-13405. [PMID: 37874562 DOI: 10.1039/d3cc04177h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chloride (Cl) additives are rather effective in improving the performance of perovskite solar cells (PSCs) through the modulation of crystallization process and surface morphology. After incorporating Cl-containing additives, the optoelectrical properties of perovskite films, such as the electron/hole diffusion length and carrier lifetime, are greatly enhanced. However, only a trace amount of Cl has been identified in the resultant perovskite film, and the mechanism of efficiency improvement induced by Cl remains unclear. In this review, we discuss organic and inorganic Cl additives systematically from the perspective of their solubility, volatility, cation size and chemical groups. In addition, the roles of residual Cl anions and cations are analyzed in detail. Finally, some valuable future perspectives of Cl additives are proposed.
Collapse
Affiliation(s)
- Xue Liu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Yanru Guo
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Yu Cheng
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Shirong Lu
- Department of Material Science and Technology, Taizhou University, Taizhou 318000, China
| | - Ru Li
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Jiangzhao Chen
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
15
|
Zhang H, Pfeifer L, Zakeeruddin SM, Chu J, Grätzel M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat Rev Chem 2023; 7:632-652. [PMID: 37464018 DOI: 10.1038/s41570-023-00510-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
There is an ongoing global effort to advance emerging perovskite solar cells (PSCs), and many of these endeavours are focused on developing new compositions, processing methods and passivation strategies. In particular, the use of passivators to reduce the defects in perovskite materials has been demonstrated to be an effective approach for enhancing the photovoltaic performance and long-term stability of PSCs. Organic passivators have received increasing attention since the late 2010s as their structures and properties can readily be modified. First, this Review discusses the main types of defect in perovskite materials and reviews their properties. We examine the deleterious impact of defects on device efficiency and stability and highlight how defects facilitate extrinsic degradation pathways. Second, the proven use of different passivator designs to mitigate these negative effects is discussed, and possible defect passivation mechanisms are presented. Finally, we propose four specific directions for future research, which, in our opinion, will be crucial for unlocking the full potential of PSCs using the concept of defect passivation.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, P. R. China.
- Department of Materials Science, Fudan University, Shanghai, P. R. China.
| | - Lukas Pfeifer
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Junhao Chu
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, P. R. China
- Department of Materials Science, Fudan University, Shanghai, P. R. China
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
16
|
Kamau S, Rodriguez RG, Jiang Y, Mondragon AH, Varghese S, Hurley N, Kaul A, Cui J, Lin Y. Enhanced Photoluminescence and Prolonged Carrier Lifetime through Laser Radiation Hardening and Self-Healing in Aged MAPbBr 3 Perovskites Encapsulated in NiO Nanotubes. MICROMACHINES 2023; 14:1706. [PMID: 37763869 PMCID: PMC10534348 DOI: 10.3390/mi14091706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Organic-inorganic perovskites hold great promise as optoelectronic semiconductors for pure color light emitting and photovoltaic devices. However, challenges persist regarding their photostability and chemical stability, which limit their extensive applications. This paper investigates the laser radiation hardening and self-healing-induced properties of aged MAPbBr3 perovskites encapsulated in NiO nanotubes (MAPbBr3@NiO) using photoluminescence (PL) and fluorescence lifetime imaging (FLIM). After deliberately subjecting the MAPbBr3@ NiO to atmospheric conditions for two years, the sample remains remarkably stable. It exhibits no changes in PL wavelength during UV laser irradiation and self-healing. Furthermore, exposure to UV light at 375 nm enhances the PL of the self-healed MAPbBr3@NiO. FLIM analysis sheds light on the mechanism behind photodegradation, self-healing, and PL enhancement. The results indicate the involvement of many carrier-trapping states with low lifetime events and an increase in peak lifetime after self-healing. The formation of trapping states at the perovskite/nanotube interface is discussed and tested. This study provides new insights into the dynamics of photo-carriers during photodegradation and self-healing in organic-inorganic perovskites.
Collapse
Affiliation(s)
- Steve Kamau
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (S.K.); (R.G.R.); (Y.J.); (A.H.M.); (S.V.); (N.H.); (J.C.)
| | - Roberto Gonzalez Rodriguez
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (S.K.); (R.G.R.); (Y.J.); (A.H.M.); (S.V.); (N.H.); (J.C.)
| | - Yan Jiang
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (S.K.); (R.G.R.); (Y.J.); (A.H.M.); (S.V.); (N.H.); (J.C.)
| | - Araceli Herrera Mondragon
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (S.K.); (R.G.R.); (Y.J.); (A.H.M.); (S.V.); (N.H.); (J.C.)
| | - Sinto Varghese
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (S.K.); (R.G.R.); (Y.J.); (A.H.M.); (S.V.); (N.H.); (J.C.)
| | - Noah Hurley
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (S.K.); (R.G.R.); (Y.J.); (A.H.M.); (S.V.); (N.H.); (J.C.)
| | - Anupama Kaul
- Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, USA;
- Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Jingbiao Cui
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (S.K.); (R.G.R.); (Y.J.); (A.H.M.); (S.V.); (N.H.); (J.C.)
| | - Yuankun Lin
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (S.K.); (R.G.R.); (Y.J.); (A.H.M.); (S.V.); (N.H.); (J.C.)
- Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
17
|
Fu P, Quintero MA, Vasileiadou ES, Raval P, Welton C, Kepenekian M, Volonakis G, Even J, Liu Y, Malliakas C, Yang Y, Laing C, Dravid VP, Reddy GNM, Li C, Sargent EH, Kanatzidis MG. Chemical Behavior and Local Structure of the Ruddlesden-Popper and Dion-Jacobson Alloyed Pb/Sn Bromide 2D Perovskites. J Am Chem Soc 2023. [PMID: 37432784 DOI: 10.1021/jacs.3c03997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The alloyed lead/tin (Pb/Sn) halide perovskites have gained significant attention in the development of tandem solar cells and other optoelectronic devices due to their widely tunable absorption edge. To gain a better understanding of the intriguing properties of Pb/Sn perovskites, such as their anomalous bandgap's dependence on stoichiometry, it is important to deepen the understanding of their chemical behavior and local structure. Herein, we investigate a series of two-dimensional Ruddlesden-Popper (RP) and Dion-Jacobson (DJ) phase alloyed Pb/Sn bromide perovskites using butylammonium (BA) and 3-(aminomethyl)pyridinium (3AMPY) as the spacer cations: (BA)2(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) and (3AMPY)(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) through a solution-based approach. Our results show that the ratio and site preference of Pb/Sn atoms are influenced by the layer thickness (n) and spacer cations (A'), as determined by single-crystal X-ray diffraction. Solid-state 1H, 119Sn, and 207Pb NMR spectroscopy analysis shows that the Pb atoms prefer the outer layers in n = 3 members: (BA)2(MA)PbxSnn-xBr10 and (3AMPY)(MA)PbxSnn-xBr10. Layered 2D DJ alloyed Pb/Sn bromide perovskites (3AMPY)(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) demonstrate much narrower optical band gaps, lower energy PL emission peaks, and longer carrier lifetimes compared to those of RP analogs. Density functional theory calculations suggest that Pb-rich alloys (Pb:Sn ∼4:1) for n = 1 compounds are thermodynamically favored over 50:50 (Pb:Sn ∼1:1) compositions. From grazing-incidence wide-angle X-ray scattering (GIWAXS), we see that films in the RP phase orient parallel to the substrate, whereas for DJ cases, random orientations are observed relative to the substrate.
Collapse
Affiliation(s)
- Ping Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael A Quintero
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Parth Raval
- University of Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Claire Welton
- University of Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Mikaël Kepenekian
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institute des Sciences Chimiques de Rennes), UMR, Rennes 6226, France
| | - George Volonakis
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institute des Sciences Chimiques de Rennes), UMR, Rennes 6226, France
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institute FOTON-UMR, Rennes 6082, France
| | - Yukun Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christos Malliakas
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Craig Laing
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Liu X, Luo D, Lu ZH, Yun JS, Saliba M, Seok SI, Zhang W. Stabilization of photoactive phases for perovskite photovoltaics. Nat Rev Chem 2023; 7:462-479. [PMID: 37414982 DOI: 10.1038/s41570-023-00492-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 07/08/2023]
Abstract
Interest in photovoltaics (PVs) based on Earth-abundant halide perovskites has increased markedly in recent years owing to the remarkable properties of these materials and their suitability for energy-efficient and scalable solution processing. Formamidinium lead triiodide (FAPbI3)-rich perovskite absorbers have emerged as the frontrunners for commercialization, but commercial success is reliant on the stability meeting the highest industrial standards and the photoactive FAPbI3 phase suffers from instabilities that lead to degradation - an effect that is accelerated under working conditions. Here, we critically assess the current understanding of these phase instabilities and summarize the approaches for stabilizing the desired phases, covering aspects from fundamental research to device engineering. We subsequently analyse the remaining challenges for state-of-the-art perovskite PVs and demonstrate the opportunities to enhance phase stability with ongoing materials discovery and in operando analysis. Finally, we propose future directions towards upscaling perovskite modules, multijunction PVs and other potential applications.
Collapse
Affiliation(s)
- Xueping Liu
- Advanced Technology Institute, University of Surrey, Guildford, UK
| | - Deying Luo
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Zheng-Hong Lu
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jae Sung Yun
- Advanced Technology Institute, University of Surrey, Guildford, UK
| | - Michael Saliba
- Institute for Photovoltaics (IPV), University of Stuttgart, Stuttgart, Germany.
- Helmholtz Young Investigator Group FRONTRUNNER, IEK5-Photovoltaik, Forschungszentrum Jülich, Jülich, Germany.
| | - Sang Il Seok
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| | - Wei Zhang
- Advanced Technology Institute, University of Surrey, Guildford, UK.
| |
Collapse
|
19
|
Zhao C, Zhang H, Almalki M, Xu J, Krishna A, Eickemeyer FT, Gao J, Wu YM, Zakeeruddin SM, Chu J, Yao J, Grätzel M. Stabilization of FAPbI 3 with Multifunctional Alkali-Functionalized Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211619. [PMID: 37021402 DOI: 10.1002/adma.202211619] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/26/2023] [Indexed: 05/30/2023]
Abstract
The defects located at the interfaces and grain boundaries (GBs) of perovskite films are detrimental to the photovoltaic performance and stability of perovskite solar cells. Manipulating the perovskite crystallization process and tailoring the interfaces with molecular passivators are the main effective strategies to mitigate performance loss and instability. Herein, a new strategy is reported to manipulate the crystallization process of FAPbI3 -rich perovskite by incorporating a small amount of alkali-functionalized polymers into the antisolvent solution. The synergic effects of the alkali cations and poly(acrylic acid) anion effectively passivate the defects on the surface and GBs of perovskite films. As a result, the rubidium (Rb)-functionalized poly(acrylic acid) significantly improves the power conversion efficiency of FAPbI3 perovskite solar cells to approaching 25% and reduces the risk of lead ion (Pb2+ ) leakage continuously via the strong interaction between CO bonds and Pb2+ . In addition, the unencapsulated device shows enhanced operational stability, retaining 80% of its initial efficiency after 500 h operation at maximum power point under one-sun illumination.
Collapse
Affiliation(s)
- Chenxu Zhao
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, 102206, P. R. China
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Hong Zhang
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Masaud Almalki
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Jia Xu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, 102206, P. R. China
| | - Anurag Krishna
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Felix T Eickemeyer
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Jing Gao
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Yu Mao Wu
- Key Laboratory for Information Sciences of Electromagnetic Waves (MoE), School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Junhao Chu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jianxi Yao
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, 102206, P. R. China
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
20
|
Wang J, Che Y, Duan Y, Liu Z, Yang S, Xu D, Fang Z, Lei X, Li Y, Liu SF. 21.15%-Efficiency and Stable γ -CsPbI 3 Perovskite Solar Cells Enabled by an Acyloin Ligand. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210223. [PMID: 36622963 DOI: 10.1002/adma.202210223] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Cesium lead triiodide (CsPbI3 ) is a promising light-absorbing material for constructing perovskite solar cells (PSCs) owing to its favorable bandgap and thermal tolerance. However, the high density of defects in the CsPbI3 film not only act as recombination centers, but also facilitate ion migration, leading to lower PCE and inferior stability compared with the state-of-the-art organic-inorganic hybrid PSC counterpart. Theoretical analyses suggest that the effective suppression of defects in CsPbI3 film is helpful for improving the device performance. Herein, the stable and efficient γ -CsPbI3 PSCs are demonstrated by developing an acyloin ligand (1,2-di(thiophen-2-yl)ethane-1,2-dione (DED)) as a phase stabilizer and defect passivator. The experiment and calculation results confirm that carbonyl and thienyl in DED can synergistically interact with CsPbI3 by forming a chelate to effectively passivate Pb-related defects and further suppress ion migration. Consequently, DED-treated CsPbI3 PSCs yield a champion PCE of 21.15%, which is one of the highest PCE among all the reported CsPbI3 PSCs to date. In addition, the unencapsulated DED-CsPbI3 PSC can retain 94.9% of itsinitial PCE when stored under ambient conditions for 1000 h and 92.8% of its initial PCE under constant illumination for 250 h.
Collapse
Affiliation(s)
- Jungang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuhang Che
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuwei Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhike Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shaomin Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Dongfang Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhimin Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xuruo Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yong Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy iChEM, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
21
|
Fu J, Zhang J, Zhang T, Yuan L, Zhang Z, Jiang Z, Huang Z, Wu T, Yan K, Zhang L, Wang A, Ji W, Zhou Y, Song B. Synergistic Effects of Interfacial Energy Level Regulation and Stress Relaxation via a Buried Interface for Highly Efficient Perovskite Solar Cells. ACS NANO 2023; 17:2802-2812. [PMID: 36700840 DOI: 10.1021/acsnano.2c11091] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An electron-transport layer with appropriate energy alignment and enhanced charge transfer is critical for perovskite solar cells (PSCs). In addition, interface stress and lattice distortion are inevitable during the crystallization process of perovskite. Herein, IT-4F is introduced into PSCs at the buried SnO2 and perovskite interface, which assists in releasing the residual stress in the perovskite layer. Meanwhile, the work function of SnO2/IT-4F is lower than that of SnO2, which facilitates charge transfer from perovskite to ETL and consequently leads to a significant improvement in the power conversion efficiency (PCE) to 23.73%. The VOC obtained is as high as 1.17 V, corresponding to a low voltage deficit of 0.38 V for a 1.55 eV bandgap. Consequently, the device based on IT-4F maintains 94% of the initial PCE over 2700 h when stored in N2 and retains 87% of the initial PCE after operation for 1000 h.
Collapse
Affiliation(s)
- Jianfei Fu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Jiajia Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Taoyi Zhang
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd, Beijing100013, China
| | - Ligang Yuan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou510006, China
| | - Zelong Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Zhixuan Jiang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Zhezhi Huang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Tiao Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou510006, China
| | - Longgui Zhang
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd, Beijing100013, China
| | - Ailian Wang
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd, Beijing100013, China
| | - Wenxi Ji
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd, Beijing100013, China
| | - Yi Zhou
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Bo Song
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| |
Collapse
|
22
|
Modeling the structural, electronic, optoelectronic, thermodynamic, and core-level spectroscopy of X–SnO3 (X = Ag, Cs, Hf) perovskites. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Liu J, Yang T, Xu Z, Zhao W, Yang Y, Fang Y, Zhang L, Zhang J, Yuan N, Ding J, Liu SF. Chelate Coordination Strengthens Surface Termination to Attain High-Efficiency Perovskite Solar Cells. SMALL METHODS 2022; 6:e2201063. [PMID: 36300914 DOI: 10.1002/smtd.202201063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Solar cell efficiency and stability are two key metrics to determine whether a photovoltaic device is viable for commercial applications. The surface termination of the perovskite layer plays a pivotal role in not only the photoelectric conversion efficiency (PCE) but also the stability of assembled perovskite solar cells (PSCs). Herein, a strong chelate coordination bond is designed to terminate the surface of the perovskite absorber layer. On the one hand, the ligand anions bind with Pb cations via a bidentate chelating bond to restrict the ion migration, and the chelate surface termination changes the surface from hydrophilic to hydrophobic. Both are beneficial to improving the long-term stability. On the other hand, the formation of the chelating bonding effectively eliminates the deep-level defects including PbI and Pb clusters on the Pb-I and FA-I terminations, respectively, as confirmed by theoretical simulation and experimental results. Consequently, the PCE is increased to 24.52%, open circuit voltage to 1.19 V, and fill factor to 81.53%; all three are among the highest for hybrid perovskite cells. The present strategy provides a straightforward means to enhance both the PCE and long-term stability of PSCs.
Collapse
Affiliation(s)
- Jiali Liu
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Tengteng Yang
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhuo Xu
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Wangen Zhao
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Yan Yang
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Yuankun Fang
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Lu Zhang
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Jingru Zhang
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Ningyi Yuan
- School of Materials Science and Engineering Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology Changzhou University, Changzhou, 213164, P. R. China
| | - Jianning Ding
- School of Materials Science and Engineering Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology Changzhou University, Changzhou, 213164, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
- Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
24
|
Maiti A, Pal AJ. Quasi-2D Ruddlesden-Popper Lead Halide Perovskites: How Edge Matters. J Phys Chem Lett 2022; 13:9875-9882. [PMID: 36251849 DOI: 10.1021/acs.jpclett.2c02739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A band-mapping technique is introduced to investigate the formation of low-energy edge states in quasi-2D Ruddlesden-Popper (RP) perovskites, (BA)2(MA)n-1PbnI3n+1, through a localized mode of measurement, namely, scanning tunneling spectroscopy. The local band structures measured at different points reveal the formation of 3D CH3NH3PbI3 (MAPbI3) at the edges of the perovskite nanosheets; for thin films, the 3D phase (n = ∞) could be seen to form at grain boundaries. The presence of MAPbI3 at the edges or grain boundaries of the perovskites has led to self-forming type-II band alignment in BA2MA2Pb3I10 (n = 3). The rationale behind achieving a high-efficiency solar cell based on the material, which has a large exciton binding energy, has been inferred. Kelvin probe force microscopy studies under illumination have yielded a higher surface photovoltage at the edges compared to the interior and supported the inference of exciton dissociation due to internal type-II band alignment in the quasi-2D RP perovskites.
Collapse
Affiliation(s)
- Abhishek Maiti
- School of Physical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Amlan J Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| |
Collapse
|
25
|
Zhang Y, Xu L, Sun J, Wu Y, Kan Z, Zhang H, Yang L, Liu B, Dong B, Bai X, Song H. 24.11% High Performance Perovskite Solar Cells by Dual Interfacial Carrier Mobility Enhancement and Charge‐Carrier Transport Balance. ADVANCED ENERGY MATERIALS 2022; 12. [DOI: 10.1002/aenm.202201269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 07/31/2023]
Abstract
AbstractThe open‐circuit voltage (VOC) and fill factor (FF) of perovskite solar cells (PSCs) are detrimentally weakened by carrier loss at the perovskite/charge transport layers (CTLs) interfaces. Herein, a dual interfacial modification strategy via placing Nb2CTx nanosheets with tailored optoelectrical properties induced by manipulating surface terminal groups at both perovskite/CTLs interfaces is employed. Such tactics not only concurrently implement carrier mobility enhancement of CTLs and interface energy‐levels offsets reduction. More importantly, electrical simulation indicates that the Nb2CTx with O terminal groups located at grain boundaries of the perovskite layer, can more efficiently conduct hole current to the hole transport layer, therefore achieving charge‐carrier transport balance in device. As a result, the synergy effect effectively elevates both the VOC and FF of the cells, reaching maximum values of 1.253 V and 81.07%, respectively, finally delivering progressively increased device power conversion efficiency (PCE) of 24.11% with negligible hysteresis. This PCE value ranks in the highest values to date for PSCs employing MXenes materials. Moreover, the optimized devices show better thermal and light stability than control devices. This work demonstrates a simple and effective dual interfacial modification method utilizing Nb2CTx for photovoltaic field, involving photodetectors, light‐emitting diodes, sensors, etc.
Collapse
Affiliation(s)
- Yuhong Zhang
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jiao Sun
- Department of Cell Biology College of Basic Medical Sciences Jilin University Changchun Jilin 130021 P. R. China
| | - Yanjie Wu
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zitong Kan
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Huan Zhang
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Long Yang
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bin Liu
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xue Bai
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Hongwei Song
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
26
|
Raval P, Dhennin M, Vezin H, Pawlak T, Roussel P, Nguyen TQ, Manjunatha Reddy G. Understanding the p-doping of spiroOMeTAD by tris(pentafluorophenyl)borane. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Raval P, Trébosc J, Pawlak T, Nishiyama Y, Brown SP, Manjunatha Reddy GN. Combining heteronuclear correlation NMR with spin-diffusion to detect relayed Cl-H-H and N-H-H proximities in molecular solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101808. [PMID: 35780556 DOI: 10.1016/j.ssnmr.2022.101808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Analysis of short-to-intermediate range intermolecular interactions offers a great way of characterizing the solid-state organization of small molecules and materials. This can be achieved by two-dimensional (2D) homo- and heteronuclear correlation NMR spectroscopy, for example, by carrying out experiments at high magnetic fields in conjunction with fast magic-angle spinning (MAS) techniques. But, detecting 2D peaks for heteronuclear dipolar coupled spin pairs separated by greater than 3 Å is not always straightforward, particularly when low-gamma quadrupolar nuclei are involved. Here, we present a 2D correlation NMR experiment that combines the advantages of heteronuclear-multiple quantum coherence (HMQC) and proton-based spin-diffusion (SD) pulse sequences using radio-frequency-driven-recouping (RFDR) to probe inter and intramolecular 1H-X (X = 14N, 35Cl) interactions. This experiment can be used to acquire 2D 1H{X}-HMQC filtered 1H-1H correlation as well as 2D 1H-X HMQC spectra. Powder forms of dopamine·HCl and l-histidine·HCl·H2O are characterized at high fields (21.1 T and 18.8 T) with fast MAS (60 kHz) using the 2D HMQC-SD-RFDR approach. Solid-state NMR results are complemented with NMR crystallography analyses using the gauge-including projector augmented wave (GIPAW) approach. For histidine·HCl·H2O, 2D peaks associated with 14N-1H-1H and 35Cl-1H-1H distances of up to 4.4 and 3.9 Å have been detected. This is further corroborated by the observation of 2D peaks corresponding to 14N-1H-1H and 35Cl-1H-1H distances of up to 4.2 and 3.7 Å in dopamine·HCl, indicating the suitability of the HMQC-SD-RFDR experiments for detecting medium-range proximities in molecular solids.
Collapse
Affiliation(s)
- Parth Raval
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F, 59000, Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F, 59000, Lille, France
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Centre, RIKEN, Yokohama Campus, Yokohama, Kanagawa, 230-0045, Japan; JEOL RESONANCE Inc., Akishima, Tokyo, 196-8558, Japan
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F, 59000, Lille, France.
| |
Collapse
|
28
|
Wang S, Guo H, Wu J, Lei Y, Li X, Fang Y, Dai Y, Xiang W, Lin Y. High-conductivity thiocyanate ionic liquid interface engineering for efficient and stable perovskite solar cells. Chem Commun (Camb) 2022; 58:8384-8387. [PMID: 35792136 DOI: 10.1039/d2cc02354g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A high-conductivity thiocyanate ionic liquid (EMIMSCN) was introduced into perovskite solar cells for the first time. The high conductivity of EMIMSCN ensures an adequate supply of free SCN- anions and EMIM+ cations, so as to multifunctionally passivate the I vacancy and Pb-I antisite defects and realize an optimized interfacial energy level. Consequently, the devices with EMIMSCN treatment achieve a high PCE of 22.55% with substantial enhancement in stability. This simple and efficient strategy provides new insights into the selection of passivation agents for efficient and stable PSCs.
Collapse
Affiliation(s)
- Shumao Wang
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China. .,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China.
| | - Haodan Guo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinpeng Wu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Lei
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangrong Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Fang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhua Dai
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| | - Wanchun Xiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| | - Yuan Lin
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Jonathan L, Diguna LJ, Samy O, Muqoyyanah M, Abu Bakar S, Birowosuto MD, El Moutaouakil A. Hybrid Organic-Inorganic Perovskite Halide Materials for Photovoltaics towards Their Commercialization. Polymers (Basel) 2022; 14:1059. [PMID: 35267884 PMCID: PMC8914961 DOI: 10.3390/polym14051059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Hybrid organic-inorganic perovskite (HOIP) photovoltaics have emerged as a promising new technology for the next generation of photovoltaics since their first development 10 years ago, and show a high-power conversion efficiency (PCE) of about 29.3%. The power-conversion efficiency of these perovskite photovoltaics depends on the base materials used in their development, and methylammonium lead iodide is generally used as the main component. Perovskite materials have been further explored to increase their efficiency, as they are cheaper and easier to fabricate than silicon photovoltaics, which will lead to better commercialization. Even with these advantages, perovskite photovoltaics have a few drawbacks, such as their stability when in contact with heat and humidity, which pales in comparison to the 25-year stability of silicon, even with improvements are made when exploring new materials. To expand the benefits and address the drawbacks of perovskite photovoltaics, perovskite-silicon tandem photovoltaics have been suggested as a solution in the commercialization of perovskite photovoltaics. This tandem photovoltaic results in an increased PCE value by presenting a better total absorption wavelength for both perovskite and silicon photovoltaics. In this work, we summarized the advances in HOIP photovoltaics in the contact of new material developments, enhanced device fabrication, and innovative approaches to the commercialization of large-scale devices.
Collapse
Affiliation(s)
- Luke Jonathan
- Department of Renewable Energy Engineering, Prasetiya Mulya University, Kavling Edutown I.1, Jl. BSD Raya Utama, BSD City, Tangerang 15339, Indonesia; (L.J.); (L.J.D.)
| | - Lina Jaya Diguna
- Department of Renewable Energy Engineering, Prasetiya Mulya University, Kavling Edutown I.1, Jl. BSD Raya Utama, BSD City, Tangerang 15339, Indonesia; (L.J.); (L.J.D.)
| | - Omnia Samy
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Muqoyyanah Muqoyyanah
- Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia; (M.M.); (S.A.B.)
| | - Suriani Abu Bakar
- Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia; (M.M.); (S.A.B.)
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Amine El Moutaouakil
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|