1
|
Awate SA, Kaur G. Exploring therapeutic targets in Toll-like receptor pathways: Implications for cardiovascular management in polycystic ovary syndrome. Eur J Pharmacol 2025; 1001:177749. [PMID: 40403827 DOI: 10.1016/j.ejphar.2025.177749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/14/2025] [Accepted: 05/20/2025] [Indexed: 05/24/2025]
Abstract
Inflammation plays a crucial role in the development of Polycystic Ovary Syndrome (PCOS) via modulation in Toll-like receptor (TLR) signaling pathways and over the recent couple of years, there has been an increase in the cardiovascular events associated with PCOS. To overcome this condition, the development of targeted drugs to modulate the TLR signaling pathway, a major trigger in the development of cardiovascular complications with PCOS patients is required. This review aims to explore the therapeutic targets with TLR pathways and their implications for cardiovascular management in PCOS. The chronic activation of TLRs contributes significantly to inflammation and endothelial dysfunction, which are critical factors in the development of cardiovascular diseases in patients with PCOS. Various novel therapeutic approaches are taken into consideration, such as TLR antagonists, naturally occurring TLR inhibitors like curcumin, Cryptotanshinone (CRY), quercetin, berberine, omega-3 fatty acids, and some novel targeted therapies like exosome and gene therapy. The literature findings indicated that targeting specific TLR pathways, TLR2 and TLR4 presents a promising avenue for mitigating cardiovascular complications associated with PCOS which play a major role in disease pathogenesis. The findings underscore the importance of understanding TLR-mediated mechanisms to develop effective interventions tailored to this population. This exploration not only enhances our understanding of immune responses, specific TLRs such as TLR2 and TLR4 in relation to cardiovascular health but also lays the groundwork for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Siddhi A Awate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, V.L. Mehta Road, Vile Parle (West) Mumbai, 400056, Maharashtra, India.
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, V.L. Mehta Road, Vile Parle (West) Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
2
|
Liu C, Liu L, Lin H, Deng S, Zeng H, Shi X, Ling Z, Zhou F, Liu Z, Guo S. New biological strategies for preventing and controlling food contaminants in the supply chain: Smart use of common plant-derived substances. Food Chem 2025; 479:143757. [PMID: 40088659 DOI: 10.1016/j.foodchem.2025.143757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Traditional means of contaminant management that rely on chemical additives and high-temperature processing have raised concerns about long-term safety and environmental issues in the modern food supply chain. Therefore, sustainable, safe, and innovative strategies are urgently needed. Plant-derived substances are known for their biological activity and antifouling potential as natural alternatives for contamination control. This review examines the sources of various contaminants, the categories of plant-derived substances, the action mechanisms, and their feasibility in the food supply chain. The smart use of plant-derived substances to improve microbial, chemical, and metal contamination in the food blockchain is not only a profound fusion of nature and technology, but also a mutual combination of ecological preservation and food safety. However, the realization of its commercialization is subject to multiple sanctions, but as the thorny issues are gradually resolved, the consolidation and market for the new strategies will thrive.
Collapse
Affiliation(s)
- Changwei Liu
- School of Resource & Environment and Safety Engineerng, Hunan University of Science and Technology, Xiangtan 411201, China; School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lu Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haiyan Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Senwen Deng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hongzhe Zeng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xin Shi
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhixiang Ling
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Fang Zhou
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou, Hunan 423000, PR China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Shiyin Guo
- School of Resource & Environment and Safety Engineerng, Hunan University of Science and Technology, Xiangtan 411201, China; School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
3
|
Pereira AG, Echave J, Jorge AOS, Nogueira-Marques R, Nur Yuksek E, Barciela P, Perez-Vazquez A, Chamorro F, P. P. Oliveira MB, Carpena M, Prieto MA. Therapeutic and Preventive Potential of Plant-Derived Antioxidant Nutraceuticals. Foods 2025; 14:1749. [PMID: 40428528 PMCID: PMC12110886 DOI: 10.3390/foods14101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Oxidative stress and its relation to the onset of several chronic diseases have been increasingly highlighted in recent years. In parallel, there has been an increasing interest in the antioxidant properties of phytochemicals. Phytochemicals are products of plant secondary metabolism, including structural polysaccharides, unsaturated fatty acids, pigments (chlorophylls, carotenoids, and anthocyanins), or phenolic compounds. Phytochemicals can be obtained from lower and higher plants, their fruits, and even from macro- or microalgae. Their diverse structural features are linked to different beneficial effects through various molecular mechanisms, contributing to disease prevention. Beyond antioxidant activity, many phytochemicals also display anti-inflammatory, antidiabetic, anti-obesity, and neuroprotective effects, which can be intertwined. Beyond these, other natural antioxidants can also be obtained from animal, fungal, and bacterial sources. Thus, a wide range of antioxidants have the potential to be used as nutraceuticals with chemopreventive effects on the onset of various diseases related to antioxidant stress. Given their enormous structural and sourcing diversity, the present work provides an updated insight into the therapeutic and preventive potential of plant-derived antioxidants and nutraceuticals.
Collapse
Affiliation(s)
- Antia G. Pereira
- Universidade de Vigo, Nutrition and Food Group (NuFoG), Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.G.P.); (J.E.); (A.O.S.J.); (R.N.-M.); (E.N.Y.); (P.B.); (A.P.-V.); (F.C.)
- Investigaciones Agroalimentarias Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Javier Echave
- Universidade de Vigo, Nutrition and Food Group (NuFoG), Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.G.P.); (J.E.); (A.O.S.J.); (R.N.-M.); (E.N.Y.); (P.B.); (A.P.-V.); (F.C.)
- Centro de Investigação de Montanha (CIMO), LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana O. S. Jorge
- Universidade de Vigo, Nutrition and Food Group (NuFoG), Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.G.P.); (J.E.); (A.O.S.J.); (R.N.-M.); (E.N.Y.); (P.B.); (A.P.-V.); (F.C.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Rafael Nogueira-Marques
- Universidade de Vigo, Nutrition and Food Group (NuFoG), Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.G.P.); (J.E.); (A.O.S.J.); (R.N.-M.); (E.N.Y.); (P.B.); (A.P.-V.); (F.C.)
| | - Ezgi Nur Yuksek
- Universidade de Vigo, Nutrition and Food Group (NuFoG), Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.G.P.); (J.E.); (A.O.S.J.); (R.N.-M.); (E.N.Y.); (P.B.); (A.P.-V.); (F.C.)
| | - Paula Barciela
- Universidade de Vigo, Nutrition and Food Group (NuFoG), Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.G.P.); (J.E.); (A.O.S.J.); (R.N.-M.); (E.N.Y.); (P.B.); (A.P.-V.); (F.C.)
| | - Ana Perez-Vazquez
- Universidade de Vigo, Nutrition and Food Group (NuFoG), Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.G.P.); (J.E.); (A.O.S.J.); (R.N.-M.); (E.N.Y.); (P.B.); (A.P.-V.); (F.C.)
| | - Franklin Chamorro
- Universidade de Vigo, Nutrition and Food Group (NuFoG), Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.G.P.); (J.E.); (A.O.S.J.); (R.N.-M.); (E.N.Y.); (P.B.); (A.P.-V.); (F.C.)
| | - Maria B. P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Maria Carpena
- Universidade de Vigo, Nutrition and Food Group (NuFoG), Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.G.P.); (J.E.); (A.O.S.J.); (R.N.-M.); (E.N.Y.); (P.B.); (A.P.-V.); (F.C.)
| | - Miguel A. Prieto
- Universidade de Vigo, Nutrition and Food Group (NuFoG), Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.G.P.); (J.E.); (A.O.S.J.); (R.N.-M.); (E.N.Y.); (P.B.); (A.P.-V.); (F.C.)
| |
Collapse
|
4
|
Revankar NA, Anusha S, Muthukumar SP, Negi PS. Synbiotic pineapple beverage increases life span in Caenorhabditis elegans, ameliorates cognitive impairment, and restores gut microbiome diversity in D-galactose-induced aged C57BL/6 mice. Biogerontology 2025; 26:99. [PMID: 40317421 DOI: 10.1007/s10522-025-10239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/09/2025] [Indexed: 05/07/2025]
Abstract
The incidence of age-associated ailments has increased proportionately with the expansion of the aging demographic. This study aimed to evaluate the anti-aging potential of synbiotic pineapple beverage formulated with 100% pineapple juice, 1% inulin, and Lacticaseibacillus rhamnosus ATCC 53103 (10 log CFU) in Caenorhabditis elegans and D-galactose age-induced mice. The synbiotic juice-treated nematodes exhibited a 24.52% increase in their lifespan, accompanied by lower levels of reactive oxygen species and improved structural functions. In vivo studies demonstrated that synbiotic treatment positively influences age-induced mice's cerebellar function and spatial memory. Additionally, the synbiotic beverage containing 8-10 log CFU of Lacticaseibacillus rhamnosus showed a protective effect against hippocampal neuron damage. The control group displayed a higher Firmicutes/Bacteroides (F/B) ratio, whereas the significantly lower F/B ratio in the diseased groups indicated a reversal of microbial imbalance caused by D-galactose exposure. Furthermore, the consumption of synbiotic beverage mitigated telomere shortening in aged mice. The results highlight the anti-aging effects of a pineapple beverage formulated with Lacticaseibacillus rhamnosus and inulin as a synbiotic intervention. This study suggests that dietary interventions incorporating prebiotics and probiotics may serve as promising strategy for combating age-related disorders and promoting healthy aging.
Collapse
Affiliation(s)
- Neelam Anil Revankar
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Siddaraju Anusha
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Serva Peddha Muthukumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Xie X, Gu Y, Liu Y, Shen M, Ji J, Gao J, Li J. An inulin-type fructan from Codonopsis pilosula ameliorates cyclophosphamide-induced immunosuppression and intestinal barrier injury in mice. Int J Biol Macromol 2025; 310:143312. [PMID: 40250123 DOI: 10.1016/j.ijbiomac.2025.143312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
In the present study, an inulin-type fructan (ITF) with the degree polymerization (DP) of 21 was isolated from Codonopsis pilosula roots and its structure was characterized by FT-IR, MALDI-TOF-MS and NMR. The immunomodulatory and intestinal protective effects of ITF were investigated on immunosuppressive mice. Male BALB/c mice were pretreated with cyclophosphamide (Cy) for 3 days to establish an immunosuppressive model followed by ITF treatment. The results demonstrated that compared with the model group, ITF administration significantly increased immune organ index (P<0.05), alleviated intestinal villus damage, stimulated serum cytokine secretion including Ig G, IL-4, IL-6, IL-2, TNF-α, and INF-γ (P<0.05), upregulated the expression of Occludin and Claudin-1 (P<0.05), and increased CD4+ and CD8+ T cells of ileum in Cy-induced mice (P<0.05). Furthermore, ITF restored the intestinal microbiota dysbiosis caused by Cy by increasing the abundance of Muribaculaceae, Blautia, Odoribacter, Lactobacillus and decreasing the abundance of Lachnospiraceae_NK4A136_group (P<0.05). Meanwhile, ITF increased the production of short-chain fatty acids (SCFAs) including acetic acid, propionic acid and butyric acid (P<0.05). These results indicated that ITF can ameliorate cyclophosphamide-induced immunosuppression and intestinal barrier injury, and restore gut microbiota dysbiosis. This study provided important evidences for the immunomodulatory and intestinal protective effects of the ITF from C. pilosula.
Collapse
Affiliation(s)
- Xingfang Xie
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Yao Gu
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Yi Liu
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Mingyue Shen
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jiaojiao Ji
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jianping Gao
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jiankuan Li
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China.
| |
Collapse
|
6
|
Mirzohreh ST, Sohrabnavi A, Panahi P, Nikniaz Z, Farhangi MA, Daneghian S, Nikniaz L. Effect of prebiotics on growth metrics in infants: A GRADE approach systematic review and meta-analysis of randomized clinical trials. Nutr Res 2025; 137:22-46. [PMID: 40215676 DOI: 10.1016/j.nutres.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 05/02/2025]
Abstract
Breastfeeding is often not feasible for all mothers, making infant formula a critical alternative for ensuring infant safety and nutrition. We hypothesized that the inclusion of prebiotics in infant formula significantly affects growth metrics in infants compared to standard formula. This study aims to fill a knowledge gap regarding the effects of prebiotics in infant formula on infant growth and development, particularly given the varying compositions and durations of prebiotic supplementation. A systematic review was conducted following PRISMA guidelines, analyzing 24 studies sourced from databases such as PubMed and Cochrane, with risk of bias assessed using RoB-2 for randomized controlled trials (RCTs). The findings revealed no significant differences in weight gain (WG), height gain (HG), or head circumference gain (HCG) between prebiotic-fed infants and control groups overall. However, infants receiving prebiotics for 3 or more months exhibited a significant decrease in WG compared to controls (SMD -0.479, P < .05). Notably, those fed formulas containing fructo-oligosaccharides/galacto-oligosaccharides and a combination of polydextrose/galacto-oligosaccharides/lactulose demonstrated improved WG (SMDs of 0.214 and 0.184, P < .05 respectively). Conversely, infants on formulas with inulin-enriched oligo-fructose (IOF) experienced reduced WG and HG. In conclusion, while prebiotics did not consistently enhance growth metrics, specific combinations showed potential benefits, emphasizing the need for tailored approaches in infant formula design to optimize growth without compromising health.
Collapse
Affiliation(s)
| | - Asma Sohrabnavi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Padideh Panahi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Abbasalizad Farhangi
- Department of Community Medicine, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevana Daneghian
- Food and Beverages Safety Research Center, Urmia University of medical sciences, Urmia, Iran; Department of nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Nikniaz
- Tabriz Health Services Management Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Geng L, Yang X, Sun J, Ran X, Zhou D, Ye M, Wen L, Wang R, Chen M. Gut Microbiota Modulation by Inulin Improves Metabolism and Ovarian Function in Polycystic Ovary Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412558. [PMID: 40192074 PMCID: PMC12120758 DOI: 10.1002/advs.202412558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/27/2025] [Indexed: 06/01/2025]
Abstract
The management of metabolic disorder associated with polycystic ovary syndrome (PCOS) has been suggested as an effective approach to improve PCOS which is highly involved with gut microbiota, while the underlying mechanism is unclear. Here, we investigated the role of inulin, a gut microbiota regulator, in the alleviation of PCOS. Our findings showed that inulin treatment significantly improved hyperandrogenism and glucolipid metabolism in both PCOS cohort and mice. Consistent with the cohort, inulin increased the abundance of microbial co-abundance group (CAG) 12 in PCOS mice, including Bifidobacterium species and other short-chain fatty acids (SCFAs)-producers. We further verified the enhancement of SCFAs biosynthesis capacity and fecal SCFAs content by inulin. Moreover, inulin decreased lipopolysaccharide-binding protein (LBP) and ameliorated ovarian inflammation in PCOS mice, whereas intraperitoneal lipopolysaccharide (LPS) administration reversed the protective effects of inulin. Furthermore, fecal microbiota transplantation (FMT) from inulin-treated patients with PCOS enhanced insulin sensitivity, improved lipid accumulation and thermogenesis, reduced hyperandrogenism and ovarian inflammatory response in antibiotic-treated mice. Collectively, these findings revealed that gut microbiota mediates the beneficial effects of inulin on metabolic disorder and ovarian dysfunction in PCOS. Therefore, modulating gut microbiota represents a promising therapeutic strategy for PCOS.
Collapse
Affiliation(s)
- Lulu Geng
- Centre for Assisted ReproductionShanghai Key Laboratory of Maternal‐Fetal MedicineShanghai Institute of Maternal‐Fetal Medicine and Gynecologic OncologyShanghai First Maternity and Infant HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Xin Yang
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghai201203China
- Section of Endocrinology, Internal MedicineSchool of MedicineYale UniversityNew HavenCT06520USA
| | - Jiani Sun
- Centre for Assisted ReproductionShanghai Key Laboratory of Maternal‐Fetal MedicineShanghai Institute of Maternal‐Fetal Medicine and Gynecologic OncologyShanghai First Maternity and Infant HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Ximing Ran
- Department of Biostatistics and BioinformaticsRollins School of Public HealthEmory UniversityAtlantaGA30322USA
| | - Dan Zhou
- Centre for Assisted ReproductionShanghai Key Laboratory of Maternal‐Fetal MedicineShanghai Institute of Maternal‐Fetal Medicine and Gynecologic OncologyShanghai First Maternity and Infant HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Mingming Ye
- Centre for Assisted ReproductionShanghai Key Laboratory of Maternal‐Fetal MedicineShanghai Institute of Maternal‐Fetal Medicine and Gynecologic OncologyShanghai First Maternity and Infant HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Li Wen
- Section of Endocrinology, Internal MedicineSchool of MedicineYale UniversityNew HavenCT06520USA
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghai201203China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese MedicineShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Miaoxin Chen
- Centre for Assisted ReproductionShanghai Key Laboratory of Maternal‐Fetal MedicineShanghai Institute of Maternal‐Fetal Medicine and Gynecologic OncologyShanghai First Maternity and Infant HospitalSchool of MedicineTongji UniversityShanghai200092China
| |
Collapse
|
8
|
Yu Y, He J, Fu H, Mi Y, Wu H, Gao Y, Li M. Inulin Modulates Gut Microbiota and Increases Short-Chain Fatty Acids Levels to Inhibit Colon Tumorigenesis in Rat Models: A Systematic Review and Meta-Analysis. J Food Sci 2025; 90:e70250. [PMID: 40331741 DOI: 10.1111/1750-3841.70250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025]
Abstract
Colorectal cancer (CRC) incidence rises with age, driven by factors such as diet. Inulin, a soluble fiber found in plants like Jerusalem artichoke and chicory, may influence CRC risk by modulating gut microbiota and improving metabolic profiles. This systematic review and meta-analysis evaluate the effects of inulin on CRC in animal models and explore its underlying mechanisms. A comprehensive search of nine databases led to the selection of 12 studies from an initial pool of 114 articles, based on predefined inclusion criteria. Standardized meta-analyses were performed for eligible studies. Results indicate that inulin supplementation significantly reduced aberrant crypt foci count in rats (SMD = -3.805, 95% CI, -7.348 to -0.262, p < 0.001), increased cecal weight (SMD = 6.723, 95% CI, 3.395-10.051, p = 0.000), enhanced colonic lactobacillus counts (SMD = 1.307, 95% CI, 0.644-1.970, p = 0.000), decreased coliform bacteria (SMD = -1.659, 95% CI, -2.147 to -1.171, p = 0.000), and elevated colonic short-chain fatty acids (SCFAs) levels, including acetate (SMD = 3.50, 95% CI, 1.111-5.890, p < 0.001), propionate (SMD = 3.081, 95% CI, 1.416-4.746, p < 0.001), and butyrate (SMD = 4.471, 95% CI, 2.464-6.478, p < 0.001). This systematic review demonstrates inulin's chemopreventive effects against CRC in animal models by enhancing beneficial gut bacteria (e.g., lactobacillus) and boosting SCFAs. Findings advocate integrating inulin-rich foods/supplements into prevention strategies for precision prebiotic development via SCFA-mediated epigenetic and antitumor mechanisms.
Collapse
Affiliation(s)
- Yangyang Yu
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jinling He
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia, China
| | - Haiqi Fu
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yong Mi
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hao Wu
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yuan Gao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia, China
- Clinical School of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Minhui Li
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia, China
- Baotou Medical College, Baotou, Inner Mongolia, China
| |
Collapse
|
9
|
Li X, Wu S, Chen X, Chen J, Liu B, Liang X. Inulin promotes appetite in mice by regulating the gut microbiota under conditions of rapid entry to the plateau. PLoS One 2025; 20:e0322059. [PMID: 40273060 PMCID: PMC12021179 DOI: 10.1371/journal.pone.0322059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/14/2025] [Indexed: 04/26/2025] Open
Abstract
The objective of this study was to examine the mechanism of inulin by regulating the gut microbiota under conditions of rapid entry to the plateau stage. Fifty 7-week-old SPF-grade C57BL/6J male mice were used as experimental subjects and analysed. This study compared the structural and functional characteristics of food intake, body weight changes, serum appetite hormone levels, and intestinal flora of mice in different doses of inulin intervention and control groups in two distinct environments: plains and the rush-into plateau. The results demonstrated that inulin influenced the functional characteristics of the gut microbiota of mice in terms of energy production, conversion, carbohydrate transport, and metabolism. Furthermore, inulin enhanced the secretion of appetite hormones, resulting in appetite promotion under acute plateau conditions by increasing the relative abundance of beneficial bacteria. In addition, inulin significantly improved the body weight of mice under plateau conditions, particularly in the mid- and high-dose groups of inulin-treated mice.
Collapse
Affiliation(s)
- Xiaoli Li
- Food and Nutrition Laboratory, Army Logistics Academy, Chongqing, China
| | - Shengcai Wu
- Food and Nutrition Laboratory, Army Logistics Academy, Chongqing, China
| | - Xiaonan Chen
- Funtional Food Laboratory, Air Force Logistics Academy, Xuzhou, China
| | - Jian Chen
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Xianshuai Liang
- Food and Nutrition Laboratory, Army Logistics Academy, Chongqing, China
| |
Collapse
|
10
|
Sivakumar N, Krishnamoorthy A, Ryali H, Arasaradnam RP. Gut Microbial Targets in Inflammatory Bowel Disease: Current Position and Future Developments. Biomedicines 2025; 13:716. [PMID: 40149692 PMCID: PMC11940752 DOI: 10.3390/biomedicines13030716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a debilitating condition in which surgery is often seen as a last resort. However, this is associated with morbidity and, in some cases, mortality. There are emerging therapies that seek to better modulate the immune response of hosts with IBD. Aims: The main aim of this study is to focus on novel therapies and techniques studied in the last year that are non-surgical treatments of IBD. Methods: We looked at all the research between March 2024 and February 2025 detailing treatment in IBD and focused on the gut microbiome and gene therapy. Results: Novel therapies are gaining traction in safety and popularity. The results from some animal studies show promise and, with FDA approval, some probiotic therapies show optimistic research potential for future human trials. Conclusions: The research into the diagnostics and novel therapies available on the horizon for humans is very promising. Animal studies have shown potentially transferrable and safe therapies that can target specific sites of inflammation. Modulating the inflammatory response is a powerful therapy with what is shown to be a reasonably safe profile to build further research on.
Collapse
Affiliation(s)
- Naveen Sivakumar
- Institute of Precision Diagnostics & Translational Medicine, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK;
| | | | - Harshita Ryali
- Southmead Hospital, North Bristol Trust, Bristol BS10 5NB, UK;
| | - Ramesh P. Arasaradnam
- Institute of Precision Diagnostics & Translational Medicine, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK;
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| |
Collapse
|
11
|
Misnikova I, Kovaleva Y, Shokur S, LeBaron TW, Povarova O, Medvedev O. Hydrogen and Methane Detection in Breath in Response to Two Different Types of Dietary Fiber and Its Relationship to Postprandial Glucose Concentration in Obese Patients with Type 2 Diabetes and Normoglycemic Subjects. Nutrients 2025; 17:917. [PMID: 40077785 PMCID: PMC11902166 DOI: 10.3390/nu17050917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Background: The aim of this study was to investigate the relationship between postprandial glycemic levels based on flashmonitoring and the production of intestinal hydrogen (H2) and methane (CH4) gases based on the measurement of the amount of these gases in exhaled air. Materials and Methods: We studied 14 subjects with type 2 diabetes mellitus (T2DM) and 14 individuals without diabetes (control) with two food load tests, including two types of dietary fiber (inulin and guar gum), with the simultaneous determination of gases in exhaled air and the assessment of glucose levels. Results: All subjects in the control group had a significant increase in exhaled H2. OR for increased hydrogen production in patients with T2DM was 0.17 (95% CI 0.031-0.93, p = 0.043). The level of H2 in exhaled breath after food load in patients with T2DM was lower than in normoglycemic subjects. There was an inverse correlation between maximum glucose rise and maximum H2 in exhaled air after food load in normoglycemic subjects (r = -0.569, p = 0.034). Patients with T2DM had direct correlations between the level of CH4 in exhaled air and the parameters of postprandial glycemia in the lactulose test (p < 0.05). Conclusions: The confirmation of a causal relationship between decreased H2 production, increased intestinal CH4 production, and more severe postprandial glycemia may identify new therapeutic targets in the correction of postprandial glycemia in patients with T2DM.
Collapse
Affiliation(s)
- Inna Misnikova
- M.F. Vladimirski Moscow Regional Research and Clinical Institute, Schepkina 61/2, 129110 Moscow, Russia; (I.M.); (Y.K.)
| | - Yulia Kovaleva
- M.F. Vladimirski Moscow Regional Research and Clinical Institute, Schepkina 61/2, 129110 Moscow, Russia; (I.M.); (Y.K.)
| | - Svetlana Shokur
- M.F. Vladimirski Moscow Regional Research and Clinical Institute, Schepkina 61/2, 129110 Moscow, Russia; (I.M.); (Y.K.)
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA;
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
| | - Oxana Povarova
- Department of Pharmacology, M. V Lomonosov Moscow State University, Lomonosovsky Prospect 27-1, 119991 Moscow, Russia;
| | - Oleg Medvedev
- Department of Pharmacology, M. V Lomonosov Moscow State University, Lomonosovsky Prospect 27-1, 119991 Moscow, Russia;
- National Medical Research Center of Cardiology, Laboratory of Experimental Pharmacology, Academician Chazov Str., 15a, 121552 Moscow, Russia
| |
Collapse
|
12
|
Xing Z, Fu X, Huang H, Xu Y, Wei L, Shan C, Du Y. Recent advances in Lactobacillus plantarum fermentation in modifying fruit-based products: Flavor property, bioactivity, and practical production applications. Compr Rev Food Sci Food Saf 2025; 24:e70160. [PMID: 40135439 DOI: 10.1111/1541-4337.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025]
Abstract
Lactobacillus plantarum is a widely distributed gram-positive anaerobic or partially anaerobic fermenting bacteria that has been extensively applied in the fields of medicine, cosmetics, and the food industry owing to their variety of functional properties. L. plantarum is suitable for the fermentation of fruit and vegetable media. The resulting fermented product is significantly enhanced in terms of the overall quality compared to that in the prefermentation period. This study summarizes the impact of fermentation with L. plantarum on the modification of flavor and volatile compounds in fruit products, its effect on functional activities, and its practical application in fermented fruit production. Fruits fermented by L. plantarum are rich in volatile components, possess a higher content of functional compounds, and exhibit better bioactivities, including antioxidant, anti-inflammatory, and regulatory effects on type 2 diabetes and gut microbes, compared to nonfermented fruits. This study provides new insights into the development of fruit-derived functional foods processed via fermentation with L. plantarum.
Collapse
Affiliation(s)
- Zhibin Xing
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Xizhe Fu
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Hao Huang
- College of Ecology, Lishui University, Lishui, P. R. China
| | - Yuerong Xu
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Lili Wei
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang, China
| | - Chunhui Shan
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Yinglin Du
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| |
Collapse
|
13
|
Liu D, Wei M, Fang Y, Yuan T, Sun Y, Xie H, Yan W, Yuan B, Zhuang B, Jin Y. Oral colon-retentive inulin gels protect against radiation-induced hematopoietic and gastrointestinal injury by improving gut homeostasis. Int J Biol Macromol 2025; 292:139199. [PMID: 39730057 DOI: 10.1016/j.ijbiomac.2024.139199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Ionizing radiation-induced injury often occurs in nuclear accidents or large-dose radiotherapy, leading to acute radiation syndromes characterized by hematopoietic and gastrointestinal injuries even to death. However, current radioprotective drugs are only used in hospitals with unavoidable side effects. Here, we heated the aqueous solution of inulin, a polysaccharide dietary fiber, forming colon-retentive gel as a radiation protector in radiotherapy. Mouse models were established after 60Co γ-ray irradiation of the total body or abdomen. Inulin gels were orally administered to the mice every day from 3 days pre-radiation to 3 days post-radiation. The hematopoietic system was well protected with good blood cell recovery and cell proliferation in the femur and spleen. Oral inulin gels increased the relative abundances of key commensal microorganisms including f_Lachnospiraceae, Akkermansia, Blautia, and short-chain fatty acid metabolites. The secretion of the anti-inflammation cytokines IL-22 and IL-10 in the intestinal cells also increased. Similarly, the expression of the tight junction proteins claudin-1 and occludin in the gut mucosa was affected. In an orthotopic murine colorectal cancer model, oral inulin gels followed by 10-Gy abdomen radiation improved the radiotherapy efficiency with low attenuated radiation injury. Taken the data together, these results suggest that oral inulin gels are a bioactive material against ionizing radiation-induced injury.
Collapse
Affiliation(s)
- Dongdong Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
| | - Meng Wei
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yubao Fang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tianyu Yuan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yingbao Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Xie
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenrui Yan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo Zhuang
- Institute of NBC Defense, Beijing 102205, China.
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
14
|
Abou Diwan M, Huet A, Poiriez J, Joly Condette C, Delanaud S, Sevin E, Corona A, Rhazi L, Depeint F, Ouadid-Ahidouch H, Gosselet F, Bach V, Candela P, Khorsi-Cauet H. Effects of Chlorpyrifos on gut dysbiosis and barriers integrity in women with a focus on pregnancy and prebiotic intervention: Insights from advanced in vitro human models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125533. [PMID: 39674256 DOI: 10.1016/j.envpol.2024.125533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Chlorpyrifos (CPF), a commonly used organophosphate pesticide, poses potential risks to human health, particularly affecting the gut microbiota (GM), intestinal barrier (IB), and blood-brain barrier (BBB). CPF-induced gut dysbiosis compromises the integrity of both the IB and the BBB, leading to increased intestinal permeability, inflammation, and bacterial translocation, all of which may impact neurological health. Although CPF's effects on the GM are documented, limited research explores how these impacts differ in women, particularly during pregnancy. To address this gap, this study investigates CPF's effects using three advanced human in vitro models: the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) to mimic the gut environment of women of child-bearing age and pregnant women, a Caco-2 model for the IB, and a BBB model to assess CPF's effects and the protective role of the prebiotic inulin. Microbiological analyses of SHIME® supernatants, including bacterial culture and quantification of short-chain fatty acids (SCFAs) and CPF metabolites, were conducted to assess gut composition and pesticide degradation. We also examined the effects of CPF-induced dysbiosis on IB and BBB permeability to FITC-Dextran, focusing on bacterial translocation after 4 h of exposure to CPF-treated SHIME® supernatants. Our results revealed significant intestinal imbalance, marked by an increase in potentially pathogenic bacteria in the GM of both non-pregnant and pregnant women exposed to CPF. This dysbiosis led to a significant shift in SCFAs ratio and increased IB permeability and bacterial translocation across the IB, but not the BBB. Notably, inulin supplementation restored GM balance and prevented bacterial translocation, highlighting its potential as a preventive measure against CPF-induced dysbiosis. This study enhances our understanding of the health risks associated with CPF exposure in women, with implications for maternal and fetal health, and underscores the importance of considering physiological states such as pregnancy in toxicological research.
Collapse
Affiliation(s)
- Maria Abou Diwan
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, Université Picardie Jules Verne, CEDEX 1, 80054, Amiens, France; Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, 62300, Lens, France
| | - Avénie Huet
- Laboratoire de physiologie cellulaire et moléculaire (LPCM), UR UPJV 4667, Université Picardie Jules Verne, UPJV, 80039, Amiens, France
| | - Juliette Poiriez
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, 62300, Lens, France
| | - Claire Joly Condette
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, Université Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Stéphane Delanaud
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, Université Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Emmanuel Sevin
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, 62300, Lens, France
| | - Aurélie Corona
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, Université Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Larbi Rhazi
- UP 2018.C103 Transformations & Agro-Ressources, Institut Polytechnique UniLaSalle, Beauvais, France
| | - Flore Depeint
- Institut Polytechnique UniLaSalle, Université d'Artois IDEALISS, URL 7519, 60000, Beauvais, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de physiologie cellulaire et moléculaire (LPCM), UR UPJV 4667, Université Picardie Jules Verne, UPJV, 80039, Amiens, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, 62300, Lens, France
| | - Véronique Bach
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, Université Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, 62300, Lens, France
| | - Hafida Khorsi-Cauet
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, Université Picardie Jules Verne, CEDEX 1, 80054, Amiens, France.
| |
Collapse
|
15
|
Zhou Z, Sarwar A, Hu G, Zhang J, Hu H, Aziz T, Wu J, Yang Z, Yang Z. Identification of potential key metabolites in synbiotic yoghurt made with probiotic Saccharomyces cerevisiae var. boulardii CNCM I-745 and prebiotic inulin by non-targeted metabolomics analysis. Food Chem 2025; 464:141923. [PMID: 39509896 DOI: 10.1016/j.foodchem.2024.141923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
Probiotic yeasts are attracting widespread attention due to their unique therapeutic properties and benefits to human health, but how they function in food system has been much less studied. Here, yoghurt was prepared using probiotic Saccharomyces cerevisiae var. boulardii CNCM I-745 with and without addition of prebiotic inulin, and the metabolic changes in yoghurt during 28 days of storage at 4 °C were analyzed by non-targeted metabolomics method. Potential functional metabolites that were differentially expressed in the synbiotic yoghurt added with inulin were identified, including hydroxyisocaproic acid, indolelactic acid, α-lactose, pelargonic acid, trehalose, 2-isopropylmalic acid, maltitol, D-glucuronic acid, raffinose, uric acid, and maltohexaose. These differential metabolites might play an important role in improving probiotic yeast survival and synbiotic yoghurt functionality through relevant metabolic pathways. This study promotes comprehension on the metabolic properties of the probiotic yeast in yoghurt with significance in exploring its applications in synbiotic dairy products.
Collapse
Affiliation(s)
- Zengjia Zhou
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Abid Sarwar
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Gege Hu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Zhang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Hangyu Hu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tariq Aziz
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingwei Wu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhennai Yang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhang Yang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 55005, China.
| |
Collapse
|
16
|
Yu X, Li C, Zhou M, Prakash S, Dong X. Improved the quality of dietary for older with dysphagia by κ-carrageenan/inulin: Textural, rheological, oral process and 3D printing properties. Food Res Int 2025; 202:115683. [PMID: 39967092 DOI: 10.1016/j.foodres.2025.115683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Many countries have aging populations, which continue to grow. Compound diets based on the nutritional needs of older adults were prepared using mixed grain rice and cooked surimi. The textural, rheological, and 3D-printing properties were regulated through the synergy between carrageenan (CG) and inulin (IN) (The total addition of CG and IN is 1.5 % (w/w) and the ratio between CG and IN was 3/1, 1/1, 1/3(w/w)). The results show that all compound diets have shear thinning behavior, and the apparent viscosity, support properties, and recovery rate increased with increased CG/IN. The compound diets with a 3/1 CG/IN ratio had the best shear recovery rate (80.95 %). Compared with the control group, adding CG/IN increased the yield stress and extrusion force of the compound diets, which decreased with the increased IN ratio. The combination of CG and IN in compound diets could facilitate easier chewing and safer swallowing. When the CG/IN ratio was 3/1or 1/1, the compound diets had the best 3D-printing properties, those which have the highest degree of similarity to the example design graphic and the most pronounced line texture. When the CG and IN were added, the hardness, springiness, and chewiness of the compound diets were enhanced, and the microstructure became denser and more regular. The compound diets are suitable for people with dysphagia and can be classified into levels 5-6 in the International Dysphagia Diet Standardization Initiative framework.
Collapse
Affiliation(s)
- Xiliang Yu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034 Liaoning, China
| | - Chen Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034 Liaoning, China
| | - Mengdi Zhou
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034 Liaoning, China
| | - Sangeeta Prakash
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiuping Dong
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034 Liaoning, China; School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034 Liaoning, China.
| |
Collapse
|
17
|
Uriot O, Defois-Fraysse C, Couturier I, Deschamps C, Durif C, Chaudemanche C, Dreux-Zigha A, Blanquet-Diot S. Effects of prebiotics from diverse sources on dysbiotic gut microbiota associated to western diet: Insights from the human Mucosal ARtificial COLon (M-ARCOL). Curr Res Food Sci 2024; 10:100968. [PMID: 39834797 PMCID: PMC11743849 DOI: 10.1016/j.crfs.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Associated to various illnesses, Western Diet (WD) is acknowledged to have deleterious effects on human gut microbiota, decreasing bacterial diversity, lowering gut bacteria associated to health (such as Akkermansia muciniphila), while increasing those linked to diseases (e.g., Proteobacteria). In this study, we evaluated the potential of two new prebiotics to counteract the negative effect of WD on gut microbiota, namely raffinose family oligosaccharides (RFO) from chickpeas and laminarin (LAM) from algae, when compared to the well-known inulin (INU). The effects of prebiotics on gut microbiota composition and metabolic activities were investigated in the Mucosal-Artificial Colon, set-up to reproduce WD condition, as compared to healthy control (n = 3). None of the prebiotics was able to efficiently offset the shift in microbiota induced by WD. Nevertheless, when compared to non-supplemented WD, all prebiotics showed significant impacts on microbiota composition, that were both prebiotic and donor-dependant. RFO was the only prebiotic to enhance α-diversity, while it led to an increase in Blautia and Butyricicoccaceae, associated with higher amounts of gas and butyrate. LAM and INU did not strongly impact microbial metabolic activities but were associated with a rise in Prevotella_9/Agathobacter and Faecalibacterium, respectively. To conclude, this study showed that all tested prebiotics had different impacts on human gut microbiota structure and activities, which was further donor-dependent. M-ARCOL appears as a suitable in vitro tool to better understand the mechanisms of action of prebiotic compounds in relation to gut microbes and define responders and non-responders to prebiotic supplementation, opening the possibility of customized nutritional strategies.
Collapse
Affiliation(s)
- Ophélie Uriot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | | | - Ingrid Couturier
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | - Charlotte Deschamps
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | - Claude Durif
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| | | | | | - Stéphanie Blanquet-Diot
- UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, Université Clermont Auvergne – INRAE, Clermont-Ferrand, France
| |
Collapse
|
18
|
Tapera RF, Siwe-Noundou X, Shai LJ, Mokhele S. Exploring the Therapeutic Potential, Ethnomedicinal Values, and Phytochemistry of Helianthus tuberosus L.: A Review. Pharmaceuticals (Basel) 2024; 17:1672. [PMID: 39770513 PMCID: PMC11676200 DOI: 10.3390/ph17121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Helianthus tuberosus L. (Jerusalem artichoke) tubers and aerial parts possess both nutritional and therapeutic properties. The Jerusalem artichoke has been utilized for various applications, including its use as a functional food source, a reservoir of bioactive compounds, and a raw material to produce biofuels. Moreover, the Jerusalem artichoke is a rich source of an indigestible polysaccharide called inulin, which serves as a prebiotic that improves gastrointestinal health. This plant has been used globally throughout history as a dietary supplement, for pain treatment, to reduce swelling, and to boost the immune system, as well as to treat skin wounds in folk medicine. It is an abundant source of bioactive compounds, such as phenolic acids, coumarins, and flavonoids, which are known to exert pharmacological activities, including antioxidant, antimicrobial, and anti-inflammatory properties. The literature on its potential as an antidiabetic, anticancer, anti-fungistatic, antiviral, and anti-obesity agent, among others, is scanty. This review aims to provide a comprehensive overview of Helianthus tuberosus L.'s traditional uses, nutritional properties, secondary bioactive compounds, and pharmacological properties to further explore its health benefits.
Collapse
Affiliation(s)
- Ruvimbo Faith Tapera
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (R.F.T.); (X.S.-N.)
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (R.F.T.); (X.S.-N.)
| | - Leshweni Jeremia Shai
- Department of Biomedical Sciences, Faculty of Science, Tshwane University of Technology, Arcadia Campus, Pretoria 0183, South Africa;
| | - Shoeshoe Mokhele
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (R.F.T.); (X.S.-N.)
| |
Collapse
|
19
|
Sawant S, Alvarez VB, Heldman DR. Limited enzymatically hydrolyzed pea protein-inulin interactions in gel systems. J Food Sci 2024; 89:9243-9256. [PMID: 39617827 DOI: 10.1111/1750-3841.17581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024]
Abstract
Gelation of protein-polysaccharide mixtures can help create a variety of distinctive gel systems as compared to single polysaccharide or protein gels. The properties of these functional gels are heavily reliant upon the nature of protein-polysaccharides interactions, their gelling compatibility, and mechanism. Pea protein isolate dispersions (7.5%) were subjected to limited enzymatic hydrolysis using the enzyme Alcalase® at three hydrolysis times (0, 3, and 6 min). Inulin was added according to three ratios (0, 1:4, and 2:4) with pea protein. Viscoelastic properties of the gels formed were measured using amplitude sweep and frequency sweep. Storage modulus (G') measurements from the amplitude sweep indicated that samples hydrolyzed for 3 min with 1:4 ratio of inulin to pea protein had maximum gel strength, exhibiting G' values of ∼307 Pa. G' values for samples hydrolyzed for 0 and 6 min with different inulin ratios averaged ∼13 and ∼144 Pa, respectively. Confocal laser scanning microscopy showed that gels developed by samples hydrolyzed for 3 min showed a dense network as compared to an open network in gels formed by samples hydrolyzed for 6 min, whereas large random aggregates were observed in gels formed by samples hydrolyzed for 0 min. The study confirmed that inulin promotes noncovalent bond formation in samples hydrolyzed for 3 min with a 1:4 inulin ratio, shown by an ∼18% increased protein solubility in urea. Additionally, collaboration between noncovalent bonds and disulfide linkages stabilized the gel structure, as indicated by further increase in solubility in combination of urea and Dithiothreitol. PRACTICAL APPLICATION: Plant proteins are gaining attention as alternatives to animal proteins. However, they have inferior functionality, which affects their applicability in food products. This investigation aimed to evaluate enzymatic hydrolysis to enhance the structural and functional properties of pea proteins, thus increasing their applicability in the food industry. Inulin is an oligosaccharide and soluble fiber, which promotes gut health. Thus, gels combining hydrolyzed pea protein and inulin can serve as a model mixed food system of interest to both the industry and consumers.
Collapse
Affiliation(s)
- Sanjana Sawant
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Valente B Alvarez
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Department of Food Science and Technology, The Wilbur A. Gould Food Industries Center, The Ohio State University, Ohio, USA
| | - Dennis R Heldman
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
20
|
Todorov SD, Lima JMS, Bucheli JEV, Popov IV, Tiwari SK, Chikindas ML. Probiotics for Aquaculture: Hope, Truth, and Reality. Probiotics Antimicrob Proteins 2024; 16:2007-2020. [PMID: 38801620 DOI: 10.1007/s12602-024-10290-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The use of microorganisms as beneficial crops for human and animal health has been studied for decades, and these microorganisms have been in practical use for quite some time. Nowadays, in addition to well-known examples of beneficial properties of lactic acid bacteria, bifidobacteria, selected Bacillus spp., and yeasts, there are several other bacteria considered next-generation probiotics that have been proposed to improve host health. Aquaculture is a rapidly growing area that provides sustainable proteins for consumption by humans and other animals. Thus, there is a need to develop new technologies for the production practices associated with cleaner and environment-friendly approaches. It is a well-known fact that proper selection of the optimal probiotics for use in aquaculture is an essential step to ensure effectiveness and safety. In this critical review, we discuss the evaluation of host-specific probiotics in aquaculture, challenges in using probiotics in aquaculture, methods to improve the survival of probiotics under different environmental conditions, technological approach to improving storage, and delivery along with possible negative consequences of using probiotics in aquaculture. A critical analysis of the identified challenges for the use of beneficial microbes in aquaculture will help in sustainable aquafarming, leading to improved agricultural practices with a clear aim to increase protein production.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil.
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - Joao Marcos Scafuro Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Jorge Enrique Vazquez Bucheli
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Bioestadistica y Genetica, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, C.P. 04510, Mexico City, Mexico
| | - Igor Vitalievich Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1, Rostov-On-Don 344002, Rostov, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1, Rostov-On-Don 344002, Rostov, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, the State University of New Jersey, RutgersNew Brunswick, NJ 08901, USA
- I. M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
| |
Collapse
|
21
|
Chen S, Peng D, Shan Y, Liu F, Du R, Bao Y, Yu H, Tu Y. Black Tea drinks with inulin and dextrin reduced postprandial plasma glucose fluctuations in patients with type 2 diabetes: an acute, randomized, placebo-controlled, single-blind crossover study. Nutr Diabetes 2024; 14:95. [PMID: 39616149 PMCID: PMC11608310 DOI: 10.1038/s41387-024-00351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND This study evaluated the effects of black tea drinks with inulin and dextrin (BTID) on postprandial plasma glucose (PG) in patients with type 2 diabetes mellitus (T2DM). METHODS An acute, randomized, double-blind, placebo-controlled, crossover clinical trial was carried out on T2DM patients. The subjects were randomly assigned to groups consuming placebo black tea powder or BTID (identically packaged) followed by a mixed meal tolerance test (MMTT). Afterwards, individuals who initially consumed BTID were given the placebo and those who initially consumed the placebo were given BTID. RESULTS A total of 35 patients were included in the study, and 32 completed the study. Compared to placebo, BTID significantly reduced the change in glycaemia at 30 min, 1, 2, and 3 h during the MMTT. In the analysis of PG fluctuations at 2 h during the MMTT, the proportion of patients with minor PG fluctuations (< 2.8 mmol/L) in the BTID group was 53.1%, significantly higher than the 28.1% in the placebo group. Binary logistic regression analysis revealed that the risk of significant PG fluctuations decreased by 65.5% after consuming BTID, with a corresponding odds ratio of 0.345 (P = 0.044, 95% CI 0.122-0.974). In addition, the areas under the curve for PG and insulin secretion after BTID administration were significantly smaller than that for placebo. CONCLUSIONS Compared to placebo, BTID significantly reduced the change in PG levels during the MMTT and decreased the risk of large PG fluctuations by 65.5%. These effects were associated to a significant reduction in postprandial insulin secretion and may help to improved insulin sensitivity and a lower β-cell burden.
Collapse
Affiliation(s)
- Si Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Danfeng Peng
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Yingyi Shan
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Fengjing Liu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
- Haikou orthopedic and diabetes hospital, Haikou, 570300, China
| | - Ronghui Du
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China.
| | - Yinfang Tu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, 200233, China.
- Haikou orthopedic and diabetes hospital, Haikou, 570300, China.
| |
Collapse
|
22
|
Serkova MY, Avalueva EB, Sitkin SI. Chronic constipation: focus on microbiome-targeted therapies with prebiotics, probiotics, and synbiotics. ALMANAC OF CLINICAL MEDICINE 2024; 52:280-296. [DOI: 10.18786/2072-0505-2024-52-026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Chronic constipation is a global medical, social, and economic problem due to its negative impact on patients’ quality of life and increased risk of colorectal cancer, cardiovascular and cerebrovascular disorders.
The gut microbiota plays an important role in the pathophysiology of constipation through its interplay with the immune system, enteral and central nervous system, representing a promising therapeutic target. Gut dysbiosis in patients with constipation is characterized by reduced relative numbers of bacteria producing lactate (Lactobacillaceae, Bifidobacteriaceae) and butyrate (Lachnospiraceae, Oscillospiraceae), as well as with increased numbers of those producing hydrogen sulfide (Desulfovibrionaceae) and methanogenic archaea (Methanobacteriaceae). The leading pathogenetic mechanism related to intestinal dysbiosis in chronic constipation, can be microbial metabolic abnormalities (metabolic dysbiosis) characterized by altered production of short-chain fatty acid, methane, hydrogen sulfide, tryptophan metabolites and by abnormal bile acid biotransformation. It has been proven that dysbiotic abnormalities of the intestinal microbiome play a role in the pathophysiology of constipation, which allows for the use of prebiotics, probiotics, and synbiotics for effective microbiome-modulating therapy in patients with chronic constipation. The proven role of dysbiotic abnormalities of the intestinal microbiome in the pathophysiology of chronic constipation determines the effectiveness of microbiome-modulating therapy (prebiotics, probiotics, synbiotics) in patients with this syndrome.
Inulin is the most studied preboitic; it is a soluble food fiber that markedly contributes to the regulation of intestinal microbiota, stimulates the growth of beneficial bacteria, and production of anti-inflammatory metabolites. Inulin normalized the intestinal function in patients with chronic constipation increasing the stool frequency, softening the stool, and reducing the intestinal transit time. In addition, inulin modulates the immune response and impacts the absorption of minerals, appetite, and satiety.
Treatment with probiotics is also associated with reduced intestinal transit time, compared to controls. According to a systematic review and meta-analysis of 30 randomized controlled trials, only Bifidobacterium lactis strains (but not other probiotics) significantly increase stool frequencies in chronic constipation in adults. Clinical studies have shown that the targeted probiotic Bifidobacterium lactis HN019 can significantly increase the stool frequencies in patients with low (≤ 3 per week) stool frequency up to 4.7–5.0 per week, reduce the intestinal transit time and the rate of functional gastroenterological symptoms in adults with constipation. Beyond its clinical effects, Bifidobacterium lactis HN019 leads to beneficial changes in intestinal microbiota, significantly increasing the bifidobacteria and decreasing the enterobacteria numbers.
The results of trials confirm the importance of synbiotic correction of dysbiotic microbiota in all patients with constipation to increase stool frequencies and improve fecal consistency, as well as to prevent the chronic disorders associated with constipation. Synbiotics, such as a combination of Bifidobacterium lactis HN019 and inulin, with the properties of both complementary and synergic synbiotic, may have the greatest microbiome-modulating and functional potential to significantly improve clinical outcomes in patients with chronic constipation compared to probiotics or prebiotics used alone.
Collapse
|
23
|
González-Velázquez G, Aguirre-Garrido JF, Oros-Pantoja R, Salinas-Velarde ID, Contreras I, Estrada JA, Soto-Piña AE. Supplementation with inulin reverses cognitive flexibility alterations and modulates the gut microbiota in high-fat-fed mice. Front Behav Neurosci 2024; 18:1445154. [PMID: 39568732 PMCID: PMC11577567 DOI: 10.3389/fnbeh.2024.1445154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Alterations in cognitive performance are associated with inadequate nutritional states and diet composition. Prebiotics, such as inulin, are substances that can modulate the gut microbiome and, consequently, brain function by producing metabolites such as short-chain fatty acids (SCFAs). This study aimed to evaluate the effect of supplementation with inulin on cognitive flexibility, body composition, and gut microbiota in a murine model exposed to a high-fat (HF) diet. Methods CD1 mice were divided into five groups: control fed a standard diet (C), high-fat diet (HF), inulin (I), high-fat diet with inulin (HFI), and manipulation control (M). Dietary supplementation was administered for 6 weeks. Cognitive flexibility was assessed using the Attentional Set-Shifting Test (AST). In addition, body composition was measured via electrical bioimpedance and adipose tissue compartments of each mouse were removed and weighed. Finally, gut microbiota metataxonomic was analyzed through metataxonomic bacterial 16S rRNA sequencing. Results We observed that HF group required more AST trials than the C, HFI, and I groups in the compound discrimination (CD) and extra-dimensional (ED) stages. Notably, the HFI group required fewer trials than the HF group in the ED stage (p = 0.0187). No significant differences in overall body composition were observed between the groups. However, the percentage of gonadal and peritoneal adipose tissue was significantly higher in the HF and I groups compared to the C group. Statistically significant differences in alpha diversity for gut microbiota were observed using the Shannon, Simpson, and Chao1 indices. The I group showed a decrease in bacterial diversity compared to the HF group. While no differences were observed between groups in the phyla Bacillota and Bacteroidotes, Clostridium bacteria represented a lower proportion of sequences in the I group compared to the C group. Additionally, Lactobacillus represented a lower proportion of sequences in the HF group compared to the C and I groups. Discussion These findings suggest that supplementation with inulin could be a useful approach to mitigate the negative effects of an HF diet on cognitive flexibility and modulate gut microbiota composition.
Collapse
Affiliation(s)
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma, Estado de México, Mexico
| | - Rigoberto Oros-Pantoja
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | | - Irazú Contreras
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - José Antonio Estrada
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | |
Collapse
|
24
|
Shang Q. Inulin alleviates inflammatory response and gut barrier dysfunction via modulating microbiota in lipopolysaccharide-challenged broilers. Int J Biol Macromol 2024; 282:137208. [PMID: 39489258 DOI: 10.1016/j.ijbiomac.2024.137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
This study was conducted to explore the protective effects of inulin against lipopolysaccharide (LPS)-induced inflammatory response and intestinal barrier dysfunction in broilers. 108 broilers were allocated to 3 treatments: 1) non-challenged broilers (Control, CON); 2) LPS-challenged broilers (LPS); 3) LPS-challenged broilers fed the basal diet supplemented with 15 g/kg of inulin (Inulin + LPS). At 21 d of age, the LPS-challenged groups received an intraperitoneal injection of LPS, and the CON group received an equal volume of saline. After 4 h of LPS exposure, samples of blood, intestinal mucosa and cecal digesta were collected. The results showed that LPS challenge induced systemic inflammation and damaged intestinal barrier function, whereas inulin attenuated LPS-induced production of pro-inflammatory cytokines by inhibiting the activation of TLR4 and NF-κB p65, and enhanced intestinal barrier function. In addition, LPS stimulation caused cecal microbial dysbiosis as shown by increased abundance of pathogenic bacteria including Ruminococcus_torques_group, Escherichia-Shigella and Subdoligranulum, while supplementation of inulin increased abundance of beneficial bacteria Faecalibacterium and Anaeroplasma, and metabolite production including propionate and butyrate concentrations. In conclusion, dietary supplementation of inulin could partially alleviate LPS-induced inflammation and intestinal barrier injury by modulating intestinal microbiota, thereby minimizing growth retardation of broilers. Our results provide a basis for the rational utilization of inulin in alleviating immune stress in broiler production.
Collapse
Affiliation(s)
- Qinghui Shang
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
25
|
Lu Y, Yu X, Wang Z, Kong L, Jiang Z, Shang R, Zhong X, Lv S, Zhang G, Gao H, Yang N. Microbiota-gut-brain axis: Natural antidepressants molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156012. [PMID: 39260135 DOI: 10.1016/j.phymed.2024.156012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe mental health condition characterized by persistent depression, impaired cognition, and reduced activity. Increasing evidence suggests that gut microbiota (GM) imbalance is closely linked to the emergence and advancement of MDD, highlighting the potential significance of regulating the "Microbiota-Gut-Brain" (MGB) axis to impact the development of MDD. Natural products (NPs), characterized by broad biological activities, low toxicity, and multi-target characteristics, offer unique advantages in antidepressant treatment by regulating MGB axis. PURPOSE This review was aimed to explore the intricate relationship between the GM and the brain, as well as host responses, and investigated the mechanisms underlying the MGB axis in MDD development. It also explored the pharmacological mechanisms by which NPs modulate MGB axis to exert antidepressant effects and addressed current research limitations. Additionally, it proposed new strategies for future preclinical and clinical applications in the MDD domain. METHODS To study the effects and mechanism by which NPs exert antidepressant effects through mediating the MGB axis, data were collected from Web of Science, PubMed, ScienceDirect from initial establishment to March 2024. NPs were classified and summarized by their mechanisms of action. RESULTS NPs, such as flavonoids,alkaloids,polysaccharides,saponins, terpenoids, can treat MDD by regulating the MGB axis. Its mechanism includes balancing GM, regulating metabolites and neurotransmitters such as SCAFs, 5-HT, BDNF, inhibiting neuroinflammation, improving neural plasticity, and increasing neurogenesis. CONCLUSIONS NPs display good antidepressant effects, and have potential value for clinical application in the prevention and treatment of MDD by regulating the MGB axis. However, in-depth study of the mechanisms by which antidepressant medications affect MGB axis will also require considerable effort in clinical and preclinical research, which is essential for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaowen Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhongling Wang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Linghui Kong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhenyuan Jiang
- Department of Neurology, Affiliated Hospital of shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haonan Gao
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
26
|
Marzec A, Fotschki B, Napiórkowska D, Fotschki J, Cholewińska E, Listos P, Juśkiewicz J, Ognik K. The Effect of Copper Nanoparticles on Liver Metabolism Depends on the Type of Dietary Fiber. Nutrients 2024; 16:3645. [PMID: 39519478 PMCID: PMC11547515 DOI: 10.3390/nu16213645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES A diet enriched with copper nanoparticles (CuNPs) exhibits a wide range of effects on liver metabolism, both positive and negative. Dietary fibers are the key components that may affect the absorption of minerals, including copper, and change their impact on organisms. METHODS Therefore, this study investigated whether and how supplementation with different sources of dietary fiber (cellulose, pectin, inulin, and psyllium) affects the function of CuNPs in the liver of male Wistar rats. RESULTS The results showed that CuNPs at different doses had varying effects on lipid metabolism and inflammation in the liver. Specifically, higher doses of CuNPs were associated with increased lipid accumulation and the activation of pro-inflammatory mechanisms. However, combining CuNPs with dietary fibers, such as psyllium and inulin, was beneficial in mitigating the effects of the examined nanoparticles, leading to reduced fat, cholesterol, and triglycerides in the liver. Combining psyllium with CuNPs showed the most substantial effect on liver metabolism and inflammation parameters. Furthermore, hepatic histology analyses showed that adding psyllium to the diet with CuNPs reduces changes associated with fat accumulation and mononuclear cell infiltration. The observed beneficial changes in the liver may have been related to a reduction in the gene expression level of sterol regulatory element-binding protein 1 and peroxisome proliferator-activated receptor gamma and cyclooxygenase-2. CONCLUSIONS In conclusion, enriching the diet with dietary fibers such as psyllium can regulate the action of CuNPs, thereby improving lipid metabolism and reducing inflammation in the liver.
Collapse
Affiliation(s)
- Aleksandra Marzec
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (A.M.); (E.C.); (K.O.)
| | - Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (D.N.); (J.F.); (J.J.)
| | - Dorota Napiórkowska
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (D.N.); (J.F.); (J.J.)
| | - Joanna Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (D.N.); (J.F.); (J.J.)
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (A.M.); (E.C.); (K.O.)
| | - Piotr Listos
- Sub-Department of Pathomorphology and Forensic Medicine, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (D.N.); (J.F.); (J.J.)
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (A.M.); (E.C.); (K.O.)
| |
Collapse
|
27
|
Zhang K, Zeng Y, Li J, Huang Y, Zhang N, Gong Y, Xiao K, Chen J, Chen T, Qiu H, Lei S, Yan F, Lang C, Duan X, Dong X. Inulin alleviates atherosclerosis through improving lipid metabolism, inflammation, and gut microbiota in ApoE-knockout mice: the short-chain is more efficacious. Front Pharmacol 2024; 15:1445528. [PMID: 39449970 PMCID: PMC11499155 DOI: 10.3389/fphar.2024.1445528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Atherosclerosis (AS) is considered the underlying cause of many diseases, particularly cardiovascular and cerebrovascular diseases. Inulin, a type of fructan, has shown potential in improving atherosclerosis, although there are conflicting findings. It is hypothesized that the polymerization degree of inulin may largely influence its therapeutic effectiveness. Therefore, this study aimed to investigate the effects and mechanisms of short-chain and long-chain inulin in AS. Methods ApoE-/- mice fed a high fat diet (HFD) were used to establish an atherosclerosis model. These mice received daily oral administration of either short-chain or long-chain inulin for 12 weeks. Plasma lipid metabolism-related indices were measured using biochemical analysis, and plasma immunological indices were analyzed via ELISA. The aorta, aortic root regions, liver tissue, adipose tissue, and colon tissue were examined through various staining techniques, including ORO staining, hematoxylin and eosin staining, Alcian blue staining, and immunofluorescent or immunohistochemical assays. Microbiome analysis was conducted in the cecal content. Results The results indicated that both short-chain and long-chain inulin substantially reduced the formation of atherosclerotic plaques. Inulin also improved plasma lipid concentrations and hepatic lipid metabolism, and partially alleviated both localized (atherosclerotic lesions) and systemic inflammation. Short-chain inulin was more effective than long-chain inulin in reducing atherosclerotic plaques formation, enhancing lipid metabolism and reducing inflammation. Additionally, both types of inulin showed similar effectiveness in enhancing intestinal epithelial barrier integrity, gut microbiota composition and functionality. Conclusion These findings suggest that inulin has a protective role against atherosclerosis by enhancing lipid metabolism, reducing inflammation, and improving intestinal barrier and gut microbiota. As a dietary intervention, short-chain inulin is more effective than long-chain inulin, offering clinical implications for using inulin as a therapeutic agent for atherosclerosis.
Collapse
Affiliation(s)
- Kun Zhang
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Yu Zeng
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jiawei Li
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Yingchun Huang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Nan Zhang
- Department of General Surgery, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yue Gong
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Kaihu Xiao
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Jian Chen
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Tiantian Chen
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Haomin Qiu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Sisi Lei
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Fei Yan
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Chunhui Lang
- Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Xudong Duan
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Chongqing, China
| |
Collapse
|
28
|
Zhu T, Li Z, Liu X, Chen C, Mu Y. Comparative Analysis of Microbial Diversity and Metabolic Profiles during the Spontaneous Fermentation of Jerusalem Artichoke ( Helianthus tuberosus L.) Juice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2782. [PMID: 39409653 PMCID: PMC11479024 DOI: 10.3390/plants13192782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
Jerusalem artichoke juice is valued for its nutritional content and health benefits. Spontaneous fermentation enhances its flavor, quality, and functional components through microbial metabolic activities. This study used high-throughput sequencing to analyze microbial community changes, and LC-MS and GC-MS to detect secondary metabolites and flavor compounds during fermentation. During natural fermentation, beneficial bacteria like Lactobacillus and Pediococcus increased, promoting lactic acid production and inhibiting harmful bacteria, while environmental bacteria decreased. Similarly, fungi shifted from environmental types like Geosmithia and Alternaria to fermentation-associated Pichia and Penicillium. A total of 1666 secondary metabolites were identified, with 595 upregulated and 497 downregulated. Key metabolic pathways included phenylpropanoid biosynthesis, with significant increases in phenylalanine, tryptophan, and related metabolites. Lipid and nucleotide metabolism also showed significant changes. Flavor compounds, including 134 identified alcohols, esters, acids, and ketones, mostly increased in content after fermentation. Notable increases were seen in Phenylethyl Alcohol, Ethyl Benzenepropanoate, 3-Methylbutyl Butanoate, Ethyl 4-Methylpentanoate, 5-Ethyl-3-Hydroxy-4-Methyl-2(5H)-Furanone, Ethyl Decanoate, Hexanoic Acid, and 1-Octanol. γ-aminobutyric acid (GABA) and other functional components enhanced the health value of the juice. This study provides insights into microbial and metabolic changes during fermentation, aiding in optimizing processes and improving the quality of fermented Jerusalem artichoke juice for functional food development.
Collapse
Affiliation(s)
- Tiandi Zhu
- Biotechnology Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (T.Z.); (Z.L.); (X.L.); (C.C.)
| | - Zhongwang Li
- Biotechnology Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (T.Z.); (Z.L.); (X.L.); (C.C.)
| | - Xinxing Liu
- Biotechnology Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (T.Z.); (Z.L.); (X.L.); (C.C.)
| | - Chen Chen
- Biotechnology Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (T.Z.); (Z.L.); (X.L.); (C.C.)
| | - Yuwen Mu
- Agricultural Product Storage and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| |
Collapse
|
29
|
Al-Akayleh F, Agha ASAA, Al-Remawi M, Al-Adham ISI, Daadoue S, Alsisan A, Khattab D, Malath D, Salameh H, Al-Betar M, AlSakka M, Collier PJ. What We Know About the Actual Role of Traditional Probiotics in Health and Disease. Probiotics Antimicrob Proteins 2024; 16:1836-1856. [PMID: 38700762 DOI: 10.1007/s12602-024-10275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 10/02/2024]
Abstract
The complex relationship between probiotics and human health goes beyond their traditional function in gut health, generating considerable interest for their broad potential in disease treatment. This review explores the various functions of probiotics, highlighting their impact on the immune system, their benefits for gut and oral health, their effects on metabolic and neurological disorders, and their emerging potential in cancer therapy. We give significant importance to studying the effects of probiotics on the gut-brain axis, revealing new and non-invasive therapeutic approaches for complex neurological disorders. In addition, we expand the discussion to encompass the impact of probiotics on the gut-liver and gut-lung axes, recognizing their systemic effects and potential in treating respiratory and hepatic conditions. The use of probiotic "cocktails" to improve cancer immunotherapy outcomes indicates a revolutionary approach to oncological treatments. The review explores the specific benefits associated with various strains and the genetic mechanisms that underlie them. This study sets the stage for precision medicine, where probiotic treatments can be tailored to meet the unique needs of each patient. Recent developments in delivery technologies, including microencapsulation and nanotechnology, hold great potential for enhancing the effectiveness and accuracy of probiotic applications in therapeutic settings. This study provides a strong basis for future scientific research and clinical use, promoting the incorporation of probiotics into treatment plans for a wide range of diseases. This expands our understanding of the potential benefits of probiotics in modern medicine.
Collapse
Affiliation(s)
- Faisal Al-Akayleh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| | - Ahmed S A Ali Agha
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
- Faculty of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Ibrahim S I Al-Adham
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Saifeddin Daadoue
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Anagheem Alsisan
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Dana Khattab
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Doha Malath
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Haneen Salameh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Maya Al-Betar
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Motaz AlSakka
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| |
Collapse
|
30
|
Jiang Y, Yan C, Li M, Chen S, Chen Z, Yang L, Luo K. Delivery of natural products via polysaccharide-based nanocarriers for cancer therapy: A review on recent advances and future challenges. Int J Biol Macromol 2024; 278:135072. [PMID: 39191341 DOI: 10.1016/j.ijbiomac.2024.135072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Cancer, caused by uncontrolled proliferation of abnormal cells, has long been a global public health issue. For decades, natural products have been proven to be an essential source for novel anticancer drug discovery. But their instability, low solubility and bioavailability, poor targeting impede therapeutic efficacy. With the development of nanotechnology, nanomedicine delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. However, constructing suitable nanocarrier is still a major challenge. Polysaccharides are extensively employed as carrier materials in nanomedicine delivery systems, owing to their unique physicochemical properties, biocompatibility and low immunogenicity. Polysaccharide-based nanomedicine delivery systems show high drug delivery efficiency, controlled drug release, and precise tumor targeting. This paper reviews influencing factors in the construction of polysaccharide-based nanocarriers and the application of polysaccharide-based nanocarriers for the delivery of natural products in treating various cancers. It focuses on their in vitro and in vivo anticancer efficacy and mechanisms. Furthermore, the review contrasts the capabilities and limitations of polysaccharide-based nanocarriers with traditional delivery methods, underlining their potential to enable targeted, reduced toxicity and excellent cancer treatment modalities. Finally, we discuss the current research limitations and future prospects in this emerging field.
Collapse
Affiliation(s)
- Yingjie Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Siying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, China.
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
31
|
Lu K, Li C, Men J, Xu B, Chen Y, Yan P, Gai Z, Zhang Q, Zhang L. Traditional Chinese medicine to improve immune imbalance of asthma: focus on the adjustment of gut microbiota. Front Microbiol 2024; 15:1409128. [PMID: 39411430 PMCID: PMC11473343 DOI: 10.3389/fmicb.2024.1409128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Asthma, being the prevailing respiratory ailment globally, remains enigmatic in terms of its pathogenesis. In recent times, the advancement of traditional Chinese medicine pertaining to the intestinal microbiota has yielded a plethora of investigations, which have substantiated the potential of traditional Chinese medicine in disease prevention and treatment through modulation of the intestinal microbiota. Both animal models and clinical trials have unequivocally demonstrated the indispensable role of the intestinal microbiota in the pathogenesis of asthma. This article presents a summary of the therapeutic effects of traditional Chinese medicine in the context of regulating gut microbiota and its metabolites, thereby achieving immune regulation and inhibiting airway inflammation associated with asthma. It elucidates the mechanism by which traditional Chinese medicine modulates the gut microbiota to enhance asthma management, offering a scientific foundation for the utilization of traditional Chinese medicine in the treatment of asthma.
Collapse
Affiliation(s)
- Ke Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingwen Men
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingxiang Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
32
|
Song Q, Zou J, Li D, Cheng SW, Li KLS, Yang X, Shaw PC, Zuo Z. Gastrointestinal metabolism of Astragalus membranaceus polysaccharides and its related hypoglycemic mechanism based on gut microbial transformation. Int J Biol Macromol 2024; 280:135847. [PMID: 39307509 DOI: 10.1016/j.ijbiomac.2024.135847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Astragalus membranaceus polysaccharides (AMP) was reported to exhibit hypoglycemic potential in diabetic host. However, the metabolic fate of AMP in gastrointestinal tract and its underlying hypoglycemic mechanisms remained unclear. Our current study aimed to reveal the structure alteration of AMP in gastrointestinal tract and its hypoglycemic mechanism from the perspective of microbial transformation. Caco-2 monolayer cell model revealed that AMP exhibited poor intestinal absorption. The in-vitro digestion and fermentation study revealed that AMP remained intact after gastrointestinal digestion while it could be degraded and utilized by gut microbiota with increased SCFA formation and decreased levels of all the monosaccharides in AMP except for mannose. Additionally, diversity of gut microbiota was improved with the increased abundance of Dubosiella and Monoglobus and decreased abundance of Escherichia-Shigella and Acinetobacter after fermentation of AMP. Further hypoglycemic mechanism study for the first time revealed that both AMP and its potential microbial metabolites, SCFA salt mixture, could enhance intestinal integrity significantly on LPS induced Caco-2 cell model, while only SCFA salt mixture rather than AMP could significantly stimulate GLP-1 secretion in NCI-H716 cell model possibly via promoting GPCR43 expression. Such findings provided insights into the hypoglycemic mechanism of AMP from the perspective of microbial transformation.
Collapse
Affiliation(s)
- Qianbo Song
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong
| | - Junju Zou
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong; School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, PR China
| | - Dan Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong
| | - Sau Wan Cheng
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong; School of Life Sciences and Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kendra Lam Sek Li
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong
| | - Pang Chui Shaw
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong; School of Life Sciences and Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Zhong Zuo
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
33
|
Jangid AK, Noh KM, Kim S, Kim K. Engineered inulin-based hybrid biomaterials for augmented immunomodulatory responses. Carbohydr Polym 2024; 340:122311. [PMID: 38858027 DOI: 10.1016/j.carbpol.2024.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Modified biopolymers that are based on prebiotics have been found to significantly contribute to immunomodulatory events. In recent years, there has been a growing use of modified biomaterials and polymer-functionalized nanomaterials in the treatment of various tumors by activating immune cells. However, the effectiveness of immune cells against tumors is hindered by several biological barriers, which highlights the importance of harnessing prebiotic-based biopolymers to enhance host defenses against cancer, thus advancing cancer prevention strategies. Inulin, in particular, plays a crucial role in activating immune cells and promoting the secretion of cytokines. Therefore, this mini-review aims to emphasize the importance of inulin in immunomodulatory responses, the development of inulin-based hybrid biopolymers, and the role of inulin in enhancing immunity and modifying cell surfaces. Furthermore, we discuss the various approaches of chemical modification for inulin and their potential use in cancer treatment, particularly in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
34
|
Chiang BH, Vega G, Dunwoody SC, Patnode ML. Bacterial interactions on nutrient-rich surfaces in the gut lumen. Infect Immun 2024; 92:e0048023. [PMID: 38506518 PMCID: PMC11384750 DOI: 10.1128/iai.00480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
The intestinal lumen is a turbulent, semi-fluid landscape where microbial cells and nutrient-rich particles are distributed with high heterogeneity. Major questions regarding the basic physical structure of this dynamic microbial ecosystem remain unanswered. Most gut microbes are non-motile, and it is unclear how they achieve optimum localization relative to concentrated aggregations of dietary glycans that serve as their primary source of energy. In addition, a random spatial arrangement of cells in this environment is predicted to limit sustained interactions that drive co-evolution of microbial genomes. The ecological consequences of random versus organized microbial localization have the potential to control both the metabolic outputs of the microbiota and the propensity for enteric pathogens to participate in proximity-dependent microbial interactions. Here, we review evidence suggesting that several bacterial species adopt organized spatial arrangements in the gut via adhesion. We highlight examples where localization could contribute to antagonism or metabolic interdependency in nutrient degradation, and we discuss imaging- and sequencing-based technologies that have been used to assess the spatial positions of cells within complex microbial communities.
Collapse
Affiliation(s)
- Bo Huey Chiang
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
- Graduate Program in Biological Sciences and Engineering, University of California, Santa Cruz, California, USA
| | - Giovanni Vega
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
- Graduate Program in Biological Sciences and Engineering, University of California, Santa Cruz, California, USA
| | - Sarah C. Dunwoody
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Michael L. Patnode
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| |
Collapse
|
35
|
Alonso-Allende J, Milagro FI, Aranaz P. Health Effects and Mechanisms of Inulin Action in Human Metabolism. Nutrients 2024; 16:2935. [PMID: 39275251 PMCID: PMC11397174 DOI: 10.3390/nu16172935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
Inulin is a plant polysaccharide which, due to its chemical structure, is not digestible by human gut enzymes but by some bacteria of the human microbiota, acting as a prebiotic. Consequently, inulin consumption has been associated with changes in the composition of the intestinal microbiota related to an improvement of the metabolic state, counteracting different obesity-related disturbances. However, the specific mechanisms of action, including bacterial changes, are not exactly known. Here, a bibliographic review was carried out to study the main effects of inulin on human metabolic health, with a special focus on the mechanisms of action of this prebiotic. Inulin supplementation contributes to body weight and BMI control, reduces blood glucose levels, improves insulin sensitivity, and reduces inflammation markers, mainly through the selective favoring of short-chain fatty acid (SCFA)-producer species from the genera Bifidobacterium and Anaerostipes. These SCFAs have been shown to ameliorate glucose metabolism and decrease hepatic lipogenesis, reduce inflammation, modulate immune activity, and improve anthropometric parameters such as body weight or BMI. In conclusion, the studies collected suggest that inulin intake produces positive metabolic effects through the improvement of the intestinal microbiota and through the metabolites produced by its fermentation.
Collapse
Affiliation(s)
- Jaime Alonso-Allende
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Aranaz
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
| |
Collapse
|
36
|
Sun B, Xie W, Li X, Liu T, Bai J, Yao Y, Ma L, Man S. Inulin enhanced rifaximin-inhibited colon cancer pulmonary metastasis by flora-regulated bile acid pathway. Int J Biol Macromol 2024; 275:133582. [PMID: 38955301 DOI: 10.1016/j.ijbiomac.2024.133582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 05/13/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024]
Abstract
Inulin as a natural polysaccharide regulates intestinal microorganisms, and improves the immune and gastrointestinal function. In order to explore the effect of inulin on pulmonary metastasis of colon cancer, we set up a CT26 injected pulmonary metastatic model. The results showed that inulin used alone did not improve pulmonary metastasis of colon cancer, while inulin combined with rifaximin significantly prolonged the survival time of mice, and inhibited pulmonary metastasis compared with model and inulin groups. Inulin treatment increased the abundance of harmful bacteria such as Proteobacteria and Actinobacteria, while combined treatment decreased their abundance and increased the abundance of beneficial bacteria containing Firmicutes and Eubacterium which belonged to the bile acid-related bacteria. The combination treatment decreased the content of primary bile acids and secondary bile acids in the feces of mice, especial for DCA and LCA which were the agonists of TGR5. Furthermore, the combination treatment reduced the mRNA expression of the TGR5, cyclin dependent kinase 4, cyclin 1 and CDK2, increased the mRNA expression of p21 in the lung, down-regulated the level of NF-κB p65, and up-regulated the level of TNF-α compared with the model group. The above may be the reason for the better use of the combination treatment.
Collapse
Affiliation(s)
- Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenwen Xie
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuejiao Li
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Taohua Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingjing Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuan Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
37
|
Gong T, Liu X, Wang X, Lu Y, Wang X. Applications of polysaccharides in enzyme-triggered oral colon-specific drug delivery systems: A review. Int J Biol Macromol 2024; 275:133623. [PMID: 38969037 DOI: 10.1016/j.ijbiomac.2024.133623] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.
Collapse
Affiliation(s)
- Tingting Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xi Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yunqian Lu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
38
|
Vieira LG, de Noronha SISR, Chírico MTT, de Souza AB, de Matos NA, Chianca-Jr DA, Bezerra FS, de Menezes RC. The impact of high-fat diet consumption and inulin fiber supplementation on anxiety-related behaviors and liver oxidative status in female Wistar rats. Behav Brain Res 2024; 470:115048. [PMID: 38761857 DOI: 10.1016/j.bbr.2024.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Obesity is a worldwide public health problem associated with cognitive and mental health problems in both humans and rats. Studies assessing the effect of fiber supplementation on behavioral deficits and oxidative stress caused by high-fat diet (HFD) consumption in female rats are still scarce. We hypothesized that HFD consumption would lead to anxiety-related behavior and hepatic oxidative stress and that inulin would protect against these changes. We analyzed the impact of HFD-induced obesity combined with fiber supplementation (inulin) on anxiety-related defensive behavior and hepatic oxidative stress. RESULTS Female rats were fed a high-fat diet (HFD; 45%) for nine weeks to induce obesity. The administration of inulin was found to decrease the adiposity index in both the control and obese groups. The consumption of a HFD combined with inulin supplementation resulted in a reduction in both CAT activity and carbonylated protein levels, leading to a shift in the hepatic redox balance. Interestingly, the behavioral data were conflicting. Specifically, animals that consumed a high-fat diet and received inulin showed signs of impaired learning and memory caused by obesity. The HFD did not impact anxiety-related behaviors in the female rats. However, inulin appears to have an anxiolytic effect, in the ETM, when associated with the HFD. On the other hand, inulin appears to have affected the locomotor activity in the HFD in both open field and light-dark box. CONCLUSION Our results show that consumption of a HFD induced obesity in female rats, similar to males. However, HFD consumption did not cause a consistent increase in anxiety-related behaviors in female Wistar rats. Treatment with inulin at the dosage used did not exert consistent changes on the behavior of the animals, but attenuated the abdominal WAT expansion and the hepatic redox imbalance elicited by high-fat diet-induced obesity.
Collapse
Affiliation(s)
- Lucas Gabriel Vieira
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | | | - Máira Tereza Talma Chírico
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | - Ana Beatriz de Souza
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, MG 35400-000, Brazil.
| | - Natália Alves de Matos
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, MG 35400-000, Brazil.
| | - Deoclécio Alves Chianca-Jr
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, MG 35400-000, Brazil.
| | - Frank Silva Bezerra
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, MG 35400-000, Brazil.
| | - Rodrigo Cunha de Menezes
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| |
Collapse
|
39
|
Sun Y, Zhou W, Zhu M. Serum Metabolomics Uncovers the Mechanisms of Inulin in Preventing Non-Alcoholic Fatty Liver Disease. Pharmaceuticals (Basel) 2024; 17:895. [PMID: 39065745 PMCID: PMC11279973 DOI: 10.3390/ph17070895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Inulin may be a promising therapeutic molecule for treating non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms of its therapeutic activity remain unclear. To address this issue, a high-fat-diet-induced NAFLD mouse model was developed and treated with inulin. The NAFLD phenotype was evaluated via histopathological analysis and biochemical parameters, including serum levels of alanine aminotransferase, aspartate aminotransferase, liver triglycerides, etc. A serum metabolomics study was conducted using ultra-performance liquid chromatography coupled with tandem mass spectrometry. The results revealed that inulin mitigated NAFLD symptoms such as histopathological changes and liver cholesterol levels. Through the serum metabolomics study, 347 differential metabolites were identified between the model and control groups, and 139 differential metabolites were identified between the inulin and model groups. Additionally, 48 differential metabolites (such as phosphatidylserine, dihomo-γ-linolenic acid, L-carnitine, and 13-HODE) were identified as candidate targets of inulin and subjected to pathway enrichment analysis. The results revealed that these 48 differential metabolites were enriched in several metabolic pathways such as fatty acid biosynthesis and cardiolipin biosynthesis. Taken together, our results suggest that inulin might attenuate NAFLD partially by modulating 48 differential metabolites and their correlated metabolic pathways, constituting information that might help us find novel therapies for NAFLD.
Collapse
Affiliation(s)
- Yunhong Sun
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Mingzhe Zhu
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| |
Collapse
|
40
|
Virk MS, Virk MA, Liang Q, Sun Y, Zhong M, Tufail T, Rashid A, Qayum A, Rehman A, Ekumah JN, Wang J, Zhao Y, Ren X. Enhancing storage and gastroprotective viability of Lactiplantibacillus plantarum encapsulated by sodium caseinate-inulin-soy protein isolates composites carried within carboxymethyl cellulose hydrogel. Food Res Int 2024; 187:114432. [PMID: 38763680 DOI: 10.1016/j.foodres.2024.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Probiotics are subjected to various edible coatings, especially proteins and polysaccharides, which serve as the predominant wall materials, with ultrasound, a sustainable green technology. Herein, sodium caseinate, inulin, and soy protein isolate composites were produced using multi-frequency ultrasound and utilized to encapsulateLactiplantibacillus plantarumto enhance its storage, thermal, and gastrointestinal viability. The physicochemical analyses revealed that the composites with 5 % soy protein isolate treated with ultrasound at 50 kHz exhibited enough repulsion forces to maintain stability, pH resistance, and the ability to encapsulate larger particles and possessed the highest encapsulation efficiency (95.95 %). The structural analyses showed changes in the composite structure at CC, CH, CO, and amino acid residual levels. Rheology, texture, and water-holding capacity demonstrated the production of soft hydrogels with mild chewing and gummy properties, carried the microcapsules without coagulation or sedimentation. Moreover, the viability attributes ofL. plantarumevinced superior encapsulation, protecting them for at least eight weeks and against heat (63 °C), reactive oxidative species (H2O2), and GI conditions.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | | | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; University Institute of Diet and Nutritional Sciences, The University of Lahore, 54000, Pakistan
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yongjun Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
41
|
Arena D, Ben Ammar H, Major N, Kovačević TK, Goreta Ban S, Al Achkar N, Rizzo GF, Branca F. Diversity of the Morphometric and Biochemical Traits of Allium cepa L. Varieties. PLANTS (BASEL, SWITZERLAND) 2024; 13:1727. [PMID: 38999567 PMCID: PMC11243381 DOI: 10.3390/plants13131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Several Allium cepa L. varieties, representing a versatile set of vegetables widely utilized by consumers, are appreciated for their bioactive properties, including antimicrobial, anticarcinogenic, and antioxidant capacities. The aim of this study is to compare the morphometric characteristics and biochemical profiles of four cultivars of A. cepa, two of them represented by the perennial Sicilian landrace "Cipudda agghiarola" (Allium × proliferum (Moench) Schrader), widely known as the Egyptian walking onion (WO), and by the landrace "Cipudduzza" belonging to the variety known as aggregatum (ON), which were compared with two commercial cultivars of A. cepa var. cepa (onion), Stoccarda (OS) and Rossa Carmen (OR). The experimental trial was conducted in Catania (Sicily), following organic growing practices. The randomized complete block experimental design was adopted with one experimental factor, the genotype (GE) effect. The harvested plants were characterized for their main morphometric parameters, according to the International Plant Genetic Resources (IGPR) descriptors. The biochemical activity was assessed by analyzing the total phenolic content (TPC) and the total flavonoid content (TFC). The antioxidant capacity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC). The sugar profile (total sugars, sucrose, glucose, fructose, and fructooligosaccharides-FOS) and the volatile compounds by headspace-gas chromatography/mass spectrometry (HS-GC/MS) were also determined. The OR bulb exhibited the highest TPC (16.3 mg GAE/g d.w., p < 0.01) and TFC (8.5 mg QE/g d.w., p < 0.01), with the highest antioxidant capacity measured by the FRAP (27.1 µmol TE/g d.w., p < 0.01) and DPPH assays (46.2 µmol TE/g d.w., p < 0.01). The ON bulb showed the highest ORAC value (209 µmol TE/g d.w., p < 0.01). Generally, the bulbs were richer in sugars (584 mg/g d.w., p < 0.01) than the leaf blade (239 mg/g d.w., p < 0.01), except for OR. Significant interaction between the genotype and plant organ was noted in the volatile compound profiles (p < 0.05) except for total ketones and carboxylic acids, where higher content was observed in the leaf blade compared to the bulb, regardless of the genotype. These findings highlight WO's potential for use in ready-to-eat products, enhancing its market value.
Collapse
Affiliation(s)
- Donata Arena
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (D.A.); (H.B.A.); (N.A.A.); (G.F.R.); (F.B.)
| | - Hajer Ben Ammar
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (D.A.); (H.B.A.); (N.A.A.); (G.F.R.); (F.B.)
| | - Nikola Major
- Institute of Agriculture and Tourism, 52440 Poreč, Croatia; (T.K.K.); (S.G.B.)
| | | | - Smiljana Goreta Ban
- Institute of Agriculture and Tourism, 52440 Poreč, Croatia; (T.K.K.); (S.G.B.)
| | - Nicolas Al Achkar
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (D.A.); (H.B.A.); (N.A.A.); (G.F.R.); (F.B.)
| | - Giulio Flavio Rizzo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (D.A.); (H.B.A.); (N.A.A.); (G.F.R.); (F.B.)
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (D.A.); (H.B.A.); (N.A.A.); (G.F.R.); (F.B.)
| |
Collapse
|
42
|
Bavaro AR, Di Biase M, Linsalata V, D’Antuono I, Di Stefano V, Lonigro SL, Garbetta A, Valerio F, Melilli MG, Cardinali A. Potential Prebiotic Effect of Inulin-Enriched Pasta after In Vitro Gastrointestinal Digestion and Simulated Gut Fermentation. Foods 2024; 13:1815. [PMID: 38928756 PMCID: PMC11202534 DOI: 10.3390/foods13121815] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In the current study, the prebiotic potential of an innovative functional pasta enriched with 12% (w/w) inulin was investigated. To this aim, pasta was subjected to in vitro gastrointestinal digestion followed by simulated gut fermentation compared to the control pasta (CTRL) not containing inulin. The incorporation of inulin positively (p < 0.05) affected some organoleptic traits and the cooking quality of the final product, giving an overall score significantly higher than CTRL. The resultant essential amino acid content was similar in both pasta samples while the total protein content was lower in inulin-enriched pasta for the polymer substitution to durum wheat flour. The prebiotic potential of chicory inulin was preliminarily tested in in vitro experiments using seven probiotic strains and among them Lacticaseibacillus paracasei IMPC2.1 was selected for the simulated gut fermentation studies. The positive prebiotic activity score registered with the probiotic strain suggested the suitability of the inulin-enriched pasta with respect to acting as a prebiotic source favoring the growth of the probiotic strain and short chain fatty acid (SCFA) production. The present study contributes to broadening knowledge on the prebiotic efficacy of inulin when incorporated into a complex food matrix.
Collapse
Affiliation(s)
- Anna Rita Bavaro
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Mariaelena Di Biase
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Vito Linsalata
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Isabella D’Antuono
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy;
| | - Stella Lisa Lonigro
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Antonella Garbetta
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Francesca Valerio
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| | - Maria Grazia Melilli
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), 95126 Catania, Italy
| | - Angela Cardinali
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy; (A.R.B.); (M.D.B.); (V.L.); (I.D.); (S.L.L.); (A.G.); (A.C.)
| |
Collapse
|
43
|
Yin D, Zhong Y, Liu H, Hu J. Lipid metabolism regulation by dietary polysaccharides with different structural properties. Int J Biol Macromol 2024; 270:132253. [PMID: 38744359 DOI: 10.1016/j.ijbiomac.2024.132253] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Lipid metabolism plays an important role in energy homeostasis maintenance in response to stress. Nowadays, hyperlipidemia-related chronic diseases such as obesity, diabetes, atherosclerosis, and fatty liver pose significant health challenges. Dietary polysaccharides (DPs) have gained attention for their effective lipid-lowering properties. This review examines the multifaceted mechanisms that DPs employ to lower lipid levels in subjects with hyperlipidemia. DPs could directly inhibit lipid intake and absorption, promote lipid excretion, and regulate key enzymes involved in lipid metabolism pathways, including triglyceride and cholesterol anabolism and catabolism, fatty acid oxidation, and bile acid synthesis. Additionally, DPs indirectly improve lipid homeostasis by modulating gut microbiota composition and alleviating oxidative stress. Moreover, the lipid-lowering mechanisms of particular structural DPs (including β-glucan, pectin, glucomannan, inulin, arabinoxylan, and fucoidan) are summarized. The relationship between the structure and lipid-lowering activity of DPs is also discussed based on current researches. Finally, potential breakthroughs and future directions in the development of DPs in lipid-lowering activity are discussed. The paper could provide a reference for further exploring the mechanism of DPs for lipid regulations and utilizing DPs as lipid-lowering dietary ingredients.
Collapse
Affiliation(s)
- Dafang Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Huan Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
44
|
Kouraki A, Nogal A, Nocun W, Louca P, Vijay A, Wong K, Michelotti GA, Menni C, Valdes AM. Machine Learning Metabolomics Profiling of Dietary Interventions from a Six-Week Randomised Trial. Metabolites 2024; 14:311. [PMID: 38921446 PMCID: PMC11205626 DOI: 10.3390/metabo14060311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolomics can uncover physiological responses to prebiotic fibre and omega-3 fatty acid supplements with known health benefits and identify response-specific metabolites. We profiled 534 stool and 799 serum metabolites in 64 healthy adults following a 6-week randomised trial comparing daily omega-3 versus inulin supplementation. Elastic net regressions were used to separately identify the serum and stool metabolites whose change in concentration discriminated between the two types of supplementations. Random forest was used to explore the gut microbiome's contribution to the levels of the identified metabolites from matching stool samples. Changes in serum 3-carboxy-4-methyl-5-propyl-2-furanpropanoate and indoleproprionate levels accurately discriminated between fibre and omega-3 (area under the curve (AUC) = 0.87 [95% confidence interval (CI): 0.63-0.99]), while stool eicosapentaenoate indicated omega-3 supplementation (AUC = 0.86 [95% CI: 0.64-0.98]). Univariate analysis also showed significant increases in indoleproprionate with fibre, 3-carboxy-4-methyl-5-propyl-2-furanpropanoate, and eicosapentaenoate with omega-3. Out of these, only the change in indoleproprionate was partly explained by changes in the gut microbiome composition (AUC = 0.61 [95% CI: 0.58-0.64] and Rho = 0.21 [95% CI: 0.08-0.34]) and positively correlated with the increase in the abundance of the genus Coprococcus (p = 0.005). Changes in three metabolites discriminated between fibre and omega-3 supplementation. The increase in indoleproprionate with fibre was partly explained by shifts in the gut microbiome, particularly Coprococcus, previously linked to better health.
Collapse
Affiliation(s)
- Afroditi Kouraki
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Ana Nogal
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Weronika Nocun
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Panayiotis Louca
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Amrita Vijay
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Kari Wong
- Metabolon Inc., Research Triangle Park, Morrisville, NC 27560, USA
| | | | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Ana M. Valdes
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG5 1PB, UK
| |
Collapse
|
45
|
Odriozola A, González A, Odriozola I, Álvarez-Herms J, Corbi F. Microbiome-based precision nutrition: Prebiotics, probiotics and postbiotics. ADVANCES IN GENETICS 2024; 111:237-310. [PMID: 38908901 DOI: 10.1016/bs.adgen.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.
Collapse
Affiliation(s)
- Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology, and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
46
|
Chin ST, Boughton BA, Gay MCL, Russell AC, Wang Y, Nambiar V, McHenry MP, Holmes E, Nicholson JK, Loo RL. Unravelling inulin molecules in food sources using a matrix-assisted laser desorption/ionization magnetic resonance mass spectrometry (MALDI-MRMS) pipeline. Food Res Int 2024; 184:114276. [PMID: 38609208 DOI: 10.1016/j.foodres.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Inulin, a polysaccharide characterized by a β-2,1 fructosyl-fructose structure terminating in a glucosyl moiety, is naturally present in plant roots and tubers. Current methods provide average degrees of polymerization (DP) but lack information on the distribution and absolute concentration of each DP. To address this limitation, a reproducible (CV < 10 %) high throughput (<2 min/sample) MALDI-MRMS approach capable of characterizing and quantifying inulin molecules in plants using matched-matrix consisting of α-cyano-4-hydroxycinnamic acid butylamine salt (CHCA-BA), chicory inulin-12C and inulin-13C was developed. The method identified variation in chain lengths and concentration of inulin across various plant species. Globe artichoke hearts, yacón and elephant garlic yielded similar concentrations at 15.6 g/100 g dry weight (DW), 16.8 g/100 g DW and 17.7 g/100 g DW, respectively, for DP range between 9 and 22. In contrast, Jerusalem artichoke demonstrated the highest concentration (53.4 g/100 g DW) within the same DP ranges. Jerusalem artichoke (DPs 9-32) and globe artichoke (DPs 9-36) showed similar DP distributions, while yacón and elephant garlic displayed the narrowest and broadest DP ranges (DPs 9-19 and DPs 9-45, respectively). Additionally, qualitative measurement for all inulin across all plant samples was feasible using the peak intensities normalized to Inulin-13C, and showed that the ratio of yacón, elephant garlic and Jerusalem was approximately one, two and three times that of globe artichoke. This MALDI-MRMS approach provides comprehensive insights into the structure of inulin molecules, opening avenues for in-depth investigations into how DP and concentration of inulin influence gut health and the modulation of noncommunicable diseases, as well as shedding light on refining cultivation practices to elevate the beneficial health properties associated with specific DPs.
Collapse
Affiliation(s)
- Sung-Tong Chin
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia.
| | - Berin A Boughton
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia.
| | | | - Alyce C Russell
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia.
| | - Yimin Wang
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia.
| | - Vimalnath Nambiar
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia.
| | | | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK.
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Institute of Global Health Innovation, Imperial College London, London SW7 2NA, UK.
| | - Ruey Leng Loo
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia.
| |
Collapse
|
47
|
Feng YH, Guo WX, Li ZL, Hu LF, Liu Y, Jing LY, Wang J, Shahbazi MA, Chen BZ, Guo XD. Assessing the structural stability and drug encapsulation efficiency of poly(ethylene glycol)-poly(L-lactic acid) nanoparticles loaded with atorvastatin calcium: Based on dissipative particle dynamics. Int J Biol Macromol 2024; 267:131436. [PMID: 38593897 DOI: 10.1016/j.ijbiomac.2024.131436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/09/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Block polymer micelles have been proven highly biocompatible and effective in improving drug utilization for delivering atorvastatin calcium. Therefore, it is of great significance to measure the stability of drug-loading nano micelles from the perspective of block polymer molecular sequence design, which would provide theoretical guidance for subsequent clinical applications. This study aims to investigate the structural stability of drug-loading micelles formed by two diblock/triblock polymers with various block sequences through coarse-grained dissipative particle dynamics (DPD) simulations. From the perspectives of the binding strength of poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) in nanoparticles, hydrophilic bead surface coverage, and the morphological alteration of nanoparticles induced by shear force, the ratio of hydrophilic/hydrophobic sequence length has been observed to affect the stability of nanoparticles. We have found that for diblock polymers, PEG3kda-PLLA2kda has the best stability (corresponding hydrophilic coverage ratio is 0.832), while PEG4kda-PLLA5kda has the worst (coverage ratio 0.578). For triblock polymers, PEG4kda-PLLA2kda-PEG4kda has the best stability (0.838), while PEG4kda-PLLA5kda-PEG4kda possesses the worst performance (0.731), and the average performance on stability is better than nanoparticles composed of diblock polymers.
Collapse
Affiliation(s)
- Yun Hao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Xin Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuo Lin Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liu Fu Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Yue Jing
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
48
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
49
|
Rau S, Gregg A, Yaceczko S, Limketkai B. Prebiotics and Probiotics for Gastrointestinal Disorders. Nutrients 2024; 16:778. [PMID: 38542689 PMCID: PMC10975713 DOI: 10.3390/nu16060778] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 01/03/2025] Open
Abstract
The complex role of the gut microbiome in the pathogenesis of gastrointestinal (GI) disorders is an emerging area of research, and there is considerable interest in understanding how diet can alter the composition and function of the microbiome. Prebiotics and probiotics have been shown to beneficially modulate the gut microbiome, which underlies their potential for benefit in GI conditions. Formulating specific recommendations for the public regarding these dietary supplements has been difficult due to the significant heterogeneity between strains, doses, and duration of treatment investigated across studies, as well as safety concerns with administering live organisms. This review aims to summarize the existing evidence for the use of prebiotics and probiotics in various GI disorders, paying special attention to strain-specific effects that emerged and any adverse effects noted.
Collapse
Affiliation(s)
| | | | | | - Berkeley Limketkai
- Vatche & Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA; (S.R.); (A.G.); (S.Y.)
| |
Collapse
|
50
|
Ziaei R, Shahshahan Z, Ghasemi‐Tehrani H, Heidari Z, Nehls MS, Ghiasvand R. Inulin-type fructans with different degrees of polymerization improve insulin resistance, metabolic parameters, and hormonal status in overweight and obese women with polycystic ovary syndrome: A randomized double-blind, placebo-controlled clinical trial. Food Sci Nutr 2024; 12:2016-2028. [PMID: 38455215 PMCID: PMC10916604 DOI: 10.1002/fsn3.3899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 03/09/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is associated with reproductive disorders and adverse cardiometabolic risk factors that can negatively impact the general health of women. Inulin-type fructans (ITFs) are proposed to beneficially affect risk factors associated with metabolic disorders. Whether ITFs can help with the management of PCOS by modifying insulin resistance (IR) and androgen levels has not yet been explored. The aim of this study was to investigate the effects of ITFs with different degrees of polymerization on insulin resistance, blood lipids, anthropometric measures, and hormonal status in overweight and obese women with PCOS. In a randomized double-blind placebo-controlled trial, seventy-five women with PCOS aged 18-40 years old were randomly assigned to receive 10 g/day of high-performance inulin (HPI) or oligofructose-enriched inulin (OEI) or maltodextrin for 12 weeks. Biochemical and clinical outcomes were measured at baseline and after the intervention. Participants in the HPI and OEI groups experienced improvements in waist circumference, total testosterone, free androgen index, sex hormone-binding globulin, and triglycerides compared to the placebo group. Also, the number of women with irregular menses or oligomenorrhoea decreased significantly in both ITF groups. Participants in the HPI group reported lower body mass, fasting insulin, and HOMA-IR, as well as a higher quantitative insulin sensitivity check index. ITF supplementation, especially with long-chain ITFs, when given for 12 weeks may improve metabolic outcomes, androgen status and clinical manifestations in women with PCOS.
Collapse
Affiliation(s)
- Rahele Ziaei
- Department of Community Nutrition, School of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| | - Zahra Shahshahan
- Department of Obstetrics and Gynecology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Hatav Ghasemi‐Tehrani
- Fertility Department, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of HealthIsfahan University of Medical SciencesIsfahanIran
| | - Marilyn S. Nehls
- Department of Kinesiology and Health PromotionUniversity of KentuckyLexingtonKentuckyUSA
| | - Reza Ghiasvand
- Department of Community Nutrition, School of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|