1
|
Bæch‐Laursen C, Ehrenreich RK, Modvig IM, Veedfald S, Holst JJ. Glucose absorption by isolated, vascularly perfused rat intestine: A significant paracellular contribution augmented by SGLT1 inhibition. Acta Physiol (Oxf) 2025; 241:e70033. [PMID: 40186371 PMCID: PMC11971594 DOI: 10.1111/apha.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
AIM Intestinal glucose transport involves SGLT1 in the apical membrane of enterocytes and GLUT2 in the basolateral membrane. In vivo studies have shown that absorption rates appear to exceed the theoretical capacity of these transporters, suggesting that glucose transport may occur via additional pathways, which could include passive mechanisms. The aim of the study was to investigate glucose absorption in an in vitro model, which has proven useful for endocrine studies. METHODS We studied both transcellular and paracellular glucose absorption in the isolated vascularly perfused rat small intestine. Glucose absorbed from the lumen was traced with 14C-d-glucose, allowing sensitive and accurate quantification. SGLT1 and GLUT2 activities were blocked with phlorizin and phloretin. 14C-d-mannitol was used as an indicator of paracellular absorption. RESULTS Our results indicate that glucose absorption in this model involves two transport mechanisms: transport mediated by SGLT1/GLUT2 and a paracellular transport mechanism. Glucose absorption was reduced by 60% when SGLT1 transport was blocked and by 80% when GLUT2 was blocked. After combined luminal SGLT1 and GLUT2 blockade, ~30% of glucose absorption remained. d-mannitol absorption was greater in the proximal small intestine compared to the distal small intestine. Unexpectedly, mannitol absorption increased markedly when SGLT1 transport was blocked. CONCLUSION In this model, glucose absorption occurs via both active transcellular and passive paracellular transport, particularly in the proximal intestine, which is important for the understanding of, for example, hormone secretion related to glucose absorption. Interference with SGLT1 activity may lead to enhanced paracellular transport, pointing to a role in the regulation of the latter.
Collapse
Affiliation(s)
- Cecilie Bæch‐Laursen
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Centre for Physical Activity ResearchRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Rune Kuhre Ehrenreich
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Obesity Pharmacology, Global Drug DiscoveryNovo NordiskMåløvDenmark
| | - Ida Marie Modvig
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Transplantation and Digestive DiseasesRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Bobkov DE, Lukacheva AV, Kever LV, Furman VV, Semenova SB. Role of Calcium Channels in Glucose Uptake Regulation in the In Vitro Model of Polarized Intestinal Epithelium. CELL AND TISSUE BIOLOGY 2024; 18:429-438. [DOI: 10.1134/s1990519x24700366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 04/07/2025]
|
3
|
Bobkov DE, Lukacheva AV, Kever LV, Furman VV, Semenova SB. Role of calcium channels in glucose uptake regulation in the <i>in vitro</i> model of polarized intestinal epithelium. ЦИТОЛОГИЯ 2024; 66:150-160. [DOI: 10.31857/s0041377124020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Glucose is the main energy substrate that ensures metabolic processes in the human and animal bodies. Impaired carbohydrate metabolism is often associated with obesity and concomitant diseases, such as cardiovascular diseases, arterial hypertension, insulin resistance, etc. Current data indicate that intestinal glucose absorption is coupled with Ca2+ influx, but additional research is needed to confirm this interaction. We used a cellular model of human intestinal epithelium to elucidate the role of Ca2+ channels in the regulation of glucose absorption. The results of immunofluorescence and immunoelectron microscopy showed that high cellular glucose loading (50 mM) leads to an increase in the density of TRPV6 calcium channels on the apical membrane of the intestinal epithelium. The level of the calcium sensor STIM1, responsible for store-dependent calcium entry (SOCE), on the contrary, showed a decrease when Caco-2 cells were overloaded with glucose, which was accompanied by a decrease in SOCE. Excessive saturation of Caco-2 cells with glucose also led to a decrease in the expression level of the NF-kB transcription factor p65 subunit responsible for the expression of STIM1. The results showed that Ca2+ channels are not only involved in the regulation of glucose uptake, but may themselves be under the control of glucose.
Collapse
Affiliation(s)
- D. E. Bobkov
- Institute of Cytology, Russian Academy of Sciences
| | | | - L. V. Kever
- Institute of Cytology, Russian Academy of Sciences
| | - V. V. Furman
- Institute of Cytology, Russian Academy of Sciences
| | | |
Collapse
|
4
|
Nakamura C, Ishizuka N, Yokoyama K, Yazaki Y, Tatsumi F, Ikumi N, Hempstock W, Ikari A, Yoshino Y, Hayashi H. Regulatory mechanisms of glucose absorption in the mouse proximal small intestine during fasting and feeding. Sci Rep 2023; 13:10838. [PMID: 37407613 DOI: 10.1038/s41598-023-38024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
Fasting is known to alter the function of various organs and the mechanisms of glucose metabolism, which affect health outcomes and slow aging. However, it remains unclear how fasting and feeding affects glucose absorption function in the small intestine. We studied the effects of the fasting and feeding on glucose-induced short-circuit current (Isc) in vitro using an Ussing chamber technique. Glucose-induced Isc by SGLT1 was observed in the ileum, but little or no Isc was observed in the jejunum in ad libitum-fed mice. However, in mice fasted for 24-48 h, in addition to the ileum, robust glucose-induced Isc was observed over time in the jejunum. The expression of SGLT1 in the brush border membranes was significantly decreased in the jejunum under fed conditions compared to 48 h fasting, as analyzed by western blotting. Additionally, when mice were fed a 60% high glucose diet for 3 days, the increase in glucose-induced Isc was observed only in the ileum, and totally suppressed in the jejunum. An increase in Na+ permeability between epithelial cells was concomitantly observed in the jejunum of fasted mice. Transepithelial glucose flux was assessed using a non-metabolizable glucose analog, 14C-methyl α-D-glucopyranoside glucose (MGP). Regardless of whether fed or fasted, no glucose diffusion mechanism was observed. Fasting increased the SGLT1-mediated MGP flux in the jejunum. In conclusion, segment-dependent up- and down-regulation mechanisms during fasting and feeding are important for efficient glucose absorption once the fast is broken. Additionally, these mechanisms may play a crucial role in the small intestine's ability to autoregulate glucose absorption, preventing acute hyperglycemia when large amounts of glucose are ingested.
Collapse
Affiliation(s)
- Chisato Nakamura
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Noriko Ishizuka
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Kanako Yokoyama
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuyu Yazaki
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Fumiya Tatsumi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Naotaka Ikumi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Wendy Hempstock
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Department of Nursing, School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
5
|
Human β-Defensin 118 Attenuates Escherichia coli K88-Induced Inflammation and Intestinal Injury in Mice. Probiotics Antimicrob Proteins 2020; 13:586-597. [PMID: 33185791 DOI: 10.1007/s12602-020-09725-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 01/22/2023]
Abstract
Antibiotics are widely used to treat various inflammatory bowel diseases caused by enterotoxigenic Escherichia coli (ETEC). However, continuous use of antibiotics may lead to drug resistance. In this study, we investigated the role of human β-defensin 118 (DEFB118) in regulating the ETEC-induced inflammation and intestinal injury. ETEC-challenged or non-challenged mice were treated by different concentrations of DEFB118. We show that ETEC infection significantly increased fecal score (P < 0.05) and serum concentrations of interlukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Moreover, the concentrations of D-lactic acid, C-reactive protein (CRP), creatinine (CREA), and urea (P < 0.05) were both increased in the ETEC-challenged mice. However, DEFB118 significantly decreased their concentrations in the serum (P < 0.05). DEFB118 not only alleviated tissue damage in spleen upon ETEC challenge, but also increased the villus height in duodenum and ileum (P < 0.05). Moreover, DEFB118 improved the localization and abundance of tight junction protein ZO-1 in jejunal epithelium. Interestingly, DEFB118 decreased the expression levels of critical genes involving in mucosal inflammatory responses (NF-κB, TLR4, IL-1β, and TNF-α) and the apoptosis (caspase3) upon ETEC challenge (P < 0.05), whereas DEFB118 significantly upregulated the expression of mucosa functional genes such as the mucin1 (MUC1) and sodium-glucose transporter-1 (SGLT-1) in the ETEC-challenged mice (P < 0.05). These results indicated a novel function of the DEFB118. The anti-inflammatory effect of DEFB118 should make it an attractive candidate to prevent various bacteria-induced inflammatory bowel diseases.
Collapse
|
6
|
Subramaniam M, Enns CB, Loewen ME. Sigmoidal kinetics define porcine intestinal segregation of electrogenic monosaccharide transport systems as having multiple transporter population involvement. Physiol Rep 2019; 7:e14090. [PMID: 31062524 PMCID: PMC6503033 DOI: 10.14814/phy2.14090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Kinetic characterization of electrogenic sodium-dependent transport in Ussing chambers of d-glucose and d-galactose demonstrated sigmoidal/Hill kinetics in the porcine jejunum and ileum, with the absence of transport in the distal colon. In the jejunum, a high-affinity, super-low-capacity (Ha/sLc) kinetic system accounted for glucose transport, and a low-affinity, low-capacity (La/Lc) kinetic system accounted for galactose transport. In contrast, the ileum demonstrated a high-affinity, super-high-capacity (Ha/sHc) glucose transport and a low-affinity, high-capacity (La/Hc) galactose transport systems. Jejunal glucose transport was not inhibited by dapagliflozin, but galactose transport was inhibited. Comparatively, ileal glucose and galactose transport were both sensitive to dapagliflozin. Genomic and gene expression analyses identified 10 of the 12 known SLC5A family members in the porcine jejunum, ileum, and distal colon. Dominant SGLT1 (SLC5A1) and SGLT3 (SLC5A4) expression was associated with the sigmoidal Ha/sLc glucose and La/Lc galactose transport systems in the jejunum. Comparatively, the dominant expression of SGLT1 (SLC5A1) in the ileum was only associated with Ha glucose and La galactose kinetic systems. However, the sigmoidal kinetics and overall high capacity (Hc) of transport is unlikely accounted for by SGLT1 (SLC5A1) alone. Finally, the absence of transport and lack of pharmacological inhibition in the colon was associated with the poor expression of SLC5A genes. Altogether, the results demonstrated intestinal segregation of monosaccharide transport fit different sigmoidal kinetic systems. This reveals multiple transporter populations in each system, supported by gene expression profiles and pharmacological inhibition. Overall, this work demonstrates a complexity to transporter involvement in intestinal electrogenic monosaccharide absorption systems not previously defined.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical SciencesWestern College of Veterinary MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Cole B. Enns
- Department of Veterinary Biomedical SciencesWestern College of Veterinary MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Matthew E. Loewen
- Department of Veterinary Biomedical SciencesWestern College of Veterinary MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
7
|
Merigo F, Brandolese A, Facchin S, Missaggia S, Bernardi P, Boschi F, D’Incà R, Savarino EV, Sbarbati A, Sturniolo GC. Glucose transporter expression in the human colon. World J Gastroenterol 2018; 24:775-793. [PMID: 29467549 PMCID: PMC5807937 DOI: 10.3748/wjg.v24.i7.775] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate by immunostaining glucose transporter expression in human colorectal mucosa in controls and patients with inflammatory bowel disease (IBD).
METHODS Colorectal samples were obtained from patients undergoing lower endoscopic colonoscopy or recto-sigmoidoscopy. Patients diagnosed with ulcerative colitis (n = 18) or Crohn’s disease (n = 10) and scheduled for diagnostic colonoscopy were enrolled. Patients who underwent colonoscopy for prevention screening of colorectal cancer or were followed-up after polypectomy or had a history of lower gastrointestinal symptoms were designated as the control group (CTRL, n = 16). Inflammatory status of the mucosa at the sampling site was evaluated histologically and/or endoscopically. A total of 147 biopsies of colorectal mucosa were collected and processed for immunohistochemistry analysis. The expression of GLUT2, SGLT1, and GLUT5 glucose transporters was investigated using immunoperoxidase labeling. To compare immunoreactivity of GLUT5 and LYVE-1, which is a marker for lymphatic vessel endothelium, double-labeled confocal microscopy was used.
RESULTS Immunohistochemical analysis revealed that GLUT2, SGLT1, and GLUT5 were expressed only in short epithelial portions of the large intestinal mucosa. No important differences were observed in glucose transporter expression between the samples obtained from the different portions of the colorectal tract and between the different patient groups. Unexpectedly, GLUT5 expression was also identified in vessels, mainly concentrated in specific areas where the vessels were clustered. Immunostaining with LYVE-1 and GLUT5 antibodies revealed that GLUT5-immunoreactive (-IR) clusters of vessels were concentrated in areas internal to those that were LYVE-1 positive. GLUT5 and LYVE-1 did not appear to be colocalized but rather showed a close topographical relationship on the endothelium. Based on their LYVE-1 expression, GLUT5-IR vessels were identified as lymphatic. Both inflamed and non-inflamed mucosal colorectal tissue biopsies from the IBD and CTRL patients showed GLUT5-IR clusters of lymphatic vessels.
CONCLUSION Glucose transporter immunoreactivity is present in colorectal mucosa in controls and IBD patients. GLUT5 expression is also associated with lymphatic vessels. This novel finding aids in the characterization of lymphatic vasculature in IBD patients.
Collapse
Affiliation(s)
- Flavia Merigo
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Alessandro Brandolese
- Department of Medicine, Gastroenterology Section, University of Verona, Verona I-37134, Italy
| | - Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| | - Silvia Missaggia
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Paolo Bernardi
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona I-37134, Italy
| | - Renata D’Incà
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Giacomo Carlo Sturniolo
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| |
Collapse
|
8
|
L-Theanine Administration Modulates the Absorption of Dietary Nutrients and Expression of Transporters and Receptors in the Intestinal Mucosa of Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9747256. [PMID: 28812027 PMCID: PMC5546063 DOI: 10.1155/2017/9747256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/03/2017] [Accepted: 06/15/2017] [Indexed: 01/22/2023]
Abstract
L-theanine has various advantageous functions for human health; whether or not it could mediate the nutrients absorption is unknown yet. The effects of L-theanine on intestinal nutrients absorption were investigated using rats ingesting L-theanine solution (0, 50, 200, and 400 mg/kg body weight) per day for two weeks. The decline of insulin secretion and glucose concentration in the serum was observed by L-theanine. Urea and high-density lipoprotein were also reduced by 50 mg/kg L-theanine. Jejunal and ileac basic amino acids transporters SLC7a1 and SLC7a9, neutral SLC1a5 and SLC16a10, and acidic SLC1a1 expression were upregulated. The expression of intestinal SGLT3 and GLUT5 responsible for carbohydrates uptake and GPR120 and FABP2 associated with fatty acids transport were inhibited. These results indicated that L-theanine could inhibit the glucose uptake by downregulating the related gene expression in the small intestine of rats. Intestinal gene expression of transporters responding to amino acids absorption was stimulated by L-theanine administration.
Collapse
|
9
|
Bhattacherjee A, Hrynets Y, Betti M. Transport of the Glucosamine-Derived Browning Product Fructosazine (Polyhydroxyalkylpyrazine) Across the Human Intestinal Caco-2 Cell Monolayer: Role of the Hexose Transporters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4642-4650. [PMID: 28535336 DOI: 10.1021/acs.jafc.7b01611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The transport mechanism of fructosazine, a glucosamine self-condensation product, was investigated using a Caco-2 cell model. Fructosazine transport was assessed by measuring the bidirectional permeability coefficient across Caco-2 cells. The mechanism of transport was evaluated using phlorizin, an inhibitor of sodium-dependent glucose cotransporters (SGLT) 1 and 2, phloretin and quercetin, inhibitors of glucose transporters (GLUT) 1 and 2, transcytosis inhibitor wortmannin, and gap junction disruptor cytochalasin D. The role of hexose transporters was further studied using downregulated or overexpressed cell lines. The apparent permeability (Pa,b) of fructosazine was 1.30 ± 0.02 × 10-6 cm/s. No significant (p > 0.05) effect was observed in fructosazine transport by adding wortmannin and cytochalasin D. The presence of phlorizin, phloretin, and quercetin decreased fructosazine transport. The downregulated GLUT cells line was unable to transport fructosazine. In human intestinal epithelial Caco-2 cells, GLUT1 or GLUT2 and SGLT are mainly responsible for fructosazine transport.
Collapse
Affiliation(s)
- Abhishek Bhattacherjee
- Department of Agricultural, Food and Nutritional Science, University of Alberta 410 Agriculture/Forestry Centre, Edmonton AB T6G 2P5, Canada
| | - Yuliya Hrynets
- Department of Agricultural, Food and Nutritional Science, University of Alberta 410 Agriculture/Forestry Centre, Edmonton AB T6G 2P5, Canada
| | - Mirko Betti
- Department of Agricultural, Food and Nutritional Science, University of Alberta 410 Agriculture/Forestry Centre, Edmonton AB T6G 2P5, Canada
| |
Collapse
|
10
|
Breath Hydrogen as a Biomarker for Glucose Malabsorption after Roux-en-Y Gastric Bypass Surgery. DISEASE MARKERS 2015; 2015:102760. [PMID: 26538792 PMCID: PMC4619887 DOI: 10.1155/2015/102760] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/08/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022]
Abstract
Objective. Abdominal symptoms are common after bariatric surgery, and these individuals commonly have upper gut bacterial overgrowth, a known cause of malabsorption. Breath hydrogen determination after oral glucose is a safe and inexpensive test for malabsorption. This study is designed to investigate breath hydrogen levels after oral glucose in symptomatic individuals who had undergone Roux-en-Y gastric bypass surgery. Methods. This is a retrospective study of individuals (n = 63; 60 females; 3 males; mean age 49 years) who had gastric bypass surgery and then glucose breath testing to evaluate abdominal symptoms. Results. Among 63 postoperative individuals, 51 (81%) had a late rise (≥45 minutes) in breath hydrogen or methane, supporting glucose malabsorption; 46 (90%) of these 51 subjects also had an early rise (≤30 minutes) in breath hydrogen or methane supporting upper gut bacterial overgrowth. Glucose malabsorption was more frequent in subjects with upper gut bacterial overgrowth compared to subjects with no evidence for bacterial overgrowth (P < 0.001). Conclusion. These data support the presence of intestinal glucose malabsorption associated with upper gut bacterial overgrowth in individuals with abdominal symptoms after gastric bypass surgery. Breath hydrogen testing after oral glucose should be considered to evaluate potential malabsorption in symptomatic, postoperative individuals.
Collapse
|
11
|
Proton-associated sucrose transport of mammalian solute carrier family 45: an analysis in Saccharomyces cerevisiae. Biochem J 2015; 464:193-201. [PMID: 25164149 DOI: 10.1042/bj20140572] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The members of the solute carrier 45 (SLC45) family have been implicated in the regulation of glucose homoeostasis in the brain (SLC45A1), with skin and hair pigmentation (SLC45A2), and with prostate cancer and myelination (SLC45A3). However, apart from SLC45A1, a proton-associated glucose transporter, the function of these proteins is still largely unknown, although sequence similarities to plant sucrose transporters mark them as a putative sucrose transporter family. Heterologous expression of the three members SLC45A2, SLC45A3 and SLC45A4 in Saccharomyces cerevisiae confirmed that they are indeed sucrose transporters. [(14)C]Sucrose-uptake measurements revealed intermediate transport affinities with Km values of approximately 5 mM. Transport activities were best under slightly acidic conditions and were inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone, demonstrating an H(+)-coupled transport mechanism. Na(+), on the other hand, had no effect on sucrose transport. Competitive inhibition assays indicated a possible transport also of glucose and fructose. Real-time PCR of mouse tissues confirmed mRNA expression of SLC45A2 in eyes and skin and of SLC45A3 primarily in the prostate, but also in other tissues, whereas SLC45A4 showed a predominantly ubiquitous expression. Altogether the results provide new insights into the physiological significance of SLC45 family members and challenge existing concepts of mammalian sugar transport, as they (i) transport a disaccharide, and (ii) perform secondary active transport in a proton-dependent manner.
Collapse
|
12
|
Sun X, Zhang H, Sheikhahmadi A, Wang Y, Jiao H, Lin H, Song Z. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2015; 59:127-135. [PMID: 24736810 DOI: 10.1007/s00484-014-0829-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 06/03/2023]
Abstract
In broiler chickens, heat stress disrupts nutrient digestion and absorption. However, the underlying molecular mechanism is not clearly understood. Hence, to investigate the effects of high ambient temperatures on the expression levels of nutrient transporters in the jejunum of broiler chickens, seventy-two 35-day-old male broiler chickens with similar body weights were randomly allocated into two groups: control (24 ± 1 °C) and heat-stressed (32 ± 1 °C). The chickens in the heat-stressed group were exposed to 10 h of heat daily from 08:00 to 18:00 and then raised at 24 ± 1 °C. The rectal temperature and feed intake of the chickens were recorded daily. After 7 days, nine chickens per group were sacrificed by exsanguination, and the jejunum was collected. The results show that heat exposure significantly decreased the feed intake and increased the rectal temperature of the broiler chickens. The plasma concentrations of uric acid and triglyceride significantly increased and decreased, respectively, in the heat-stressed group. No significant differences in the levels of plasma glucose, total amino acids, and very low-density lipoprotein were observed between the heat-stressed and control groups. However, the plasma concentration of glucose tended to be higher (P = 0.09) in the heat-stressed group than in the control group. Heat exposure did not significantly affect the mRNA levels of Na(+)-dependent glucose transporter 1 and amino acid transporters y + LAT1, CAT1, r-BAT, and PePT-1. However, the expression levels of GLUT-2, FABP1, and CD36 were significantly decreased by heat exposure. The results of this study provide new insights into the mechanisms by which heat stress affects nutrient absorption in broiler chickens. Our findings suggest that periodic heat exposure might alter the jejunal glucose and lipid transport rather than amino acid transport. However, intestinal epithelial damage and cell loss should be considered when interpreting the effects of heat stress on the expression of intestinal transporters.
Collapse
Affiliation(s)
- Xiaolei Sun
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
It has been proposed that the non-saturable component of intestinal glucose absorption, apparent following prolonged exposure to high intraluminal glucose concentrations, is mediated via the low affinity glucose and fructose transporter, GLUT2, upregulated within the small intestinal apical border. The evidence that the non-saturable transport component is mediated via an apical membrane sugar transporter is that it is inhibited by phloretin, after exposure to phloridzin. Since the other apical membrane sugar transporter, GLUT5, is insensitive to inhibition by either cytochalasin B, or phloretin, GLUT2 was deduced to be the low affinity sugar transport route. As in its uninhibited state, polarized intestinal glucose absorption depends both on coupled entry of glucose and sodium across the brush border membrane and on the enterocyte cytosolic glucose concentration exceeding that in both luminal and submucosal interstitial fluids, upregulation of GLUT2 within the intestinal brush border will usually stimulate downhill glucose reflux to the intestinal lumen from the enterocytes; thereby reducing, rather than enhancing net glucose absorption across the luminal surface. These states are simulated with a computer model generating solutions to the differential equations for glucose, Na and water flows between luminal, cell, interstitial and capillary compartments. The model demonstrates that uphill glucose transport via SGLT1 into enterocytes, when short-circuited by any passive glucose carrier in the apical membrane, such as GLUT2, will reduce transcellular glucose absorption and thereby lead to increased paracellular flow. The model also illustrates that apical GLUT2 may usefully act as an osmoregulator to prevent excessive enterocyte volume change with altered luminal glucose concentrations.
Collapse
Affiliation(s)
- Richard J Naftalin
- Department of Physiology and BHF Centre of Research Excellence, King's College London, School of Medicine, London, SE1 9HN, UK
| |
Collapse
|
14
|
Duka A, Ahearn GA. Comparative cation dependency of sugar transport by crustacean hepatopancreas and intestine. Biol Open 2014; 3:635-43. [PMID: 24950971 PMCID: PMC4154300 DOI: 10.1242/bio.20148904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose is transported in crustacean hepatopancreas and intestine by Na(+)-dependent co-transport, while Na(+)-dependent D-fructose influx has only been described for the hepatopancreas. It is still unclear if the two sugars are independently transported by two distinct cation-dependent co-transporter carrier systems. In this study, lobster (Homarus americanus) hepatopancreas brush border membrane vesicles (BBMV) were used to characterize, in detail, the cation-dependency of both D-[(3)H]-glucose and D-[(3)H]-fructose influxes, while in vitro perfused intestines were employed to determine the nature of cation-dependent sugar transport across this organ. Over the sodium concentration range of 0-100 mM, both [(3)H]-glucose and [(3)H]-fructose influxes (0.1 mM; 1 min uptakes) by hepatopancreatic BBMV were hyperbolic functions of [Na(+)]. [(3)H]-glucose and [(3)H]-fructose influxes by hepatopancreatic BBMV over a potassium concentration range of 15-100 mM were hyperbolic functions of [K(+)]. Both sugars displayed significant (p<0.01) Na(+)/K(+)-dependent and cation-independent uptake processes. Transepithelial 25 µM [(3)H]-glucose and [(3)H]-fructose fluxes across lobster intestine over luminal sodium and potassium concentration ranges of 0-50 mM and 5-100 mM, respectively, were hyperbolic functions of luminal [Na(+)] and [K(+)]. As with hepatopancreatic sugar transport, transepithelial intestinal sugar transport exhibited both significant (p<0.01) Na(+)/K(+)-dependent and cation-independent processes. Results suggest that both D-glucose and D-fructose are transported by a single SGLT-type carrier in each organ with sodium being the "preferred", high affinity, cation for both sugars in the hepatopancreas, and potassium being the "preferred", high affinity, cation for both sugars in the intestine.
Collapse
Affiliation(s)
- Ada Duka
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Gregory A Ahearn
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
15
|
Grenier E, Mailhot G, Dion D, Ravid Z, Spahis S, Bendayan M, Levy E. Role of the apical and basolateral domains of the enterocyte in the regulation of cholesterol transport by a high glucose concentration. Biochem Cell Biol 2013; 91:476-86. [PMID: 24219290 DOI: 10.1139/bcb-2013-0053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have recently shown that a high glucose (HG) concentration raised intestinal cholesterol (CHOL) transport and metabolism in intestinal epithelial cells. The objective of the present work is to determine whether the stimulus for increased CHOL absorption by glucose originates from the apical site (corresponding to the intestinal lumen) or from the basolateral site (related to blood circulation). We tackled this issue by using differentiated Caco-2/15 cells. Only basolateral medium, supplemented with 25 mmol/L glucose, stimulated [(14)C]-CHOL uptake via the up-regulation of the critical CHOL transporter NPC1L1 protein, as confirmed by its specific ezetimibe inhibitor that abolished the rise in glucose-mediated CHOL capture. No significant changes were noted in SR-BI and CD36. Elevated CHOL uptake was associated with an increase in the transcription factors SREBP-2, LXR-β, and ChREBP, along with a fall in RXR-α. Interestingly, although the HG concentration in the apical medium caused modest changes in CHOL processing, its impact was synergetic with that of the basolateral medium. Our results suggest that HG concentration influences positively intestinal CHOL uptake when present in the basolateral medium. In addition, excessive consumption of diets containing high levels of carbohydrates may strengthen intestinal CHOL uptake in metabolic syndrome, thereby contributing to elevated levels of circulating CHOL and, consequently, the risk of developing type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Emilie Grenier
- a Research Centre, CHU Ste-Justine, 3175 Ste-Catherine Road, Montreal, QC H3T 1C5, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Jones HF, Butler RN, Moore DJ, Brooks DA. Developmental changes and fructose absorption in children: effect on malabsorption testing and dietary management. Nutr Rev 2013; 71:300-9. [DOI: 10.1111/nure.12020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
| | | | - David J Moore
- Gastroenterology Unit; Women's & Children's Hospital; Adelaide; South Australia; Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Diseases Research Group; School of Pharmacy and Medical Sciences; Sansom Institute for Health Research; University of South Australia; Adelaide; South Australia; Australia
| |
Collapse
|
17
|
Chaudhry RM, Garg A, Abdelfatah MM, Duenes JA, Sarr MG. Lack of functionally active sweet taste receptors in the jejunum in vivo in the rat. J Surg Res 2013; 183:606-11. [PMID: 23531453 DOI: 10.1016/j.jss.2013.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND When studied in enterocyte-like cell lines (Caco-2 and RIE cells), agonists and antagonists of the sweet taste receptor (STR) augment and decrease glucose uptake, respectively. We hypothesize that exposure to STR agonists and antagonists in vivo will augment glucose absorption in the rat. MATERIALS AND METHODS About 30-cm segments of jejunum in anesthetized rats were perfused with iso-osmolar solutions containing 10, 35, and 100 mM glucose solutions (n = 6 rats, each group) with and without the STR agonist 2 mM acesulfame potassium and the STR inhibitor 10 μM U-73122 (inhibitor of the phospholipase C pathway). Carrier-mediated absorption of glucose was calculated by using stereospecific and nonstereospecific (14)C-d-glucose and (3)H-l-glucose, respectively. RESULTS Addition of the STR agonist acesulfame potassium to the 10, 35, and 100 mM glucose solutions had no substantive effects on glucose absorption from 2.1 ± 0.2 to 2.0 ± 0.3, 5.8 ± 0.2 to 4.8 ± 0.2, and 15.5 ± 2.3 to 15.7 ± 2.7 μmoL/min/30-cm intestinal segment (P > 0.05), respectively. Addition of the STR inhibitor (U-73122) also had no effect on absorption in the 10, 35, and 100 mM solutions from 2.3 ± 0.1 to 2.1 ± 0.2, 7.7 ± 0.5 to 7.2 ± 0.5, and 15.7 ± 0.9 to 15.2 ± 1.1 μmoL/min/30-cm intestinal segment, respectively. CONCLUSIONS Provision of glucose directly into rat jejunum does not augment glucose absorption via STR-mediated mechanisms within the jejunum in the rat. Our experiments show either no major role of STRs in mediating postprandial augmentation of glucose absorption or that proximal gastrointestinal tract stimulation of STR or other luminal factors may be required for absorption of glucose to be augmented by STR.
Collapse
Affiliation(s)
- Rizwan M Chaudhry
- Department of Surgery and Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
18
|
Jaber H, Baydoun E, EL-Zein O, Kreydiyyeh SI. Anti-hyperglycemic effect of the aqueous extract of banana infructescence stalks in streptozotocin-induced diabetic rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2013; 68:83-89. [PMID: 23423722 DOI: 10.1007/s11130-013-0341-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Water extract of banana (Musa sapientum) infructescence stalks has been used in folk medicine in the treatment of diabetes mellitus. This work aims at verifying the claimed effect and elucidating its possible mode of action. The extract was given in replacement of drinking water to diabetic rats, and its mechanism of action was studied by investigating its involvement in glucose transport in Caco-2 monolayers, and in rat jejuna using an in situ perfusion technique. Its effect on the Na(+)/K(+) ATPase was studied by measuring the amount of inorganic phosphate liberated. The extract reduced significantly blood glucose levels in diabetic rats and glucose transport across rat jejuna and Caco-2 monolayers, and induced a 50 % decrease in their Na(+)/K(+) ATPase activity. The extract did not induce any further decrease in jejunal glucose uptake in the simultaneous presence of phloridzin and phloretin, respective inhibitors of SGLT1 and GLUT2 transporters nor did it induce a change in the protein expression of SGLT1 and GLUT2. It was concluded that the extract acts by reducing the Na(+)/K(+) ATPase activity of enterocytes and consequently the sodium gradient required for sugar transport by SGLT1, which leads to down-regulation of GLUT2 and contributes to the observed anti-hyperglycemic effect.
Collapse
Affiliation(s)
- Hwaida Jaber
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Bliss str, Beirut, Lebanon
| | | | | | | |
Collapse
|
19
|
Zheng Y, Sarr MG. Effect of the artificial sweetener, acesulfame potassium, a sweet taste receptor agonist, on glucose uptake in small intestinal cell lines. J Gastrointest Surg 2013; 17:153-8; discussion p. 158. [PMID: 22948835 PMCID: PMC3516624 DOI: 10.1007/s11605-012-1998-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/06/2012] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Sweet taste receptors may enhance glucose absorption. AIM This study aimed to explore the cell biology of sweet taste receptors on glucose uptake. HYPOTHESIS Artificial sweeteners increase glucose uptake via activating sweet taste receptors in the enterocyte to translocate GLUT2 to the apical membrane through the PLC βII pathway. METHODS Caco-2, RIE-1, and IEC-6 cells, starved from glucose for 1 h were pre-incubated with 10 mM acesulfame potassium (AceK). Glucose uptake was measured by incubating cells for 1 to 10 min with 0.5-50 mM glucose with or without U-73122, chelerythrine, and cytochalasin B. RESULTS In Caco-2 and RIE-1 cells, 10 mM AceK increased glucose uptake by 20-30 % at glucose >25 mM, but not in lesser glucose concentrations (<10 mM), nor at 1 min or 10 min incubations. U-73122 (PLC βII inhibitor) inhibited uptake at glucose >25 mM and for 5 min incubation; chelerythrine and cytochalasin B had similar effects. No effect occurred in IEC-6 cells. Activation of sweet taste receptors had no effect on glucose uptake in low (<25 mM) glucose concentrations but increased uptake at greater concentrations (>25 mM). CONCLUSIONS Role of artificial sweeteners on glucose uptake appears to act in part by effects on the enterocyte itself.
Collapse
|
20
|
Bourzac JF, L'Ériger K, Larrivée JF, Arguin G, Bilodeau MS, Stankova J, Gendron FP. Glucose transporter 2 expression is down regulated following P2X7 activation in enterocytes. J Cell Physiol 2012; 228:120-9. [PMID: 22566162 DOI: 10.1002/jcp.24111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the diabetes epidemic affecting the world population, there is an increasing demand for means to regulate glycemia. Dietary glucose is first absorbed by the intestine before entering the blood stream. Thus, the regulation of glucose absorption by intestinal epithelial cells (IECs) could represent a way to regulate glycemia. Among the molecules involved in glycemia homeostasis, extracellular ATP, a paracrine signaling molecule, was reported to induce insulin secretion from pancreatic β cells by activating P2Y and P2X receptors. In rat's jejunum, P2X7 expression was previously immunolocalized to the apex of villi, where it has been suspected to play a role in apoptosis. However, using an antibody recognizing the receptor extracellular domain and thus most of the P2X7 isoforms, we showed that expression of this receptor is apparent in the top two-thirds of villi. These data suggest a different role for this receptor in IECs. Using the non-cancerous IEC-6 cells and differentiated Caco-2 cells, glucose transport was reduced by more than 30% following P2X7 stimulation. This effect on glucose transport was not due to P2X7-induced cell apoptosis, but rather was the consequence of glucose transporter 2 (Glut2)'s internalization. The signaling pathway leading to P2X7-dependent Glut2 internalization involved the calcium-independent activation of phospholipase Cγ1 (PLCγ1), PKCδ, and PKD1. Although the complete mechanism regulating Glut2 internalization following P2X7 activation is not fully understood, modulation of P2X7 receptor activation could represent an interesting approach to regulate intestinal glucose absorption.
Collapse
Affiliation(s)
- Jean-François Bourzac
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Grefner NM, Gromova LV, Gruzdkov AA, Komissarchik YY. Caco2 cell culture as an intestinal epithelium model to study hexose transport. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s1990519x12040062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Zambrowicz B, Freiman J, Brown PM, Frazier KS, Turnage A, Bronner J, Ruff D, Shadoan M, Banks P, Mseeh F, Rawlins DB, Goodwin NC, Mabon R, Harrison BA, Wilson A, Sands A, Powell DR. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin Pharmacol Ther 2012; 92:158-69. [PMID: 22739142 PMCID: PMC3400893 DOI: 10.1038/clpt.2012.58] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thirty-six patients with type 2 diabetes mellitus (T2DM) were randomized 1:1:1 to receive a once-daily oral dose of placebo or 150 or 300 mg of the dual SGLT1/SGLT2 inhibitor LX4211 for 28 days. Relative to placebo, LX4211 enhanced urinary glucose excretion by inhibiting SGLT2-mediated renal glucose reabsorption; markedly and significantly improved multiple measures of glycemic control, including fasting plasma glucose, oral glucose tolerance, and HbA(1c); and significantly lowered serum triglycerides. LX4211 also mediated trends for lower weight, lower blood pressure, and higher glucagon-like peptide-1 levels. In a follow-up single-dose study in 12 patients with T2DM, LX4211 (300 mg) significantly increased glucagon-like peptide-1 and peptide YY levels relative to pretreatment values, probably by delaying SGLT1-mediated intestinal glucose absorption. In both studies, LX4211 was well tolerated without evidence of increased gastrointestinal side effects. These data support further study of LX4211-mediated dual SGLT1/SGLT2 inhibition as a novel mechanism of action in the treatment of T2DM.
Collapse
Affiliation(s)
- B Zambrowicz
- Lexicon Pharmaceuticals, Inc., The Woodlands, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Zheng Y, Sarr MG. Translocation of transfected GLUT2 to the apical membrane in rat intestinal IEC-6 cells. Dig Dis Sci 2012; 57:1203-12. [PMID: 22116644 PMCID: PMC3331913 DOI: 10.1007/s10620-011-1984-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/10/2011] [Indexed: 02/01/2023]
Abstract
AIM In this study, we transfected the full length cDNA of glucose transporter 2 (GLUT2) into IEC-6 cells (which lack GLUT2 expression) to investigate GLUT2 translocation in enterocytes. The purpose of this study was to investigate cellular mechanisms of GLUT2 translocation and its signaling pathway. METHODS Rat GLUT2 cDNA was transfected into IEC-6 cells. Glucose uptake was measured by incubating cell monolayers with glucose (0.5-50 mM), containing (14)C-D-glucose and (3)H-L-glucose, to measure stereospecific, carrier-mediated and passive uptake. We imaged GLUT2 immunoreactivity by confocal fluorescence microscopy. We evaluated the GLUT2 inhibitor (1 mM phloretin), SGLT1 inhibitor (0.5 mM phlorizin), disrupting microtubular integrity (2 μM nocodazole and 0.5 μM cytochalasin B), protein kinase C (PKC) inhibitors (50 nM calphostin C and 10 μM chelerythrine), and PKC activator (50 nM phorbol 12-myristate 13-acetate: PMA). RESULTS In GLUT2-IEC cells, the K(m) (54.5 mM) increased compared with non-transfected IEC-6 cells (7.8 mM); phloretin (GLUT2 inhibitor) inhibited glucose uptake to that of non-transfected IEC-6 cells (P < 0.05). Nocodazole and cytochalasin B (microtubule disrupters) inhibited uptake by 43-58% only at glucose concentrations ≥25 and 50 mM and the 10-min incubations. Calphostin C (PKC inhibitor) reproduced the inhibition of nocodazole; PMA (a PKC activator) enhanced glucose uptake by 69%. Exposure to glucose increased the GFP signal at the apical membrane of GLUT-1EC cells. CONCLUSION IEC-6 cells lacking GLUT2 translocate GLUT2 apically when transfected to express GLUT2. Translocation of GLUT2 occurs through glucose stimulation via a PKC-dependent signaling pathway and requires integrity of the microtubular skeletal structure.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Surgery and The Gastroenterology Research Unit, Mayo Clinic (GU 10-01), 200 1st Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
25
|
Chaudhry RM, Scow JS, Madhavan S, Duenes JA, Sarr MG. Acute enterocyte adaptation to luminal glucose: a posttranslational mechanism for rapid apical recruitment of the transporter GLUT2. J Gastrointest Surg 2012; 16:312-9; discussion 319. [PMID: 22068967 PMCID: PMC3265642 DOI: 10.1007/s11605-011-1752-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 10/13/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Glucose absorption postprandially increases markedly to levels far greater than possible by the classic glucose transporter sodium-glucose cotransporter 1 (SGLT1). HYPOTHESIS Luminal concentrations of glucose >50 mM lead to rapid, phenotypic, non-genomic adaptations by the enterocyte to recruit another transporter, glucose transporter 2 (GLUT2), to the apical membrane to increase glucose absorption. METHODS Isolated segments of jejunum were perfused in vivo with glucose-containing solutions in anesthetized rats. Carrier-mediated glucose uptake was measured in 10 and 100 mM glucose solutions (n = 6 rats each) with and without selective inhibitors of SGLT1 and GLUT2. RESULTS The mean rate of carrier-mediated glucose uptake increased in rats perfused with 100 mM versus 10 mM glucose to 13.9 ± 2.9 μmol from 2.1 ± 0.1 μmol, respectively (p < 0.0001). Using selective inhibitors, the relative contribution of GLUT2 to glucose absorption was 56% in the 100 mM concentration of glucose compared to the 10 mM concentration (27%; p < 0.01). Passive absorption accounted for 6% of total glucose absorption at 100 mM glucose. CONCLUSION A small amount of GLUT2 is active at the lesser luminal concentrations of glucose, but when exposed to concentrations of 100 mM, the enterocyte presumably changes its phenotype by recruiting GLUT2 apically to markedly augment glucose absorption.
Collapse
Affiliation(s)
- Rizwan M Chaudhry
- Department of Surgery and Gastroenterology Research Unit, Mayo Clinic (GU 10-01), 200 1st Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
26
|
Wang HT, Yu C, Hsieh YH, Chen SW, Chen BJ, Chen CY. Effects of albusin B (a bacteriocin) of Ruminococcus albus 7 expressed by yeast on growth performance and intestinal absorption of broiler chickens--its potential role as an alternative to feed antibiotics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:2338-2343. [PMID: 21567416 DOI: 10.1002/jsfa.4463] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/14/2010] [Accepted: 04/07/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND Bacteriocins with antimicrobial activity are considered as potential alternatives to antibiotics. The aim of this study was to investigate the effect of albusin B (bacteriocin) of Ruminococcus albus 7 expressed by yeast on the growth performance of broiler chickens. Ninety 1-day-old healthy broiler chickens were randomly divided into three groups: control, albusin B (2.5 g kg(-1)) and nosiheptide (2.5 mg kg(-1), antibiotic control). Growth performance and intestinal functions were measured at 5 weeks of age. RESULTS Albusin B-supplemented broilers showed increased body weight gain compared with control broilers (54.7 ± 5.3 vs 48.5 ± 6.1 g day(-1) per bird, P < 0.05). Broilers supplemented with nosiheptide had a less developed mucosal layer than broilers in the other two groups. Compared with the control group, broilers supplemented with albusin B or nosiheptide showed increased mRNA expression of sGLT1, GLUT2 and PEPT1 in the jejunum (P < 0.05). The faecal Lactobacillus count was higher in the albusin B group than in the other two groups (P < 0.05). CONCLUSION Albusin B supplementation increased intestinal absorption and elevated the faecal Lactobacillus count, thereby promoting the growth performance of broiler chickens. These improvements resulting from albusin B supplementation provide evidence of potential alternatives to antibiotics in broiler chicken feed.
Collapse
Affiliation(s)
- Han-Tsung Wang
- Department of Animal Science, Chinese Culture University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
27
|
Scow JS, Tavakkolizadeh A, Zheng Y, Sarr MG. Acute "adaptation" by the small intestinal enterocyte: a posttranscriptional mechanism involving apical translocation of nutrient transporters. Surgery 2011; 149:601-5. [PMID: 21496564 DOI: 10.1016/j.surg.2011.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/10/2011] [Indexed: 11/25/2022]
Affiliation(s)
- Jeffrey S Scow
- Department of Surgery and the Gastroenterology Research Unit, The Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
28
|
Kellett GL. Alternative perspective on intestinal calcium absorption: proposed complementary actions of Ca(v)1.3 and TRPV6. Nutr Rev 2011; 69:347-70. [PMID: 21729089 DOI: 10.1111/j.1753-4887.2011.00395.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcellular models of dietary Ca(2+) absorption by the intestine assign essential roles to TRPV6 and calbindin-D(9K) . However, studies with gene-knockout mice challenge this view. Something fundamental is missing. The L-type channel Ca(v) 1.3 is located in the apical membrane from the duodenum to the ileum. In perfused rat jejunum in vivo and in Caco-2 cells, Ca(v) 1.3 mediates sodium glucose transporter 1 (SGLT1)-dependent and prolactin-induced active, transcellular Ca(2+) absorption, respectively. TRPV6 is activated by hyperpolarization and is vitamin D dependent; in contrast, Ca(v) 1.3 is activated by depolarization and is independent of calbindin-D(9K) and vitamin D. This review considers evidence supporting the idea that Ca(v) 1.3 and TRPV6 have complementary roles in the regulation of intestinal Ca(2+) absorption as depolarization and repolarization of the apical membrane occur during and between digestive periods, respectively, and as chyme moves from one intestinal segment to another and food transit times increase. Reassessment of current arguments for paracellular flow reveals that key phenomena have alternative explanations within the integrated Ca(v) 1.3/TRPV6 view of transcellular Ca(2+) absorption.
Collapse
Affiliation(s)
- George L Kellett
- Department of Biology, University of York, Heslington, United Kingdom.
| |
Collapse
|
29
|
Pine bark extract inhibits glucose transport in enterocytes via mitogen-activated kinase and phosphoinositol 3-kinase. Nutrition 2011; 27:707-12. [DOI: 10.1016/j.nut.2010.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 06/10/2010] [Accepted: 07/01/2010] [Indexed: 11/18/2022]
|
30
|
Merigo F, Benati D, Cristofoletti M, Osculati F, Sbarbati A. Glucose transporters are expressed in taste receptor cells. J Anat 2011; 219:243-52. [PMID: 21592100 DOI: 10.1111/j.1469-7580.2011.01385.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the intestine, changes of sugar concentration generated in the lumen during digestion induce adaptive responses of glucose transporters in the epithelium. A close matching between the intestinal expression of glucose transporters and the composition and amount of the diet has been provided by several experiments. Functional evidence has demonstrated that the regulation of glucose transporters into enterocytes is induced by the sensing of sugar of the enteroendocrine cells through activation of sweet taste receptors (T1R2 and T1R3) and their associated elements of G-protein-linked signaling pathways (e.g. α-gustducin, phospholipase C β type 2 and transient receptor potential channel M5), which are signaling molecules also involved in the perception of sweet substances in the taste receptor cells (TRCs) of the tongue. Considering this phenotypical similarity between the intestinal cells and TRCs, we evaluated whether the TRCs themselves possess proteins of the glucose transport mechanism. Therefore, we investigated the expression of the typical intestinal glucose transporters (i.e. GLUT2, GLUT5 and SGLT1) in rat circumvallate papillae, using immunohistochemistry, double-labeling immunofluorescence, immunoelectron microscopy and reverse transcriptase-polymerase chain reaction analysis. The results showed that GLUT2, GLUT5 and SGLT1 are expressed in TRCs; their immunoreactivity was also observed in cells that displayed staining for α-gustducin and T1R3 receptor. The immunoelectron microscopic results confirmed that GLUT2, GLUT5 and SGLT1 were predominantly expressed in cells with ultrastructural characteristics of chemoreceptor cells. The presence of glucose transporters in TRCs adds a further link between chemosensory information and cellular responses to sweet stimuli that may have important roles in glucose homeostasis, contributing to a better understanding of the pathways implicated in glucose metabolism.
Collapse
Affiliation(s)
- Flavia Merigo
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Human Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy.
| | | | | | | | | |
Collapse
|
31
|
Scow JS, Iqbal CW, Jones TW, Qandeel HG, Zheng Y, Duenes JA, Nagao M, Madhavan S, Sarr MG. Absence of evidence of translocation of GLUT2 to the apical membrane of enterocytes in everted intestinal sleeves. J Surg Res 2011; 167:56-61. [PMID: 20739033 PMCID: PMC3065950 DOI: 10.1016/j.jss.2010.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/05/2010] [Accepted: 04/15/2010] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Traditional models of intestinal glucose absorption confine GLUT2 to the basolateral membrane. Evidence suggests that GLUT2 is translocated to the apical membrane when the enterocyte is exposed to high luminal glucose concentrations. HYPOTHESIS GLUT2 translocates to the apical membrane by a PKC signaling mechanism dependent on activity of SGLT1 and the cellular cytostructure. METHODS Transporter-mediated glucose uptake was studied in rat jejunum using everted sleeves under seven conditions: Control, SGLT1 inhibition (phlorizin), GLUT2 inhibition (phloretin), both SGLT1 and GLUT2 inhibition, PKC inhibition (calphostin C or chelerythrine), and disruption of cellular cytostructure (nocodazole). Each condition was tested in iso-osmotic solutions of 1, 20, or 50 mM glucose for 1 or 5 min incubations (n = 6 rats each). RESULTS Control rats exhibited a saturable pattern of uptake at both durations of incubation. Phlorizin (P ≤ 0.006 each) inhibited markedly and phloretin (P ≤ 0.01 each) inhibited partially glucose uptake in all concentrations and time. Phloretin and phlorizin together completely inhibited uptake (P = 0.004 each). Calphostin C, chelerythrine, and nocodazole had little effect on glucose uptake at either 1 or 5 min. Inhibition of SGLT1 led to near complete cessation of transporter-mediated glucose uptake, while GLUT2 inhibition led to partial inhibition, suggesting some constitutive expression of GLUT2 in the apical membrane. Disruption of PKC signaling or cytoskeletal integrity partially inhibited transporter-mediated glucose uptake only in 1 mM glucose, suggesting a non-specific effect. CONCLUSIONS Under these conditions, it does not appear that GLUT2 is translocated to the apical membrane on the cellular cytostructure in response to PKC signaling.
Collapse
Affiliation(s)
- Jeffrey S Scow
- Mayo Clinic Department of Surgery, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shi J, McLamore ES, Jaroch D, Claussen JC, Rickus JL, Porterfield DM. Oscillatory glucose flux in INS 1 pancreatic β cells: a self-referencing microbiosensor study. Anal Biochem 2011; 411:185-93. [PMID: 21167120 PMCID: PMC3081878 DOI: 10.1016/j.ab.2010.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 12/27/2022]
Abstract
Signaling and insulin secretion in β cells have been reported to demonstrate oscillatory modes, with abnormal oscillations associated with type 2 diabetes. We investigated cellular glucose influx in β cells with a self-referencing (SR) microbiosensor based on nanomaterials with enhanced performance. Dose-response analyses with glucose and metabolic inhibition studies were used to study oscillatory patterns and transporter kinetics. For the first time, we report a stable and regular oscillatory uptake of glucose (averaged period 2.9±0.6 min), which corresponds well with an oscillator model. This oscillatory behavior is part of the feedback control pathway involving oxygen, cytosolic Ca(2+)/ATP, and insulin secretion (periodicity approximately 3 min). Glucose stimulation experiments show that the net Michaelis-Menten constant (6.1±1.5 mM) is in between GLUT2 and GLUT9. Phloretin inhibition experiments show an EC(50) value of 28±1.6 μM phloretin for class I GLUT proteins and a concentration of 40±0.6 μM phloretin caused maximum inhibition with residual nonoscillating flux, suggesting that the transporters not inhibited by phloretin are likely responsible for the remaining nonoscillatory uptake, and that impaired uptake via GLUT2 may be the cause of the oscillation loss in type 2 diabetes. Transporter studies using the SR microbiosensor will contribute to diabetes research and therapy development by exploring the nature of oscillatory transport mechanisms.
Collapse
Affiliation(s)
- Jin Shi
- Physiological Sensing Facility 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Birck Nanotechnology Center and Bindley Bioscience Center 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Weldon School of Biomedical Engineering 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
| | - Eric S. McLamore
- Physiological Sensing Facility 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Birck Nanotechnology Center and Bindley Bioscience Center 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Department of Agricultural and Biological Engineering 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
| | - David Jaroch
- Physiological Sensing Facility 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Birck Nanotechnology Center and Bindley Bioscience Center 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Weldon School of Biomedical Engineering 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
| | - Jonathan C. Claussen
- Physiological Sensing Facility 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Birck Nanotechnology Center and Bindley Bioscience Center 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Department of Agricultural and Biological Engineering 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
| | - Jenna L. Rickus
- Physiological Sensing Facility 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Birck Nanotechnology Center and Bindley Bioscience Center 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Weldon School of Biomedical Engineering 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Department of Agricultural and Biological Engineering 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
| | - D. Marshall Porterfield
- Physiological Sensing Facility 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Birck Nanotechnology Center and Bindley Bioscience Center 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Weldon School of Biomedical Engineering 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Department of Agricultural and Biological Engineering 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
- Department of Horticulture & Landscape Architecture 1203 W. State Street, Purdue University, West Lafayette, IN 47907-2057
| |
Collapse
|
33
|
Karasov WH, Martínez del Rio C, Caviedes-Vidal E. Ecological physiology of diet and digestive systems. Annu Rev Physiol 2011; 73:69-93. [PMID: 21314432 DOI: 10.1146/annurev-physiol-012110-142152] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The morphological and functional design of gastrointestinal tracts of many vertebrates and invertebrates can be explained largely by the interaction between diet chemical constituents and principles of economic design, both of which are embodied in chemical reactor models of gut function. Natural selection seems to have led to the expression of digestive features that approximately match digestive capacities with dietary loads while exhibiting relatively modest excess. Mechanisms explaining differences in hydrolase activity between populations and species include gene copy number variations and single-nucleotide polymorphisms. In many animals, both transcriptional adjustment and posttranscriptional adjustment mediate phenotypic flexibility in the expression of intestinal hydrolases and transporters in response to dietary signals. Digestive performance of animals depends also on their gastrointestinal microbiome. The microbiome seems to be characterized by large beta diversity among hosts and by a common core metagenome and seems to differ flexibly among animals with different diets.
Collapse
Affiliation(s)
- William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, 53706, USA.
| | | | | |
Collapse
|
34
|
Madhavan S, Scow JS, Chaudhry RM, Nagao M, Zheng Y, Duenes JA, Sarr MG. Intestinal adaptation for oligopeptide absorption via PepT1 after massive (70%) mid-small bowel resection. J Gastrointest Surg 2011; 15:240-7; discussion 247-9. [PMID: 21170601 PMCID: PMC3050655 DOI: 10.1007/s11605-010-1320-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/09/2010] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Proteins are absorbed primarily as short peptides via peptide transporter 1 (PepT1). HYPOTHESIS Intestinal adaptation for peptide absorption after massive mid-small intestinal resection occurs by increased expression of PepT1 in the remnant small intestine and colon. METHODS Peptide uptake was measured in duodenum, jejunum, ileum, and colon using glycyl-sarcosine 1 week (n = 9) and 4 weeks (n = 11) after 70% mid-small bowel resection and in corresponding segments from unoperated rats (n = 12) and after transection and reanastomosis of jejunum and ileum (n = 8). Expression of PepT1 (mRNA, protein) and villus height were measured. RESULTS Intestinal transection/reanastomosis did not alter gene expression. Compared to non-operated controls, 70% mid-small bowel resection increased jejunal peptide uptake (p < 0.05) associated with increased villus height (1.13 vs 1.77 and 1.50 mm, respectively, p < 0.01). In ileum although villus height increased at 1 and 4 weeks (1.03 vs 1.21 and 1.35 mm, respectively; p < 0.01), peptide uptake was not altered. PepT1 mRNA and protein were decreased at 1 week, and PepT1 protein continued low at 4 weeks. Gene expression, peptide uptake, and histomorphology were unchanged in the colon. CONCLUSIONS Jejunal adaptation for peptide absorption occurs by hyperplasia. Distal ileum and colon do not have a substantive role in adaptation for peptide absorption.
Collapse
Affiliation(s)
- Srivats Madhavan
- Department of Surgery and Gastroenterology Research Unit (GU 10-10), Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
McLamore E, Shi J, Jaroch D, Claussen J, Uchida A, Jiang Y, Zhang W, Donkin S, Banks M, Buhman K, Teegarden D, Rickus J, Porterfield D. A self referencing platinum nanoparticle decorated enzyme-based microbiosensor for real time measurement of physiological glucose transport. Biosens Bioelectron 2011; 26:2237-45. [PMID: 20965716 PMCID: PMC3014447 DOI: 10.1016/j.bios.2010.09.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/31/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Glucose is the central molecule in many biochemical pathways, and numerous approaches have been developed for fabricating micro biosensors designed to measure glucose concentration in/near cells and/or tissues. An inherent problem for microsensors used in physiological studies is a low signal-to-noise ratio, which is further complicated by concentration drift due to the metabolic activity of cells. A microsensor technique designed to filter extraneous electrical noise and provide direct quantification of active membrane transport is known as self-referencing. Self-referencing involves oscillation of a single microsensor via computer-controlled stepper motors within a stable gradient formed near cells/tissues (i.e., within the concentration boundary layer). The non-invasive technique provides direct measurement of trans-membrane (or trans-tissue) analyte flux. A glucose micro biosensor was fabricated using deposition of nanomaterials (platinum black, multiwalled carbon nanotubes, Nafion) and glucose oxidase on a platinum/iridium microelectrode. The highly sensitive/selective biosensor was used in the self-referencing modality for cell/tissue physiological transport studies. Detailed analysis of signal drift/noise filtering via phase sensitive detection (including a post-measurement analytical technique) are provided. Using this highly sensitive technique, physiological glucose uptake is demonstrated in a wide range of metabolic and pharmacological studies. Use of this technique is demonstrated for cancer cell physiology, bioenergetics, diabetes, and microbial biofilm physiology. This robust and versatile biosensor technique will provide much insight into biological transport in biomedical, environmental, and agricultural research applications.
Collapse
Affiliation(s)
- E.S. McLamore
- Bindley Bioscience Center and Birck Nanotechnology Center, Physiological Sensing Facility. Purdue University. 1203 W. State Street, West Lafayette, IN, U.S.A
- Dept. of Agricultural & Biological Engineering, Purdue University
- School of Civil Engineering, Purdue University
| | - J. Shi
- Bindley Bioscience Center and Birck Nanotechnology Center, Physiological Sensing Facility. Purdue University. 1203 W. State Street, West Lafayette, IN, U.S.A
- Weldon School of Biomedical Engineering, Purdue University
| | - D. Jaroch
- Bindley Bioscience Center and Birck Nanotechnology Center, Physiological Sensing Facility. Purdue University. 1203 W. State Street, West Lafayette, IN, U.S.A
- Weldon School of Biomedical Engineering, Purdue University
| | - J.C. Claussen
- Bindley Bioscience Center and Birck Nanotechnology Center, Physiological Sensing Facility. Purdue University. 1203 W. State Street, West Lafayette, IN, U.S.A
- Dept. of Agricultural & Biological Engineering, Purdue University
| | - A. Uchida
- Dept. of Foods and Nutrition, Purdue University
| | - Y. Jiang
- Dept. of Foods and Nutrition, Purdue University
| | - W. Zhang
- Bindley Bioscience Center and Birck Nanotechnology Center, Physiological Sensing Facility. Purdue University. 1203 W. State Street, West Lafayette, IN, U.S.A
- School of Civil Engineering, Purdue University
| | | | - M.K. Banks
- Bindley Bioscience Center and Birck Nanotechnology Center, Physiological Sensing Facility. Purdue University. 1203 W. State Street, West Lafayette, IN, U.S.A
- School of Civil Engineering, Purdue University
| | - K.K. Buhman
- Dept. of Foods and Nutrition, Purdue University
| | | | - J.L. Rickus
- Bindley Bioscience Center and Birck Nanotechnology Center, Physiological Sensing Facility. Purdue University. 1203 W. State Street, West Lafayette, IN, U.S.A
- Dept. of Agricultural & Biological Engineering, Purdue University
- Weldon School of Biomedical Engineering, Purdue University
| | - D.M. Porterfield
- Bindley Bioscience Center and Birck Nanotechnology Center, Physiological Sensing Facility. Purdue University. 1203 W. State Street, West Lafayette, IN, U.S.A
- Dept. of Agricultural & Biological Engineering, Purdue University
- Weldon School of Biomedical Engineering, Purdue University
- Dept. of Horticulture & Landscape Architecture, Purdue University
| |
Collapse
|
36
|
Nistor Baldea LA, Martineau LC, Benhaddou-Andaloussi A, Arnason JT, Lévy É, Haddad PS. Inhibition of intestinal glucose absorption by anti-diabetic medicinal plants derived from the James Bay Cree traditional pharmacopeia. JOURNAL OF ETHNOPHARMACOLOGY 2010; 132:473-482. [PMID: 20804840 DOI: 10.1016/j.jep.2010.07.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/23/2010] [Accepted: 07/06/2010] [Indexed: 05/29/2023]
Abstract
BACKGROUND Type II diabetes and obesity are major health problems worldwide and aboriginal peoples are particularly at risk. To address this problem in Canadian native populations who find modern pharmaceuticals culturally inappropriate, our team is testing the traditional pharmacopeia of the James Bay Cree for anti-diabetic and anti-obesity activities. More specifically, the aim of the present study was to define the effects of traditional plants on intestinal glucose absorption, an under-appreciated anti-hyperglycaemic and anti-obesity activity. METHODS Crude ethanol extracts of 17 Boreal forest medicinal plants were tested in vitro using the Caco-2 human enterocytic cell line and in vivo using an oral glucose tolerance test. RESULTS Thirteen of seventeen extracts were observed to significantly inhibit uptake when administered simultaneously with (3)H-deoxyglucose. Inhibition was dose-dependent and, in a few cases, even surpassed that induced by a combination of the positive controls. To validate these effects in vivo, four plant extracts were administered by intragastric gavage at 250 mg/kg to normal rats simultaneously with a 3g/kg bolus of glucose. This resulted in a decrease in peak glycaemia by approximately 40% for two of them. Similarly, only 2 extracts reduced glucose transport after long term incubation and this could be related to reductions in the expression of SGLT-1 or GLUT-2 proteins. CONCLUSIONS These findings indicate that competitive inhibition of intestinal glucose uptake can be achieved by crude extracts of medicinal plants. Such extracts could be taken with meals to control postprandial glycaemia and reduce caloric intake in high risk populations that are positively inclined towards traditional medicine.
Collapse
Affiliation(s)
- Lidia A Nistor Baldea
- Natural Health Products and Metabolic Diseases Laboratory, Department of Pharmacology, Université de Montréal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Watanabe K, Kamata K, Sato J, Takahashi T. Fundamental studies on the inhibitory action of Acanthopanax senticosus Harms on glucose absorption. JOURNAL OF ETHNOPHARMACOLOGY 2010; 132:193-199. [PMID: 20713144 DOI: 10.1016/j.jep.2010.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 07/28/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY Acanthopanax senticosus Harms extract (ASE) is used as an ingredient of over-the-counter drugs and functional foods, such as health supplements, in Japan. ASE exhibits a hypoglycemic effect; however, the mechanism of the hypoglycemic effect is not clear. In the present study, we investigated whether ASE has a glucose absorption inhibitory action. MATERIALS AND METHODS We examined the effects of ASE on α-amylase and α-glucosidase activities, and on glucose uptake in Caco-2 cells. We also examined the effects of ASE oral administration on glucose tolerance in type 2 diabetes mellitus model db/db mice. RESULTS The addition of ASE inhibited α-glucosidase activity but not α-amylase activity. The α-glucosidase inhibitory activity of ASE was approximately 1/13 of that of acarbose. The addition of ASE inhibited 2'-deoxy-D-glucose (DG) uptake in human intestinal Caco-2 cells, and the inhibitory activity of ASE was approximately 1/40 of that of phloretin. Kinetic analysis of glucose uptake indicated that ASE has no effects on DG uptake through passive diffusion, but that ASE inhibits intracellular DG uptake chiefly by inhibiting transport via a glucose transporter. In the glucose tolerance study, db/db mice orally administered ASE for 3 days showed significantly lower plasma glucose level than the control group 30 min after sucrose loading, without affecting plasma insulin levels. In addition, ASE oral administration significantly inhibited α-glucosidase activity in the small intestine mucosa extirpated from the mice. CONCLUSION These findings indicate that ASE may be useful as an ingredient of functional foods to improve postprandial hyperglycemia and prevent type II diabetes mellitus.
Collapse
Affiliation(s)
- Kazuhiro Watanabe
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan.
| | | | | | | |
Collapse
|
38
|
|
39
|
Shea-Donohue T, Urban JF, Notari L, Zhao A. Immune regulation of epithelial cell function: Implications for GI pathologies. Int Dairy J 2010. [DOI: 10.1016/j.idairyj.2009.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Short-term regulation of organic anion transporters. Pharmacol Ther 2009; 125:55-61. [PMID: 19744520 DOI: 10.1016/j.pharmthera.2009.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/19/2022]
Abstract
Organic anion transporters (OATs), which belong to the superfamily SLC22A, are key determinants in the absorption, distribution, and excretion of a diverse array of environmental toxins, and clinically important drugs, and, therefore, are critical for the survival of mammalian species. Alteration in the function of these drug transporters plays important roles in intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs. As a result, the activity of OATs must be under tight regulation so as to carry out their normal functions. This review article highlights the recent advances from our laboratory as well as from others in delineating the short-term regulation of OATs. These advances provide important insights into strategies to maximize therapeutic efficacy in drug development.
Collapse
|
41
|
Iqbal CW, Fatima J, Duenes J, Houghton SG, Kasparek MS, Sarr MG. Expression and function of intestinal hexose transporters after small intestinal denervation. Surgery 2009; 146:100-12. [PMID: 19541015 PMCID: PMC2743990 DOI: 10.1016/j.surg.2009.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 02/23/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of neural regulation in expression and function of intestinal hexose transporters is unknown. The aim of this study is to determine the role of intestinal innervation in gene expression and function of the membrane hexose transporters, SGLT1, GLUT2, and GLUT5 in the enterocyte. We hypothesize that denervation of the small intestine decreases expression of hexose transporters, which leads to decreased glucose absorption. METHODS Six groups of Lewis rats were studied (n = 6 each) as follows: control, 1 week after sham laparotomy, 1 and 8 weeks after syngeneic (no immune rejection) orthotopic small-bowel transplantation (SBT) (SBT1 and SBT8) to induce complete extrinsic denervation, and 1 and 8 weeks after selective disruption of intrinsic neural continuity to jejunoileum by gut transection and reanastomosis (T/A1 and T/A8). All tissue was harvested between 8 AM and 10 AM. In duodenum, jejunum, and ileum, mucosal messenger RNA (mRNA) levels were quantitated by real-time polymerase chain reaction (PCR), protein by Western blotting, and transporter-mediated glucose absorption using the everted sleeve technique. RESULTS Across the 6 groups, the relative gene expression of hexose transporter mRNA and protein levels were unchanged, and no difference in transporter-mediated glucose uptake was evident in any region. The glucose transporter affinity (K(m)) and functional transporter levels (V(max)) calculated for duodenum and jejunum showed no difference among the 6 groups. CONCLUSION Baseline regulation of hexose transporter function is not mediated tonically by intrinsic or extrinsic neural continuity to the jejunoileum.
Collapse
Affiliation(s)
- Corey W Iqbal
- Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Yu LCH, Huang CY, Kuo WT, Sayer H, Turner JR, Buret AG. SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis. Int J Parasitol 2008; 38:923-34. [PMID: 18281046 PMCID: PMC2693066 DOI: 10.1016/j.ijpara.2007.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/12/2007] [Accepted: 12/17/2007] [Indexed: 12/12/2022]
Abstract
Infection with Giardia duodenalis is one of the most common causes of waterborne diarrheal disease worldwide. Mechanisms of pathogenesis and host response in giardiasis remain incompletely understood. Previous studies have shown that exposure to G. duodenalis products induce apoptosis in enterocytes. We recently discovered that sodium-dependent glucose cotransporter (SGLT)-1-mediated glucose uptake modulates enterocytic cell death induced by bacterial lipopolysaccharide. The aim of this study was to examine whether enhanced epithelial SGLT-1 activity may constitute a novel mechanism of host defense against G. duodenalis-induced apoptosis. SGLT-1-transfected Caco-2 cells were exposed to G. duodenalis products in low (5mM) or high (25mM) glucose media. In low glucose environments, G. duodenalis-induced caspase-3 activation and DNA fragmentation in these cells. These apoptotic phenomena were abolished in the presence of high glucose. A soluble proteolytic fraction of G. duodenalis was found to upregulate SGLT-1-mediated glucose uptake in a dose- and time-dependent manner, in association with increased apical SGLT-1 expression on epithelial cells. Kinetic analysis showed that this phenomenon resulted from an increase in the maximal rate of sugar transport (V(max)) by SGLT-1, with no change in the affinity constant (K(m)). The addition of phloridzin (a competitive inhibitor for glucose binding to SGLT-1) abolished the anti-apoptotic effects exerted by high glucose. Together, the findings indicate that SGLT-1-dependent glucose uptake may represent a novel epithelial cell rescue mechanism against G. duodenalis-induced apoptosis.
Collapse
Affiliation(s)
- Linda C H Yu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | | | | | | | | | | |
Collapse
|
44
|
Kuo P, Chaikomin R, Pilichiewicz A, O'Donovan D, Wishart JM, Meyer JH, Jones KL, Feinle-Bisset C, Horowitz M, Rayner CK. Transient, early release of glucagon-like peptide-1 during low rates of intraduodenal glucose delivery. REGULATORY PEPTIDES 2008; 146:1-3. [PMID: 17964673 DOI: 10.1016/j.regpep.2007.09.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/26/2007] [Accepted: 09/26/2007] [Indexed: 02/07/2023]
Abstract
CONTEXT The "incretin" hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), account for some 60% of the stimulation of insulin by oral glucose, but the determinants of their secretion from the small intestine are poorly understood. Cells which release GIP (K cells) are localized to the proximal small intestine, while GLP-1 releasing cells (L cells) predominate in the distal gut. It has been suggested that a threshold rate of duodenal glucose delivery (approximately 1.8 kcal/min) needs to be exceeded for stimulation of GLP-1. OBJECTIVE To determine whether a low intraduodenal glucose load (1 kcal/min) has the capacity to stimulate GLP-1, and if so, the characteristics of the response. DESIGN Retrospective analysis of all studies in our laboratory involving healthy humans administered intraduodenal glucose at 1 kcal/min for 120 min. SETTING Clinical research laboratory. PARTICIPANTS 27 healthy subjects (24 male; age 36+/-3 years; BMI 25.2+/-0.7 kg/m(2)). MAIN OUTCOME MEASURES Plasma GLP-1, GIP, insulin, and blood glucose concentrations, reported as mean+/-SEM. RESULTS During intraduodenal glucose, plasma GLP-1 increased at 15 and 30 min (P<0.001 for both) and returned to baseline thereafter. In contrast, there were sustained increases in plasma GIP (P<0.001), insulin (P<0.001), and blood glucose (P<0.001). CONCLUSION In healthy subjects, there is early, transient stimulation of GLP-1 by glucose loads hitherto believed to be "sub-threshold". The mechanisms underlying this effect, which could be attributed to initially rapid transit to jejunal L cells, or a duodeno-jejunoileal neural or hormonal loop, remain to be determined.
Collapse
Affiliation(s)
- Paul Kuo
- University of Adelaide, Discipline of Medicine, Royal Adelaide Hospital, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Houghton SG, Iqbal CW, Duenes JA, Fatima J, Kasparek MS, Sarr MG. Coordinated, diurnal hexose transporter expression in rat small bowel: implications for small bowel resection. Surgery 2008; 143:79-93. [PMID: 18154936 PMCID: PMC2213714 DOI: 10.1016/j.surg.2007.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hexose transporter mRNA and protein levels follow a diurnal rhythm in rat jejunum. Their coordinated expression and resultant function throughout the small bowel is not well understood. We hypothesized that hexose transporter levels and glucose absorption follow a coordinated, site-specific diurnal rhythm in rat duodenum and jejunum, but not in ileum. METHODS Sprague-Dawley rats were housed in a strictly maintained, 12-h, light/dark room [light 6 am to 6 pm] with free access to water and chow. Mucosa was harvested from duodenum, jejunum, and ileum at 3 am, 9 am, 3 pm, and 9 pm, and full thickness 1-cm segments were harvested at 9 am, and 9 pm (n = 6 for each segment at each time point). mRNA levels were determined by reverse-transcription, real-time polymerase chain reaction (n > or = 5), protein levels by semiquantitative Western blotting (n > or = 5), and transporter-mediated glucose uptake by everted sleeve technique (n = 6). RESULTS mRNA levels of SGLT1 and GLUT5 followed a temporally coordinated, diurnal rhythm in all 3 segments (P < .01), while mRNA for GLUT2 and protein levels for SGLT1 and GLUT2 varied diurnally only in duodenum and jejunum (P > .05) but not in ileum (P > .10). SGLT1 and GLUT5 mRNA induction decreased aborally. Baseline SGLT1 and GLUT5 mRNA levels and SLGT1 and GLUT2 protein levels did not vary aborally (P > .05 for all). GLUT2 mRNA baseline levels were decreased in ileum (P < .01). Glucose uptake varied diurnally in duodenum and jejunum with no difference in ileum. Transporter-mediated glucose uptake was greater in duodenum and jejunum compared with ileum. CONCLUSION Regulation of hexose absorption in rat small bowel seems to be site-specific and mediated by multiple mechanisms.
Collapse
Affiliation(s)
- Scott G Houghton
- Department of Surgery, GI Research Unit, Alfred 2, St Mary's Hospital, Mayo Clinic College of Medicine, Rochester, Minn 55905, USA
| | | | | | | | | | | |
Collapse
|
46
|
Toyono T, Seta Y, Kataoka S, Toyoshima K. CCAAT/Enhancer-binding protein β regulates expression of human T1R3 taste receptor gene in the bile duct carcinoma cell line, HuCCT1. ACTA ACUST UNITED AC 2007; 1769:641-8. [DOI: 10.1016/j.bbaexp.2007.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/02/2007] [Accepted: 08/17/2007] [Indexed: 11/26/2022]
|
47
|
Abstract
Intestinal failure is a condition characterized by malnutrition and/or dehydration as a result of the inadequate digestion and absorption of nutrients. The most common cause of intestinal failure is short bowel syndrome, which occurs when the functional gut mass is reduced below the level necessary for adequate nutrient and water absorption. This condition may be congenital, or may be acquired as a result of a massive resection of the small bowel. Following resection, the intestine is capable of adaptation in response to enteral nutrients as well as other trophic stimuli. Identifying factors that may enhance the process of intestinal adaptation is an exciting area of research with important potential clinical applications.
Collapse
|
48
|
Abstract
Carbohydrates are an important component of the diet. The carbohydrates that we ingest range from simple monosaccharides (glucose, fructose and galactose) to disaccharides (lactose, sucrose) to complex polysaccharides. Most carbohydrates are digested by salivary and pancreatic amylases, and are further broken down into monosaccharides by enzymes in the brush border membrane (BBM) of enterocytes. For example, lactase-phloridzin hydrolase and sucrase-isomaltase are two disaccharidases involved in the hydrolysis of nutritionally important disaccharides. Once monosaccharides are presented to the BBM, mature enterocytes expressing nutrient transporters transport the sugars into the enterocytes. This paper reviews the early studies that contributed to the development of a working model of intestinal sugar transport, and details the recent advances made in understanding the process by which sugars are absorbed in the intestine.
Collapse
Affiliation(s)
- Laurie A Drozdowski
- Division of Gastroenterology, Department of Medicine, University of Alberta, 5150 Dentistry Pharmacy Building, Edmonton, Alberta T6G 2N8, Canada.
| | | |
Collapse
|
49
|
Pascual I, Berjón A, Lostao MP, Barber A. Transport of d-galactose by the gastrointestinal tract of the locust, Locusta migratoria. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:20-6. [PMID: 16314134 DOI: 10.1016/j.cbpb.2005.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 09/02/2005] [Accepted: 09/05/2005] [Indexed: 11/24/2022]
Abstract
Due to exoskeleton, the absorption of nutrients in adult insects takes place across the gastrointestinal tract epithelium. In most physiological studies, sugar intestinal absorption has been described as a diffusional process and to date no sugar transporter has been cloned from the digestive tract of insects. In the present work, the existence of a saturable transport system for galactose in the gastric caeca of Locusta migratoria is clearly demonstrated. This transport shows a relatively high affinity for galactose (apparent K0.5=2-3 mM) and is inhibited by glucose, 2-deoxyglucose and with less potency by fructose and alpha-methyl-d-glucoside. The absence of sodium or the presence of phloridzin hardly affects galactose absorption, indicating that it is not mediated by a SGLT1-like transporter. The absence of K+, Cl-, Mg2+ and Ca2+ or changes in the pH do not modify galactose absorption either. Nevertheless, phloretin, cytochalasin B and theophylline (inhibitors of facilitative transporters) decrease sugar uptake around 50%. Xenopus laevis oocytes microinjected with poly A+ RNA isolated from gastric caeca show sodium-independent galactose uptake that is three times higher than in non-injected oocytes, further supporting the existence of a mRNA coding for at least one equilibrative sugar transporter in L. migratoria gastric caeca.
Collapse
Affiliation(s)
- I Pascual
- Departamento de Fisiología y Nutrición, University of Navarra, C/ Irunlarrea s.n., 31008 Pamplona, Spain
| | | | | | | |
Collapse
|
50
|
Camacho RC, Denny JC, Pencek RR, Koyama Y, Lacy DB, James FD, Wasserman DH. Portal venous hyperinsulinemia does not stimulate gut glucose absorption in the conscious dog. Metabolism 2004; 53:1290-5. [PMID: 15375784 DOI: 10.1016/j.metabol.2004.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of the present study was to assess whether physiological portal vein hyperinsulinemia stimulates gut glucose absorption in vivo. Chronically catheterized (femoral artery, portal vein, inferior vena cava, and proximal and distal duodenum) and instrumented (Doppler flow probe on portal vein) insulin (INS, 2 mU.kg(-1).min(-1), n = 6) or saline (SAL, n = 5) infused dogs were studied during basal (30 minutes) and experimental (90 minutes) periods. Arterial and portal vein plasma insulin were 3.3- and 3.2-fold higher, respectively, throughout the study in INS compared to SAL. An intraduodenal glucose infusion of 8 mg.kg(-1).min(-1) was initiated at t = 0 minutes. At t = 20 and 80 minutes, a bolus of 3-O-[3H]methylglucose (MG) and L-[14C]glucose (L-GLC) was injected intraduodenally. Phloridzin, an inhibitor of the Na+ -dependent glucose transporter (SGLT1), was infused from t = 60 to 90 minutes in the presence of a peripheral isoglycemic clamp. Net gut glucose output (NGGO) was 5.2 +/- 0.6 and 4.6 +/- 0.8 mg.kg(-1).min(-1) in INS and SAL, respectively, from t = 20 to 60 minutes. Transporter-mediated absorption was 87% +/- 2% of NGGO in both INS and SAL. Passive gut glucose absorption was 13% +/- 2% of NGGO in both INS and SAL. Phloridzin-induced inhibition of transporter-mediated absorption completely abolished passive absorption of L-GLC in both groups. This study shows that under physiological conditions, a portal vein insulin infusion that results in circulating hyperinsulinemia does not increase either transporter-mediated or passive absorption of an intraduodenal glucose load.
Collapse
Affiliation(s)
- Raul C Camacho
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashille, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|