1
|
Chokshi CR, Shaikh MV, Brakel B, Rossotti MA, Tieu D, Maich W, Anand A, Chafe SC, Zhai K, Suk Y, Kieliszek AM, Miletic P, Mikolajewicz N, Chen D, McNicol JD, Chan K, Tong AHY, Kuhlmann L, Liu L, Alizada Z, Mobilio D, Tatari N, Savage N, Aghaei N, Grewal S, Puri A, Subapanditha M, McKenna D, Ignatchenko V, Salamoun JM, Kwiecien JM, Wipf P, Sharlow ER, Provias JP, Lu JQ, Lazo JS, Kislinger T, Lu Y, Brown KR, Venugopal C, Henry KA, Moffat J, Singh SK. Targeting axonal guidance dependencies in glioblastoma with ROBO1 CAR T cells. Nat Med 2024; 30:2936-2946. [PMID: 39095594 DOI: 10.1038/s41591-024-03138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/18/2024] [Indexed: 08/04/2024]
Abstract
Resistance to genotoxic therapies and tumor recurrence are hallmarks of glioblastoma (GBM), an aggressive brain tumor. In this study, we investigated functional drivers of post-treatment recurrent GBM through integrative genomic analyses, genome-wide genetic perturbation screens in patient-derived GBM models and independent lines of validation. Specific genetic dependencies were found consistent across recurrent tumor models, accompanied by increased mutational burden and differential transcript and protein expression compared to its primary GBM predecessor. Our observations suggest a multi-layered genetic response to drive tumor recurrence and implicate PTP4A2 (protein tyrosine phosphatase 4A2) as a modulator of self-renewal, proliferation and tumorigenicity in recurrent GBM. Genetic perturbation or small-molecule inhibition of PTP4A2 acts through a dephosphorylation axis with roundabout guidance receptor 1 (ROBO1) and its downstream molecular players, exploiting a functional dependency on ROBO signaling. Because a pan-PTP4A inhibitor was limited by poor penetrance across the blood-brain barrier in vivo, we engineered a second-generation chimeric antigen receptor (CAR) T cell therapy against ROBO1, a cell surface receptor enriched across recurrent GBM specimens. A single dose of ROBO1-targeted CAR T cells doubled median survival in cell-line-derived xenograft (CDX) models of recurrent GBM. Moreover, in CDX models of adult lung-to-brain metastases and pediatric relapsed medulloblastoma, ROBO1 CAR T cells eradicated tumors in 50-100% of mice. Our study identifies a promising multi-targetable PTP4A-ROBO1 signaling axis that drives tumorigenicity in recurrent GBM, with potential in other malignant brain tumors.
Collapse
Affiliation(s)
- Chirayu R Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Muhammad Vaseem Shaikh
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Benjamin Brakel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - David Tieu
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - William Maich
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Alisha Anand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Shawn C Chafe
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kui Zhai
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yujin Suk
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Agata M Kieliszek
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Petar Miletic
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Nicholas Mikolajewicz
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - David Chen
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - Jamie D McNicol
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Katherine Chan
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - Amy H Y Tong
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Laura Kuhlmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lina Liu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Zahra Alizada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Daniel Mobilio
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Nikoo Aghaei
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Shan Grewal
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Anish Puri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | | | - Dillon McKenna
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Joseph M Salamoun
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - John P Provias
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - John S Lazo
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yu Lu
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Kevin R Brown
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada.
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada.
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Gupta S, Pal R, Schmidt EJ, Krishnamoorthy M, Leporati A, Kumar AT, Bogdanov A. Miniaturized Fab' imaging probe derived from a clinical antibody: Characterization and imaging in CRISPRi-attenuated mammary tumor models. iScience 2024; 27:110102. [PMID: 39184438 PMCID: PMC11342199 DOI: 10.1016/j.isci.2024.110102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/28/2024] [Accepted: 05/22/2024] [Indexed: 08/27/2024] Open
Abstract
Clinical imaging-assisted oncosurgical navigation requires cancer-specific miniaturized optical imaging probes. We report a near-infrared (NIR) Fab'-based epidermal growth factor receptor (EGFR)-specific probe carrying 3 NIR fluorophores (Fab'-800CW), which retained high-affinity binding to EGFR ectodomain (equilibrium KD E = 1 nM). Fab'-800CW showed a robust 4-times gain of fluorescence intensity (FI) and a 20% lifetime (FLT) increase under the conditions mimicking intracellular degradation. The probe was tested by using triple-negative breast cancer (TNBC) cell lines obtained by applying CRISPR interference (CRISPRi) effect of EGFR-targeting sgRNA and dCas9-KRAB chimera coexpression in MDA-MB-231 cells (WT cells). FI imaging in cell culture proved a 50% EGFR expression attenuation by CRISPRi. FI imaging in animals harboring attenuated or WT TNBC tumors with ex vivo corroboration identified differences between WT and CRISPRi tumors FI at 30 min post injection. Our results suggest the feasibility of EGFR expression imaging using a Fab'-based probe relevant for imaging-guided cancer surgery.
Collapse
Affiliation(s)
- Suresh Gupta
- Department of Radiology, UMASS Chan Medical School, Worcester, MA, USA
| | - Rahul Pal
- Mike Toth Head and Neck Cancer Research Center, Massachusetts Eye and Ear, Boston, MA, USA
- A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Eric J. Schmidt
- Department of Radiology, UMASS Chan Medical School, Worcester, MA, USA
| | - Murali Krishnamoorthy
- Mike Toth Head and Neck Cancer Research Center, Massachusetts Eye and Ear, Boston, MA, USA
- A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Anita Leporati
- Department of Radiology, UMASS Chan Medical School, Worcester, MA, USA
| | - Anand T.N. Kumar
- Mike Toth Head and Neck Cancer Research Center, Massachusetts Eye and Ear, Boston, MA, USA
- A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alexei Bogdanov
- Department of Radiology, UMASS Chan Medical School, Worcester, MA, USA
- Cancer Center and Chemical Biology Interface Program, UMASS Chan Medical School, Worcester, MA, USA
| |
Collapse
|
3
|
Aguilar EN, Sagar S, Murray BR, Rajesh C, Lei EK, Michaud SA, Goodlett DR, Caffrey TC, Grandgenett PM, Swanson B, Brooks TM, Black AR, van Faassen H, Hussack G, Henry KA, Hollingsworth MA, Brooks CL, Radhakrishnan P. Structural Basis for Multivalent MUC16 Recognition and Robust Anti-Pancreatic Cancer Activity of Humanized Antibody AR9.6. Mol Cancer Ther 2024; 23:836-853. [PMID: 38394685 PMCID: PMC11660185 DOI: 10.1158/1535-7163.mct-23-0868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
Mucin-16 (MUC16) is a target for antibody-mediated immunotherapy in pancreatic ductal adenocarcinoma (PDAC) among other malignancies. The MUC16-specific monoclonal antibody AR9.6 has shown promise for PDAC immunotherapy and imaging. Here, we report the structural and biological characterization of the humanized AR9.6 antibody (huAR9.6). The structure of huAR9.6 was determined in complex with a MUC16 SEA (Sea urchin sperm, Enterokinase, Agrin) domain. Binding of huAR9.6 to recombinant, shed, and cell-surface MUC16 was characterized, and anti-PDAC activity was evaluated in vitro and in vivo. HuAR9.6 bound a discontinuous, SEA domain epitope with an overall affinity of 88 nmol/L. Binding affinity depended on the specific SEA domain(s) present, and glycosylation modestly enhanced affinity driven by favorable entropy and enthalpy and via distinct transition state thermodynamic pathways. Treatment with huAR9.6 reduced the in vitro growth, migration, invasion, and clonogenicity of MUC16-positive PDAC cells and patient-derived organoids (PDO). HuAR9.6 blocked MUC16-mediated ErbB and AKT activation in PDAC cells, PDOs, and patient-derived xenografts and induced antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. More importantly, huAR9.6 treatment caused substantial PDAC regression in subcutaneous and orthotopic tumor models. The mechanism of action of huAR9.6 may depend on dense avid binding to homologous SEA domains on MUC16. The results of this study validate the translational therapeutic potential of huAR9.6 against MUC16-positive PDACs.
Collapse
Affiliation(s)
- Eric N. Aguilar
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA, USA
| | - Satish Sagar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brandy R. Murray
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA, USA
| | - Christabelle Rajesh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric K. Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Sarah A. Michaud
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - David R. Goodlett
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Thomas C. Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul M. Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Teresa M. Brooks
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA, USA
| | - Adrian R. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin A. Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cory L. Brooks
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Ploeg EM, Samplonius DF, Xiong X, Ke X, Hendriks MAJM, Britsch I, van Wijngaarden AP, Zhang H, Helfrich W. Bispecific antibody CD73xEGFR more selectively inhibits the CD73/adenosine immune checkpoint on cancer cells and concurrently counteracts pro-oncogenic activities of CD73 and EGFR. J Immunother Cancer 2023; 11:e006837. [PMID: 37734877 PMCID: PMC10514638 DOI: 10.1136/jitc-2023-006837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND CD73 is an ecto-enzyme that is involved in the conversion of pro-inflammatory extracellular ATP (eATP) excreted by cancer cells under stress to anti-inflammatory adenosine (ADO). A broad variety of solid cancer types was shown to exploit CD73 overexpression as a suppressive immune checkpoint. Consequently, CD73-antagonistic antibodies, most notably oleclumab, are currently evaluated in several multicenter trials for clinical applicability. However, the efficacy of conventional monospecific CD73-inhibiting antibodies may be limited due to on-target/off-tumor binding to CD73 on normal cells. Therefore, a novel approach that more selectively directs CD73 immune checkpoint inhibition towards cancer cells is warranted. METHODS To address this issue, we constructed a novel tetravalent bispecific antibody (bsAb), designated bsAb CD73xEGFR. Subsequently, the anticancer activities of bsAb CD73xEGFR were evaluated using in vitro and in vivo tumor models. RESULTS In vitro treatment of various carcinoma cell types with bsAb CD73xEGFR potently inhibited the enzyme activity of CD73 (~71%) in an EGFR-directed manner. In this process, bsAb CD73xEGFR induced rapid internalization of antigen/antibody complexes, which resulted in a prolonged concurrent displacement of both CD73 and EGFR from the cancer cell surface. In addition, bsAb CD73xEGFR sensitized cancer to the cytotoxic activity of various chemotherapeutic agents and potently inhibited the proliferative/migratory capacity (~40%) of cancer cells. Unexpectedly, we uncovered that treatment of carcinoma cells with oleclumab appeared to enhance several pro-oncogenic features, including upregulation and phosphorylation of EGFR, tumor cell proliferation (~20%), and resistance towards cytotoxic agents and ionizing radiation (~39%). Importantly, in a tumor model using immunocompetent BALB/c mice inoculated with syngeneic CD73pos/EGFRpos CT26 cancer cells, treatment with bsAb CD73xEGFR outperformed oleclumab (65% vs 31% tumor volume reduction). Compared with oleclumab, treatment with bsAb CD73xEGFR enhanced the intratumoral presence of CD8pos T cells and M1 macrophages. CONCLUSIONS BsAb CD73xEGFR outperforms oleclumab as it inhibits the CD73/ADO immune checkpoint in an EGFR-directed manner and concurrently counteracts several oncogenic activities of EGFR and CD73. Therefore, bsAb CD73xEGFR may be of significant clinical potential for various forms of difficult-to-treat solid cancer types.
Collapse
Affiliation(s)
- Emily Maria Ploeg
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Douwe Freerk Samplonius
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Xiao Xiong
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- Faculty of Medical Science and Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, Guangdong, China
| | - Xiurong Ke
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | | | - Isabel Britsch
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne Paulien van Wijngaarden
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hao Zhang
- Department of General Surgery, Jinan University First Affiliated Hospital, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China
| | - Wijnand Helfrich
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Ploeg EM, Britsch I, van Wijngaarden AP, Ke X, Hendriks MAJM, Samplonius DF, Helfrich W. A Novel Bispecific Antibody for EpCAM-Directed Inhibition of the CD73/Adenosine Immune Checkpoint in Ovarian Cancer. Cancers (Basel) 2023; 15:3651. [PMID: 37509310 PMCID: PMC10378099 DOI: 10.3390/cancers15143651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
PD-1/PD-L1-inhibiting antibodies have shown disappointing efficacy in patients with refractory ovarian cancer (OC). Apparently, OC cells exploit nonoverlapping immunosuppressive mechanisms to evade the immune system. In this respect, the CD73-adenosine inhibitory immune checkpoint is of particular interest, as it rapidly converts pro-inflammatory ATP released from cancer cells to immunosuppressive adenosine (ADO). Moreover, cancer-cell-produced ADO is known to form a highly immunosuppressive extra-tumoral 'halo' that chronically inhibits the anticancer activity of various immune effector cells. Thus far, conventional CD73-blocking antibodies such as oleclumab show limited clinical efficacy, probably due to the fact that it indiscriminately binds to and blocks CD73 on a massive surplus of normal cells. To address this issue, we constructed a novel bispecific antibody (bsAb) CD73xEpCAM that inhibits CD73 expressed on the OC cell surface in an EpCAM-directed manner. Importantly, bsAb CD73xEpCAM showed potent capacity to inhibit the CD73 enzyme activity in an EpCAM-directed manner and restore the cytotoxic activity of ADO-suppressed anticancer T cells. Additionally, treatment with bsAb CD73xEpCAM potently inhibited the proliferative capacity of OC cells and enhanced their sensitivity to cisplatin, doxorubicin, 5FU, and ionizing radiation. BsAb CD73xEpCAM may be useful in the development of tumor-directed immunotherapeutic approaches to overcome the CD73-mediated immunosuppression in patients with refractory OC.
Collapse
Affiliation(s)
- Emily Maria Ploeg
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Isabel Britsch
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Anne Paulien van Wijngaarden
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Xiurong Ke
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Mark Alexander Johannes Martinus Hendriks
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Douwe Freerk Samplonius
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Wijnand Helfrich
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
6
|
Lei EK, Ryan S, van Faassen H, Foss M, Robotham A, Baltat I, Fulton K, Henry KA, Chen W, Hussack G. Isolation and characterization of a VHH targeting the Acinetobacter baumannii cell surface protein CsuA/B. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12594-1. [PMID: 37284893 DOI: 10.1007/s00253-023-12594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
Acinetobacter baumannii is a Gram-negative bacterial pathogen that exhibits high intrinsic resistance to antimicrobials, with treatment often requiring the use of last-resort antibiotics. Antibiotic-resistant strains have become increasingly prevalent, underscoring a need for new therapeutic interventions. The aim of this study was to use A. baumannii outer membrane vesicles as immunogens to generate single-domain antibodies (VHHs) against bacterial cell surface targets. Llama immunization with the outer membrane vesicle preparations from four A. baumannii strains (ATCC 19606, ATCC 17961, ATCC 17975, and LAC-4) elicited a strong heavy-chain IgG response, and VHHs were selected against cell surface and/or extracellular targets. For one VHH, OMV81, the target antigen was identified using a combination of gel electrophoresis, mass spectrometry, and binding studies. Using these techniques, OMV81 was shown to specifically recognize CsuA/B, a protein subunit of the Csu pilus, with an equilibrium dissociation constant of 17 nM. OMV81 specifically bound to intact A. baumannii cells, highlighting its potential use as a targeting agent. We anticipate the ability to generate antigen-specific antibodies against cell surface A. baumannii targets could provide tools for further study and treatment of this pathogen. KEY POINTS: •Llama immunization with bacterial OMV preparations for VHH generation •A. baumannii CsuA/B, a pilus subunit, identified by mass spectrometry as VHH target •High-affinity and specific VHH binding to CsuA/B and A. baumannii cells.
Collapse
Affiliation(s)
- Eric K Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Shannon Ryan
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Mary Foss
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Isabel Baltat
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Kelly Fulton
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biology, Brock University, St. Catharines, Ontario, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
7
|
Maali A, Gholizadeh M, Feghhi-Najafabadi S, Noei A, Seyed-Motahari SS, Mansoori S, Sharifzadeh Z. Nanobodies in cell-mediated immunotherapy: On the road to fight cancer. Front Immunol 2023; 14:1012841. [PMID: 36761751 PMCID: PMC9905824 DOI: 10.3389/fimmu.2023.1012841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The immune system is essential in recognizing and eliminating tumor cells. The unique characteristics of the tumor microenvironment (TME), such as heterogeneity, reduced blood flow, hypoxia, and acidity, can reduce the efficacy of cell-mediated immunity. The primary goal of cancer immunotherapy is to modify the immune cells or the TME to enable the immune system to eliminate malignancies successfully. Nanobodies, known as single-domain antibodies, are light chain-free antibody fragments produced from Camelidae antibodies. The unique properties of nanobodies, including high stability, reduced immunogenicity, enhanced infiltration into the TME of solid tumors and facile genetic engineering have led to their promising application in cell-mediated immunotherapy. They can promote the cancer therapy either directly by bridging between tumor cells and immune cells and by targeting cancer cells using immune cell-bound nanobodies or indirectly by blocking the inhibitory ligands/receptors. The T-cell activation can be engaged through anti-CD3 and anti-4-1BB nanobodies in the bispecific (bispecific T-cell engagers (BiTEs)) and trispecific (trispecific T-cell engager (TriTEs)) manners. Also, nanobodies can be used as natural killer (NK) cell engagers (BiKEs, TriKEs, and TetraKEs) to create an immune synapse between the tumor and NK cells. Nanobodies can redirect immune cells to attack tumor cells through a chimeric antigen receptor (CAR) incorporating a nanobody against the target antigen. Various cancer antigens have been targeted by nanobody-based CAR-T and CAR-NK cells for treating both hematological and solid malignancies. They can also cause the continuation of immune surveillance against tumor cells by stopping inappropriate inhibition of immune checkpoints. Other roles of nanobodies in cell-mediated cancer immunotherapy include reprogramming macrophages to reduce metastasis and angiogenesis, as well as preventing the severe side effects occurring in cell-mediated immunotherapy. Here, we highlight the critical functions of various immune cells, including T cells, NK cells, and macrophages in the TME, and discuss newly developed immunotherapy methods based on the targeted manipulation of immune cells and TME with nanobodies.
Collapse
Affiliation(s)
- Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Monireh Gholizadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Noei
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Sheila Seyed-Motahari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,*Correspondence: Zahra Sharifzadeh,
| |
Collapse
|
8
|
Rossotti MA, Trempe F, van Faassen H, Hussack G, Arbabi-Ghahroudi M. Isolation and Characterization of Single-Domain Antibodies from Immune Phage Display Libraries. Methods Mol Biol 2023; 2702:107-147. [PMID: 37679618 DOI: 10.1007/978-1-0716-3381-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Naturally occurring heavy chain antibodies (HCAbs) in Camelidae species were a surprise discovery in 1993 by Hamers et al. Since that time, antibody fragments derived from HCAbs have garnered considerable attention by researchers and biotechnology companies. Due to their biophysico-chemical advantages over conventional antibody fragments, camelid single-domain antibodies (sdAbs, VHHs, nanobodies) are being increasingly utilized as viable immunotherapeutic modalities. Currently there are multiple VHH-based therapeutic agents in different phases of clinical trials in various formats such as bi- and multivalent, bi- and multi-specific, CAR-T, and antibody-drug conjugates. The first approved VHH, a bivalent humanized VHH (caplacizumab), was approved for treating rare blood clotting disorders in 2018 by the EMA and the FDA in 2019. This was followed by the approval of an anti-BCMA VHH-based CAR-T cell product in 2022 (ciltacabtagene autoleucel; CARVYKTI™) and more recently a trivalent antitumor necrosis factor alpha-based VHH drug (ozoralizumab; Nanozora®) in Japan for the treatment of rheumatoid arthritis. In this chapter we provide protocols describing the latest developments in isolating antigen-specific VHHs including llama immunization, construction of phage-displayed libraries, phage panning and screening of the soluble VHHs by ELISA, affinity measurements by surface plasmon resonance, functional cell binding by flow cytometry, and additional validation by immunoprecipitation. We present and discuss comprehensive, step-by-step methods for isolating and characterization of antigen-specific VHHs. This includes protocols for expression, biotinylation, purification, and characterization of the isolated VHHs. To demonstrate the feasibility of the entire strategy, we present examples of VHHs previously isolated and characterized in our laboratory.
Collapse
Affiliation(s)
- Martin A Rossotti
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Frederic Trempe
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
- Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Kinoshita S, Nakakido M, Mori C, Kuroda D, Caaveiro JM, Tsumoto K. Molecular basis for thermal stability and affinity in a VHH: Contribution of the framework region and its influence in the conformation of the CDR3. Protein Sci 2022; 31:e4450. [PMID: 36153698 PMCID: PMC9601775 DOI: 10.1002/pro.4450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
The camelid single domain antibody, referred to VHH or Nanobody, is considered a versatile tool for various biotechnological and clinical applications because of its favorable biophysical properties. To take advantage of these characteristics and for its application in biotechnology and therapy, research on VHH engineering is currently vigorously conducted. To humanize a camelid VHH, we performed complementarity determining region (CDR) grafting using a humanized VHH currently in clinical trials, and investigated the effects of these changes on the biophysical properties of the resulting VHH. The chimeric VHH exhibited a significant decrease in affinity and thermal stability and a large conformational change in the CDR3. To elucidate the molecular basis for these changes, we performed mutational analyses on the framework regions revealing the contribution of individual residues within the framework region. It is demonstrated that the mutations resulted in the loss of affinity and lower thermal stability, revealing the significance of bulky residues in the vicinity of the CDR3, and the importance of intramolecular interactions between the CDR3 and the framework-2 region. Subsequently, we performed back-mutational analyses on the chimeric VHH. Back-mutations resulted in an increase of the thermal stability and affinity. These data suggested that back-mutations restored the intramolecular interactions, and proper positioning and/or dynamics of the CDR3, resulting in the gain of thermal stability and affinity. These observations revealed the molecular contribution of the framework region on VHHs and further designability of the framework region of VHHs without modifying the CDRs.
Collapse
Affiliation(s)
- Seisho Kinoshita
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Chinatsu Mori
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Daisuke Kuroda
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
- Research Center for Drug and Vaccine DevelopmentNational Institute of Infectious DiseasesTokyoJapan
| | - Jose M.M. Caaveiro
- Laboratory of Global Healthcare, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
- Medical Proteomics Laboratory, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
10
|
Rossotti MA, van Faassen H, Tran AT, Sheff J, Sandhu JK, Duque D, Hewitt M, Wen X, Bavananthasivam J, Beitari S, Matte K, Laroche G, Giguère PM, Gervais C, Stuible M, Guimond J, Perret S, Hussack G, Langlois MA, Durocher Y, Tanha J. Arsenal of nanobodies shows broad-spectrum neutralization against SARS-CoV-2 variants of concern in vitro and in vivo in hamster models. Commun Biol 2022; 5:933. [PMID: 36085335 PMCID: PMC9461429 DOI: 10.1038/s42003-022-03866-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Nanobodies offer several potential advantages over mAbs for the control of SARS-CoV-2. Their ability to access cryptic epitopes conserved across SARS-CoV-2 variants of concern (VoCs) and feasibility to engineer modular, multimeric designs, make these antibody fragments ideal candidates for developing broad-spectrum therapeutics against current and continually emerging SARS-CoV-2 VoCs. Here we describe a diverse collection of 37 anti-SARS-CoV-2 spike glycoprotein nanobodies extensively characterized as both monovalent and IgG Fc-fused bivalent modalities. The nanobodies were collectively shown to have high intrinsic affinity; high thermal, thermodynamic and aerosolization stability; broad subunit/domain specificity and cross-reactivity across existing VoCs; wide-ranging epitopic and mechanistic diversity and high and broad in vitro neutralization potencies. A select set of Fc-fused nanobodies showed high neutralization efficacies in hamster models of SARS-CoV-2 infection, reducing viral burden by up to six orders of magnitude to below detectable levels. In vivo protection was demonstrated with anti-RBD and previously unreported anti-NTD and anti-S2 nanobodies. This collection of nanobodies provides a potential therapeutic toolbox from which various cocktails or multi-paratopic formats could be built to combat multiple SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Martin A Rossotti
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Anh T Tran
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Joey Sheff
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Diana Duque
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Xiaoxue Wen
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Jegarubee Bavananthasivam
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Saina Beitari
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin Matte
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Christian Gervais
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Julie Guimond
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Sylvie Perret
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Montréal, QC, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
11
|
McComb S, Nguyen T, Shepherd A, Henry KA, Bloemberg D, Marcil A, Maclean S, Zafer A, Gilbert R, Gadoury C, Pon RA, Sulea T, Zhu Q, Weeratna RD. Programmable Attenuation of Antigenic Sensitivity for a Nanobody-Based EGFR Chimeric Antigen Receptor Through Hinge Domain Truncation. Front Immunol 2022; 13:864868. [PMID: 35935988 PMCID: PMC9354126 DOI: 10.3389/fimmu.2022.864868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Epidermal growth factor family receptor (EGFR) is commonly overexpressed in many solid tumors and an attractive target for chimeric antigen receptor (CAR)-T therapy, but as EGFR is also expressed at lower levels in healthy tissues a therapeutic strategy must balance antigenic responsiveness against the risk of on-target off-tumor toxicity. Herein, we identify several camelid single-domain antibodies (also known as nanobodies) that are effective EGFR targeting moieties for CARs (EGFR-sdCARs) with very strong reactivity to EGFR-high and EGFR-low target cells. As a strategy to attenuate their potent antigenic sensitivity, we performed progressive truncation of the human CD8 hinge commonly used as a spacer domain in many CAR constructs. Single amino acid hinge-domain truncation progressively decreased both EGFR-sdCAR-Jurkat cell binding to EGFR-expressing targets and expression of the CD69 activation marker. Attenuated signaling in hinge-truncated EGFR-sdCAR constructs increased selectivity for antigen-dense EGFR-overexpressing cells over an EGFR-low tumor cell line or healthy donor derived EGFR-positive fibroblasts. We also provide evidence that epitope location is critical for determining hinge-domain requirement for CARs, as hinge truncation similarly decreased antigenic sensitivity of a membrane-proximal epitope targeting HER2-CAR but not a membrane-distal EGFRvIII-specific CAR. Hinge-modified EGFR-sdCAR cells showed clear functional attenuation in Jurkat-CAR-T cells and primary human CAR-T cells from multiple donors in vitro and in vivo. Overall, these results indicate that hinge length tuning provides a programmable strategy for throttling antigenic sensitivity in CARs targeting membrane-proximal epitopes, and could be employed for CAR-optimization and improved tumor selectivity.
Collapse
Affiliation(s)
- Scott McComb
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Scott McComb,
| | - Tina Nguyen
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Alex Shepherd
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kevin A. Henry
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Darin Bloemberg
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Susanne Maclean
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Ahmed Zafer
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Rénald Gilbert
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Christine Gadoury
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Robert A. Pon
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Qin Zhu
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Risini D. Weeratna
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| |
Collapse
|
12
|
Pharmacokinetics and Pharmacodynamic Effect of a Blood-Brain Barrier-Crossing Fusion Protein Therapeutic for Alzheimer's Disease in Rat and Dog. Pharm Res 2022; 39:1497-1507. [PMID: 35704250 PMCID: PMC9246806 DOI: 10.1007/s11095-022-03285-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/01/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE We have recently demonstrated the brain-delivery of an Amyloid-ß oligomer (Aßo)-binding peptide-therapeutic fused to the BBB-crossing single domain antibody FC5. The bi-functional fusion protein, FC5-mFc-ABP (KG207-M) lowered both CSF and brain Aß levels after systemic dosing in transgenic mouse and rat models of Alzheimer's disease (AD). For development as a human therapeutic, we have humanized and further engineered the fusion protein named KG207-H. The purpose of the present study was to carry out comparative PK/PD studies of KG207-H in wild type rat and beagle dogs (middle-aged and older) to determine comparability of systemic PK and CSF exposure between rodent species and larger animals with more complex brain structure such as dogs. METHOD Beagle dogs were used in this study as they accumulate cerebral Aß with age, as seen in human AD patients, and can serve as a model of sporadic AD. KG207-H (5 to 50 mg/kg) was administered intravenously and serum and CSF samples were serially collected for PK studies and to assess target engagement. KG207-H and Aβ levels were quantified using multiplexed selected reaction monitoring mass spectrometry. RESULTS After systemic dosing, KG207-H demonstrated similar serum pharmacokinetics in rats and dogs. KG207-H appeared in the CSF in a time- and dose-dependent manner with similar kinetics, indicating CNS exposure. Further analyses revealed a dose-dependent inverse relationship between CSF KG207-H and Aß levels in both species indicating target engagement. CONCLUSION This study demonstrates translational attributes of BBB-crossing Aβ-targeting biotherapeutic KG207-H in eliciting a pharmacodynamic response, from rodents to larger animal species.
Collapse
|
13
|
Alata W, Yogi A, Brunette E, Delaney CE, Faassen H, Hussack G, Iqbal U, Kemmerich K, Haqqani AS, Moreno MJ, Stanimirovic DB. Targeting insulin‐like growth factor‐1 receptor (IGF1R) for brain delivery of biologics. FASEB J 2022; 36:e22208. [DOI: 10.1096/fj.202101644r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/13/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Wael Alata
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Alvaro Yogi
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Eric Brunette
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Christie E. Delaney
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Henk Faassen
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Umar Iqbal
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Kristin Kemmerich
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Arsalan S. Haqqani
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Maria J. Moreno
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| | - Danica B. Stanimirovic
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa Ontario Canada
| |
Collapse
|
14
|
Trempe F, Rossotti MA, Maqbool T, MacKenzie CR, Arbabi-Ghahroudi M. Llama DNA Immunization and Isolation of Functional Single-Domain Antibody Binders. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2446:37-70. [PMID: 35157268 DOI: 10.1007/978-1-0716-2075-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic immunization is a simple, cost-effective, and powerful tool for inducing innate and adaptive immune responses to combat infectious diseases and difficult-to-treat illnesses. DNA immunization is increasingly used in the generation of monoclonal antibodies against targets for which pure proteins are unavailable or are difficult to express and purify (e.g., ion channels and receptors, transmembrane proteins, and emerging infectious pathogens). Genetic immunization has been successfully utilized in small inbred laboratory animals (mostly rodents); however, low immunogenicity of DNA/RNA injected into large mammals, including humans, is still a major challenge. Here, we provide a method for the genetic immunization of llamas, using a combination of biolistic transfection with a gene gun and intradermal injection with a DERMOJET® device, to elicit heavy-chain IgG responses against epidermal growth factor receptor (EGFR). We show the technique can be used to generate single-domain antibodies (VHHs) with nanomolar affinities to EGFR. We provide methods for gene gun bullet preparation, llama immunization, serology, phage-display library construction and panning, and VHH characterization.
Collapse
Affiliation(s)
- Frédéric Trempe
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | | | - C Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada. .,Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
15
|
van Faassen H, Jo DH, Ryan S, Lowden MJ, Raphael S, MacKenzie CR, Lee SH, Hussack G, Henry KA. Incorporation of a Novel CD16-Specific Single-Domain Antibody into Multispecific Natural Killer Cell Engagers With Potent ADCC. Mol Pharm 2021; 18:2375-2384. [PMID: 33999642 DOI: 10.1021/acs.molpharmaceut.1c00208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multispecific antibodies that bridge immune effector and tumor cells have shown promising preclinical and clinical efficacies. Here, we isolated and characterized novel llama single-domain antibodies (sdAbs) against CD16. One sdAb, NRC-sdAb048, bound recombinant human and cynomolgus monkey CD16 ectodomains with equivalent affinity (KD: 1 nM) but did not recognize murine CD16. Binding was similar for human CD16a expressed on NK cells and CD16b (NA2) expressed on neutrophils but dramatically weaker (KD: ∼6 μM) for the CD16b (NA1) allotype. The sdAb stained primary human peripheral blood NK cells. Irrespective of fusion orientation and linker length, bispecific sdAb-sdAb and sdAb-scFv dimers (anti-CD16/EGFR, anti-CD16/HER2, and anti-CD16/CD19) retained full binding affinity for each target, coengaged both antigens simultaneously, elicited ADCC against target antigen-expressing tumor cells in a reporter bioassay, and triggered target-specific activation and degranulation of primary NK cells as measured via interferon-γ and CD107a expression. These molecules may have applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Henk van Faassen
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Dong-Hyeon Jo
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Shannon Ryan
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Michael J Lowden
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Shalini Raphael
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - C Roger MacKenzie
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
16
|
Bélanger K, Tanha J. High-efficacy, high-manufacturability human VH domain antibody therapeutics from transgenic sources. Protein Eng Des Sel 2021; 34:6276122. [PMID: 33991089 DOI: 10.1093/protein/gzab012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 11/14/2022] Open
Abstract
Interest in single-domain antibodies (sdAbs) stems from their unique structural/pronounced, hence therapeutically desirable, features. From the outset-as therapeutic modalities-human antibody heavy chain variable domains (VHs) attracted a particular attention compared with 'naturally-occurring' camelid and shark heavy-chain-only antibody variable domains (VHHs and VNARs, respectively) due to their perceived lack of immunogenicity. However, they have not quite lived up to their initial promise as the VH hits, primarily mined from synthetic VH phage display libraries, have too often been plagued with aggregation tendencies, low solubility and low affinity. Largely unexplored, synthetic camelized human VH display libraries appeared to have remediated the aggregation problem, but the low affinity of the VH hits still persisted, requiring undertaking additional, laborious affinity maturation steps to render VHs therapeutically feasible. A wholesome resolution has recently emerged with the development of non-canonical transgenic rodent antibody discovery platforms that appear to facilely and profusely generate high affinity, high solubility and aggregation-resistant human VHs.
Collapse
Affiliation(s)
- Kasandra Bélanger
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada.,Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
17
|
Yan Y, Cheng X, Li L, Zhang R, Zhu Y, Wu Z, Ding K. A Novel Small Molecular Antibody, HER2-Nanobody, Inhibits Tumor Proliferation in HER2-Positive Breast Cancer Cells In Vitro and In Vivo. Front Oncol 2021; 11:669393. [PMID: 34055637 PMCID: PMC8149955 DOI: 10.3389/fonc.2021.669393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is the most common malignant cancer in women worldwide, especially in developing countries. Herceptin is a monoclonal antibody with an antitumor effect in HER2-positive breast cancer. However, the large molecular weight of Herceptin limited its employment. In this study, we constructed and screened HER2-nanobody and verified its tumor-suppressive effect in HER2-positive breast cancer cells. HER2-nanobody was established, filtrated, purified, and was demonstrated to inhibit cell total number, viability, colony formation and mitosis, and promote cell apoptosis in HER2-positive breast cancer cells in vitro. Treated with HER2-nanobody, tumor growth was significantly inhibited by both intratumor injection and tail intravenous injection in vivo. The phosphorylation of ERK and AKT was restrained by HER2-nanobody in HER2-positive breast cancer cells. RAS-RAF-MAPK and PI3K-AKT-mTOR are two important pathways involved in HER2. It was credible for HER2-nanobody to play the tumor suppressive role by inhibiting the phosphorylation of ERK and AKT. Therefore, HER2-nanobody could be employed as a small molecular antibody to suppress HER2-positive breast cancer.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xiao Cheng
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Lin Li
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Rumeng Zhang
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhengsheng Wu
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Rossotti MA, Bélanger K, Henry KA, Tanha J. Immunogenicity and humanization of single‐domain antibodies. FEBS J 2021; 289:4304-4327. [DOI: 10.1111/febs.15809] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Martin A. Rossotti
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kasandra Bélanger
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kevin A. Henry
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| | - Jamshid Tanha
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| |
Collapse
|
19
|
Cheloha RW, Harmand TJ, Wijne C, Schwartz TU, Ploegh HL. Exploring cellular biochemistry with nanobodies. J Biol Chem 2020; 295:15307-15327. [PMID: 32868455 PMCID: PMC7650250 DOI: 10.1074/jbc.rev120.012960] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Reagents that bind tightly and specifically to biomolecules of interest remain essential in the exploration of biology and in their ultimate application to medicine. Besides ligands for receptors of known specificity, agents commonly used for this purpose are monoclonal antibodies derived from mice, rabbits, and other animals. However, such antibodies can be expensive to produce, challenging to engineer, and are not necessarily stable in the context of the cellular cytoplasm, a reducing environment. Heavy chain-only antibodies, discovered in camelids, have been truncated to yield single-domain antibody fragments (VHHs or nanobodies) that overcome many of these shortcomings. Whereas they are known as crystallization chaperones for membrane proteins or as simple alternatives to conventional antibodies, nanobodies have been applied in settings where the use of standard antibodies or their derivatives would be impractical or impossible. We review recent examples in which the unique properties of nanobodies have been combined with complementary methods, such as chemical functionalization, to provide tools with unique and useful properties.
Collapse
Affiliation(s)
- Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Charlotte Wijne
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
20
|
Yang EY, Shah K. Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics. Front Oncol 2020; 10:1182. [PMID: 32793488 PMCID: PMC7390931 DOI: 10.3389/fonc.2020.01182] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
The development of targeted medicine has greatly expanded treatment options and spurred new research avenues in cancer therapeutics, with monoclonal antibodies (mAbs) emerging as a prevalent treatment in recent years. With mixed clinical success, mAbs still hold significant shortcomings, as they possess limited tumor penetration, high manufacturing costs, and the potential to develop therapeutic resistance. However, the recent discovery of “nanobodies,” the smallest-known functional antibody fragment, has demonstrated significant translational potential in preclinical and clinical studies. This review highlights their various applications in cancer and analyzes their trajectory toward their translation into the clinic.
Collapse
Affiliation(s)
- Emily Y Yang
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
21
|
Criscitiello MF, Kraev I, Lange S. Deiminated proteins in extracellular vesicles and serum of llama (Lama glama)-Novel insights into camelid immunity. Mol Immunol 2020; 117:37-53. [PMID: 31733447 PMCID: PMC7112542 DOI: 10.1016/j.molimm.2019.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
Abstract
Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, causing functional and structural changes in target proteins. Protein deimination causes generation of neo-epitopes, affects gene regulation and also allows for protein moonlighting. Furthermore, PADs have been found to be a phylogenetically conserved regulator for extracellular vesicle (EVs) release. EVs are found in most body fluids and participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-translationally deiminated proteins in serum and serum-EVs are described for the first time in camelids, using the llama (Lama glama L. 1758) as a model animal. We report a poly-dispersed population of llama serum EVs, positive for phylogenetically conserved EV-specific markers and characterised by TEM. In serum, 103 deiminated proteins were overall identified, including key immune and metabolic mediators including complement components, immunoglobulin-based nanobodies, adiponectin and heat shock proteins. In serum, 60 deiminated proteins were identified that were not in EVs, and 25 deiminated proteins were found to be unique to EVs, with 43 shared deiminated protein hits between both serum and EVs. Deiminated histone H3, a marker of neutrophil extracellular trap formation, was also detected in llama serum. PAD homologues were identified in llama serum by Western blotting, via cross reaction with human PAD antibodies, and detected at an expected 70 kDa size. This is the first report of deiminated proteins in serum and EVs of a camelid species, highlighting a hitherto unrecognized post-translational modification in key immune and metabolic proteins in camelids, which may be translatable to and inform a range of human metabolic and inflammatory pathologies.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
22
|
Bélanger K, Iqbal U, Tanha J, MacKenzie R, Moreno M, Stanimirovic D. Single-Domain Antibodies as Therapeutic and Imaging Agents for the Treatment of CNS Diseases. Antibodies (Basel) 2019; 8:antib8020027. [PMID: 31544833 PMCID: PMC6640712 DOI: 10.3390/antib8020027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023] Open
Abstract
Antibodies have become one of the most successful therapeutics for a number of oncology and inflammatory diseases. So far, central nervous system (CNS) indications have missed out on the antibody revolution, while they remain 'hidden' behind several hard to breach barriers. Among the various antibody modalities, single-domain antibodies (sdAbs) may hold the 'key' to unlocking the access of antibody therapies to CNS diseases. The unique structural features of sdAbs make them the smallest monomeric antibody fragments suitable for molecular targeting. These features are of particular importance when developing antibodies as modular building blocks for engineering CNS-targeting therapeutics and imaging agents. In this review, we first introduce the characteristic properties of sdAbs compared to traditional antibodies. We then present recent advances in the development of sdAbs as potential therapeutics across brain barriers, including their use for the delivery of biologics across the blood-brain and blood-cerebrospinal fluid (CSF) barriers, treatment of neurodegenerative diseases and molecular imaging of brain targets.
Collapse
Affiliation(s)
- Kasandra Bélanger
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Umar Iqbal
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Maria Moreno
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| |
Collapse
|
23
|
D'Eall C, Pon RA, Rossotti MA, Krahn N, Spearman M, Callaghan D, van Faassen H, Hussack G, Stetefeld J, Butler M, Durocher Y, Zhang J, Henry KA, Tanha J. Modulating antibody-dependent cellular cytotoxicity of epidermal growth factor receptor-specific heavy-chain antibodies through hinge engineering. Immunol Cell Biol 2019; 97:526-537. [PMID: 30680791 DOI: 10.1111/imcb.12238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 01/20/2023]
Abstract
Human IgG1 and IgG3 antibodies (Abs) can mediate Ab-dependent cellular cytotoxicity (ADCC), and engineering of the Ab Fc (point mutation; defucosylation) has been shown to affect ADCC by modulating affinity for FcRγIIIa. In the absence of a CH 1 domain, many camelid heavy-chain Abs (HCAbs) naturally bear very long and flexible hinge regions connecting their VH H and CH 2 domains. To better understand the influence of hinge length and structure on HCAb ADCC, we produced a series of hinge-engineered epidermal growth factor receptor (EGFR)-specific chimeric camelid VH H-human Fc Abs and characterized their affinities for recombinant EGFR and FcRγIIIa, their binding to EGFR-positive tumor cells, and their ability to elicit ADCC. In the case of one chimeric HCAb (EG2-hFc), we found that variants bearing longer hinges (IgG3 or camelid hinge regions) showed dramatically improved ADCC in comparison with a variant bearing the human IgG1 hinge, in similar fashion to a variant with reduced CH 2 fucosylation. Conversely, an EG2-hFc variant bearing a truncated human IgG1 upper hinge region failed to elicit ADCC. However, there was no consistent association between hinge length and ADCC for four similarly engineered chimeric HCAbs directed against distinct EGFR epitopes. These findings demonstrate that the ADCC of some HCAbs can be modulated simply by varying the length of the Ab hinge. Although this effect appears to be heavily epitope-dependent, this strategy may be useful to consider during the design of VH H-based therapeutic Abs for cancer.
Collapse
Affiliation(s)
- Calvin D'Eall
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Robert A Pon
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Natalie Krahn
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Maureen Spearman
- Department of Microbiology, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Deborah Callaghan
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Michael Butler
- Department of Microbiology, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Ave, Montréal, QC, H4P 2R2, Canada
| | - Jianbing Zhang
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|