1
|
San LZ, Wang GX, He ZW, Liu YF, Cao W, Zhang YT, Yang YC, Han T, Qin YW, Yang TL, Wang YF, Hou JL. Genome-wide association study for high-temperature tolerance in the Japanese flounder. Animal 2024; 18:101273. [PMID: 39153441 DOI: 10.1016/j.animal.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024] Open
Abstract
This study addresses the critical issue of high-temperature stress in Japanese flounder (Paralichthys olivaceus), a factor threatening both their survival and the growth of the aquaculture industry. The research aims to identify genetic markers associated with high-temperature tolerance, unravel the genetic regulatory mechanisms, and lay the foundation for breeding Japanese flounder with increased resistance to high temperatures. In this study, using a genome-wide association study was performed to identify single nucleotide polymorphisms (SNPs) and genes associated with high-temperature tolerance for Japanese flounder using 280 individuals with 342 311 high-quality SNPs. The traits of high-temperature tolerance were defined as the survival time and survival status of Japanese flounder at high water temperature (31℃) for 15 days cultivate. A genome-wide association study identified six loci on six chromosomes significantly correlated with survival time under high-temperature stress. Six candidate genes were successfully annotated. Additionally, 34 loci associated with survival status were identified and mapped to 15 chromosomes, with 22 candidate genes annotated. Functional analysis highlighted the potential importance of genes like traf4 and ppm1l in regulating apoptosis, impacting high-temperature tolerance in Japanese flounder. These findings provide a valuable theoretical framework for integrating molecular markers into Japanese flounder breeding programmes, serving as a molecular tool to enhance genetic traits linked to high-temperature tolerance in cultured Japanese flounder.
Collapse
Affiliation(s)
- L Z San
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - G X Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Z W He
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Y F Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - W Cao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Y T Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Y C Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - T Han
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Ocean College, Agricultural University of Hebei, Qinhuangdao 066009, China
| | - Y W Qin
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Ocean College, Agricultural University of Hebei, Qinhuangdao 066009, China
| | - T L Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Ocean College, Agricultural University of Hebei, Qinhuangdao 066009, China
| | - Y F Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - J L Hou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; Bohai Sea Fishery Research Center, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China.
| |
Collapse
|
2
|
Averill-Bates D. Reactive oxygen species and cell signaling. Review. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119573. [PMID: 37949302 DOI: 10.1016/j.bbamcr.2023.119573] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/12/2023]
Abstract
Reactive oxygen species (ROS) is a term encompassing a group of highly reactive oxygen-derived molecules. In physiological systems, ROS production exists in concert with antioxidant defenses, which safeguard cells against higher, toxic levels of ROS. Oxidative stress, coined as "oxidative distress", is "a serious imbalance between the generation of ROS and antioxidant defenses in favor of ROS, causing excessive oxidative damage to biomolecules". At physiological levels, ROS are essential for many cellular processes, which is known as "oxidative eustress". Oxidants like hydrogen peroxide (H2O2) activate signaling pathways like mitogen-activated protein kinases (MAPK)s and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt). ROS activate transcription factors like nuclear factor erythroid 2-related factor 2 (Nrf2), hypoxia-inducible factor 1α (HIF-1α), activator protein 1 (AP-1), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Redox signaling through H2O2 mainly occurs through reversible oxidation of protein cysteine thiolate residues (RS-) to form sulfenic acids (RSOH). An unresolved question is that the reaction rate of H2O2 with protein thiols is very low. In cells, the reaction of H2O2 with protein thiols is likely to be outcompeted by faster reactions of H2O2 with peroxiredoxins and glutathione peroxidases. A novel mechanism being explored is that H2O2 could react with peroxiredoxins that act as reactive redox sensor proteins, leading to peroxiredoxin-mediated relays. Very few redox signaling pathways have been well characterized. Improved understanding of precise mechanisms by which ROS regulate signaling pathways and the role of cellular sensors, is essential for deciphering their roles in physiological and pathological conditions.
Collapse
Affiliation(s)
- Diana Averill-Bates
- Département des sciences biologiques (Center of Excellence in Orphan Diseases Research - Courtois Foundation (CERMO(FC)), Université du Québec à Montréal, Montréal, Québec, Canada.
| |
Collapse
|
3
|
Xu H, Shao Z, Zhang S, Liu X, Zeng P. How can childhood maltreatment affect post-traumatic stress disorder in adult: Results from a composite null hypothesis perspective of mediation analysis. Front Psychiatry 2023; 14:1102811. [PMID: 36970281 PMCID: PMC10033829 DOI: 10.3389/fpsyt.2023.1102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundA greatly growing body of literature has revealed the mediating role of DNA methylation in the influence path from childhood maltreatment to psychiatric disorders such as post-traumatic stress disorder (PTSD) in adult. However, the statistical method is challenging and powerful mediation analyses regarding this issue are lacking.MethodsTo study how the maltreatment in childhood alters long-lasting DNA methylation changes which further affect PTSD in adult, we here carried out a gene-based mediation analysis from a perspective of composite null hypothesis in the Grady Trauma Project (352 participants and 16,565 genes) with childhood maltreatment as exposure, multiple DNA methylation sites as mediators, and PTSD or its relevant scores as outcome. We effectively addressed the challenging issue of gene-based mediation analysis by taking its composite null hypothesis testing nature into consideration and fitting a weighted test statistic.ResultsWe discovered that childhood maltreatment could substantially affected PTSD or PTSD-related scores, and that childhood maltreatment was associated with DNA methylation which further had significant roles in PTSD and these scores. Furthermore, using the proposed mediation method, we identified multiple genes within which DNA methylation sites exhibited mediating roles in the influence path from childhood maltreatment to PTSD-relevant scores in adult, with 13 for Beck Depression Inventory and 6 for modified PTSD Symptom Scale, respectively.ConclusionOur results have the potential to confer meaningful insights into the biological mechanism for the impact of early adverse experience on adult diseases; and our proposed mediation methods can be applied to other similar analysis settings.
Collapse
Affiliation(s)
- Haibo Xu
- Center for Mental Health Education and Research, Xuzhou Medical University, Xuzhou, China
- School of Management, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Haibo Xu,
| | - Zhonghe Shao
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xin Liu
- Center for Mental Health Education and Research, Xuzhou Medical University, Xuzhou, China
- School of Management, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Ping Zeng,
| |
Collapse
|
4
|
Crystallographic mining of ASK1 regulators to unravel the intricate PPI interfaces for the discovery of small molecule. Comput Struct Biotechnol J 2022; 20:3734-3754. [PMID: 35891784 PMCID: PMC9294202 DOI: 10.1016/j.csbj.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Protein seldom performs biological activities in isolation. Understanding the protein–protein interactions’ physical rewiring in response to pathological conditions or pathogen infection can help advance our comprehension of disease etiology, progression, and pathogenesis, which allow us to explore the alternate route to control the regulation of key target interactions, timely and effectively. Nonalcoholic steatohepatitis (NASH) is now a global public health problem exacerbated due to the lack of appropriate treatments. The most advanced anti-NASH lead compound (selonsertib) is withdrawn, though it is able to inhibit its target Apoptosis signal-regulating kinase 1 (ASK1) completely, indicating the necessity to explore alternate routes rather than complete inhibition. Understanding the interaction fingerprints of endogenous regulators at the molecular level that underpin disease formation and progression may spur the rationale of designing therapeutic strategies. Based on our analysis and thorough literature survey of the various key regulators and PTMs, the current review emphasizes PPI-based drug discovery’s relevance for NASH conditions. The lack of structural detail (interface sites) of ASK1 and its regulators makes it challenging to characterize the PPI interfaces. This review summarizes key regulators interaction fingerprinting of ASK1, which can be explored further to restore the homeostasis from its hyperactive states for therapeutics intervention against NASH.
Collapse
Key Words
- ASK1
- ASK1, Apoptosis signal-regulating kinase 1
- CFLAR, CASP8 and FADD-like apoptosis regulator
- CREG, Cellular repressor of E1A-stimulated genes
- DKK3, Dickkopf-related protein 3
- Interaction fingerprint
- NAFLD, Non-alcoholic fatty liver disease
- NASH
- NASH, Nonalcoholic steatohepatitis
- PPI, Protein-protein interaction
- PTM, Post-trancriptional modification
- PTMs
- Protein-protein interaction
- TNFAIP3, TNF Alpha Induced Protein 3
- TRAF2/6, Tumor necrosis factor receptor (TNFR)-associated factor2/6
- TRIM48, Tripartite Motif Containing 48
- TRX, Thioredoxin
- USP9X, Ubiquitin Specific Peptidase 9 X-Linked
Collapse
|
5
|
Joffre J, Hellman J. Oxidative Stress and Endothelial Dysfunction in Sepsis and Acute Inflammation. Antioxid Redox Signal 2021; 35:1291-1307. [PMID: 33637016 DOI: 10.1089/ars.2021.0027] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Under homeostatic conditions, the endothelium dynamically regulates vascular barrier function, coagulation pathways, leukocyte adhesion, and vasomotor tone. During sepsis and acute inflammation, endothelial cells (ECs) undergo multiple phenotypic and functional modifications that are initially adaptive but eventually become harmful, leading to microvascular dysfunction and multiorgan failure. Critical Issues and Recent Advances: Sepsis unbalances the redox homeostasis toward a pro-oxidant state, characterized by an excess production of reactive oxygen species and reactive nitrogen species, mitochondrial dysfunction, and a breakdown of antioxidant systems. In return, oxidative stress (OS) alters multiple EC functions and promotes a proinflammatory, procoagulant, and proadhesive phenotype. The OS also induces glycocalyx deterioration, cell death, increased permeability, and impaired vasoreactivity. Thus, during sepsis, the ECs are both a significant source and one of the main targets of OS. Future Directions: This review aims at covering the current understanding of the role of OS in the endothelial adaptive or maladaptive multifaceted response to sepsis and to outline the therapeutic potential and issues of targeting OS and endothelial dysfunction during sepsis and septic shock. One of the many challenges in the management of sepsis is now based on the detection and correction of these anomalies of endothelial function.
Collapse
Affiliation(s)
- Jérémie Joffre
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, California, USA
| |
Collapse
|
6
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
7
|
Musi CA, Agrò G, Santarella F, Iervasi E, Borsello T. JNK3 as Therapeutic Target and Biomarker in Neurodegenerative and Neurodevelopmental Brain Diseases. Cells 2020; 9:cells9102190. [PMID: 32998477 PMCID: PMC7600688 DOI: 10.3390/cells9102190] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
The c-Jun N-terminal kinase 3 (JNK3) is the JNK isoform mainly expressed in the brain. It is the most responsive to many stress stimuli in the central nervous system from ischemia to Aβ oligomers toxicity. JNK3 activity is spatial and temporal organized by its scaffold protein, in particular JIP-1 and β-arrestin-2, which play a crucial role in regulating different cellular functions in different cellular districts. Extensive evidence has highlighted the possibility of exploiting these adaptors to interfere with JNK3 signaling in order to block its action. JNK plays a key role in the first neurodegenerative event, the perturbation of physiological synapse structure and function, known as synaptic dysfunction. Importantly, this is a common mechanism in many different brain pathologies. Synaptic dysfunction and spine loss have been reported to be pharmacologically reversible, opening new therapeutic directions in brain diseases. Being JNK3-detectable at the peripheral level, it could be used as a disease biomarker with the ultimate aim of allowing an early diagnosis of neurodegenerative and neurodevelopment diseases in a still prodromal phase.
Collapse
Affiliation(s)
- Clara Alice Musi
- Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan, Italy;
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Graziella Agrò
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Francesco Santarella
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Erika Iervasi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genoa, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan, Italy;
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
- Correspondence: or ; Tel.: +39-023-901-4469; Fax: +39-023-900-1916
| |
Collapse
|
8
|
McNair AJ, Wilson KS, Martin PE, Welsh DJ, Dempsie Y. Connexin 43 plays a role in proliferation and migration of pulmonary arterial fibroblasts in response to hypoxia. Pulm Circ 2020; 10:2045894020937134. [PMID: 32670564 PMCID: PMC7338651 DOI: 10.1177/2045894020937134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a disease associated with vasoconstriction and remodelling of the pulmonary vasculature. Pulmonary artery fibroblasts (PAFs) play an important role in hypoxic-induced remodelling. Connexin 43 (Cx43) is involved in cellular communication and regulation of the pulmonary vasculature. Using both in vitro and in vivo models of PH, the aims of this study were to (i) investigate the role of Cx43 in hypoxic-induced proliferation and migration of rat PAFs (rPAFs) and rat pulmonary artery smooth muscle cells (rPASMCs) and (ii) determine whether Cx43 expression is dysregulated in the rat sugen5416/hypoxic model of PH. The role of Cx43 in hypoxic-induced proliferation and migration was investigated using Gap27 (a pharmacological inhibitor of Cx43) or genetic knockdown of Cx43 using siRNA. Cx43 protein expression was increased by hypoxia in rPAFs but not rPASMCs. Hypoxic exposure, in the presence of serum, resulted in an increase in proliferation of rPAFs but not rPASMCs. Hypoxic exposure caused migration of rPAFs but not rPASMCs. Phosphorylation of p38 mitogen-activated protein kinase (MAPK) and ERK1/2 were increased by hypoxia in rPAFs. The effects of hypoxia on proliferation, migration and MAPK phosphorylation in rPAFs were attenuated in the presence of Gap27 or Cx43 siRNA. Cx43 protein expression was increased in sugen5416/hypoxic rat lung; this increased expression was not observed in sugen5416/hypoxic rats treated with the MAPK pathway inhibitor GS-444217. In conclusion, Cx43 is involved in the proliferation and migration of rPAFs in response to hypoxia via the MAPK signalling pathway.
Collapse
Affiliation(s)
- Andrew J McNair
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Kathryn S Wilson
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Patricia E Martin
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - David J Welsh
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Yvonne Dempsie
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
9
|
Nakamura K, Kageyama S, Kaldas FM, Hirao H, Ito T, Kadono K, Dery KJ, Kojima H, Gjertson DW, Sosa RA, Kujawski M, Busuttil RW, Reed EF, Kupiec-Weglinski JW. Hepatic CEACAM1 expression indicates donor liver quality and prevents early transplantation injury. J Clin Invest 2020; 130:2689-2704. [PMID: 32027621 PMCID: PMC7190917 DOI: 10.1172/jci133142] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Although CEACAM1 (CC1) glycoprotein resides at the interface of immune liver injury and metabolic homeostasis, its role in orthotopic liver transplantation (OLT) remains elusive. We aimed to determine whether/how CEACAM1 signaling may affect hepatic ischemia-reperfusion injury (IRI) and OLT outcomes. In the mouse, donor liver CC1 null mutation augmented IRI-OLT (CC1-KO→WT) by enhancing ROS expression and HMGB1 translocation during cold storage, data supported by in vitro studies where hepatic flush from CC1-deficient livers enhanced macrophage activation in bone marrow-derived macrophage cultures. Although hepatic CC1 deficiency augmented cold stress-triggered ASK1/p-p38 upregulation, adjunctive ASK1 inhibition alleviated IRI and improved OLT survival by suppressing p-p38 upregulation, ROS induction, and HMGB1 translocation (CC1-KO→WT), whereas ASK1 silencing (siRNA) promoted cytoprotection in cold-stressed and damage-prone CC1-deficient hepatocyte cultures. Consistent with mouse data, CEACAM1 expression in 60 human donor liver biopsies correlated negatively with activation of the ASK1/p-p38 axis, whereas low CC1 levels associated with increased ROS and HMGB1 translocation, enhanced innate and adaptive immune responses, and inferior early OLT function. Notably, reduced donor liver CEACAM1 expression was identified as one of the independent predictors for early allograft dysfunction (EAD) in human OLT patients. Thus, as a checkpoint regulator of IR stress and sterile inflammation, CEACAM1 may be considered as a denominator of donor hepatic tissue quality, and a target for therapeutic modulation in OLT recipients.
Collapse
Affiliation(s)
- Kojiro Nakamura
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Shoichi Kageyama
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Fady M. Kaldas
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Hirofumi Hirao
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Takahiro Ito
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Kentaro Kadono
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Kenneth J. Dery
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Hidenobu Kojima
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - David W. Gjertson
- Department of Biostatistics, UCLA School of Public Health
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Maciej Kujawski
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ronald W. Busuttil
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jerzy W. Kupiec-Weglinski
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| |
Collapse
|
10
|
Challa TD, Wueest S, Lucchini FC, Dedual M, Modica S, Borsigova M, Wolfrum C, Blüher M, Konrad D. Liver ASK1 protects from non-alcoholic fatty liver disease and fibrosis. EMBO Mol Med 2019; 11:e10124. [PMID: 31595673 PMCID: PMC6783644 DOI: 10.15252/emmm.201810124] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is strongly associated with obesity and may progress to non-alcoholic steatohepatitis (NASH) and liver fibrosis. The deficit of pharmacological therapies for the latter mainly results from an incomplete understanding of involved pathological mechanisms. Herein, we identify apoptosis signal-regulating kinase 1 (ASK1) as a suppressor of NASH and fibrosis formation. High-fat diet-fed and aged chow-fed liver-specific ASK1-knockout mice develop a higher degree of hepatic steatosis, inflammation, and fibrosis compared to controls. In addition, pharmacological inhibition of ASK1 increased hepatic lipid accumulation in wild-type mice. In line, liver-specific ASK1 overexpression protected mice from the development of high-fat diet-induced hepatic steatosis and carbon tetrachloride-induced fibrosis. Mechanistically, ASK1 depletion blunts autophagy, thereby enhancing lipid droplet accumulation and liver fibrosis. In human livers of lean and obese subjects, ASK1 expression correlated negatively with liver fat content and NASH scores, but positively with markers for autophagy. Taken together, ASK1 may be a novel therapeutic target to tackle NAFLD and liver fibrosis.
Collapse
Affiliation(s)
- Tenagne D Challa
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Fabrizio C Lucchini
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Mara Dedual
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Salvatore Modica
- Institute of Food, Nutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | - Marcela Borsigova
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | | | - Daniel Konrad
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
11
|
Wang B, Zhou Q, Bi Y, Zhou W, Zeng Q, Liu Z, Liu X, Zhan Z. Phosphatase PPM1L Prevents Excessive Inflammatory Responses and Cardiac Dysfunction after Myocardial Infarction by Inhibiting IKKβ Activation. THE JOURNAL OF IMMUNOLOGY 2019; 203:1338-1347. [PMID: 31331970 DOI: 10.4049/jimmunol.1900148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/25/2019] [Indexed: 11/19/2022]
Abstract
Although the inflammatory response triggered by damage-associated molecular patterns (DAMPs) in the infarcted cardiac tissues after acute myocardial infarction (MI) contributes to cardiac repair, the unrestrained inflammation induces excessive matrix degradation and myocardial fibrosis, leading to the development of adverse remodeling and cardiac dysfunction, although the molecular mechanisms that fine tune inflammation post-MI need to be fully elucidated. Protein phosphatase Mg2+/Mn2+-dependent 1L (PPM1L) is a member of the serine/threonine phosphatase family. It is originally identified as a negative regulator of stress-activated protein kinase signaling and involved in the regulation of ceramide trafficking from the endoplasmic reticulum to Golgi apparatus. However, the role of PPM1L in MI remains unknown. In this study, we found that PPM1L transgenic mice exhibited reduced infarct size, attenuated myocardial fibrosis, and improved cardiac function. PPM1L transgenic mice showed significantly lower levels of inflammatory cytokines, including IL-1β, IL-6, TNF-α, and IL-12, in myocardial tissue. In response to DAMPs, such as HMGB1 or HSP60, released in myocardial tissue after MI, macrophages from PPM1L transgenic mice consistently produced fewer inflammatory cytokines. PPM1L-silenced macrophages showed higher levels of inflammatory cytokine production induced by DAMPs. Mechanically, PPM1L overexpression selectively inhibited the activation of NF-κB signaling in myocardial tissue post-MI and DAMP-triggered macrophages. PPM1L directly bound IKKβ and then inhibited its phosphorylation and activation, leading to impaired NF-κB signaling activation and suppressed inflammatory cytokine production. Thus, our data demonstrate that PPM1L prevents excessive inflammation and cardiac dysfunction after MI, which sheds new light on the protective regulatory mechanism underlying MI.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qingqing Zhou
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yong Bi
- Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200081, China
| | - Wenhui Zhou
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiyan Zeng
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhongmin Liu
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xingguang Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China; and
| | - Zhenzhen Zhan
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; .,Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200081, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
12
|
Xu C, Shi Q, Zhang L, Zhao H. High molecular weight hyaluronan attenuates fine particulate matter-induced acute lung injury through inhibition of ROS-ASK1-p38/JNK-mediated epithelial apoptosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 59:190-198. [PMID: 29625389 DOI: 10.1016/j.etap.2018.03.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Inhalation of fine particulate matter (PM2.5) is asscoiated with lung injury. High molecular weight hyaluronan (HMW-HA) is an essential constituent of extracellular matrix (ECM), exhibiting anti-oxidative and anti-inflammatory properties when administered by injection, inhalation, nebulization or gene delivery of HA synthases. The aim of the present study is to determine whether HMW-HA alleviates PM2.5-induced acute lung injury (ALI) and investigate the underlying mechanisms. We observed that HMW-HA suppressed pathological injury, inflammation, oxidative stress, edema and epithelial damage caused by PM2.5 in the lungs of the rats. The protective mechanism of HMW-HA was further explored in vitro. The results elucidated that reactive oxygen species (ROS) was involved in PM2.5-induced cell apoptosis, and HMW-HA mitigated the oxidative potential of PM2.5, subsequently inhibiting phosphorylation of ASK1 at Thr845, downstream phosphorylation of p38 and JNK, and eventual apoptosis. Our study indicates that HMW-HA is a promising strategy in the prevention of PM2.5-induced pulmonary damage.
Collapse
Affiliation(s)
- Chenming Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, PR China
| | - Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, PR China.
| | - Leifang Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, PR China
| | - Hang Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, PR China
| |
Collapse
|
13
|
Nishida T, Hattori K, Watanabe K. The regulatory and signaling mechanisms of the ASK family. Adv Biol Regul 2017; 66:2-22. [PMID: 28669716 DOI: 10.1016/j.jbior.2017.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) was identified as a MAP3K that activates the JNK and p38 pathways, and subsequent studies have reported ASK2 and ASK3 as members of the ASK family. The ASK family is activated by various intrinsic and extrinsic stresses, including oxidative stress, ER stress and osmotic stress. Numerous lines of evidence have revealed that members of the ASK family are critical for signal transduction systems to control a wide range of stress responses such as cell death, differentiation and cytokine induction. In this review, we focus on the precise signaling mechanisms of the ASK family in response to diverse stressors.
Collapse
Affiliation(s)
- Takuto Nishida
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
14
|
Kusano R, Fujita K, Shinoda Y, Nagaura Y, Kiyonari H, Abe T, Watanabe T, Matsui Y, Fukaya M, Sakagami H, Sato T, Funahashi JI, Ohnishi M, Tamura S, Kobayashi T. Targeted disruption of the mouse protein phosphataseppm1lgene leads to structural abnormalities in the brain. FEBS Lett 2016; 590:3606-3615. [DOI: 10.1002/1873-3468.12429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Rie Kusano
- Department of Biochemistry; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Kousuke Fujita
- Department of Biochemistry; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Yasuharu Shinoda
- Department of Biochemistry; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Yuko Nagaura
- Department of Biochemistry; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit; RIKEN Center for Life Science Technologies; Kobe Japan
- Genetic Engineering Team; RIKEN Center for Life Science Technologies; Kobe Japan
| | - Takaya Abe
- Genetic Engineering Team; RIKEN Center for Life Science Technologies; Kobe Japan
| | - Toshio Watanabe
- Department of Biological Science; Graduate School of Humanities and Sciences; Nara Women's University; Nara Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Masahiro Fukaya
- Department of Anatomy; Kitasato University School of Medicine; Sagamihara Japan
| | - Hiroyuki Sakagami
- Department of Anatomy; Kitasato University School of Medicine; Sagamihara Japan
| | - Tatsuya Sato
- Creative interdisciplinary Research Division; The Frontier Research Institute for Interdisciplinary Sciences; Tohoku University; Sendai Japan
| | - Jun-ichi Funahashi
- Department of Thoracic Surgery; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Motoko Ohnishi
- Department of Biological Chemistry; College of Bioscience and Biotechnology; Chubu University; Kasugai Japan
| | - Shinri Tamura
- Department of Biochemistry; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Takayasu Kobayashi
- Department of Biochemistry; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
- Center for Gene Research; Tohoku University; Sendai Japan
| |
Collapse
|
15
|
Shen K, Lu F, Xie J, Wu M, Cai B, Liu Y, Zhang H, Tan H, Pan Y, Xu H. Cambogin exerts anti-proliferative and pro-apoptotic effects on breast adenocarcinoma through the induction of NADPH oxidase 1 and the alteration of mitochondrial morphology and dynamics. Oncotarget 2016; 7:50596-50611. [PMID: 27418140 PMCID: PMC5226606 DOI: 10.18632/oncotarget.10585] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
Cambogin, a bioactive polycyclic polyprenylated acylphoroglucinol (PPAP) derived from the Garcinia genus, possesses proapoptotic effect in medulloblastoma and breast cancer cells. We have previously demonstrated that the proapoptotic effect of cambogin is driven by the production of reactive oxygen species (ROS). Here we have shown that the inhibitory effect of cambogin on cell proliferation is associated with the loss of mitochondrial transmembrane potential (ΔΨm) and mitochondrial fragmentation. Cambogin also promotes the mutual complex formation of the membrane-bound subunit p22phox of NADPH oxidase 1 (NOX1), as well as the phosphorylation of the cytosolic subunit p47phox, subsequently enhancing membrane-bound NOX1 activity, which leads to increases in intracellular and mitochondrial levels of O2.- and H2O2. Pharmacological inhibition of NOX1 using apocynin (pan-NOX inhibitor), ML171 (NOX1 inhibitor) or siRNA against NOX1 prevents the increases in O2.- and H2O2 levels and the anti-proliferative effect of cambogin. Antioxidants, including SOD (superoxide dismutase), CAT (catalase) and EUK-8, are also able to restore cell viability in the presence of cambogin. Besides, cambogin increases the dissociation of thioredoxin-1 (Trx1) from ASK1, switching the inactive form of ASK1 to the active kinase, subsequently leads to the phosphorylation of JNK/SAPK, which is abolished upon ML171 treatment. The proapoptotic effect of cambogin in breast cancer cells is also aggravated upon knocking down Trx1 in MCF-7 cells. Taken in conjunction, these data indicate that the anti-proliferative and pro-apoptotic effect of cambogin is mediated via inducing NOX1-dependent ROS production and the dissociation of ASK1 and Trx1.
Collapse
Affiliation(s)
- Kaikai Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fangfang Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianling Xie
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, North Terrace, Adelaide SA5000, Australia
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO17 1BJ, UK
| | - Minfeng Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bo Cai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yurong Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Yingyi Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital/Shanghai University of T.C.M, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
16
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
17
|
Salminen A, Kaarniranta K, Kauppinen A. Age-related changes in AMPK activation: Role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res Rev 2016; 28:15-26. [PMID: 27060201 DOI: 10.1016/j.arr.2016.04.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/18/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
AMP-activated protein kinase (AMPK) is a fundamental regulator of energy metabolism, stress resistance, and cellular proteostasis. AMPK signaling controls an integrated signaling network which is involved in the regulation of healthspan and lifespan e.g. via FoxO, mTOR/ULK1, CRCT-1/CREB, and SIRT1 signaling pathways. Several studies have demonstrated that the activation capacity of AMPK signaling declines with aging, which impairs the maintenance of efficient cellular homeostasis and enhances the aging process. However, it seems that the aging process affects AMPK activation in a context-dependent manner since occasionally, it can also augment AMPK activation, possibly attributable to the type of insult and tissue homeostasis. Three protein phosphatases, PP1, PP2A, and PP2C, inhibit AMPK activation by dephosphorylating the Thr172 residue of AMPKα, required for AMPK activation. In addition, several upstream signaling pathways can phosphorylate Ser/Thr residues in the β/γ interaction domain of the AMPKα subunit that subsequently blocks the activation of AMPK. These inhibitory pathways include the insulin/AKT, cyclic AMP/PKA, and RAS/MEK/ERK pathways. We will examine the evidence whether the efficiency of AMPK responsiveness declines during the aging process. Next, we will review the mechanisms involved in curtailing the activation of AMPK. Finally, we will elucidate the potential age-related changes in the inhibitory regulation of AMPK signaling that might be a part of the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
18
|
Park HG, Yeo MK. Metabolic gene expression profiling of Zebrafish embryos exposed to silver nanocolloids and nanotubes. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-014-0045-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Lin XX, Yang XF, Jiang JX, Zhang SJ, Guan Y, Liu YN, Sun YH, Xie QM. Cigarette smoke extract-induced BEAS-2B cell apoptosis and anti-oxidative Nrf-2 up-regulation are mediated by ROS-stimulated p38 activation. Toxicol Mech Methods 2014; 24:575-83. [PMID: 25134437 DOI: 10.3109/15376516.2014.956909] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cigarette smoke contains reactive oxygen (ROS) that can cause oxidative stress. It increases the number of apoptotic and necrotic lung cells and further induces the development of chronic airway disease. In this study, we investigated the effects of cigarette smoke extract (CSE) on apoptosis in human bronchial epithelial cells (BEAS-2B). CSE exposure induced ROS generation and p38 mitogen-activated protein kinase (MAPK) activation that are associated with the activation of apoptosis-regulating signal kinase 1 (ASK-1). N-acetylcysteine (a general antioxidant) attenuated the CSE-induced ASK-1 and p38 MAPK activation and cell apoptosis, suggesting a triggering role of ROS in ASK-1/p38 MAPK activation during apoptotic progression. In contrast, the inhibition and knockdown of p38 attenuated the expression of anti-oxidant master NF-E2-related factor 2 (Nrf-2) and CSE-induced apoptosis, suggesting that p38 MAPK modulates Nrf-2 expression and presumably prevents cell apoptosis. Taken together, the data presented in this manuscript demonstrate that the ROS-dependent ASK-1/p38 signaling cascade regulates CSE-induced BEAS-2B cell apoptosis. In addition, anti-oxidative Nrf-2 is also up-regulated by the ROS/p38 signaling cascade in this progression.
Collapse
Affiliation(s)
- Xi-Xi Lin
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Medical College of Zhejiang University , Hangzhou , China and
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kuhlmann K, Tschapek A, Wiese H, Eisenacher M, Meyer HE, Hatt HH, Oeljeklaus S, Warscheid B. The membrane proteome of sensory cilia to the depth of olfactory receptors. Mol Cell Proteomics 2014; 13:1828-43. [PMID: 24748648 DOI: 10.1074/mcp.m113.035378] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the nasal cavity, the nonmotile cilium of olfactory sensory neurons (OSNs) constitutes the chemosensory interface between the ambient environment and the brain. The unique sensory organelle facilitates odor detection for which it includes all necessary components of initial and downstream olfactory signal transduction. In addition to its function in olfaction, a more universal role in modulating different signaling pathways is implicated, for example, in neurogenesis, apoptosis, and neural regeneration. To further extend our knowledge about this multifunctional signaling organelle, it is of high importance to establish a most detailed proteome map of the ciliary membrane compartment down to the level of transmembrane receptors. We detached cilia from mouse olfactory epithelia via Ca(2+)/K(+) shock followed by the enrichment of ciliary membrane proteins at alkaline pH, and we identified a total of 4,403 proteins by gel-based and gel-free methods in conjunction with high resolution LC/MS. This study is the first to report the detection of 62 native olfactory receptor proteins and to provide evidence for their heterogeneous expression at the protein level. Quantitative data evaluation revealed four ciliary membrane-associated candidate proteins (the annexins ANXA1, ANXA2, ANXA5, and S100A5) with a suggested function in the regulation of olfactory signal transduction, and their presence in ciliary structures was confirmed by immunohistochemistry. Moreover, we corroborated the ciliary localization of the potassium-dependent Na(+)/Ca(2+) exchanger (NCKX) 4 and the plasma membrane Ca(2+)-ATPase 1 (PMCA1) involved in olfactory signal termination, and we detected for the first time NCKX2 in olfactory cilia. Through comparison with transcriptome data specific for mature, ciliated OSNs, we finally delineated the membrane ciliome of OSNs. The membrane proteome of olfactory cilia established here is the most complete today, thus allowing us to pave new avenues for the study of diverse molecular functions and signaling pathways in and out of olfactory cilia and thus to advance our understanding of the biology of sensory organelles in general.
Collapse
Affiliation(s)
- Katja Kuhlmann
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum
| | - Astrid Tschapek
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum
| | - Heike Wiese
- the ¶Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg
| | - Martin Eisenacher
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum
| | - Helmut E Meyer
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, the ‖Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, and
| | - Hanns H Hatt
- the **Department of Cell Physiology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Silke Oeljeklaus
- the ¶Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg
| | - Bettina Warscheid
- the ¶Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg,
| |
Collapse
|
21
|
PPM1l encodes an inositol requiring-protein 1 (IRE1) specific phosphatase that regulates the functional outcome of the ER stress response. Mol Metab 2013; 2:405-16. [PMID: 24327956 DOI: 10.1016/j.molmet.2013.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/07/2013] [Accepted: 07/15/2013] [Indexed: 02/03/2023] Open
Abstract
The protein phosphatase 1-like gene (PPM1l) was identified as causal gene for obesity and metabolic abnormalities in mice. However, the underlying mechanisms were unknown. In this report, we find PPM1l encodes an endoplasmic reticulum (ER) membrane targeted protein phosphatase (PP2Ce) and has specific activity to basal and ER stress induced auto-phosphorylation of Inositol-REquiring protein-1 (IRE1). PP2Ce inactivation resulted in elevated IRE1 phosphorylation and higher expression of XBP-1, CHOP, and BiP at basal. However, ER stress stimulated XBP-1 and BiP induction was blunted while CHOP induction was further enhanced in PP2Ce null cells. PP2Ce protein levels are significantly induced during adipogenesis in vitro and are necessary for normal adipocyte maturation. Finally, we provide evidence that common genetic variation of PPM11 gene is significantly associated with human lipid profile. Therefore, PPM1l mediated IRE1 regulation and downstream ER stress signaling is a plausible molecular basis for its role in metabolic regulation and disorder.
Collapse
|
22
|
Tonevitsky AG, Maltseva DV, Abbasi A, Samatov TR, Sakharov DA, Shkurnikov MU, Lebedev AE, Galatenko VV, Grigoriev AI, Northoff H. Dynamically regulated miRNA-mRNA networks revealed by exercise. BMC PHYSIOLOGY 2013; 13:9. [PMID: 24219008 PMCID: PMC3681679 DOI: 10.1186/1472-6793-13-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/28/2013] [Indexed: 12/22/2022]
Abstract
Background MiRNAs are essential mediators of many biological processes. The aim of this study was to investigate the dynamics of miRNA-mRNA regulatory networks during exercise and the subsequent recovery period. Results Here we monitored the transcriptome changes using microarray analysis of the whole blood of eight highly trained athletes before and after 30 min of moderate exercise followed by 30 min and 60 min of recovery period. We combined expression profiling and bioinformatics and analysed metabolic pathways enriched with differentially expressed mRNAs and mRNAs which are known to be validated targets of differentially expressed miRNAs. Finally we revealed four dynamically regulated networks comprising differentially expressed miRNAs and their known target mRNAs with anti-correlated expression profiles over time. The data suggest that hsa-miR-21-5p regulated TGFBR3, PDGFD and PPM1L mRNAs. Hsa-miR-24-2-5p was likely to be responsible for MYC and KCNJ2 genes and hsa-miR-27a-5p for ST3GAL6. The targets of hsa-miR-181a-5p included ROPN1L and SLC37A3. All these mRNAs are involved in processes highly relevant to exercise response, including immune function, apoptosis, membrane traffic of proteins and transcription regulation. Conclusions We have identified metabolic pathways involved in response to exercise and revealed four miRNA-mRNA networks dynamically regulated following exercise. This work is the first study to monitor miRNAs and mRNAs in parallel into the recovery period. The results provide a novel insight into the regulatory role of miRNAs in stress adaptation.
Collapse
|
23
|
SCO2 induces p53-mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trx complex. Mol Cell Biol 2013; 33:1285-302. [PMID: 23319048 DOI: 10.1128/mcb.06798-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
p53 prevents cancer via cell cycle arrest, apoptosis, and the maintenance of genome stability. p53 also regulates energy-generating metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis via transcriptional regulation of SCO2 and TIGAR. SCO2, a cytochrome c oxidase assembly factor, is a metallochaperone which is involved in the biogenesis of cytochrome c oxidase subunit II. Here we have shown that SCO2 functions as an apoptotic protein in tumor xenografts, thus providing an alternative pathway for p53-mediated apoptosis. SCO2 increases the generation of reactive oxygen species (ROS) and induces dissociation of the protein complex between apoptosis signal-regulating kinase 1 (ASK-1) (mitogen-activated protein kinase kinase kinase [MAPKKK]) and its cellular inhibitor, the redox-active protein thioredoxin (Trx). Furthermore, SCO2 induces phosphorylation of ASK-1 at the Thr(845) residue, resulting in the activation of the ASK-1 kinase pathway. The phosphorylation of ASK-1 induces the activation of mitogen-activated protein kinase kinases 4 and 7 (MAP2K4/7) and MAP2K3/6, which switches the c-Jun N-terminal protein kinase (JNK)/p38-dependent apoptotic cascades in cancer cells. Exogenous addition of the SCO2 gene to hypoxic cancer cells and hypoxic tumors induces apoptosis and causes significant regression of tumor xenografts. We have thus discovered a novel apoptotic function of SCO2, which activates the ASK-1 kinase pathway in switching "on" an alternate mode of p53-mediated apoptosis. We propose that SCO2 might possess a novel tumor suppressor function via the ROS-ASK-1 kinase pathway and thus could be an important candidate for anticancer gene therapy.
Collapse
|
24
|
Shinoda Y, Fujita K, Saito S, Matsui H, Kanto Y, Nagaura Y, Fukunaga K, Tamura S, Kobayashi T. Acyl-CoA binding domain containing 3 (ACBD3) recruits the protein phosphatase PPM1L to ER-Golgi membrane contact sites. FEBS Lett 2012; 586:3024-9. [PMID: 22796112 DOI: 10.1016/j.febslet.2012.06.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/20/2012] [Accepted: 06/25/2012] [Indexed: 12/29/2022]
Abstract
The metal-dependent protein phosphatase family (PPM) governs a number of signaling pathways. PPM1L, originally identified as a negative regulator of stress-activated protein kinase signaling, was recently shown to be involved in the regulation of ceramide trafficking at ER-Golgi membrane contact sites. Here, we identified acyl-CoA binding domain containing 3 (ACBD3) as an interacting partner of PPM1L. We showed that this association, which recruits PPM1L to ER-Golgi membrane contact sites, is mediated by a GOLD (Golgi dynamics) domain in ACBD3. These results suggested that ACBD3 plays a pivotal role in ceramide transport regulation at the ER-Golgi interface.
Collapse
Affiliation(s)
- Yasuharu Shinoda
- Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Cell death is regulated by a myriad of intracellular molecular pathways, with many involving protein phosphorylation and dephosphorylation. In this review, we will focus on Ser/Thr phosphatases-mediated regulation in cell apoptosis as well as on their potential roles in cell necrosis. The emerging functional importance of Ser/Thr protein phosphatases in cell death regulation adds new dimension to the signaling mechanisms of cellular function, physiology, and diseases.
Collapse
Affiliation(s)
- Haipeng Sun
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | |
Collapse
|
26
|
Reddy S, Zhao M, Hu DQ, Fajardo G, Hu S, Ghosh Z, Rajagopalan V, Wu JC, Bernstein D. Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol Genomics 2012; 44:562-75. [PMID: 22454450 DOI: 10.1152/physiolgenomics.00163.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRs) are small, noncoding RNAs that are emerging as crucial regulators of cardiac remodeling in left ventricular hypertrophy (LVH) and failure (LVF). However, there are no data on their role in right ventricular hypertrophy (RVH) and failure (RVF). This is a critical question given that the RV is uniquely at risk in patients with congenital right-sided obstructive lesions and in those with systemic RVs. We have developed a murine model of RVH and RVF using pulmonary artery constriction (PAC). miR microarray analysis of RV from PAC vs. control demonstrates altered miR expression with gene targets associated with cardiomyocyte survival and growth during hypertrophy (miR 199a-3p) and reactivation of the fetal gene program during heart failure (miR-208b). The transition from hypertrophy to heart failure is characterized by apoptosis and fibrosis (miRs-34, 21, 1). Most are similar to LVH/LVF. However, there are several key differences between RV and LV: four miRs (34a, 28, 148a, and 93) were upregulated in RVH/RVF that are downregulated or unchanged in LVH/LVF. Furthermore, there is a corresponding downregulation of their putative target genes involving cell survival, proliferation, metabolism, extracellular matrix turnover, and impaired proteosomal function. The current study demonstrates, for the first time, alterations in miRs during the process of RV remodeling and the gene regulatory pathways leading to RVH and RVF. Many of these alterations are similar to those in the afterload-stressed LV. miRs differentially regulated between the RV and LV may contribute to the RVs increased susceptibility to heart failure.
Collapse
Affiliation(s)
- Sushma Reddy
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Takeda K, Naguro I, Nishitoh H, Matsuzawa A, Ichijo H. Apoptosis signaling kinases: from stress response to health outcomes. Antioxid Redox Signal 2011; 15:719-61. [PMID: 20969480 DOI: 10.1089/ars.2010.3392] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Apoptosis is a highly regulated process essential for the development and homeostasis of multicellular organisms. Whereas caspases, a large family of intracellular cysteine proteases, play central roles in the execution of apoptosis, other proapoptotic and antiapoptotic regulators such as the members of the Bcl-2 family are also critically involved in the regulation of apoptosis. A large body of evidence has revealed that a number of protein kinases are among such regulators and regulate cellular sensitivity to various proapoptotic signals at multiple steps in apoptosis. However, recent progress in the analysis of these apoptosis signaling kinases demonstrates that they generally act as crucial regulators of diverse cellular responses to a wide variety of stressors, beyond their roles in apoptosis regulation. In this review, we have cataloged apoptosis signaling kinases involved in cellular stress responses on the basis of their ability to induce apoptosis and discuss their roles in stress responses with particular emphasis on health outcomes upon their dysregulation.
Collapse
Affiliation(s)
- Kohsuke Takeda
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence Program and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
28
|
Alcaraz WA, Chen E, Valdes P, Kim E, Lo YH, Vo J, Hamilton BA. Modifier genes and non-genetic factors reshape anatomical deficits in Zfp423-deficient mice. Hum Mol Genet 2011; 20:3822-30. [PMID: 21729880 DOI: 10.1093/hmg/ddr300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Development of neural circuitry depends on the integration of signaling pathways to coordinate specification, proliferation and differentiation of cell types in the right number, in the right place, at the right time. Zinc finger protein 423 (Zfp423), a 30-zinc finger transcription factor, forms alternate complexes with components of several developmental signaling pathways, suggesting it as a point of signal integration during brain development. We previously showed that mice lacking Zfp423 have reduced proliferation of cerebellar precursor cells, resulting in complete loss of vermis and variable hypoplasia of cerebellar hemispheres. Here, we show that Zfp423(-/-) hemisphere malformations are shaped by both genetic and non-genetic factors, producing distinct phenotype distributions in different inbred genetic backgrounds. In genetic mapping studies, we identify four additive modifier loci (Amzn1-4) and seven synthetically interacting loci (Smzn1.1-3.1) that together explain approximately one-third of the phenotypic variance. Strain-specific sequence polymorphism and expression data provide a reduced list of functional variant candidate genes at each modifier locus. Environmental covariates add only modest explanatory power, suggesting an additional stochastic component. These results provide a comprehensive analysis of sources of phenotype variation in a model of hindbrain malformation.
Collapse
Affiliation(s)
- Wendy A Alcaraz
- Biomedical Sciences Graduate Program,, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0644, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Runchel C, Matsuzawa A, Ichijo H. Mitogen-activated protein kinases in mammalian oxidative stress responses. Antioxid Redox Signal 2011; 15:205-18. [PMID: 21050144 DOI: 10.1089/ars.2010.3733] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All aerobic organisms are exposed to oxidative stress during their lifetime and are required to respond appropriately for maintenance of their survival and homeostasis. Sustained exposure to oxidative stress has devastating effects in organisms, and, not surprisingly, oxidative stress has been implicated in numerous human diseases. Therefore, an understanding of how mammals respond to oxidative stress is crucial both biologically and clinically. Intracellular signaling pathways, which are activated in response to excessive oxygen radicals, play essential roles in overcoming oxidative stress. The mitogen-activated protein kinase (MAPK) signaling pathways are involved in diverse physiological processes, and are critical for induction of oxidative stress responses. In this review, we will discuss the physiological roles of MAPKs in oxidative stress, the upstream signaling pathways leading to MAPK activation, their regulation, and the MAPK downstream substrates, with a focus on mammalian systems.
Collapse
Affiliation(s)
- Christopher Runchel
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
30
|
Differentiating size-dependent responses of juvenile pink salmon (Oncorhynchus gorbuscha) to sea lice (Lepeophtheirus salmonis) infections. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:213-23. [PMID: 21543273 DOI: 10.1016/j.cbd.2011.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 11/24/2022]
Abstract
Salmon infected with an ectoparasitic marine copepod, the salmon louse Lepeophtheirus salmonis, incur a wide variety of consequences depending upon host sensitivity. Juvenile pink salmon (Oncorhynchus gorbuscha) migrate from natal freshwater systems to the ocean at a young age relative to other Pacific salmon, and require rapid development of appropriate defenses against marine pathogens. We analyzed the early transcriptomic responses of naïve juvenile pink salmon of sizes 0.3 g (no scales), 0.7 g (mid-scale development) and 2.4 g (scales fully developed) six days after a low-level laboratory exposure to L. salmonis copepodids. All infected size groups exhibited unique transcriptional profiles. Inflammation and inhibition of cell proliferation was identified in the smallest size class (0.3 g), while increased glucose absorption and retention was identified in the middle size class (0.7 g). Tissue-remodeling genes were also up-regulated in both the 0.3 g and 0.7 g size groups. Profiles of the 2.4 g size class indicated cell-mediated immunity and possibly parasite-induced growth augmentation. Understanding a size-based threshold of resistance to L. salmonis is important for fisheries management. This work characterizes molecular responses reflecting the gradual development of innate immunity to L. salmonis between the susceptible (0.3 g) and refractory (2.4 g) pink salmon size classes.
Collapse
|
31
|
Abstract
Type 2C Ser/Thr phosphatases are a remarkable class of protein phosphatases, which are conserved in eukaryotes and involved in a large variety of functional processes. Unlike in other Ser/Thr phosphatases, the catalytic polypeptide is not usually associated with regulatory subunits, and functional specificity is achieved by encoding multiple isoforms. For fungi, most information comes from the study of type 2C protein phosphatase (PP2C) enzymes in Saccharomyces cerevisiae, where seven PP2C-encoding genes (PTC1 to -7) with diverse functions can be found. More recently, data on several Candida albicans PP2C proteins became available, suggesting that some of them can be involved in virulence. In this work we review the available literature on fungal PP2Cs and explore sequence databases to provide a comprehensive overview of these enzymes in fungi.
Collapse
|
32
|
Kutuzov MA, Bennett N, Andreeva AV. Protein phosphatase with EF-hand domains 2 (PPEF2) is a potent negative regulator of apoptosis signal regulating kinase-1 (ASK1). Int J Biochem Cell Biol 2010; 42:1816-22. [PMID: 20674765 DOI: 10.1016/j.biocel.2010.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
The function of protein phosphatases with EF-hand domains (PPEF) in mammals is not known. Large-scale expression profiling experiments suggest that PPEF expression may correlate with stress protective responses, cell survival, growth, proliferation, or neoplastic transformation. Apoptosis signal regulating kinase-1 (ASK1) is a MAP kinase kinase kinase implicated in cancer, cardiovascular and neurodegenerative diseases. ASK1 is activated by oxidative stress and induces pro-apoptotic or inflammatory signalling, largely via sustained activation of MAP kinases p38 and/or JNK. We identify human PPEF2 as a novel interacting partner and a negative regulator of ASK1. In COS-7 or HEK 293A cells treated with H(2)O(2), expression of PPEF2 abrogated sustained activation of p38 and one of the JNK p46 isoforms, and prevented ASK1-dependent caspase-3 cleavage and activation. PPEF2 efficiently suppressed H(2)O(2)-induced activation of ASK1. Overexpessed as well as endogenous ASK1 co-immunoprecipitated with PPEF2. PPEF2 was considerably more potent both as a suppressor of ASK1 activation and as its interacting partner as compared to protein phosphatase 5 (PP5), a well-known negative regulator of ASK1. PPEF2 was found to form complexes with endogenous Hsp70 and to a lesser extent Hsp90, which are also known interacting partners of PP5. These data identify, for the first time, a possible downstream signalling partner of a mammalian PPEF phosphatase, and suggest that, despite structural divergence, PPEF and PP5 phosphatases may share common interacting partners and functions.
Collapse
Affiliation(s)
- Mikhail A Kutuzov
- Department of Pharmacology (MC 868), University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
33
|
Pan J, Chang Q, Wang X, Son Y, Zhang Z, Chen G, Luo J, Bi Y, Chen F, Shi X. Reactive oxygen species-activated Akt/ASK1/p38 signaling pathway in nickel compound-induced apoptosis in BEAS 2B cells. Chem Res Toxicol 2010; 23:568-77. [PMID: 20112989 PMCID: PMC2838407 DOI: 10.1021/tx9003193] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Nickel compounds are carcinogenic to humans, possibly through induction of reactive oxygen species (ROS) that damage macromolecules including DNA and proteins. The aim of the present study is to elucidate the role of the ROS-mediated Akt/apoptosis-regulating signal kinase (ASK) 1/p38 pathway in nickel-induced apoptosis. Exposure of human bronchial epithelial cells (BEAS-2B) to nickel compounds induced the generation of ROS and activation of Akt that is associated with the activation of ASK1 and p38 mitogen-activated protein kinase. Immunoblotting suggested a down-regulation of several antiapoptotic proteins, including Bcl-2 and Bcl-xL in the nickel compound-treated cells. Indeed, a notable cell apoptosis following nickel compound treatment is evident as revealed by flow cytometry analysis. N-Acetyl-l-cysteine (NAC, a general antioxidant) and vitamin E or catalase (a specific H2O2 inhibitor) all decreased nickel-induced ROS generation. Scavenging of nickel-induced ROS by NAC or catalase attenuated Akt, ASK1, and p38 MAPK activation and apoptosis, which implies involvement of ROS in the Akt/ASK1/p38 pathway. In addition, nickel-induced activation of p38 MAPK was attenuated by a small interference of RNA specific to ASK1 (siRNA ASK1), implying that p38 MAPK was downstream of ASK1, while ASK1 activation was not reversely regulated by the inhibition of p38 MAPK by SB203580, a widely used p38 MAPK inhibitor. Silencing Akt by siRNA reduced the activation of ASK1 and p38 MAPK and cell apoptosis, whereas without nickel stimulation, siRNA Akt had no effect on the activation of ASK1 and p38 MAPK. Thus, these results suggest that the ROS-dependent Akt-ASK1-p38 axis is important for nickel-induced apoptosis.
Collapse
Affiliation(s)
- Jingju Pan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Im JY, Lee KW, Junn E, Mouradian MM. DJ-1 protects against oxidative damage by regulating the thioredoxin/ASK1 complex. Neurosci Res 2010; 67:203-8. [PMID: 20385180 DOI: 10.1016/j.neures.2010.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/05/2010] [Accepted: 04/06/2010] [Indexed: 01/27/2023]
Abstract
DJ-1 is a multifunctional protein linked to recessively inherited Parkinson's disease (PD) due to loss of function mutations. Among its activities is anti-oxidant property leading to cytoprotection under oxidative stress conditions. A key effector of oxidant-induced cell death is the MAP3 kinase apoptosis signal-regulating kinase 1 (ASK1) which is bound to and inhibited by thioredoxin 1 (Trx1) under basal conditions. Upon oxidative stimuli, however, ASK1 dissociates from this physiological inhibitor and is activated. In the present study, we investigated the role of DJ-1 in regulating Trx1/ASK1 interaction. Over-expression of DJ-1 suppressed ASK1 activation in response to H(2)O(2) in a time-dependent manner. Wild-type DJ-1, but not the PD-associated L166P mutant, prevented the dissociation of ASK1 from Trx1 in response to H(2)O(2). Among cysteine mutants of DJ-1, C46S, C53S, and C106S, only C106S failed to inhibit this dissociation implying that cysteine 106 is essential for Trx1/ASK1 regulation. Furthermore, compared to wild-type mice, DJ-1 null mouse brain homogenates and embryonic fibroblasts were more susceptible to oxidant-induced dissociation of ASK1 from Trx1, activation of the downstream kinase c-Jun N-terminal kinase, and to cell death. These findings point to yet another mechanism through which DJ-1 has anti-oxidant and cytoprotective properties by regulating the Trx1/ASK1 complex and controlling the availability of ASK1 to effect apoptosis.
Collapse
Affiliation(s)
- Joo-Young Im
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
35
|
Hattori K, Naguro I, Runchel C, Ichijo H. The roles of ASK family proteins in stress responses and diseases. Cell Commun Signal 2009; 7:9. [PMID: 19389260 PMCID: PMC2685135 DOI: 10.1186/1478-811x-7-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/24/2009] [Indexed: 11/18/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein kinase kinase kinase family, which activates c-Jun N-terminal kinase and p38 in response to a diverse array of stresses such as oxidative stress, endoplasmic reticulum stress and calcium influx. In the past decade, various regulatory mechanisms of ASK1 have been elucidated, including its oxidative stress-dependent activation. Recently, it has emerged that ASK family proteins play key roles in cancer, cardiovascular diseases and neurodegenerative diseases. In this review, we summarize the recent findings on ASK family proteins and their implications in various diseases.
Collapse
Affiliation(s)
- Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
36
|
Drexler HCA. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors. PLoS One 2009; 4:e4161. [PMID: 19129918 PMCID: PMC2613525 DOI: 10.1371/journal.pone.0004161] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/06/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cells adapt to endoplasmic reticulum (ER)-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD), however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear. METHODOLOGY AND PRINCIPAL FINDINGS Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide. CONCLUSIONS Although PP1 activity does not play a major role in regulating the ER stress response in leukemic cells, phosphatase signaling nevertheless significantly limits proteasome inhibitor-mediated ER-stress and apoptosis. Inclusion of specific phosphatase inhibitors might therefore represent an option to improve current proteasome inhibitor-based treatment modalities for hematological cancers.
Collapse
Affiliation(s)
- Hannes C A Drexler
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany.
| |
Collapse
|
37
|
Awano K, Amano K, Nagaura Y, Kanno SI, Echigo S, Tamura S, Kobayashi T. Phosphorylation of Protein Phosphatase 2Cζ by c-Jun NH2-Terminal Kinase at Ser92 Attenuates Its Phosphatase Activity. Biochemistry 2008; 47:7248-55. [DOI: 10.1021/bi800067p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenjiro Awano
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kazutaka Amano
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuko Nagaura
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shin-ichiro Kanno
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Seishi Echigo
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shinri Tamura
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Takayasu Kobayashi
- Department of Biochemistry and Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan, and Division of Oral Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
38
|
Lu G, Wang Y. FUNCTIONAL DIVERSITY OF MAMMALIAN TYPE 2C PROTEIN PHOSPHATASE ISOFORMS: NEW TALES FROM AN OLD FAMILY. Clin Exp Pharmacol Physiol 2008; 35:107-12. [DOI: 10.1111/j.1440-1681.2007.04843.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Saito S, Matsui H, Kawano M, Kumagai K, Tomishige N, Hanada K, Echigo S, Tamura S, Kobayashi T. Protein phosphatase 2Cepsilon is an endoplasmic reticulum integral membrane protein that dephosphorylates the ceramide transport protein CERT to enhance its association with organelle membranes. J Biol Chem 2007; 283:6584-93. [PMID: 18165232 DOI: 10.1074/jbc.m707691200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2Cepsilon (PP2Cepsilon), a mammalian PP2C family member, is expressed in various tissues and is implicated in the negative regulation of stress-activated protein kinase pathways. We show that PP2Cepsilon is an endoplasmic reticulum (ER) transmembrane protein with a transmembrane domain at the amino terminus and the catalytic domain facing the cytoplasm. Yeast two-hybrid screening of a human brain library using PP2Cepsilon as bait resulted in the isolation of a cDNA that encoded vesicle-associated membrane protein-associated protein A (VAPA). VAPA is an ER resident integral membrane protein involved in recruiting lipid-binding proteins such as the ceramide transport protein CERT to the ER membrane. Expression of PP2Cepsilon resulted in dephosphorylation of CERT in a VAPA expression-dependent manner, which was accompanied by redistribution of CERT from the cytoplasm to the Golgi apparatus. The expression of PP2Cepsilon also enhanced the association between CERT and VAPA. In addition, knockdown of PP2Cepsilon expression by short interference RNA attenuated the interaction between CERT and VAPA and the sphingomyelin synthesis. These results suggest that CERT is a physiological substrate of PP2Cepsilon and that dephosphorylation of CERT by PP2Cepsilon may play an important role in the regulation of ceramide trafficking from the ER to the Golgi apparatus.
Collapse
Affiliation(s)
- Satoko Saito
- Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
MacDonald JA, Storey KB. The effect of hibernation on protein phosphatases from ground squirrel organs. Arch Biochem Biophys 2007; 468:234-43. [DOI: 10.1016/j.abb.2007.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/01/2007] [Accepted: 10/07/2007] [Indexed: 01/13/2023]
|