1
|
Xu Y, Huang J, Tang S, Sun Y, Li H, Li P, Li X, Hattori M, Wu X, Zhang H, Wang Z. Anti-diabetes activity of (R)-gentiandiol in KKAy type 2 mice. Sci Rep 2025; 15:15730. [PMID: 40325051 PMCID: PMC12052974 DOI: 10.1038/s41598-025-00422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
Swertiamarin is a major component of many traditional Chinese Swertia herbs that show significant antidiabetic activity. (R)-Gentiandiol and (S)-gentiandiol are metabolites of swertiamarin found in vivo. The antidiabetic activity of swertiamarin and its nitrogen-containing metabolites (R)-gentiandiol and (S)-gentiandiol was evaluated in this research, and their mechanism of action was investigated after evaluating the serum metabolic profile of KK/Upj-Ay type 2 mice. The pharmaceutical effects of swertiamarin, (R)-gentiandiol, and (S)-gentiandiol were tested by biochemical indices and histopathological observations. Moreover, the mechanism underlying the action of three compounds against type 2 diabetes was elucidated using a metabolomic method. It was shown that (R)-gentiandiol significantly improved pathological changes in the kidney and pancreas. The levels of total cholesterol, triglyceride, and high-density and low-density lipoprotein cholesterol improved considerably after treatment with (R)-gentiandiol, compared to their levels in model mice. However, the levels of these compounds showed no improvement after treatment with (S)-gentiandiol. In total, 15 biomarkers were identified in KK/Upj-Ay type 2 mice, and the levels of 10 biomarkers were measured after treatment with (R)-gentiandiol. (R)-Gentiandiol reduced the abnormalities in metabolic pathways, including lipid metabolism, amino acid metabolism, carbohydrate metabolism, and nucleotide metabolism. Additionally, glycine, serine, and threonine metabolism related to the regulation of glycine was affected the most. The study indicated that the antidiabetic effects of Swertia herbs may due to (R)-gentiandiol which is a metabolite of swertiamarin in vivo. This study helps clarify the active metabolites of swertiamarin, provide greater insights into the clinical antidiabetic effects of Swertia herbs and bring novel ideas for developing new drugs from antidiabetic herbs.
Collapse
Affiliation(s)
- Yaqi Xu
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Jinyue Huang
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Shuhan Tang
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Heilongjiang Hospital, Beijing Children's Hospital, Youyi road 57, Harbin, 150000, China
| | - Yidan Sun
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Hao Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Pengyu Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Xianna Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Masao Hattori
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Xiuhong Wu
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping road 24, Harbin, 150040, China.
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
2
|
Han Y, Wang J, Xiong Q, Jiang D, Zhu Z, Hui L, Wang M, Qiao Y, Li Y, Han L, Liu Y, Cheng K. A synthesis and quantification method for endogenous metabolites dimethylguanidino valeric acid. Sci Rep 2025; 15:11100. [PMID: 40169761 PMCID: PMC11962117 DOI: 10.1038/s41598-025-94932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/18/2025] [Indexed: 04/03/2025] Open
Abstract
Dimethylguanidino valeric acid (DMGV) is a group of endogenous metabolites derived from arginine-containing proteins and is associated with several metabolic disorders. Latest studies have identified the stereoisomers of DMGV: asymmetric dimethylguanidino valeric acid (ADGV) and symmetric dimethylguanidino valeric acid (SDGV), which are derived from asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), respectively. However, the lack of commercial standards has hampered research into the molecular mechanisms of DMGV and its potential clinical application as biomarkers. Reported chemical synthesis methods have low yields and require specialized chemical synthesis skills and apparatus. Therefore, we aimed to develop a practical and efficient method to synthesize DMGV stereoisomers and determine their precise concentration profile in healthy subjects. A novel biocatalytic method for synthesizing DMGV using alanine-glyoxylate aminotransferase 2 (AGXT2) was developed. A metabolite panel including eight DMGV-related metabolites was also established for human plasma samples using HPLC-MS/MS, and its performance was comprehensively evaluated, especially in terms of quantitative sensitivity, precision and accuracy. Compared with the reported chemical synthesis methods, the biocatalytic approach demonstrates superior yield, conversion rate, and product purity, while being easy to implement in biological laboratories. The established DMGV quantification method has been well validated and successfully applied to measure the contents of these metabolites, especially the concentration profile of ADGV in the plasma of healthy individuals. To sum up, this study provides an efficient and practical biocatalytic approach for DMGV synthesis and determines the levels of DMGV in healthy subjects. These findings will undoubtedly promote future mechanistic studies of DMGV and its future clinical applications.
Collapse
Affiliation(s)
- Yueyuan Han
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Jiahui Wang
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Qianling Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Dingyue Jiang
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Zhenhua Zhu
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Li Hui
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Mu Wang
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Yixue Qiao
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Yi Li
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Lanlan Han
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Ken Cheng
- Wisdom Lake of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China.
- Jiangsu Province Higher Education Key Laboratory of Cell Therapy Nanoformulation (Construction), Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
3
|
Mandrile G, Cellini B, Ferraro PM. Effect of the allelic background on the phenotype of primary hyperoxaluria type I. Curr Opin Nephrol Hypertens 2025; 34:177-183. [PMID: 39641329 PMCID: PMC11789592 DOI: 10.1097/mnh.0000000000001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder of hepatic glyoxylate metabolism leading to nephrolithiasis and kidney failure. PH1 is caused by mutations on the AGXT gene encoding alanine:glyoxylate aminotransferase (AGT). The AGXT gene has two haplotypes, the major (Ma) and the minor (mi) alleles. This review summarizes the role of the minor allele on the molecular pathogenesis and the clinical manifestations of PH1. RECENT FINDINGS PH1 shows high genetic variability and significant interindividual variability. Although the minor haplotype is not pathogenic on its own, it may be crucial for the pathogenicity of some mutations or amplify the effect of others, thus affecting both symptoms and responsiveness to Vitamin B6, the only pharmacological treatment effective in a selected group of PH1 patients. SUMMARY In the last years, new drugs based on RNA-interference are available for patients nonresponsive to Vitamin B6, but no specific biomarkers are available to predict disease course and severity. Therefore, a clinical assessment of PH1 taking into account molecular analysis of the mutations and the allelic background and the possible synergism among polymorphic and pathogenic variants should be encouraged to promote approaches of personalized medicine that improve the management of available resources.
Collapse
Affiliation(s)
- Giorgia Mandrile
- Genetic Unit and Thalassemia Center, San Luigi University Hospital, Orbassano
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, Perugia
| | - Pietro Manuel Ferraro
- Section of Nephrology, Department of Medicine, Università degli Studi di Verona, Verona, Italy
| |
Collapse
|
4
|
Bakunova AK, Matyuta IO, Minyaev ME, Boyko KM, Popov VO, Bezsudnova EY. Incorporation of pyridoxal-5'-phosphate into the apoenzyme: A structural study of D-amino acid transaminase from Haliscomenobacter hydrossis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141056. [PMID: 39406293 DOI: 10.1016/j.bbapap.2024.141056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Pyridoxal-5'-phosphate (PLP)-dependent transaminases are key enzymes of amino acid metabolism in cells and remarkable biocatalysts of stereoselective amination for process chemistry applications. As cofactor-dependent enzymes, transaminases are prone to cofactor leakage. Here we discuss the holoenzyme-apoenzyme interconversion and the kinetics of PLP incorporation into the apo form of a PLP-dependent transaminase from Haliscomenobacter hydrossis. PLP binding to the apoenzyme was slow in buffer, but was accelerated in the presence of substrates. Two crystal structures of the apoenzyme were obtained: the directly obtained apoenzyme (PDB ID: 7P8O) and the one obtained by soaking crystals of the holoenzyme in a phenylhydrazine solution (PDB ID: 8YRU). The mechanism of PLP association with the apoenzyme was proposed on the basis of structural analysis of these apo forms. Three rearrangement steps, including (I) anchoring of the PLP via the phosphate group, (II) displacement of two loops, and (III) Schiff-bonding between the PLP and the ε-amino group of the catalytic lysine residue, reconstituted the active holo form of the transaminase from H. hydrossis. The results obtained allowed us to determine in the active site a permanent part and elements that are assembled by PLP, these findings may be useful for transaminase engineering for biocatalysis.
Collapse
Affiliation(s)
- Alina K Bakunova
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya O Matyuta
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
5
|
Das S, Finney AC, Anand SK, Rohilla S, Liu Y, Pandey N, Ghrayeb A, Kumar D, Nunez K, Liu Z, Arias F, Zhao Y, Pearson-Gallion BH, McKinney MP, Richard KSE, Gomez-Vidal JA, Abdullah CS, Cockerham ED, Eniafe J, Yurochko AD, Magdy T, Pattillo CB, Kevil CG, Razani B, Bhuiyan MS, Seeley EH, Galliano GE, Wei B, Tan L, Mahmud I, Surakka I, Garcia-Barrio MT, Lorenzi PL, Gottlieb E, Salido E, Zhang J, Orr AW, Liu W, Diaz-Gavilan M, Chen YE, Dhanesha N, Thevenot PT, Cohen AJ, Yurdagul A, Rom O. Inhibition of hepatic oxalate overproduction ameliorates metabolic dysfunction-associated steatohepatitis. Nat Metab 2024; 6:1939-1962. [PMID: 39333384 PMCID: PMC11495999 DOI: 10.1038/s42255-024-01134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/28/2024] [Indexed: 09/29/2024]
Abstract
The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is on the rise, and with limited pharmacological therapy available, identification of new metabolic targets is urgently needed. Oxalate is a terminal metabolite produced from glyoxylate by hepatic lactate dehydrogenase (LDHA). The liver-specific alanine-glyoxylate aminotransferase (AGXT) detoxifies glyoxylate, preventing oxalate accumulation. Here we show that AGXT is suppressed and LDHA is activated in livers from patients and mice with MASH, leading to oxalate overproduction. In turn, oxalate promotes steatosis in hepatocytes by inhibiting peroxisome proliferator-activated receptor-α (PPARα) transcription and fatty acid β-oxidation and induces monocyte chemotaxis via C-C motif chemokine ligand 2. In male mice with diet-induced MASH, targeting oxalate overproduction through hepatocyte-specific AGXT overexpression or pharmacological inhibition of LDHA potently lowers steatohepatitis and fibrosis by inducing PPARα-driven fatty acid β-oxidation and suppressing monocyte chemotaxis, nuclear factor-κB and transforming growth factor-β targets. These findings highlight hepatic oxalate overproduction as a target for the treatment of MASH.
Collapse
Grants
- R01 HL162294 NHLBI NIH HHS
- R00 HL150233 NHLBI NIH HHS
- R01 DK134011 NIDDK NIH HHS
- HL138139 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL145753 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL141155 NHLBI NIH HHS
- HL159871 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL134569 NHLBI NIH HHS
- R01 DK136685 NIDDK NIH HHS
- HL134569 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153710 NHLBI NIH HHS
- HL139755 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL153710 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL159871 NHLBI NIH HHS
- P01 AI127335 NIAID NIH HHS
- DK136685 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- HL133497 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138139 NHLBI NIH HHS
- 24POST1196650 American Heart Association (American Heart Association, Inc.)
- HL141155 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL109946 NHLBI NIH HHS
- P20 GM134974 NIGMS NIH HHS
- K99 HL150233 NHLBI NIH HHS
- HL109946 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 19POST34380224 American Heart Association (American Heart Association, Inc.)
- 24POST1199805 American Heart Association (American Heart Association, Inc.)
- DK134011 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01 AI056077 NIAID NIH HHS
- 23POST1026505 American Heart Association (American Heart Association, Inc.)
- R01 HL158546 NHLBI NIH HHS
- HL145131 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 20CDA3560123 American Heart Association (American Heart Association, Inc.)
- AI127335 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- R00 HL145131 NHLBI NIH HHS
- R01 HL145753 NHLBI NIH HHS
- R01 HL139755 NHLBI NIH HHS
- HL145753-01S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL162294 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL150233 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL167758 NHLBI NIH HHS
- K99 HL145131 NHLBI NIH HHS
- HL145753-03S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL167758 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL172970 NHLBI NIH HHS
- P20GM134974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL173972 NHLBI NIH HHS
- T32 HL155022 NHLBI NIH HHS
- R56 AI159672 NIAID NIH HHS
- R56-AI159672 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- DK131859 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- F31 DK131859 NIDDK NIH HHS
- R01 HL133497 NHLBI NIH HHS
- HL158546 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- RP190617 Cancer Prevention and Research Institute of Texas (Cancer Prevention Research Institute of Texas)
- U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
Collapse
Affiliation(s)
- Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sumati Rohilla
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Yuhao Liu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Nilesh Pandey
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Alia Ghrayeb
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Kelley Nunez
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Fabio Arias
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Brenna H Pearson-Gallion
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - M Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Koral S E Richard
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Jose A Gomez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Elizabeth D Cockerham
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Center of Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Center of Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Tarek Magdy
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Babak Razani
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Erin H Seeley
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | | | - Bo Wei
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ida Surakka
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eyal Gottlieb
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Salido
- Department of Pathology, Hospital Universitario de Canarias, Universidad de La Laguna, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Tenerife, Spain
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Monica Diaz-Gavilan
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Paul T Thevenot
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Ari J Cohen
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
- Multi-Organ Transplant Institute, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
6
|
Grieco A, Quereda-Moraleda I, Martin-Garcia JM. Innovative Strategies in X-ray Crystallography for Exploring Structural Dynamics and Reaction Mechanisms in Metabolic Disorders. J Pers Med 2024; 14:909. [PMID: 39338163 PMCID: PMC11432794 DOI: 10.3390/jpm14090909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
Enzymes are crucial in metabolic processes, and their dysfunction can lead to severe metabolic disorders. Structural biology, particularly X-ray crystallography, has advanced our understanding of these diseases by providing 3D structures of pathological enzymes. However, traditional X-ray crystallography faces limitations, such as difficulties in obtaining suitable protein crystals and studying protein dynamics. X-ray free-electron lasers (XFELs) have revolutionized this field with their bright and brief X-ray pulses, providing high-resolution structures of radiation-sensitive and hard-to-crystallize proteins. XFELs also enable the study of protein dynamics through room temperature structures and time-resolved serial femtosecond crystallography, offering comprehensive insights into the molecular mechanisms of metabolic diseases. Understanding these dynamics is vital for developing effective therapies. This review highlights the contributions of protein dynamics studies using XFELs and synchrotrons to metabolic disorder research and their application in designing better therapies. It also discusses G protein-coupled receptors (GPCRs), which, though not enzymes, play key roles in regulating physiological systems and are implicated in many metabolic disorders.
Collapse
Affiliation(s)
| | | | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), 28006 Madrid, Spain; (A.G.); (I.Q.-M.)
| |
Collapse
|
7
|
Pampalone G, Chiasserini D, Pierigè F, Camaioni E, Orvietani PL, Bregalda A, Menotta M, Bellezza I, Rossi L, Cellini B, Magnani M. Biochemical Studies on Human Ornithine Aminotransferase Support a Cell-Based Enzyme Replacement Therapy in the Gyrate Atrophy of the Choroid and Retina. Int J Mol Sci 2024; 25:7931. [PMID: 39063173 PMCID: PMC11277095 DOI: 10.3390/ijms25147931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The gyrate atrophy of the choroid and retina (GACR) is a rare genetic disease for which no definitive cure is available. GACR is due to the deficit of ornithine aminotransferase (hOAT), a pyridoxal 5'-phosphate-dependent enzyme responsible for ornithine catabolism. The hallmark of the disease is plasmatic ornithine accumulation, which damages retinal epithelium leading to progressive vision loss and blindness within the fifth decade. Here, we characterized the biochemical properties of tetrameric and dimeric hOAT and evaluated hOAT loaded in red blood cells (RBCs) as a possible enzyme replacement therapy (ERT) for GACR. Our results show that (i) hOAT has a relatively wide specificity for amino acceptors, with pyruvate being the most suitable candidate for ornithine catabolism within RBCs; (ii) both the tetrameric and dimeric enzyme can be loaded in RBC retaining their activity; and (iii) hOAT displays reduced stability in plasma, but is partly protected from inactivation upon incubation in a mixture mimicking the intracellular erythrocyte environment. Preliminary ex vivo experiments indicate that hOAT-loaded RBCs are able to metabolize extracellular ornithine at a concentration mimicking that found in patients, both in buffer and, although with lower efficiency, in plasma. Overall, our data provide a proof of concept that an RBC-mediated ERT is feasible and can be exploited as a new therapeutic approach in GACR.
Collapse
Affiliation(s)
- Gioena Pampalone
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy; (G.P.); (D.C.); (P.L.O.); (I.B.)
| | - Davide Chiasserini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy; (G.P.); (D.C.); (P.L.O.); (I.B.)
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.P.); (A.B.); (M.M.); (M.M.)
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122 Perugia, Italy;
| | - Pier Luigi Orvietani
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy; (G.P.); (D.C.); (P.L.O.); (I.B.)
| | - Alessandro Bregalda
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.P.); (A.B.); (M.M.); (M.M.)
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.P.); (A.B.); (M.M.); (M.M.)
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy; (G.P.); (D.C.); (P.L.O.); (I.B.)
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.P.); (A.B.); (M.M.); (M.M.)
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy; (G.P.); (D.C.); (P.L.O.); (I.B.)
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (F.P.); (A.B.); (M.M.); (M.M.)
| |
Collapse
|
8
|
Cellini B. A molecular journey on the pathogenesis of primary hyperoxaluria. Curr Opin Nephrol Hypertens 2024; 33:398-404. [PMID: 38602143 PMCID: PMC11139248 DOI: 10.1097/mnh.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Primary hyperoxalurias (PHs) are rare disorders caused by the deficit of liver enzymes involved in glyoxylate metabolism. Their main hallmark is the increased excretion of oxalate leading to the deposition of calcium oxalate stones in the urinary tract. This review describes the molecular aspects of PHs and their relevance for the clinical management of patients. RECENT FINDINGS Recently, the study of PHs pathogenesis has received great attention. The development of novel in vitro and in vivo models has allowed to elucidate how inherited mutations lead to enzyme deficit, as well as to confirm the pathogenicity of newly-identified mutations. In addition, a better knowledge of the metabolic consequences in disorders of liver glyoxylate detoxification has been crucial to identify the key players in liver oxalate production, thus leading to the identification and validation of new drug targets. SUMMARY The research on PHs at basic, translational and clinical level has improved our knowledge on the critical factors that modulate disease severity and the response to the available treatments, leading to the development of new drugs, either in preclinical stage or, very recently, approved for patient treatment.
Collapse
Affiliation(s)
- Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Vankova P, Pacheco-Garcia JL, Loginov DS, Gómez-Mulas A, Kádek A, Martín-Garcia JM, Salido E, Man P, Pey AL. Insights into the pathogenesis of primary hyperoxaluria type I from the structural dynamics of alanine:glyoxylate aminotransferase variants. FEBS Lett 2024; 598:485-499. [PMID: 38243391 DOI: 10.1002/1873-3468.14800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Primary hyperoxaluria type I (PH1) is caused by deficient alanine:glyoxylate aminotransferase (AGT) activity. PH1-causing mutations in AGT lead to protein mistargeting and aggregation. Here, we use hydrogen-deuterium exchange (HDX) to characterize the wild-type (WT), the LM (a polymorphism frequent in PH1 patients) and the LM G170R (the most common mutation in PH1) variants of AGT. We provide the first experimental analysis of AGT structural dynamics, showing that stability is heterogeneous in the native state and providing a blueprint for frustrated regions with potentially functional relevance. The LM and LM G170R variants only show local destabilization. Enzymatic transamination of the pyridoxal 5-phosphate cofactor bound to AGT hardly affects stability. Our study, thus, supports that AGT misfolding is not caused by dramatic effects on structural dynamics.
Collapse
Affiliation(s)
- Pavla Vankova
- Institute of Biotechnology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | | | - Dmitry S Loginov
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | | | - Alan Kádek
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - José Manuel Martín-Garcia
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, Tenerife, Spain
| | - Petr Man
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Spain
| |
Collapse
|
10
|
Yin Y, Zhang Y, Hua Z, Wu A, Pan X, Yang J, Wang X. Muscle transcriptome analysis provides new insights into the growth gap between fast- and slow-growing Sinocyclocheilus grahami. Front Genet 2023; 14:1217952. [PMID: 37538358 PMCID: PMC10394708 DOI: 10.3389/fgene.2023.1217952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Sinocyclocheilus grahami is an economically valuable and famous fish in Yunnan Province, China. However, given its slow growth (40 g/2 years) and large growth differences among individuals, its growth performance needs to be improved for sustainable future use, in which molecular breeding technology can play an important role. In the current study, we conducted muscle transcriptomic analysis to investigate the growth gaps among individuals and the mechanism underlying growth within 14 fast- and 14 slow-growth S. grahami. In total, 1,647 differentially expressed genes (DEGs) were obtained, including 947 up-regulated and 700 down-regulated DEGs in fast-growth group. Most DEGs were significantly enriched in ECM-receptor interaction, starch and sucrose metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, amino acids biosynthesis and metabolism, peroxisome, and PPAR signaling pathway. Some genes related to glycogen degradation, glucose transport, and glycolysis (e.g., adipoq, prkag1, slc2a1, agl, pygm, pgm1, pfkm, gapdh, aldoa, pgk1, pgam2, bpgm, and eno3) were up-regulated, while some genes related to fatty acid degradation and transport (e.g., acox1, acaa1, fabp1b.1, slc27a1, and slc27a2) and amino acid metabolism (e.g., agxt, shmt1, glula, and cth) were down-regulated in the fast-growth group. Weighted gene co-expression network analysis identified col1a1, col1a2, col5a1, col6a2, col10a1, col26a1, bglap, and krt15 as crucial genes for S. grahami growth. Several genes related to bone and muscle growth (e.g., bmp2, bmp3, tgfb1, tgfb2, gdf10, and myog) were also up-regulated in the fast-growth group. These results suggest that fast-growth fish may uptake adequate energy (e.g., glucose, fatty acid, and amino acids) from fodder, with excess energy substances used to synthesize collagen to accelerate bone and muscle growth after normal life activities are maintained. Moreover, energy uptake may be the root cause, while collagen synthesis may be the direct reason for the growth gap between fast- and slow-growth fish. Hence, improving food intake and collagen synthesis may be crucial for accelerating S. grahami growth, and further research is required to fully understand and confirm these associations.
Collapse
Affiliation(s)
- Yanhui Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanwei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zexiang Hua
- Fishery Technology Extension Station of Yunnan, Kunming, Yunnan, China
| | - Anli Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaofu Pan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Junxing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoai Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
11
|
Gatticchi L, Dindo M, Pampalone G, Conter C, Cellini B, Takayama T. Biochemical and cellular effects of a novel missense mutation of the AGXT gene associated with Primary Hyperoxaluria Type 1. Biochem Biophys Res Commun 2023; 645:118-123. [PMID: 36682331 DOI: 10.1016/j.bbrc.2023.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal disease caused by mutations in AGXT that lead to the deficiency of alanine:glyoxylate aminotransferase (AGT). AGT is a liver pyridoxal 5'-phosphate (PLP)-dependent enzyme that detoxifies glyoxylate inside peroxisomes. The lack of AGT activity results in a build-up of glyoxylate that is oxidized to oxalate, then culminating in hyperoxaluria often leading to kidney failure. Most pathogenic mutations reduce AGT specific activity because of catalytic defects, improper folding, mistargeting to mitochondria, reduced intracellular stability, dimerization, and/or aggregation. Administration of pyridoxine (PN), a precursor of PLP, is a therapeutic option available for PH1 patients carrying responsive genotypes through the ability of the coenzyme to behave as a chaperone. Here, we report the clinical and biochemical characterization of the novel mutation c.1093G > T (p.Gly365Cys) identified in a Japanese patient. In silico studies predict that the p.Gly365Cys mutation causes a steric clash resulting in a local rearrangement of the region surrounding the active site, thus possibly affecting PLP binding and catalysis. Indeed, the purified p.Gly365Cys mutant displays proper folding but shows an extensive decrease of catalytic efficiency due to an altered PLP-binding. When expressed in AGXT1-KO HepG2 cells the variant shows reduced specific activity and protein levels in comparison with wild type AGT that cannot be rescued by PN treatment. Overall, our data indicate that the mutation of Gly365 induces a conformational change at the AGT active site translating into a functional and structural defect and allow to predict that the patients will not be responsive to vitamin B6, thus supporting the usefulness of preclinical studies to guide therapeutic decisions in the era of precision medicine.
Collapse
Affiliation(s)
- Leonardo Gatticchi
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy.
| | - Mirco Dindo
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy.
| | - Gioena Pampalone
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy.
| | - Carolina Conter
- Laboratory of Biochemistry, Department of Biotechnology, University of Verona, 37134, Verona, Italy.
| | - Barbara Cellini
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy.
| | - Tatsuya Takayama
- Department of Urology, Jichi Medical University, 329-0498, Tochigi, Japan; Department of Urology, International University of Health and Welfare Hospital, 329-2763, Tochigi, Japan.
| |
Collapse
|
12
|
Bakunova AK, Kostyukov AA, Kuzmin VA, Popov VO, Bezsudnova EY. Mechanistic aspects of the transamination reactions catalyzed by D-amino acid transaminase from Haliscomenobacter hydrossis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140886. [PMID: 36496204 DOI: 10.1016/j.bbapap.2022.140886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Pyridoxal-5'-phosphate-(PLP-) dependent D-amino acid transaminases (DAATs) catalyze stereoselective reversible transfer of the amino group between D-amino acids and keto acids. In vivo DAATs are commonly known to synthesize D-glutamate for cell wall peptidoglycans. Today DAATs meet increasing attention for application in the synthesis of D-amino acids, whereas little is known about the mechanism of substrate recognition and catalytic steps of the D-amino acids conversion by DAATs. In this work, the pre-steady-state kinetics of the half-reactions of DAAT from Haliscomenobacter hydrossis with D-glutamate, D-alanine, D-leucine, and D-phenylalanine was examined at two wavelengths, 416 and 330 nm, using a stopped-flow technique. Monophasic kinetics was observed with specific substrates D-glutamate and D-alanine, whereas half-reactions with D-leucine and D-phenylalanine exhibited biphasic kinetics. All half-reactions proceeded until the complete conversion of PLP due to the release of the pyridoxamine-5'-phosphate form of cofactor from the holoenzyme . Comparison of kinetic parameters of half-reactions and the overall transamination reactions for D-leucine, D-phenylalanine revealed the increase in the rates of deamination of these substrates in the overall reaction with α-ketoglutarate. In the overall transamination reaction, the catalytic turnover rates for D-leucine and D-phenylalanine increased by 260 and 60 times, correspondingly, comparing with the slowest step rate constants in the half-reactions. We suggested the activating effect by a specific substrate α-ketoglutarate in the overall transamination reaction. The study of half-reactions helped to quantify the specificity of DAAT from H. hydrossis for D-amino acids with different properties. The results obtained are the first detailed analysis of half-reactions catalyzed by DAAT.
Collapse
Affiliation(s)
- Alina K Bakunova
- A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st., 4, 119334 Moscow, Russian Federation
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st., 4, 119334 Moscow, Russian Federation
| | - Vladimir O Popov
- A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
| | - Ekaterina Yu Bezsudnova
- A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation.
| |
Collapse
|
13
|
Phosphorylation of Thr9 Affects the Folding Landscape of the N-Terminal Segment of Human AGT Enhancing Protein Aggregation of Disease-Causing Mutants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248762. [PMID: 36557898 PMCID: PMC9786777 DOI: 10.3390/molecules27248762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The mutations G170R and I244T are the most common disease cause in primary hyperoxaluria type I (PH1). These mutations cause the misfolding of the AGT protein in the minor allele AGT-LM that contains the P11L polymorphism, which may affect the folding of the N-terminal segment (NTT-AGT). The NTT-AGT is phosphorylated at T9, although the role of this event in PH1 is unknown. In this work, phosphorylation of T9 was mimicked by introducing the T9E mutation in the NTT-AGT peptide and the full-length protein. The NTT-AGT conformational landscape was studied by circular dichroism, NMR, and statistical mechanical methods. Functional and stability effects on the full-length AGT protein were characterized by spectroscopic methods. The T9E and P11L mutations together reshaped the conformational landscape of the isolated NTT-AGT peptide by stabilizing ordered conformations. In the context of the full-length AGT protein, the T9E mutation had no effect on the overall AGT function or conformation, but enhanced aggregation of the minor allele (LM) protein and synergized with the mutations G170R and I244T. Our findings indicate that phosphorylation of T9 may affect the conformation of the NTT-AGT and synergize with PH1-causing mutations to promote aggregation in a genotype-specific manner. Phosphorylation should be considered a novel regulatory mechanism in PH1 pathogenesis.
Collapse
|
14
|
Chen CT, Shao Z, Fu Z. Dysfunctional peroxisomal lipid metabolisms and their ocular manifestations. Front Cell Dev Biol 2022; 10:982564. [PMID: 36187472 PMCID: PMC9524157 DOI: 10.3389/fcell.2022.982564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retina is rich in lipids and dyslipidemia causes retinal dysfunction and eye diseases. In retina, lipids are not only important membrane component in cells and organelles but also fuel substrates for energy production. However, our current knowledge of lipid processing in the retina are very limited. Peroxisomes play a critical role in lipid homeostasis and genetic disorders with peroxisomal dysfunction have different types of ocular complications. In this review, we focus on the role of peroxisomes in lipid metabolism, including degradation and detoxification of very-long-chain fatty acids, branched-chain fatty acids, dicarboxylic acids, reactive oxygen/nitrogen species, glyoxylate, and amino acids, as well as biosynthesis of docosahexaenoic acid, plasmalogen and bile acids. We also discuss the potential contributions of peroxisomal pathways to eye health and summarize the reported cases of ocular symptoms in patients with peroxisomal disorders, corresponding to each disrupted peroxisomal pathway. We also review the cross-talk between peroxisomes and other organelles such as lysosomes, endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhuo Shao
- Post-Graduate Medical Education, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, the Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- The Genetics Program, North York General Hospital, University of Toronto, Toronto, ON, Canada
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Gatticchi L, Grottelli S, Ambrosini G, Pampalone G, Gualtieri O, Dando I, Bellezza I, Cellini B. CRISPR/Cas9-mediated knock-out of AGXT1 in HepG2 cells as a new in vitro model of Primary Hyperoxaluria Type 1. Biochimie 2022; 202:110-122. [PMID: 35964771 DOI: 10.1016/j.biochi.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
Abstract
AGXT1 encodes alanine:glyoxylate aminotransferase 1 (AGT1), a liver peroxisomal pyridoxal 5'-phosphate dependent-enzyme whose deficit causes Primary Hyperoxaluria Type 1 (PH1). PH1 is a rare disease characterized by overproduction of oxalate, first leading to kidney stones formation, and possibly evolving to life-threatening systemic oxalosis. A minority of PH1 patients is responsive to pyridoxine, while the option for non-responders is liver-kidney transplantation. Therefore, huge efforts are currently focused on the identification of new therapies, including the promising approaches based on RNA silencing recently approved. Many PH1-associated mutations are missense and lead to a variety of kinetic and/or folding defects on AGT1. In this context, the availability of a reliable in vitro disease model would be essential to better understand the phenotype of known or newly-identified pathogenic variants as well as to test novel drug candidates. Here, we took advantage of the CRISPR/Cas9 technology to specifically knock-out AGXT1 in HepG2 cells, a hepatoma-derived cell model exhibiting a conserved glyoxylate metabolism. AGXT1-KO HepG2 displayed null AGT1 expression and significantly reduced transaminase activity leading to an enhanced secretion of oxalate upon glycolate challenge. Known pathogenic AGT1 variants expressed in AGXT1-KO HepG2 cells showed alteration in both protein levels and specific transaminase activity, as well as a partial mitochondrial mistargeting when associated with a common polymorphism. Notably, pyridoxine treatment was able to partially rescue activity and localization of clinically-responsive variants. Overall, our data validate AGXT1-KO HepG2 cells as a novel cellular model to investigate PH1 pathophysiology, and as a platform for drug discovery and development.
Collapse
Affiliation(s)
- Leonardo Gatticchi
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy
| | - Silvia Grottelli
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134, Verona, Italy
| | - Gioena Pampalone
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy
| | - Ottavia Gualtieri
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134, Verona, Italy
| | - Ilaria Bellezza
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy
| | - Barbara Cellini
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy.
| |
Collapse
|
16
|
Grottelli S, Annunziato G, Pampalone G, Pieroni M, Dindo M, Ferlenghi F, Costantino G, Cellini B. Identification of Human Alanine-Glyoxylate Aminotransferase Ligands as Pharmacological Chaperones for Variants Associated with Primary Hyperoxaluria Type 1. J Med Chem 2022; 65:9718-9734. [PMID: 35830169 PMCID: PMC9340776 DOI: 10.1021/acs.jmedchem.2c00142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Primary hyperoxaluria type I (PH1) is a rare kidney disease
due
to the deficit of alanine:glyoxylate aminotransferase (AGT), a pyridoxal-5′-phosphate-dependent
enzyme responsible for liver glyoxylate detoxification, which in turn
prevents oxalate formation and precipitation as kidney stones. Many
PH1-associated missense mutations cause AGT misfolding. Therefore,
the use of pharmacological chaperones (PCs), small molecules that
promote correct folding, represents a useful therapeutic option. To
identify ligands acting as PCs for AGT, we first performed a small
screening of commercially available compounds. We tested each molecule
by a dual approach aimed at defining the inhibition potency on purified
proteins and the chaperone activity in cells expressing a misfolded
variant associated with PH1. We then performed a chemical optimization
campaign and tested the resulting synthetic molecules using the same
approach. Overall, the results allowed us to identify a promising
hit compound for AGT and draw conclusions about the requirements for
optimal PC activity.
Collapse
Affiliation(s)
- Silvia Grottelli
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Giannamaria Annunziato
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Gioena Pampalone
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Marco Pieroni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Mirco Dindo
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Francesca Ferlenghi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Gabriele Costantino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| |
Collapse
|
17
|
Dindo M, Pascarelli S, Chiasserini D, Grottelli S, Costantini C, Uechi G, Giardina G, Laurino P, Cellini B. Structural dynamics shape the fitness window of alanine:glyoxylate aminotransferase. Protein Sci 2022; 31:e4303. [PMID: 35481644 PMCID: PMC8996469 DOI: 10.1002/pro.4303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 01/24/2023]
Abstract
The conformational landscape of a protein is constantly expanded by genetic variations that have a minimal impact on the function(s) while causing subtle effects on protein structure. The wider the conformational space sampled by these variants, the higher the probabilities to adapt to changes in environmental conditions. However, the probability that a single mutation may result in a pathogenic phenotype also increases. Here we present a paradigmatic example of how protein evolution balances structural stability and dynamics to maximize protein adaptability and preserve protein fitness. We took advantage of known genetic variations of human alanine:glyoxylate aminotransferase (AGT1), which is present as a common major allelic form (AGT-Ma) and a minor polymorphic form (AGT-Mi) expressed in 20% of Caucasian population. By integrating crystallographic studies and molecular dynamics simulations, we show that AGT-Ma is endowed with structurally unstable (frustrated) regions, which become disordered in AGT-Mi. An in-depth biochemical characterization of variants from an anticonsensus library, encompassing the frustrated regions, correlates this plasticity to a fitness window defined by AGT-Ma and AGT-Mi. Finally, co-immunoprecipitation analysis suggests that structural frustration in AGT1 could favor additional functions related to protein-protein interactions. These results expand our understanding of protein structural evolution by establishing that naturally occurring genetic variations tip the balance between stability and frustration to maximize the ensemble of conformations falling within a well-defined fitness window, thus expanding the adaptability potential of the protein.
Collapse
Affiliation(s)
- Mirco Dindo
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Stefano Pascarelli
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | | | - Silvia Grottelli
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | - Gen‐Ichiro Uechi
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Giorgio Giardina
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
| | - Paola Laurino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Barbara Cellini
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| |
Collapse
|
18
|
Mandrile G, Pelle A, Sciannameo V, Benetti E, D'Alessandro MM, Emma F, Montini G, Peruzzi L, Petrarulo M, Romagnoli R, Vitale C, Cellini B, Giachino D. Primary hyperoxaluria in Italy: the past 30 years and the near future of a (not so) rare disease. J Nephrol 2022; 35:841-850. [PMID: 35218550 PMCID: PMC8995259 DOI: 10.1007/s40620-022-01258-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Background Primary hyperoxalurias (PHs) are rare autosomal recessive diseases of the glyoxylate metabolism; PH1 is caused by mutations in the AGXT gene, PH2 in GRHPR and PH3 in HOGA1. Methods Here we report the first large multi-center cohort of Italian PH patients collected over 30 years (1992–2020 median follow-up time 8.5 years). Complete genotype was available for 94/95 PH1 patients and for all PH2 (n = 3) and PH3 (n = 5) patients. Symptoms at onset were mainly nephrolithiasis (46.3%) and nephrocalcinosis (33.7%). Median age at onset of symptoms and diagnosis were 4.0 years and 9.9 years, respectively. Results Fifty-four patients (56.8%) were diagnosed after chronic kidney disease. Sixty-three patients (66.3%) developed end stage kidney disease (median age 14.0 years). Twenty-one patients had a kidney-only transplant and, among them, seven had a second kidney transplant combined with liver transplant. A combined kidney–liver transplant was carried out in 29 patients and a sequential kidney–liver transplant was performed in two. In five cases a preemptive liver transplant was performed. Those receiving a liver-only transplant tended to have lower kidney function at last follow-up. Conclusion Our study of PHs in Italy underlines a considerable diagnostic delay, which has only slightly decreased in recent years. Therefore, we suggest a more extensive use of both metabolic screening among patients with recurrent kidney stones and genotyping, including unambiguous assignment of minor/major allele status in order to promptly begin appropriate treatment. This will be fundamental in order to have access to the new therapies, which are mainly focused on substrate reduction for the oxalate-producing enzymes using RNA-interference. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s40620-022-01258-4.
Collapse
Affiliation(s)
- Giorgia Mandrile
- Genetic Unit and Thalassemia Center, San Luigi Gonzaga University Hospital, Regione Gonzole 10, 10043, Orbassano, TO, Italy.
| | - Alessandra Pelle
- Medical Genetics Unit, AOU Città della Salute e della Scienza, Turin, Italy
| | - Veronica Sciannameo
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy
| | - Elisa Benetti
- Pediatric Nephrology, Dialysis and Transplant Unit, Department of Women's and Children's Health, Padua University Hospital, Padua, Italy
| | - Maria Michela D'Alessandro
- Pediatric Nephrology Unit, Ospedale dei Bambini, A.R.N.A.S. Civico-G. Di Cristina, Benfratelli Palermo, PA, Italy
| | - Francesco Emma
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Licia Peruzzi
- Pediatric Nephrology Unit, "Regina Margherita Department of Children's Diseases", Città della Salute e della Scienza di Torino, Turin, Italy
| | - Michele Petrarulo
- Kidney Stone Laboratory-Chemical-Clinical Laboratory Unit, Azienda Ospedaliera Ordine Mauriziano di Torino, Turin, Italy
| | - Renato Romagnoli
- Liver Transplant Unit, General Surgery 2U, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Corrado Vitale
- Nephrology and Dialysis Unit, Azienda Ospedaliera Ordine Mauriziano di Torino, Turin, Italy
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Daniela Giachino
- Medical Genetic Unit, San Luigi Gonzaga University Hospital, Orbassano, TO, Italy.,Medical Genetics, Department Clinical and Biological Sciences, University of Torino, Turin, Italy
| |
Collapse
|
19
|
Using Steady-State Kinetics to Quantitate Substrate Selectivity and Specificity: A Case Study with Two Human Transaminases. Molecules 2022; 27:molecules27041398. [PMID: 35209187 PMCID: PMC8875635 DOI: 10.3390/molecules27041398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
We examined the ability of two human cytosolic transaminases, aspartate aminotransferase (GOT1) and alanine aminotransferase (GPT), to transform their preferred substrates whilst discriminating against similar metabolites. This offers an opportunity to survey our current understanding of enzyme selectivity and specificity in a biological context. Substrate selectivity can be quantitated based on the ratio of the kcat/KM values for two alternative substrates (the 'discrimination index'). After assessing the advantages, implications and limits of this index, we analyzed the reactions of GOT1 and GPT with alternative substrates that are metabolically available and show limited structural differences with respect to the preferred substrates. The transaminases' observed selectivities were remarkably high. In particular, GOT1 reacted ~106-fold less efficiently when the side-chain carboxylate of the 'physiological' substrates (aspartate and glutamate) was replaced by an amido group (asparagine and glutamine). This represents a current empirical limit of discrimination associated with this chemical difference. The structural basis of GOT1 selectivity was addressed through substrate docking simulations, which highlighted the importance of electrostatic interactions and proper substrate positioning in the active site. We briefly discuss the biological implications of these results and the possibility of using kcat/KM values to derive a global measure of enzyme specificity.
Collapse
|
20
|
Shee K, Stoller ML. Perspectives in primary hyperoxaluria - historical, current and future clinical interventions. Nat Rev Urol 2021; 19:137-146. [PMID: 34880452 PMCID: PMC8652378 DOI: 10.1038/s41585-021-00543-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
Primary hyperoxalurias are a devastating family of diseases leading to multisystem oxalate deposition, nephrolithiasis, nephrocalcinosis and end-stage renal disease. Traditional treatment paradigms are limited to conservative management, dialysis and combined transplantation of the kidney and liver, of which the liver is the primary source of oxalate production. However, transplantation is associated with many potential complications, including operative risks, graft rejection, post-transplant organ failure, as well as lifelong immunosuppressive medications and their adverse effects. New therapeutics being developed for primary hyperoxalurias take advantage of biochemical knowledge about oxalate synthesis and metabolism, and seek to specifically target these pathways with the goal of decreasing the accumulation and deposition of oxalate in the body. Primary hyperoxalurias are a devastating family of diseases that eventually lead to end-stage renal disease. In this Review, Shee and Stoller discuss current treatment paradigms for primary hyperoxalurias, new therapeutics and their mechanisms of action, and future directions for novel research in the field. Primary hyperoxalurias (PHs) are a devastating family of rare, autosomal-recessive genetic disorders that lead to multisystem oxalate deposition, nephrolithiasis, nephrocalcinosis and end-stage renal disease. Traditional treatment paradigms are limited to conservative management, dialysis and inevitably transplantation of the kidney and liver, which is associated with high morbidity and the need for lifelong immunosuppression. New therapeutics being developed for PHs take advantage of biochemical knowledge about oxalate synthesis and metabolism to specifically target these pathways, with the goal of decreasing the accumulation and deposition of plasma oxalate in the body. New therapeutics can be divided into classes, and include substrate reduction therapy, intestinal oxalate degradation, chaperone therapy, enzyme restoration therapy and targeting of the inflammasome. Lumasiran, a mRNA therapeutic targeting glycolate oxidase, was the first primary hyperoxaluria-specific therapeutic approved by the European Medicines Agency and the FDA in 2020. Future work includes further clinical trials for promising therapeutics in the pipeline, identification of biomarkers of response to PH-directed therapy, optimization of drug development and delivery of new therapeutics.
Collapse
Affiliation(s)
- Kevin Shee
- Department of Urology, UCSF, San Francisco, CA, USA.
| | | |
Collapse
|
21
|
Dindo M, Ambrosini G, Oppici E, Pey AL, O’Toole PJ, Marrison JL, Morrison IEG, Butturini E, Grottelli S, Costantini C, Cellini B. Dimerization Drives Proper Folding of Human Alanine:Glyoxylate Aminotransferase But Is Dispensable for Peroxisomal Targeting. J Pers Med 2021; 11:jpm11040273. [PMID: 33917320 PMCID: PMC8067440 DOI: 10.3390/jpm11040273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022] Open
Abstract
Peroxisomal matrix proteins are transported into peroxisomes in a fully-folded state, but whether multimeric proteins are imported as monomers or oligomers is still disputed. Here, we used alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal 5′-phosphate (PLP)-dependent enzyme, whose deficit causes primary hyperoxaluria type I (PH1), as a model protein and compared the intracellular behavior and peroxisomal import of native dimeric and artificial monomeric forms. Monomerization strongly reduces AGT intracellular stability and increases its aggregation/degradation propensity. In addition, monomers are partly retained in the cytosol. To assess possible differences in import kinetics, we engineered AGT to allow binding of a membrane-permeable dye and followed its intracellular trafficking without interfering with its biochemical properties. By fluorescence recovery after photobleaching, we measured the import rate in live cells. Dimeric and monomeric AGT displayed a similar import rate, suggesting that the oligomeric state per se does not influence import kinetics. However, when dimerization is compromised, monomers are prone to misfolding events that can prevent peroxisomal import, a finding crucial to predicting the consequences of PH1-causing mutations that destabilize the dimer. Treatment with pyridoxine of cells expressing monomeric AGT promotes dimerization and folding, thus, demonstrating the chaperone role of PLP. Our data support a model in which dimerization represents a potential key checkpoint in the cytosol at the crossroad between misfolding and correct targeting, a possible general mechanism for other oligomeric peroxisomal proteins.
Collapse
Affiliation(s)
- Mirco Dindo
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.D.); (S.G.); (C.C.)
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (G.A.); (E.O.); (E.B.)
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (G.A.); (E.O.); (E.B.)
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain;
| | - Peter J. O’Toole
- Bioscience Technology Facility, Department of Biology, University of York, York YO23 3GE, UK; (P.J.O.); (J.L.M.); (I.E.G.M.)
| | - Joanne L. Marrison
- Bioscience Technology Facility, Department of Biology, University of York, York YO23 3GE, UK; (P.J.O.); (J.L.M.); (I.E.G.M.)
| | - Ian E. G. Morrison
- Bioscience Technology Facility, Department of Biology, University of York, York YO23 3GE, UK; (P.J.O.); (J.L.M.); (I.E.G.M.)
| | - Elena Butturini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (G.A.); (E.O.); (E.B.)
| | - Silvia Grottelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.D.); (S.G.); (C.C.)
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.D.); (S.G.); (C.C.)
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.D.); (S.G.); (C.C.)
- Correspondence: ; Tel.: +39-075-585-8339
| |
Collapse
|
22
|
Dindo M, Mandrile G, Conter C, Montone R, Giachino D, Pelle A, Costantini C, Cellini B. The ILE56 mutation on different genetic backgrounds of alanine:glyoxylate aminotransferase: Clinical features and biochemical characterization. Mol Genet Metab 2020; 131:171-180. [PMID: 32792227 DOI: 10.1016/j.ymgme.2020.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 01/20/2023]
Abstract
Primary Hyperoxaluria type I (PH1) is a rare disease caused by mutations in the AGXT gene encoding alanine:glyoxylate aminotransferase (AGT), a liver enzyme involved in the detoxification of glyoxylate, the failure of which results in accumulation of oxalate and kidney stones formation. The role of protein misfolding in the AGT deficit caused by most PH1-causing mutations is increasingly being recognized. In addition, the genetic background in which a mutation occurs is emerging as a critical risk factor for disease onset and/or severity. Based on these premises, in this study we have analyzed the clinical, biochemical and cellular effects of the p.Ile56Asn mutation, recently described in a PH1 patient, as a function of the residue at position 11, a hot-spot for both polymorphic (p.Pro11Leu) and pathogenic (p.Pro11Arg) mutations. We have found that the p.Ile56Asn mutation induces a structural defect mostly related to the apo-form of AGT. The effects are more pronounced when the substitution of Ile56 is combined with the p.Pro11Leu and, at higher degree, the p.Pro11Arg mutation. As compared with the non-pathogenic forms, AGT variants display reduced expression and activity in mammalian cells. Vitamin B6, a currently approved treatment for PH1, can overcome the effects of the p.Ile56Asn mutation only when it is associated with Pro at position 11. Our results provide a first proof that the genetic background influences the effects of PH1-causing mutations and the responsiveness to treatment and suggest that molecular and cellular studies can integrate clinical data to identify the best therapeutic strategy for PH1 patients.
Collapse
Affiliation(s)
- Mirco Dindo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giorgia Mandrile
- Medical Genetics Unit, Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy; Genetica e Thalassemia Unit, San Luigi University Hospital, Orbassano (TO), Italy
| | - Carolina Conter
- Department of Neurological, Biomedical, and Movement Sciences, University of Verona, Verona, Italy
| | - Rosa Montone
- Department of Neurological, Biomedical, and Movement Sciences, University of Verona, Verona, Italy
| | - Daniela Giachino
- Medical Genetics Unit, Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy
| | - Alessandra Pelle
- Medical Genetics Unit, Department of Clinical and Biological Sciences, University of Torino, Orbassano (TO), Italy
| | - Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|
23
|
Cycloserine enantiomers are reversible inhibitors of human alanine:glyoxylate aminotransferase: implications for Primary Hyperoxaluria type 1. Biochem J 2020; 476:3751-3768. [PMID: 31794008 DOI: 10.1042/bcj20190507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Peroxisomal alanine:glyoxylate aminotransferase (AGT) is responsible for glyoxylate detoxification in human liver and utilizes pyridoxal 5'-phosphate (PLP) as coenzyme. The deficit of AGT leads to Primary Hyperoxaluria Type I (PH1), a rare disease characterized by calcium oxalate stones deposition in the urinary tract as a consequence of glyoxylate accumulation. Most missense mutations cause AGT misfolding, as in the case of the G41R, which induces aggregation and proteolytic degradation. We have investigated the interaction of wild-type AGT and the pathogenic G41R variant with d-cycloserine (DCS, commercialized as Seromycin), a natural product used as a second-line treatment of multidrug-resistant tuberculosis, and its synthetic enantiomer l-cycloserine (LCS). In contrast with evidences previously reported on other PLP-enzymes, both ligands are AGT reversible inhibitors showing inhibition constants in the micromolar range. While LCS undergoes half-transamination generating a ketimine intermediate and behaves as a classical competitive inhibitor, DCS displays a time-dependent binding mainly generating an oxime intermediate. Using a mammalian cellular model, we found that DCS, but not LCS, is able to promote the correct folding of the G41R variant, as revealed by its increased specific activity and expression as a soluble protein. This effect also translates into an increased glyoxylate detoxification ability of cells expressing the variant upon treatment with DCS. Overall, our findings establish that DCS could play a role as pharmacological chaperone, thus suggesting a new line of intervention against PH1 based on a drug repositioning approach. To a widest extent, this strategy could be applied to other disease-causing mutations leading to AGT misfolding.
Collapse
|
24
|
Bezsudnova EY, Stekhanova TN, Ruzhitskiy AO, Popov VO. Effects of pH and temperature on (S)-amine activity of transaminase from the cold-adapted bacterium Psychrobacter cryohalolentis. Extremophiles 2020; 24:537-549. [PMID: 32418069 DOI: 10.1007/s00792-020-01174-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
(7R,8S)-diaminopelargonic acid transaminase from the cold-adapted Gram-negative bacterium Psychrobacter cryohalolentis (Pcryo361) is able to react with unnatural substrates including (S)-( +)-1-phenylethylamine, aldehydes and α-diketones. Additionally, Pcryo361 is active at 0-50 °C and retains up to 10% of the maximum activity at 0 °C. Here, we report a detailed study on the stability and low temperature activity of Pcryo361. At the optimal pH for (S)-amine activity (pH 10.0), the enzyme was stable at 0-10 °C and no decrease in the enzyme activity was observed within 24 h in a slightly alkaline medium, pH 8.0, at 35 °C. Pcryo361 was solvent stable and was activated in 10% DMSO and DMFA at 35 °C. An analysis of the efficiency of catalysis of Pcryo361 at 35 °C and 10 °C showed that the specificity towards (S)-( +)-1-phenylethylamine dropped at 10 °C; however, the specificity towards 2,3-butanedione remained unchanged. Inhibition analysis showed that Pcryo361 activity was not inhibited by acetophenone but inhibited by amines (products of aldehyde amination). The observed pH stability and low temperature activity of Pcryo361 with activated keto substrates are attractive features in the field of development of stereoselective amination at low temperatures.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation.
| | - Tatiana N Stekhanova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation
| | - Aleksandr O Ruzhitskiy
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation.,Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, Moscow, 123182, Russian Federation
| |
Collapse
|
25
|
Bezsudnova EY, Stekhanova TN, Boyko KM, Popov VO. Effect of Ketosubstrate on the Product Yield in the Transamination Reaction Catalyzed by Transaminase from Thermoproteus uzoniensis. DOKL BIOCHEM BIOPHYS 2020; 490:5-8. [PMID: 32342302 DOI: 10.1134/s1607672920010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 11/23/2022]
Abstract
The study of the equilibrium of reactions catalyzed by thermostable enzymes is in demand for the development of biotechnological enzyme processes. The results of the analysis of equilibrium of transamination reaction catalyzed by thermostable transaminase from the archaeon Thermoproteus uzoniensis are presented below. A comparison of the conversion of substrates was performed for reactions with L-leucine and pyruvate and L-leucine and 2-oxobutyrate at 65°C. The establishment of the equilibrium was controlled by a decrease in the concentration of 2-oxobutyrate or pyruvate and by the accumulation of the keto analog of L-leucine. It was shown that the degree of conversion of L-leucine in the reaction with specific 2-oxobutyrate is higher than in the reaction with nonspecific pyruvate.
Collapse
Affiliation(s)
- E Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| | - T N Stekhanova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - K M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - V O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.,National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
26
|
Maciel LG, Oliveira AA, Romão TP, Leal LLL, Guido RVC, Silva-Filha MHNL, Dos Anjos JV, Soares TA. Discovery of 1,2,4-oxadiazole derivatives as a novel class of noncompetitive inhibitors of 3-hydroxykynurenine transaminase (HKT) from Aedes aegypti. Bioorg Med Chem 2019; 28:115252. [PMID: 31864777 DOI: 10.1016/j.bmc.2019.115252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
The mosquito Aedes aegypti is the vector of arboviruses such as Zika, Chikungunya, dengue and yellow fever. These infectious diseases have a major impact on public health. The unavailability of effective vaccines or drugs to prevent or treat most of these diseases makes vector control the main form of prevention. One strategy to promote mosquito population control is the use of synthetic insecticides to inhibit key enzymes in the metabolic pathway of these insects, particularly during larval stages. One of the main targets of the kynurenine detoxification pathway in mosquitoes is the enzyme 3-hydroxykynurenine transaminase (HKT), which catalyzes the conversion of 3-hydroxykynurenine (3-HK) into xanthurenic acid (XA). In this work, we report eleven newly synthesized oxadiazole derivatives and demonstrate that these compounds are potent noncompetitive inhibitors of HKT from Ae. aegypti. The present data provide direct evidence that HKT can be explored as a molecular target for the discovery of novel larvicides against Ae. aegypti. More importantly, it ensures that structural information derived from the HKT 3D-structure can be used to guide the development of more potent inhibitors.
Collapse
Affiliation(s)
- Larissa G Maciel
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil
| | - Andrew A Oliveira
- Sao Carlos Institute of Physics - University of São Paulo, Av. Joao Dagnone, 1100 Jardim Santa Angelina, São Carlos, SP 13563-120, Brazil
| | - Tatiany P Romão
- Institute Aggeu Magalhães (IAM) - FIOCRUZ, Av. Professor Moraes Rego s/n°, Recife, PE 50740-560 Brazil
| | - Laylla L L Leal
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil
| | - Rafael V C Guido
- Sao Carlos Institute of Physics - University of São Paulo, Av. Joao Dagnone, 1100 Jardim Santa Angelina, São Carlos, SP 13563-120, Brazil
| | | | - Janaína V Dos Anjos
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil.
| | - Thereza A Soares
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil.
| |
Collapse
|
27
|
Han X, Sun R, Sandalova T, Achour A. Structural and functional studies of Spr1654: an essential aminotransferase in teichoic acid biosynthesis in Streptococcus pneumoniae. Open Biol 2019; 8:rsob.170248. [PMID: 29669826 PMCID: PMC5936713 DOI: 10.1098/rsob.170248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/23/2018] [Indexed: 11/28/2022] Open
Abstract
Spr1654 from Streptococcus pneumoniae plays a key role in the production of unusual sugars, presumably functioning as a pyridoxal-5′-phosphate (PLP)-dependent aminotransferase. Spr1654 was predicted to catalyse the transferring of amino group to form the amino sugar 2-acetamido-4-amino-2, 4, 6-trideoxygalactose moiety (AATGal), representing a crucial step in biosynthesis of teichoic acids in S. pneumoniae. We have determined the crystal structures of the apo-, PLP- and PMP-bound forms of Spr1654. Spr1654 forms a homodimer, in which each monomer contains one active site. Using spectrophotometry and based on absorbance profiles of PLP- and PMP-formed enzymes, our results indicate that l-glutamate is most likely the preferred amino donor. Structural superposition of the crystal structures of Spr1654 on previously determined structures of other sugar aminotransferases in complex with glutamate and/or UDP-activated sugar allowed us to identify key Spr1654 residues for ligand binding and catalysis. The crystal structures of Spr1654 and in complex with PLP and PMP can direct the future rational design of novel therapeutic compounds against S. pneumoniae.
Collapse
Affiliation(s)
- Xiao Han
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, 17176 Stockholm, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, 17176 Stockholm, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, 17176 Stockholm, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, 17176 Stockholm, Sweden .,Division of Infectious Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| |
Collapse
|
28
|
Serine-glyoxylate aminotranferases from methanotrophs using different C1-assimilation pathways. Antonie van Leeuwenhoek 2018; 112:741-751. [DOI: 10.1007/s10482-018-1208-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|
29
|
Dindo M, Costanzi E, Pieroni M, Costantini C, Annunziato G, Bruno A, Keller NP, Romani L, Zelante T, Cellini B. Biochemical Characterization of Aspergillus fumigatus AroH, a Putative Aromatic Amino Acid Aminotransferase. Front Mol Biosci 2018; 5:104. [PMID: 30547035 PMCID: PMC6279937 DOI: 10.3389/fmolb.2018.00104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/09/2018] [Indexed: 01/01/2023] Open
Abstract
The rise in the frequency of nosocomial infections is becoming a major problem for public health, in particular in immunocompromised patients. Aspergillus fumigatus is an opportunistic fungus normally present in the environment directly responsible for lethal invasive infections. Recent results suggest that the metabolic pathways related to amino acid metabolism can regulate the fungus-host interaction and that an important role is played by enzymes involved in the catabolism of L-tryptophan. In particular, in A. fumigatus L-tryptophan regulates Aro genes. Among them, AroH encodes a putative pyridoxal 5'-phosphate-dependent aminotransferase. Here we analyzed the biochemical features of recombinant purified AroH by spectroscopic and kinetic analyses corroborated by in silico studies. We found that the protein is dimeric and tightly binds the coenzyme forming a deprotonated internal aldimine in equilibrium with a protonated ketoenamine form. By setting up a new rapid assay method, we measured the kinetic parameters for the overall transamination of substrates and we demonstrated that AroH behaves as an aromatic amino acid aminotransferase, but also accepts L-kynurenine and α-aminoadipate as amino donors. Interestingly, computational approaches showed that the predicted overall fold and active site topology of the protein are similar to those of its yeast ortholog, albeit with some differences in the regions at the entrance of the active site, which could possibly influence substrate specificity. Should targeting fungal metabolic adaptation be of therapeutic value, the results of the present study may pave the way to the design of specific AroH modulators as potential novel agents at the host/fungus interface.
Collapse
Affiliation(s)
- Mirco Dindo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Egidia Costanzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marco Pieroni
- P4T group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Agostino Bruno
- P4T group, Department of Food and Drug, University of Parma, Parma, Italy.,Experimental Therapeutics Program, IFOM-The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
30
|
Dindo M, Conter C, Oppici E, Ceccarelli V, Marinucci L, Cellini B. Molecular basis of primary hyperoxaluria: clues to innovative treatments. Urolithiasis 2018; 47:67-78. [PMID: 30430197 DOI: 10.1007/s00240-018-1089-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022]
Abstract
Primary hyperoxalurias (PHs) are rare inherited disorders of liver glyoxylate metabolism, characterized by the abnormal production of endogenous oxalate, a metabolic end-product that is eliminated by urine. The main symptoms are related to the precipitation of calcium oxalate crystals in the urinary tract with progressive renal damage and, in the most severe form named Primary Hyperoxaluria Type I (PH1), to systemic oxalosis. The therapies currently available for PH are either poorly effective, because they address the symptoms and not the causes of the disease, or highly invasive. In the last years, advances in our understanding of the molecular bases of PH have paved the way for the development of new therapeutic strategies. They include (i) substrate-reduction therapies based on small-molecule inhibitors or the RNA interference technology, (ii) gene therapy, (iii) enzyme administration approaches, (iv) colonization with oxalate-degrading intestinal microorganisms, and, in PH1, (v) design of pharmacological chaperones. This paper reviews the basic principles of these new therapeutic strategies and what is currently known about their application to PH.
Collapse
Affiliation(s)
- Mirco Dindo
- Department of Experimental Medicine, University of Perugia, P.le Gambuli 1, 06132, Perugia, Italy
| | - Carolina Conter
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, VR, Italy
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, VR, Italy
| | - Veronica Ceccarelli
- Department of Experimental Medicine, University of Perugia, P.le Gambuli 1, 06132, Perugia, Italy
| | - Lorella Marinucci
- Department of Experimental Medicine, University of Perugia, P.le Gambuli 1, 06132, Perugia, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, P.le Gambuli 1, 06132, Perugia, Italy.
| |
Collapse
|
31
|
Du DF, Li QQ, Chen C, Shi SM, Zhao YY, Jiang JP, Wang DW, Guo H, Zhang WJ, Chen ZS. Updated Genetic Testing of Primary Hyperoxaluria Type 1 in a Chinese Population: Results from a Single Center Study and a Systematic Review. Curr Med Sci 2018; 38:749-757. [PMID: 30341509 DOI: 10.1007/s11596-018-1941-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/06/2018] [Indexed: 11/27/2022]
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare but devastating autosomal recessive inherited disease caused by mutations in gene AGXT. Pathogenic mutations of AGXT were mostly reported in Caucasian but infrequently in Asian, especially in Chinese. To update the genotypes of PH1 in the Chinese population, we collected and identified 7 Chinese probands with PH1 from 2013 to 2017 in our center, five of whom had delayed diagnosis and failed in kidney transplantation. Samples of peripheral blood DNA from the 7 patients and their family members were collected and sequencing analysis was performed to test the mutations of gene AGXT. Western blotting and enzyme activity analysis were conducted to evaluate the function of the mutations. Furthermore, a systematic review from 1998 to 2017 was performed to observe the genetic characteristics between Chinese and Caucasian. The results showed that a total of 12 mutations were identified in the 7 pedigrees. To the best of our knowledge, 2 novel variants of AGXT, p.Gly41Trp and p.Leu33Met, were first reported. Bioinformatics and functional analysis showed that only 7 mutations led to a reduced expression of alanine-glyoxylate amino transferase (AGT) at a protein level. The systematic review revealed significant population heterogeneity in PH1. In conclusion, new genetic subtypes and genetic characteristics of PH1 are updated in the Chinese population. Furthermore, a genotype-phenotype correlation is found in PH1.
Collapse
Affiliation(s)
- Dun-Feng Du
- Institute of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Health/Education, Wuhan, 430030, China
| | - Qian-Qian Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Chen
- Institute of Hypertension, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shu-Mei Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan-Yuan Zhao
- Institute of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Health/Education, Wuhan, 430030, China
| | - Ji-Pin Jiang
- Institute of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Health/Education, Wuhan, 430030, China
| | - Dao-Wen Wang
- Institute of Hypertension, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Guo
- Institute of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Health/Education, Wuhan, 430030, China
| | - Wei-Jie Zhang
- Institute of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Health/Education, Wuhan, 430030, China.
| | - Zhi-Shui Chen
- Institute of Organ Transplantation, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Health/Education, Wuhan, 430030, China.
| |
Collapse
|
32
|
Medina-Carmona E, Betancor-Fernández I, Santos J, Mesa-Torres N, Grottelli S, Batlle C, Naganathan AN, Oppici E, Cellini B, Ventura S, Salido E, Pey AL. Insight into the specificity and severity of pathogenic mechanisms associated with missense mutations through experimental and structural perturbation analyses. Hum Mol Genet 2018; 28:1-15. [DOI: 10.1093/hmg/ddy323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/09/2018] [Indexed: 12/21/2022] Open
Abstract
Abstract
Most pathogenic missense mutations cause specific molecular phenotypes through protein destabilization. However, how protein destabilization is manifested as a given molecular phenotype is not well understood. We develop here a structural and energetic approach to describe mutational effects on specific traits such as function, regulation, stability, subcellular targeting or aggregation propensity. This approach is tested using large-scale experimental and structural perturbation analyses in over thirty mutations in three different proteins (cancer-associated NQO1, transthyretin related with amyloidosis and AGT linked to primary hyperoxaluria type I) and comprising five very common pathogenic mechanisms (loss-of-function and gain-of-toxic function aggregation, enzyme inactivation, protein mistargeting and accelerated degradation). Our results revealed that the magnitude of destabilizing effects and, particularly, their propagation through the structure to promote disease-associated conformational states largely determine the severity and molecular mechanisms of disease-associated missense mutations. Modulation of the structural perturbation at a mutated site is also shown to cause switches between different molecular phenotypes. When very common disease-associated missense mutations were investigated, we also found that they were not among the most deleterious possible missense mutations at those sites, and required additional contributions from codon bias and effects of CpG sites to explain their high frequency in patients. Our work sheds light on the molecular basis of pathogenic mechanisms and genotype–phenotype relationships, with implications for discriminating between pathogenic and neutral changes within human genome variability from whole genome sequencing studies.
Collapse
Affiliation(s)
- Encarnación Medina-Carmona
- Department of Physical Chemistry, University of Granada, Granada, Spain
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, Perugia
| | - Isabel Betancor-Fernández
- Centre for Biomedical Research on Rare Diseases, Hospital Universitario de Canarias, Tenerife, Spain
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Noel Mesa-Torres
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Silvia Grottelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, Perugia
| | - Cristina Batlle
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, India
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, Verona, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, Perugia
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases, Hospital Universitario de Canarias, Tenerife, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain
| |
Collapse
|
33
|
Mesa-Torres N, Betancor-Fernández I, Oppici E, Cellini B, Salido E, Pey AL. Evolutionary Divergent Suppressor Mutations in Conformational Diseases. Genes (Basel) 2018; 9:E352. [PMID: 30011855 PMCID: PMC6071075 DOI: 10.3390/genes9070352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
Neutral and adaptive mutations are key players in the evolutionary dynamics of proteins at molecular, cellular and organismal levels. Conversely, largely destabilizing mutations are rarely tolerated by evolution, although their occurrence in diverse human populations has important roles in the pathogenesis of conformational diseases. We have recently proposed that divergence at certain sites from the consensus (amino acid) state during mammalian evolution may have rendered some human proteins more vulnerable towards disease-associated mutations, primarily by decreasing their conformational stability. We herein extend and refine this hypothesis discussing results from phylogenetic and structural analyses, structure-based energy calculations and structure-function studies at molecular and cellular levels. As proof-of-principle, we focus on different mammalian orthologues of the NQO1 (NAD(P)H:quinone oxidoreductase 1) and AGT (alanine:glyoxylate aminotransferase) proteins. We discuss the different loss-of-function pathogenic mechanisms associated with diseases involving the two enzymes, including enzyme inactivation, accelerated degradation, intracellular mistargeting, and aggregation. Last, we take into account the potentially higher robustness of mammalian orthologues containing certain consensus amino acids as suppressors of human disease, and their relation with different intracellular post-translational modifications and protein quality control capacities, to be discussed as sources of phenotypic variability between human and mammalian models of disease and as tools for improving current therapeutic approaches.
Collapse
Affiliation(s)
- Noel Mesa-Torres
- Department of Physical Chemistry, University of Granada, 18010 Granada, Spain.
| | - Isabel Betancor-Fernández
- Hospital Universitario de Canarias, Center for Rare Diseases (CIBERER), University of La Laguna, 38320 Tenerife, Spain.
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | - Eduardo Salido
- Hospital Universitario de Canarias, Center for Rare Diseases (CIBERER), University of La Laguna, 38320 Tenerife, Spain.
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, 18010 Granada, Spain.
| |
Collapse
|
34
|
Dindo M, Oppici E, Dell'Orco D, Montone R, Cellini B. Correlation between the molecular effects of mutations at the dimer interface of alanine-glyoxylate aminotransferase leading to primary hyperoxaluria type I and the cellular response to vitamin B 6. J Inherit Metab Dis 2018; 41:263-275. [PMID: 29110180 DOI: 10.1007/s10545-017-0105-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Abstract
Primary hyperoxaluria type I (PH1) is a rare disease caused by the deficit of liver alanine-glyoxylate aminotransferase (AGT). AGT prevents oxalate formation by converting peroxisomal glyoxylate to glycine. When the enzyme is deficient, progressive calcium oxalate stones deposit first in the urinary tract and then at the systemic level. Pyridoxal 5'-phosphate (PLP), the AGT coenzyme, exerts a chaperone role by promoting dimerization, as demonstrated by studies at protein and cellular level. Thus, variants showing a destabilized dimeric structure should, in principle, be responsive to vitamin B6, a precursor of PLP. However, models to predict the extent of responsiveness of each variant are missing. We examined the effects of pathogenic interfacial mutations by combining bioinformatic predictions with molecular and cellular studies on selected variants (R36H, G42E, I56N, G63R, and G216R), in both their holo- (i.e., with bound PLP) and apo- (i.e., without bound PLP) form. We found that all variants displayed structural alterations mainly related to the apoform and consisting of an altered tertiary and quaternary structure. G216R also shows a strongly reduced catalytic efficiency. Moreover, all but G216R respond to vitamin B6, as shown by their increased specific activity and expression level in a cellular disease model. A global analysis of data unraveled a possible inverse correlation between the degree of destabilization/misfolding induced by a mutation and the extent of B6 responsiveness. These results provide a first explanation of factors influencing B6 response in PH1, a model possibly valuable for other rare diseases caused by protein deficits.
Collapse
Affiliation(s)
- Mirco Dindo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, VR, Italy
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, VR, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, VR, Italy
| | - Rosa Montone
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, 37134, Verona, VR, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, P.le Gambuli 1, 06132, Perugia, Italy.
| |
Collapse
|
35
|
Chen S, Berglund P, Humble MS. The effect of phosphate group binding cup coordination on the stability of the amine transaminase from Chromobacterium violaceum. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.12.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Montioli R, Janson G, Paiardini A, Bertoldi M, Borri Voltattorni C. Heterozygosis in aromatic amino acid decarboxylase deficiency: Evidence for a positive interallelic complementation between R347Q and R358H mutations. IUBMB Life 2018; 70:215-223. [PMID: 29356298 DOI: 10.1002/iub.1718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/03/2018] [Indexed: 11/08/2022]
Abstract
Aromatic amino acid or Dopa decarboxylase (AADC or DDC) is a homodimeric pyridoxal 5'-phosphate (PLP) enzyme responsible for the generation of the neurotransmitters dopamine and serotonin. AADC deficiency is a rare inborn disease caused by mutations of the AADC gene leading to a defect of AADC enzyme and resulting in impaired dopamine and serotonin synthesis. Until now, only the molecular effects of homozygous mutations were analyzed. However, although heterozygous carriers of AADC deficiency were identified, the molecular aspects of their enzymatic phenotypes are not yet investigated. Here, we focus our attention on the R347Q/R358H and R347Q/R160W heterozygous mutations, and report for the first time the isolation and characterization, in the purified recombinant form, of the R347Q/R358H heterodimer and of the R358H homodimer. The results, integrated with those already known of the R347Q homodimeric variant, provide evidence that (i) the R358H mutation strongly reduces the PLP-binding affinity and the catalytic activity, and (ii) a positive interallelic complementation exists between the R347Q and the R358H mutations. Bioinformatics analyses provide the structural basis for these data. Unfortunately, the R347Q/R160W heterodimer was not obtained in a sufficient amount to allow its purification and characterization. Nevertheless, the biochemical features of the R160W homodimer give a contribution to the enzymatic phenotype of the heterozygous R347Q/R160W and suggest the possible relevance of Arg160 in the proper folding of human DDC. © 2018 IUBMB Life, 70(3):215-223, 2018.
Collapse
Affiliation(s)
- Riccardo Montioli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giacomo Janson
- Department of Biochemical Sciences "A. Rossi Fanelli,", Sapienza University of Rome, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences "A. Rossi Fanelli,", Sapienza University of Rome, Rome, Italy
| | - Mariarita Bertoldi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carla Borri Voltattorni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
37
|
Oppici E, Dindo M, Conter C, Borri Voltattorni C, Cellini B. Folding Defects Leading to Primary Hyperoxaluria. Handb Exp Pharmacol 2018; 245:313-343. [PMID: 29071511 DOI: 10.1007/164_2017_59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein misfolding is becoming one of the main mechanisms underlying inherited enzymatic deficits. This review is focused on primary hyperoxalurias, a group of disorders of glyoxylate detoxification associated with massive calcium oxalate deposition mainly in the kidneys. The most common and severe form, primary hyperoxaluria Type I, is due to the deficit of liver peroxisomal alanine/glyoxylate aminotransferase (AGT). Various studies performed in the last decade clearly evidence that many pathogenic missense mutations prevent the AGT correct folding, leading to various downstream effects including aggregation, increased degradation or mistargeting to mitochondria. Primary hyperoxaluria Type II and primary hyperoxaluria Type III are due to the deficit of glyoxylate reductase/hydroxypyruvate reductase (GRHPR) and 4-hydroxy-2-oxoglutarate aldolase (HOGA1), respectively. Although the molecular features of pathogenic variants of GRHPR and HOGA1 have not been investigated in detail, the data available suggest that some of them display folding defects. Thus, primary hyperoxalurias can be ranked among protein misfolding disorders, because in most cases the enzymatic deficit is due to the inability of each enzyme to reach its native and functional conformation. It follows that molecules able to improve the folding yield of the enzymes involved in each disease form could represent new therapeutic strategies.
Collapse
Affiliation(s)
- Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Mirco Dindo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Carolina Conter
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Carla Borri Voltattorni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132, Perugia, Italy.
| |
Collapse
|
38
|
Adeva-Andany M, Souto-Adeva G, Ameneiros-Rodríguez E, Fernández-Fernández C, Donapetry-García C, Domínguez-Montero A. Insulin resistance and glycine metabolism in humans. Amino Acids 2017; 50:11-27. [PMID: 29094215 DOI: 10.1007/s00726-017-2508-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/27/2017] [Indexed: 12/27/2022]
Abstract
Plasma glycine level is low in patients with obesity or diabetes and the improvement of insulin resistance increases plasma glycine concentration. In prospective studies, hypoglycinemia at baseline predicts the risk of developing type 2 diabetes and higher serum glycine level is associated with decreased risk of incident type 2 diabetes. Consistently, plasma glycine concentration is lower in the lean offspring of parents with type 2 diabetes compared to healthy subjects. Among patients with type 2 diabetes, hypoglycinemia occurs before clinical manifestations of the disease, but the pathophysiological mechanisms underlying glycine deficit and its potential clinical repercussions are unclear. Glycine participates in several metabolic pathways, being required for relevant human physiological processes. Humans synthesize glycine from glyoxylate, glucose (via serine), betaine and likely from threonine and during the endogenous synthesis of L-carnitine. Glycine conjugates bile acids and other acyl moieties producing acyl-glycine derivatives. The glycine cleavage system catalyzes glycine degradation to carbon dioxide and ammonium while tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. Glycine is utilized to synthesize serine, sarcosine, purines, creatine, heme group, glutathione, and collagen. Glycine is a major quantitative component of collagen. In addition, the role of glycine maintaining collagen structure is critical, as glycine residues are required to stabilize the triple helix of the collagen molecule. This quality of glycine likely contributes to explain the occurrence of medial arterial calcification and the elevated cardiovascular risk associated with diabetes and chronic kidney disease, as emerging evidence links normal collagen content with the initiation and progression of vascular calcification in humans.
Collapse
Affiliation(s)
- M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain.
| | - G Souto-Adeva
- National Institutes of Health, National Institute of Arthritis and Metabolic Diseases, Bethesda, USA
| | - E Ameneiros-Rodríguez
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| | - C Fernández-Fernández
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| | - C Donapetry-García
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| | - A Domínguez-Montero
- Internal Medicine Department, Hospital General Juan Cardona, c/Pardo Bazán s/n, 15406, Ferrol, Spain
| |
Collapse
|
39
|
Radiation damage at the active site of human alanine:glyoxylate aminotransferase reveals that the cofactor position is finely tuned during catalysis. Sci Rep 2017; 7:11704. [PMID: 28916765 PMCID: PMC5601474 DOI: 10.1038/s41598-017-11948-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/24/2017] [Indexed: 11/08/2022] Open
Abstract
The alanine:glyoxylate aminotransferase (AGT), a hepatocyte-specific pyridoxal-5'-phosphate (PLP) dependent enzyme, transaminates L-alanine and glyoxylate to glycine and pyruvate, thus detoxifying glyoxylate and preventing pathological oxalate precipitation in tissues. In the widely accepted catalytic mechanism of the aminotransferase family, the lysine binding to PLP acts as a catalyst in the stepwise 1,3-proton transfer, interconverting the external aldimine to ketimine. This step requires protonation by a conserved aspartate of the pyridine nitrogen of PLP to enhance its ability to stabilize the carbanionic intermediate. The aspartate residue is also responsible for a significant geometrical distortion of the internal aldimine, crucial for catalysis. We present the structure of human AGT in which complete X-ray photoreduction of the Schiff base has occurred. This result, together with two crystal structures of the conserved aspartate pathogenic variant (D183N) and the molecular modeling of the transaldimination step, led us to propose that an interplay of opposite forces, which we named spring mechanism, finely tunes PLP geometry during catalysis and is essential to move the external aldimine in the correct position in order for the 1,3-proton transfer to occur.
Collapse
|
40
|
Montioli R, Zamparelli C, Borri Voltattorni C, Cellini B. Oligomeric State and Thermal Stability of Apo- and Holo- Human Ornithine δ-Aminotransferase. Protein J 2017; 36:174-185. [PMID: 28345116 PMCID: PMC5432616 DOI: 10.1007/s10930-017-9710-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human ornithine δ-aminotransferase (hOAT) (EC 2.6.1.13) is a mitochondrial pyridoxal 5′-phosphate (PLP)-dependent aminotransferase whose deficit is associated with gyrate atrophy, a rare autosomal recessive disorder causing progressive blindness and chorioretinal degeneration. Here, both the apo- and holo-form of recombinant hOAT were characterized by means of spectroscopic, kinetic, chromatographic and computational techniques. The results indicate that apo and holo-hOAT (a) show a similar tertiary structure, even if apo displays a more pronounced exposure of hydrophobic patches, (b) exhibit a tetrameric structure with a tetramer-dimer equilibrium dissociation constant about fivefold higher for the apoform with respect to the holoform, and (c) have apparent Tm values of 46 and 67 °C, respectively. Moreover, unlike holo-hOAT, apo-hOAT is prone to unfolding and aggregation under physiological conditions. We also identified Arg217 as an important hot-spot at the dimer–dimer interface of hOAT and demonstrated that the artificial dimeric variant R217A exhibits spectroscopic properties, Tm values and catalytic features similar to those of the tetrameric species. This finding indicates that the catalytic unit of hOAT is the dimer. However, under physiological conditions the apo-tetramer is slightly less prone to unfolding and aggregation than the apo-dimer. The possible implications of the data for the intracellular stability and regulation of hOAT are discussed.
Collapse
Affiliation(s)
- Riccardo Montioli
- Department of Neuroscience, Biomedicine and Movement Sciences (Section of Biological Chemistry), University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | | | - Carla Borri Voltattorni
- Department of Neuroscience, Biomedicine and Movement Sciences (Section of Biological Chemistry), University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Barbara Cellini
- Department of Neuroscience, Biomedicine and Movement Sciences (Section of Biological Chemistry), University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| |
Collapse
|
41
|
Affiliation(s)
- Barbara Cellini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona (VR), Italy
| |
Collapse
|
42
|
Roncador A, Oppici E, Talelli M, Pariente AN, Donini M, Dusi S, Voltattorni CB, Vicent MJ, Cellini B. Use of polymer conjugates for the intraperoxisomal delivery of engineered human alanine:glyoxylate aminotransferase as a protein therapy for primary hyperoxaluria type I. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:897-907. [PMID: 27993722 DOI: 10.1016/j.nano.2016.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/25/2016] [Accepted: 12/07/2016] [Indexed: 01/22/2023]
Abstract
Alanine:glyoxylate aminotransferase (AGT) is a liver peroxisomal enzyme whose deficit causes the rare disorder Primary Hyperoxaluria Type I (PH1). We now describe the conjugation of poly(ethylene glycol)-co-poly(L-glutamic acid) (PEG-PGA) block-co-polymer to AGT via the formation of disulfide bonds between the polymer and solvent-exposed cysteine residues of the enzyme. PEG-PGA conjugation did not affect AGT structural/functional properties and allowed the enzyme to be internalized in a cellular model of PH1 and to restore glyoxylate-detoxification. The insertion of the C387S/K390S amino acid substitutions, known to favor interaction with the peroxisomal import machinery, reduced conjugation efficiency, but endowed conjugates with the ability to reach the peroxisomal compartment. These results, along with the finding that conjugates are hemocompatible, stable in plasma, and non-immunogenic, hold promise for the development of polypeptide-based AGT conjugates as a therapeutic option for PH1 patients and represent the base for applications to other diseases related to deficits in peroxisomal proteins.
Collapse
Affiliation(s)
- Alessandro Roncador
- Neuroscience, Biomedicine and Movement Sciences Department, Section of Biological Chemistry, University of Verona, Verona (VR), Italy
| | - Elisa Oppici
- Neuroscience, Biomedicine and Movement Sciences Department, Section of Biological Chemistry, University of Verona, Verona (VR), Italy
| | - Marina Talelli
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Amaya Niño Pariente
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Marta Donini
- Department of Medicine, Section of General Pathology, University of Verona, Verona (VR), Italy
| | - Stefano Dusi
- Department of Medicine, Section of General Pathology, University of Verona, Verona (VR), Italy
| | - Carla Borri Voltattorni
- Neuroscience, Biomedicine and Movement Sciences Department, Section of Biological Chemistry, University of Verona, Verona (VR), Italy
| | - María J Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.
| | - Barbara Cellini
- Neuroscience, Biomedicine and Movement Sciences Department, Section of Biological Chemistry, University of Verona, Verona (VR), Italy.
| |
Collapse
|
43
|
A Novel Pathway for Metabolism of the Cardiovascular Risk Factor Homoarginine by alanine:glyoxylate aminotransferase 2. Sci Rep 2016; 6:35277. [PMID: 27752063 PMCID: PMC5082758 DOI: 10.1038/srep35277] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/23/2016] [Indexed: 01/06/2023] Open
Abstract
Low plasma concentrations of L-homoarginine are associated with an increased risk of cardiovascular events, while homoarginine supplementation is protective in animal models of metabolic syndrome and stroke. Catabolism of homoarginine is still poorly understood. Based on the recent findings from a Genome Wide Association Study we hypothesized that homoarginine can be metabolized by alanine:glyoxylate aminotransferase 2 (AGXT2). We purified human AGXT2 from tissues of AGXT2 transgenic mice and demonstrated its ability to metabolize homoarginine to 6-guanidino-2-oxocaproic acid (GOCA). After incubation of HepG2 cells overexpressing AGXT2 with isotope-labeled homoarginine-d4 we were able to detect labeled GOCA in the medium. We injected wild type mice with labeled homoarginine and detected labeled GOCA in the plasma. We found that AGXT2 knockout (KO) mice have higher homoarginine and lower GOCA plasma levels as compared to wild type mice, while the reverse was true for AGXT2 transgenic (Tg) mice. In summary, we experimentally proved the presence of a new pathway of homoarginine catabolism – its transamination by AGXT2 with formation of GOCA and demonstrated that endogenous AGXT2 is required for maintenance of homoarginine levels in mice. Our findings may lead to development of novel therapeutic approaches for cardiovascular pathologies associated with homoarginine deficiency.
Collapse
|
44
|
Stekhanova TN, Rakitin AL, Mardanov AV, Bezsudnova EY, Popov VO. A Novel highly thermostable branched-chain amino acid aminotransferase from the crenarchaeon Vulcanisaeta moutnovskia. Enzyme Microb Technol 2016; 96:127-134. [PMID: 27871372 DOI: 10.1016/j.enzmictec.2016.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/31/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022]
Abstract
A new fold-type IV branched-chain amino acid aminotransferase VMUT0738 from the hyperthermophilic Crenarchaeon Vulcanisaeta moutnovskia was successfully expressed in Escherichia coli. Purified VMUT0738 showed activity toward numerous aliphatic and aromatic l-amino acids and 2-oxo acids at optimal pH 8.0. Distinguishing features of the VMUT0738 compared with typical BCAT are the absence of activity toward acidic substrates, high activity toward basic ones, and low but detectable activity toward the (R)-enantiomer of α-methylbenzylamine (0.0076U/mg) The activity of VMUT0738 increases with a rise in the temperature from 60°C to 90°C. VMUT0738 showed high thermostability (after 24h incubation at 70°C the enzyme lost only 27% of the initial activity) and the resistance to organic solvents. The sequence alignment revealed two motifs (V/I)xLDxR and PFG(K/H)YL characteristic of BCATs from species of the related genera Vulcanisaeta, Pyrobaculum and Thermoproteus that might be responsible for the unique substrate recognition profile of the enzyme.
Collapse
Affiliation(s)
- Tatiana N Stekhanova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russian Federation.
| | - Andrey L Rakitin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
| | - Ekaterina Yu Bezsudnova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russian Federation
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russian Federation; NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| |
Collapse
|
45
|
Effects of interface mutations on the dimerization of alanine glyoxylate aminotransferase and implications in the mistargeting of the pathogenic variants F152I and I244T. Biochimie 2016; 131:137-148. [PMID: 27720751 DOI: 10.1016/j.biochi.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/02/2016] [Accepted: 10/02/2016] [Indexed: 11/21/2022]
Abstract
In this work the dimerization process of the minor allelic form of human alanine glyoxylate aminotransferase, a pyridoxal 5'-phosphate enzyme, was investigated. Bioinformatic analyses followed by site-directed mutagenesis, size exclusion chromatography and catalytic activity experiments allowed us to identify Arg118, Phe238 and Phe240 as interfacial residues not essential for transaminase activity but important for dimer-monomer dissociation. The apo and the holo forms of the triple mutant R118A-Mi/F238S-Mi/F240S-Mi display a dimer-monomer equilibrium dissociation constant value at least ~260- and 31-fold larger, respectively, than the corresponding ones of AGT-Mi. In the presence of PLP, the apomonomer of the triple mutant undergoes a biphasic process: the fast phase represents the formation of an inactive PLP-bound monomer, while the slow phase depicts the monomer-monomer association that parallels the regain of transaminase activity. The latter events occur with a rate constant of ~0.02 μM-1min-1. In the absence of PLP, the apomonomer is also able to dimerize but with a rate constant value ~2700-fold lower. Thereafter, the possible interference with the dimerization process of AGT-Mi exerted by the mutated residues in the I244T-Mi and F152I-Mi variants associated with Primary Hyperoxaluria type 1 was investigated by molecular dynamics simulations. On the basis of the present and previous studies, a model for the dimerization process of AGT-Mi, I244T-Mi and F152I-Mi, which outlines the structural defects responsible for the complete or partial mistargeting of the pathogenic variants, was proposed and discussed.
Collapse
|
46
|
Caenorhabditis elegans AGXT-1 is a mitochondrial and temperature-adapted ortholog of peroxisomal human AGT1: New insights into between-species divergence in glyoxylate metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1195-1205. [PMID: 27179589 DOI: 10.1016/j.bbapap.2016.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/27/2016] [Accepted: 05/10/2016] [Indexed: 11/23/2022]
|
47
|
Bezsudnova EY, Stekhanova TN, Suplatov DA, Mardanov AV, Ravin NV, Popov VO. Experimental and computational studies on the unusual substrate specificity of branched-chain amino acid aminotransferase from Thermoproteus uzoniensis. Arch Biochem Biophys 2016; 607:27-36. [PMID: 27523731 DOI: 10.1016/j.abb.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/26/2023]
Abstract
PLP-Dependent fold-type IV branched-chain amino acid aminotransferases (BCATs) from archaea have so far been poorly characterized. A new BCAT from the hyperthermophilic archaeon Thermoproteus uzoniensis (TUZN1299) has been studied. TUZN1299 was found to be highly active toward branched-chain amino acids (BCAAs), positively charged amino acids, l-methionine, l-threonine, l-homoserine, l-glutamine, as well as toward 2-oxobutyrate and keto analogs of BCAAs, whereas l-glutamate and α-ketoglutarate were not converted in the overall reaction. According to stopped-flow experiments, the enzyme showed the highest specificity to BCAAs and their keto analogs. In order to explain the molecular mechanism of the unusual specificity of TUZN1299, bioinformatic analysis was implemented to identify the subfamily-specific positions in the aminotransferase class IV superfamily of enzymes. The role of the selected residues in binding of various ligands in the active site was further studied using molecular modeling. The results indicate that Glu188 forms a novel binding site for positively charged and polar side-chains of amino acids. Lack of accommodation for α-ketoglutarate and l-glutamate is due to the unique orientation and chemical properties of residues 102-106 in the loop forming the A-pocket. The likely functional roles of TUZN1299 in cellular metabolism - in the synthesis and degradation of BCAAs - are discussed.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation.
| | - Tatiana N Stekhanova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation
| | - Dmitry A Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Leninskiye Gory 1-73, Moscow, 119992, Russian Federation
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| |
Collapse
|
48
|
Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1055-62. [PMID: 26854734 DOI: 10.1016/j.bbadis.2016.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
The hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) is caused by a functional deficiency of the liver-specific, peroxisomal, pyridoxal-phosphate-dependent enzyme, alanine:glyoxylate aminotransferase (AGT). One third of PH1 patients, particularly those expressing the p.[(Pro11Leu; Gly170Arg; Ile340Met)] mutant allele, respond clinically to pharmacological doses of pyridoxine. To gain further insight into the metabolic effects of AGT dysfunction in PH1 and the effect of pyridoxine, we established an "indirect" glycolate cytotoxicity assay using CHO cells expressing glycolate oxidase (GO) and various normal and mutant forms of AGT. In cells expressing GO the great majority of glycolate was converted to oxalate and glyoxylate, with the latter causing the greater decrease in cell survival. Co-expression of normal AGTs and some, but not all, mutant AGT variants partially counteracted this cytotoxicity and led to decreased synthesis of oxalate and glyoxylate. Increasing the extracellular pyridoxine up to 0.3μM led to an increased metabolic effectiveness of normal AGTs and the AGT-Gly170Arg variant. The increased survival seen with AGT-Gly170Arg was paralleled by a 40% decrease in oxalate and glyoxylate levels. These data support the suggestion that the effectiveness of pharmacological doses of pyridoxine results from an improved metabolic effectiveness of AGT; that is the increased rate of transamination of glyoxylate to glycine. The indirect glycolate toxicity assay used in the present study has potential to be used in cell-based drug screening protocols to identify chemotherapeutics that might enhance or decrease the activity and metabolic effectiveness of AGT and GO, respectively, and be useful in the treatment of PH1.
Collapse
|
49
|
Oppici E, Montioli R, Dindo M, Maccari L, Porcari V, Lorenzetto A, Chellini S, Voltattorni CB, Cellini B. The Chaperoning Activity of Amino-oxyacetic Acid on Folding-Defective Variants of Human Alanine:Glyoxylate Aminotransferase Causing Primary Hyperoxaluria Type I. ACS Chem Biol 2015; 10:2227-36. [PMID: 26161999 DOI: 10.1021/acschembio.5b00480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The rare disease Primary Hyperoxaluria Type I (PH1) results from the deficit of liver peroxisomal alanine:glyoxylate aminotransferase (AGT), as a consequence of inherited mutations on the AGXT gene frequently leading to protein misfolding. Pharmacological chaperone (PC) therapy is a newly developed approach for misfolding diseases based on the use of small molecule ligands able to promote the correct folding of a mutant enzyme. In this report, we describe the interaction of amino-oxyacetic acid (AOA) with the recombinant purified form of two polymorphic species of AGT, AGT-Ma and AGT-Mi, and with three pathogenic variants bearing previously identified folding defects: G41R-Ma, G170R-Mi, and I244T-Mi. We found that for all these enzyme AOA (i) forms an oxime at the active site, (ii) behaves as a slow, tight-binding inhibitor with KI values in the nanomolar range, and (iii) increases the thermal stability. Furthermore, experiments performed in mammalian cells revealed that AOA acts as a PC by partly preventing the intracellular aggregation of G41R-Ma and by promoting the correct peroxisomal import of G170R-Mi and I244T-Mi. Based on these data, we carried out a small-scale screening campaign. We identified four AOA analogues acting as AGT inhibitors, even if only one was found to act as a PC. The possible relationship between the structure and the PC activity of these compounds is discussed. Altogether, these results provide the proof-of-principle for the feasibility of a therapy with PCs for PH1-causing variants bearing folding defects and provide the scaffold for the identification of more specific ligands.
Collapse
Affiliation(s)
- Elisa Oppici
- Department
of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| | - Riccardo Montioli
- Department
of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| | - Mirco Dindo
- Department
of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| | - Laura Maccari
- Siena Biotech S.p.A., Strada
del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Valentina Porcari
- Siena Biotech S.p.A., Strada
del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Antonio Lorenzetto
- Department
of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| | - Sara Chellini
- Siena Biotech S.p.A., Strada
del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Carla Borri Voltattorni
- Department
of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| | - Barbara Cellini
- Department
of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| |
Collapse
|
50
|
Montioli R, Oppici E, Dindo M, Roncador A, Gotte G, Cellini B, Borri Voltattorni C. Misfolding caused by the pathogenic mutation G47R on the minor allele of alanine:glyoxylate aminotransferase and chaperoning activity of pyridoxine. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1280-9. [DOI: 10.1016/j.bbapap.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
|