1
|
Xiang K, Wang E, Mantyh J, Rupprecht G, Negrete M, Sanati G, Hsu C, Randon P, Dohlman A, Kretzschmar K, Bose S, Giroux N, Ding S, Wang L, Balcazar JP, Huang Q, Sundaramoorthy P, Xi R, McCall SJ, Wang Z, Jiang C, Kang Y, Kopetz S, Crawford GE, Lipkin SM, Wang XF, Clevers H, Hsu D, Shen X. Chromatin Remodeling in Patient-Derived Colorectal Cancer Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303379. [PMID: 38380561 DOI: 10.1002/advs.202303379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/22/2023] [Indexed: 02/22/2024]
Abstract
Patient-Derived Organoids (PDO) and Xenografts (PDX) are the current gold standards for patient-derived models of cancer (PDMC). Nevertheless, how patient tumor cells evolve in these models and the impact on drug response remains unclear. Herein, the transcriptomic and chromatin accessibility landscapes of matched colorectal cancer (CRC) PDO, PDX, PDO-derived PDX (PDOX), and original patient tumors (PT) are compared. Two major remodeling axes are discovered. The first axis delineates PDMC from PT, and the second axis distinguishes PDX and PDO. PDOX are more similar to PDX than PDO, indicating the growth environment is a driving force for chromatin adaptation. Transcription factors (TF) that differentially bind to open chromatins between matched PDO and PDOX are identified. Among them, KLF14 and EGR2 footprints are enriched in PDOX relative to matched PDO, and silencing of KLF14 or EGR2 promoted tumor growth. Furthermore, EPHA4, a shared downstream target gene of KLF14 and EGR2, altered tumor sensitivity to MEK inhibitor treatment. Altogether, patient-derived CRC cells undergo both common and distinct chromatin remodeling in PDO and PDX/PDOX, driven largely by their respective microenvironments, which results in differences in growth and drug sensitivity and needs to be taken into consideration when interpreting their ability to predict clinical outcome.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Ergang Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - John Mantyh
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Gabrielle Rupprecht
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Marcos Negrete
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Golshid Sanati
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Carolyn Hsu
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Peggy Randon
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Anders Dohlman
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Kai Kretzschmar
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Uppsalalaan 8, Utrecht, CT, 3584, The Netherlands
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Shree Bose
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Nicholas Giroux
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Lihua Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Jorge Prado Balcazar
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Qiang Huang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Terasaki Institute, Los Angeles, CA, 90024, USA
| | | | - Rui Xi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Shannon Jones McCall
- Department of Pathology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Zhaohui Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | | | - Yubin Kang
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Scott Kopetz
- Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gregory E Crawford
- Department of Pediatrics, Division of Medical Genetics, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Steven M Lipkin
- Department of Medicine and Program in Mendelian Genetics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Uppsalalaan 8, Utrecht, CT, 3584, The Netherlands
| | - David Hsu
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Terasaki Institute, Los Angeles, CA, 90024, USA
| |
Collapse
|
2
|
Yamanishi K, Hata M, Gamachi N, Watanabe Y, Yamanishi C, Okamura H, Matsunaga H. Molecular Mechanisms of IL18 in Disease. Int J Mol Sci 2023; 24:17170. [PMID: 38139000 PMCID: PMC10743479 DOI: 10.3390/ijms242417170] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin 18 (IL18) was originally identified as an inflammation-induced cytokine that is secreted by immune cells. An increasing number of studies have focused on its non-immunological functions, with demonstrated functions for IL18 in energy homeostasis and neural stability. IL18 is reportedly required for lipid metabolism in the liver and brown adipose tissue. Furthermore, IL18 (Il18) deficiency in mice leads to mitochondrial dysfunction in hippocampal cells, resulting in depressive-like symptoms and cognitive impairment. Microarray analyses of Il18-/- mice have revealed a set of genes with differential expression in liver, brown adipose tissue, and brain; however, the impact of IL18 deficiency in these tissues remains uncertain. In this review article, we discuss these genes, with a focus on their relationships with the phenotypic disease traits of Il18-/- mice.
Collapse
Affiliation(s)
- Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Masaki Hata
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Naomi Gamachi
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, Hirakata 573-0122, Osaka, Japan; (Y.W.); (C.Y.)
| | - Chiaki Yamanishi
- Hirakata General Hospital for Developmental Disorders, Hirakata 573-0122, Osaka, Japan; (Y.W.); (C.Y.)
| | - Haruki Okamura
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| |
Collapse
|
3
|
Simmen FA, Alhallak I, Simmen RCM. Krüppel-like Factor-9 and Krüppel-like Factor-13: Highly Related, Multi-Functional, Transcriptional Repressors and Activators of Oncogenesis. Cancers (Basel) 2023; 15:5667. [PMID: 38067370 PMCID: PMC10705314 DOI: 10.3390/cancers15235667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024] Open
Abstract
Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and carboxy-terminal regions, and it is these regions which interact with co-activators, co-repressors, and chromatin-modifying proteins to support the transcriptional activation and repression of target genes. Krüppel-like Factor 9 (KLF9) and Krüppel-like Factor 13 (KLF13) are two of the smallest members of the SP/KLF family, are paralogous, emerged early in metazoan evolution, and are highly conserved. Paradoxically, while most similar in primary sequence, KLF9 and KLF13 display many distinct roles in target cells. In this article, we summarize the work that has identified the roles of KLF9 (and to a lesser degree KLF13) in tumor suppression or promotion via unique effects on differentiation, pro- and anti-inflammatory pathways, oxidative stress, and tumor immune cell infiltration. We also highlight the great diversity of miRNAs, lncRNAs, and circular RNAs which provide mechanisms for the ubiquitous tumor-specific suppression of KLF9 mRNA and protein. Elucidation of KLF9 and KLF13 in cancer biology is likely to provide new inroads to the understanding of oncogenesis and its prevention and treatments.
Collapse
Affiliation(s)
- Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Liu Y, Song Y, He Y, Kong Z, Li H, Zhu Y, Liu S. Kruppel-like factor 13 acts as a tumor suppressor in thyroid carcinoma by downregulating IFIT1. Biol Direct 2023; 18:65. [PMID: 37817224 PMCID: PMC10565980 DOI: 10.1186/s13062-023-00422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Kruppel-like factor 13 (KLF13) is a transcription factor and plays an important role in carcinogenesis. However, the significance of KLF13 in thyroid carcinoma (THCA) is underdetermined. In this study, we aimed to explore the clinical relevance and function of KLF13 in the progress of THCA. METHODS The expression of KLF13 in thyroid carcinoma and normal tissue was investigated by qPCR and IHC assay. The expression of KLF13 and IFIT1 in cell samples was investigated with Western blot assay. Cell proliferation ability was detected with CCK8 and colony formation assay. Cell growth in vivo with or without KLF13 overexpression was evaluated on a xenograft model. Cell migration ability was measured with Transwell assay. Cell cycle was detected with flow cytometer. The downstream genes of KLF13 were screened using RNA-seq assay. Luciferase activity was employed to assess the transcriptional regulation of KLF13 on IFIT1 promoter. RESULTS KLF13 expression was downregulated in THCA samples. KLF13 knockdown and overexpression promoted and inhibited the proliferation and migration of THCA cells, respectively. The RNA-seq, RT-qPCR and immunoblotting data showed that KLF13 knockdown significantly potentiated IFIT1 expression at both mRNA and protein levels. Luciferase assays showed that KLF13 suppressed the transcription activity of IFIT1 promoter. Besides, IFIT1 upregulation was critical for the proliferation and migration of THCA cell lines. Lastly, silencing of IFIT1 greatly reversed the proliferation and migration induced by KLF13 knockdown. CONCLUSIONS In conclusion, KLF13 may function as an anti-tumor protein in THCA by regulating the expression of IFIT1 and offer a theoretical foundation for treating thyroid carcinoma.
Collapse
Affiliation(s)
- Yang Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yixuan Song
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yuqin He
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Ziren Kong
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Han Li
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yiming Zhu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Shaoyan Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
5
|
Hou Y, Song Q, Wang Y, Liu J, Cui Y, Zhang X, Zhang J, Fu J, Cao M, Zhang C, Liu C, Wang X, Duan H, Wang P. Downregulation of Krüppel-like factor 14 accelerated cellular senescence and aging. Aging Cell 2023; 22:e13950. [PMID: 37551728 PMCID: PMC10577553 DOI: 10.1111/acel.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 08/09/2023] Open
Abstract
Aging has been considered as a risk factor in many diseases, thus, comprehensively understanding the cellular and molecular mechanisms of delayed aging is important. Here we investigated whether Krüppel-like factor 14 (KLF14) is a suppressor of cellular senescence and aging. In our research, KLF14 levels significantly decreased not only in the lymphocytes of healthy people but also in the cells and tissues of mice with aging. We performed in vitro and in vivo experiments on cells and mice to reveal the function of KLF14 in aging. KLF14 deficiency facilitates cellular senescence and aging-related pathologies in C57BL/6J mice, whereas KLF14 overexpression attenuates cellular senescence. Mechanistically, KLF14 delays aging by binding to the POLD1 promoter to positively regulate POLD1 expression. Remarkably, cellular senescence mediated by KLF14 downregulation could be alleviated by POLD1 expression. In addition, perhexiline, an agonist of KLF14, could delay cellular senescence and aging-related pathologies in senescence-accelerated P8 mice by inducing POLD1 expression, as perhexiline could enhance the effect of KLF14's transcription activation to POLD1 by elevating the binding level of KLF14 to the POLD1 promoter. Our data indicate that KLF14 might be a critical element in aging by upregulating POLD1 expression, indicating that the activation of KLF14 may delay aging and aging-associated diseases.
Collapse
Affiliation(s)
- Yuli Hou
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Qiao Song
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Yaqi Wang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Jing Liu
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Yuting Cui
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Xiaomin Zhang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Jingjing Zhang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Jingxuan Fu
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Min Cao
- Department of Clinical LaboratoryBeijing Huairou HospitalBeijingChina
| | - Chi Zhang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Congcong Liu
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Xiaoling Wang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Huanli Duan
- Departments of Pathology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Peichang Wang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Yang S, Xiang J, Ma C, Yang G, Wang X, Liu H, Fan G, Kang L, Liang Z. Sp1-like protein KLF13 acts as a negative feedback regulator of TGF-β signaling and fibrosis. Cell Rep 2023; 42:112367. [PMID: 37029927 DOI: 10.1016/j.celrep.2023.112367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/23/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
Transforming growth factor β (TGF-β) is the primary factor that drives fibrosis in most forms of chronic kidney disease. The aim of this study was to identify endogenous regulators of TGF-β signaling and fibrosis. Here, we show that tubulointerstitial fibrosis is aggravated by global deletion of KLF13 and attenuated by adeno-associated virus-mediated KLF13 overexpression in renal tubular epithelial cells. KLF13 recruits a repressor complex comprising SIN3A and histone deacetylase 1 (HDAC1) to the TGF-β target genes, limiting the profibrotic effects of TGF-β. Temporary upregulation of TGF-β induces KLF13 expression, creating a negative feedback loop that triggers the anti-fibrotic effect of KLF13. However, persistent activation of TGF-β signaling reduces KLF13 levels through FBXW7-mediated ubiquitination degradation and HDAC-dependent mechanisms to inhibit KLF13 transcription and offset the anti-fibrotic effect of KLF13. Collectively, our data demonstrate a role of KLF13 in regulating TGF-β signaling and fibrosis.
Collapse
Affiliation(s)
- Shu Yang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jiaqing Xiang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Guangyan Yang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xinyu Wang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Hanyong Liu
- Department of Nephrology, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Lin Kang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| | - Zhen Liang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Sun LB, Ding AP, Han Y, Song MQ, Shan TD. The lncRNA Tincr Regulates the Abnormal Differentiation of Intestinal Epithelial Stem Cells in the Diabetic State Via the miR-668-3p/Klf3 Axis. Curr Stem Cell Res Ther 2023; 18:105-114. [PMID: 35362387 DOI: 10.2174/1574888x17666220331124607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is among the most common chronic diseases, and diabetic enteropathy (DE), which is a complication caused by DM, is a serious health condition. Long noncoding RNAs (lncRNAs) are regulators of DE progression. OBJECTIVE However, the mechanisms of action of multiple lncRNAs involved in DE remain poorly understood. METHODS Reverse transcription-quantitative PCR (RT-qPCR) and in situ hybridization were used to analyze terminal differentiation-induced lncRNA (Tincr) expression in intestinal epithelial cells (IECs) in the DM state. Microarray analysis, bioinformatics analysis, and luciferase reporter assays were used to identify the genes targeted by Tincr. The role of miR-668-3p was then explored by up- and down-regulating its expression in vitro and in vivo. RESULTS In this study, we observed that the level of lncRNA Tincr was increased in IECs in the DM state. More importantly, Tincr was associated with abnormal intestinal epithelial stem cell (IESC) differentiation in DM. Our mechanistic study demonstrated that Tincr is a major marker of Lgr5+ stem cells in DM. In addition, we investigated whether Tincr directly targets miR-668-3p and whether miR-668-3p targets Klf3. Our findings showed that Tincr sponged miR-668-3p, which attenuated abnormal IESC differentiation in DM by regulating Klf3 expression. CONCLUSION This study presents evidence of an essential role for Tincr in IESC differentiation in DM.
Collapse
Affiliation(s)
- Li-Bin Sun
- Department of Oncology and The Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, P.R. China
| | - Ai-Ping Ding
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Yue Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Ming-Quan Song
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| |
Collapse
|
8
|
Zahra K, Shabbir M, Badshah Y, Trembley JH, Badar Z, Khan K, Afsar T, Almajwal A, Alruwaili NW, Razak S. Determining KLF14 tertiary structure and diagnostic significance in brain cancer progression. Sci Rep 2022; 12:8039. [PMID: 35577881 PMCID: PMC9110742 DOI: 10.1038/s41598-022-12072-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Expression analysis of new protein targets may play a crucial role in the early detection and diagnosis of brain tumor progression. The study aimed to investigate the possible relation of KLF14, TPD52, miR-124, and PKCε in the development and progression of brain cancer and space occupying lesion (SOL) of the brain. One hundred human blood samples comprising varying diagnostic groups (SOL brain, grade I, II, III, IV) were analyzed by real-time quantitative PCR to determine the expression level of KLF14, TPD52, miR-124, and PKCε. TPD52 and PKCε were upregulated in brain cancer by 2.5- and 1.6-fold, respectively, whereas, KLF14 and miR-124 were downregulated in brain cancer. In metastatic and high-grade brain cancer, TPD52 and PKCε expression were up-regulated and KLF14 and miR-124 expression were down-regulated. Further, these genes were found to be differentially expressed in the blood of patients with SOL. Upregulation of TPD52 and PKCε, however, reduced expression of KLF14 and miR-124 in SOL of the brain as compared to healthy controls. Expression analysis of TPD52, KLF14, miR-124, and PKCε provided useful information on the differences existing between the normal brain and SOL, in addition to gliomas; thus, might prove to be useful having diagnostic or prognostic value.
Collapse
Affiliation(s)
- Kainat Zahra
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Zunaira Badar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf W Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
Belouzard S, Machelart A, Sencio V, Vausselin T, Hoffmann E, Deboosere N, Rouillé Y, Desmarets L, Séron K, Danneels A, Robil C, Belloy L, Moreau C, Piveteau C, Biela A, Vandeputte A, Heumel S, Deruyter L, Dumont J, Leroux F, Engelmann I, Alidjinou EK, Hober D, Brodin P, Beghyn T, Trottein F, Deprez B, Dubuisson J. Clofoctol inhibits SARS-CoV-2 replication and reduces lung pathology in mice. PLoS Pathog 2022; 18:e1010498. [PMID: 35587469 PMCID: PMC9119441 DOI: 10.1371/journal.ppat.1010498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Drug repurposing has the advantage of shortening regulatory preclinical development steps. Here, we screened a library of drug compounds, already registered in one or several geographical areas, to identify those exhibiting antiviral activity against SARS-CoV-2 with relevant potency. Of the 1,942 compounds tested, 21 exhibited a substantial antiviral activity in Vero-81 cells. Among them, clofoctol, an antibacterial drug used for the treatment of bacterial respiratory tract infections, was further investigated due to its favorable safety profile and pharmacokinetic properties. Notably, the peak concentration of clofoctol that can be achieved in human lungs is more than 20 times higher than its IC50 measured against SARS-CoV-2 in human pulmonary cells. This compound inhibits SARS-CoV-2 at a post-entry step. Lastly, therapeutic treatment of human ACE2 receptor transgenic mice decreased viral load, reduced inflammatory gene expression and lowered pulmonary pathology. Altogether, these data strongly support clofoctol as a therapeutic candidate for the treatment of COVID-19 patients. Antivirals targeting SARS-CoV-2 are sorely needed. In this study, we screened a library of approximately 2000 drug compounds that have been used or are still used in the clinics. Among them, we identified clofoctol as an antiviral against SARS-CoV-2. This molecule is an antibacterial drug used for the treatment of bacterial respiratory tract infections and it was further investigated due to its safety profile and its properties to accumulate in the lungs. We further demonstrated that, in vivo, this compound reduces inflammatory gene expression and lowers pulmonary pathology. The antiviral and anti-inflammatory properties of clofoctol, associated with its safety profile and unique pharmacokinetic properties make a strong case for proposing clofoctol as an affordable therapeutic candidate for the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Sandrine Belouzard
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Arnaud Machelart
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Valentin Sencio
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Thibaut Vausselin
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- APTEEUS, Campus Pasteur Lille, Lille, France
| | - Eik Hoffmann
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Nathalie Deboosere
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Plateformes lilloises en biologie et santé, Lille, France
| | - Yves Rouillé
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Lowiese Desmarets
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Karin Séron
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Adeline Danneels
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Cyril Robil
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Loic Belloy
- APTEEUS, Campus Pasteur Lille, Lille, France
| | | | - Catherine Piveteau
- Univ Lille, Inserm, Institut Pasteur de Lille, Drugs and Molecules for Living Systems, Lille, France
| | - Alexandre Biela
- Univ Lille, Inserm, Institut Pasteur de Lille, Drugs and Molecules for Living Systems, Lille, France
| | - Alexandre Vandeputte
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Plateformes lilloises en biologie et santé, Lille, France
| | - Séverine Heumel
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Lucie Deruyter
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Julie Dumont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Plateformes lilloises en biologie et santé, Lille, France
- Univ Lille, Inserm, Institut Pasteur de Lille, Drugs and Molecules for Living Systems, Lille, France
| | - Florence Leroux
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Plateformes lilloises en biologie et santé, Lille, France
- Univ Lille, Inserm, Institut Pasteur de Lille, Drugs and Molecules for Living Systems, Lille, France
| | - Ilka Engelmann
- Univ Lille, CHU Lille, Laboratoire de Virologie, Lille, France
| | | | - Didier Hober
- Univ Lille, CHU Lille, Laboratoire de Virologie, Lille, France
| | - Priscille Brodin
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Plateformes lilloises en biologie et santé, Lille, France
| | | | - François Trottein
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Benoit Deprez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Plateformes lilloises en biologie et santé, Lille, France
- Univ Lille, Inserm, Institut Pasteur de Lille, Drugs and Molecules for Living Systems, Lille, France
- * E-mail: (BD); (JD)
| | - Jean Dubuisson
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- * E-mail: (BD); (JD)
| |
Collapse
|
10
|
Jiao X, Gao W, Ren H, Wu Y, Li T, Li S, Yan H. Kruppel like factor 16 promotes lung adenocarcinoma progression by upregulating lamin B2. Bioengineered 2022; 13:9482-9494. [PMID: 35387557 PMCID: PMC9161888 DOI: 10.1080/21655979.2022.2060780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is one of the most common causes of cancer-related death. In the past decade, the treatment and diagnosis of lung cancer have progressed significantly in early efforts to promote the survival of lung cancer patients. Kruppel like factor 16 (KLF16) is a zinc finger transcription factor that regulates a diverse array of developmental events and cellular processes. KLF16 is involved in the progression of various cancer types. However, the role of KLF16 in the development of lung cancer remains unknown. In this study, KLF16 was overexpressed in lung cancer samples. KLF16 downregulation inhibited lung cancer cell proliferation and migration. Conversely, KLF16 overexpression promoted lung cancer cell growth and invasion. Mechanistically, the expression level LMNB2 was suppressed by KLF16 knockdown and was promoted by KLF16 overexpression. The overall survival of patients with high LMNB2 levels was poor. Luciferase assays showed that KLF16 promoted the transcription activity of LMNB2 gene. Concomitantly, the expression level of LMNB2 was also higher in lung adenocarcinoma (LUAD) than in normal tissues, and its knockdown or overexpression can reverse the effect of KLF16 overexpression or knockdown on lung cancer cell proliferation, migration, and even tumorigenesis, indicating that LMNB2 also functions as an oncogene. In conclusion, KLF16 can be used as a potential therapeutic and preventive biomarker in lung cancer treatment and prognosis by actively regulating the expression of LMNB2.
Collapse
Affiliation(s)
- Xiaodan Jiao
- Department of Respiratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weinian Gao
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongxin Ren
- Department of Internal Medicine, Yuanshi County Hospital, Yunshi, Jiangsu, China
| | - Yanning Wu
- Department of Infectious Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tiezhi Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongjiang Yan
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Expression and Prognosis Value of the KLF Family Members in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6571272. [PMID: 35345512 PMCID: PMC8957442 DOI: 10.1155/2022/6571272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Krüppel-like factors (KLFs) are some kind of transcriptional regulator that regulates a broad range of cellular functions and has been linked to the development of certain malignancies. KLF expression patterns and prognostic values in colorectal cancer (CRC) have, however, been investigated rarely. To investigate the differential expression, predictive value, and gene mutations of KLFs in CRC patients, we used various online analytic tools, including ONCOMINE, TCGA, cBioPortal, and the TIMER database. KLF2-6, KLF8-10, KLF12-15, and KLF17 mRNA expression levels were dramatically downregulated in CRC tissues, but KLF1, KLF7, and KLF16 mRNA expression levels were significantly elevated in CRC tissues. According to the findings of Cox regression analysis, upregulation of KLF3, KLF5, and KLF6 and downregulation of KLF15 were linked with a better prognosis in CRC. For functional enrichment, our findings revealed that KLF members are involved in a variety of cancer-related biological processes. In colon cancer and rectal cancer, KLFs were also shown to be associated with a variety of immune cells. The findings of this research reveal that KLF family members' mRNA expression levels are possible prognostic indicators for patients with CRC.
Collapse
|
12
|
Cao X, Cheng J, Huang Y, Lan X, Lei C, Chen H. Comparative Enhancer Map of Cattle Muscle Genome Annotated by ATAC-Seq. Front Vet Sci 2022; 8:782409. [PMID: 34977215 PMCID: PMC8715921 DOI: 10.3389/fvets.2021.782409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Annotating regulatory elements could benefit the interpretation of the molecular mechanism of genome-wide association study (GWAS) hits. In this work, we performed transposase-accessible chromatin with sequencing (ATAC-seq) to annotate the cattle muscle genome's functional elements. A total of 10,023 and 11,360 peaks were revealed in muscle genomes of adult and embryo cattle, respectively. The two peak sets produced 8,850 differentially accessible regions (DARs), including 2,515 promoters and 4,319 putative enhancers. These functional elements were associated with the cell cycle, muscle development, and lipid metabolism. A total of 15 putative enhancers were selected for a dual-luciferase reporter assay, and 12 of them showed enhancer activity in cattle myoblasts. Interestingly, the GeneHancer database has annotated the interactions of eight active enhancers with gene promoters, such as embryo-specific peak1053 (log2FC = 1.81, embryo/adult, E/A) with ligand-dependent nuclear receptor corepressor-like protein (LCORL) and embryo-specific peak4218 (log2FC = 1.81) with FERM domain-containing 8 (FRMD8). A total of 295 GWAS loci from the animal QTL database were mapped to 183 putative enhancers, including rs109554838 (associated with cattle body weight and average daily gain) to peak1053 and rs110294629 (associated with beef shear force and tenderness score) to peak4218. Notably, peak4218 has been found to be involved in mouse embryo development. Deleting peak4218 clearly reduced luciferase activity (P = 3.30E-04). Our comparative enhancer map is expected to benefit the area of beef cattle breeding.
Collapse
Affiliation(s)
- Xiukai Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
13
|
Yang L, Shi YL, Ma Y, Ren WW, Pang GM, Liu J. Silencing KLF16 inhibits oral squamous cell carcinoma cell proliferation by arresting the cell cycle and inducing apoptosis. APMIS 2021; 130:43-52. [PMID: 34779529 DOI: 10.1111/apm.13194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022]
Abstract
Krüppel-like factor 16 (KLF16), a member of the Krüppel-like factor (KLF) family, has been extensively investigated in multiple cancer types. However, the role of KLF16 in oral squamous cell carcinoma (OSCC) remains unknown. Thus, we conducted this study to investigate its related mechanism. KLF16 expression in OSCC cell lines was quantified by western blotting. Then, OECM1 and OC3 cells were divided into Blank, siCtrl, siKLF16#1 and siKLF16#2 groups. Subsequently, cell proliferation was detected using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assays, cell migration and invasion were detected with wound healing and Transwell assays, and cell cycle distribution and cell apoptosis were detected via flow cytometry. KLF16, p21, CDK4, Cyclin D1 and p-Rb expression was detected by western blotting. Finally, xenograft models were established in nude mice to observe the in vivo effects of KLF16 on OSCC. KLF16 protein expression was upregulated in OSCC cells. Compared to the cells in the Blank group, the OECM1 and OC3 cells in the siKLF16#1 group and siKLF16#2 group exhibited a sharp decrease in proliferation but a remarkable increase in apoptosis. Moreover, the proportion of cells in the G0/G1 phase notably increased and that in the S phase decreased, with evident decreases in cell invasion and migration. Moreover, KLF16, cyclin-dependent kinase 4 (CDK4), Cyclin D1 and p-Rb protein expression was upregulated, but p21 expression was downregulated. The mice in the siKLF16#1 and siKLF16#2 xenograft model groups exhibited slower tumour growth and smaller tumours with evident downregulation of Ki67 expression compared to the mice in the Blank group. KLF16 expression was upregulated in OSCC cells, and interfering with KLF16 led to cell cycle arrest, inhibited OSCC cell growth and promoted cell apoptosis.
Collapse
Affiliation(s)
- Lei Yang
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - You-Ling Shi
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yan Ma
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Wei-Wei Ren
- Department of Pediatric Stomatology, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Guang-Ming Pang
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jiao Liu
- Department of Pediatric Stomatology, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|
14
|
Ren X, Wang M, Li B, Jamieson K, Zheng L, Jones IR, Li B, Takagi MA, Lee J, Maliskova L, Tam TW, Yu M, Hu R, Lee L, Abnousi A, Li G, Li Y, Hu M, Ren B, Wang W, Shen Y. Parallel characterization of cis-regulatory elements for multiple genes using CRISPRpath. SCIENCE ADVANCES 2021; 7:eabi4360. [PMID: 34524848 PMCID: PMC8443183 DOI: 10.1126/sciadv.abi4360] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/26/2021] [Indexed: 05/16/2023]
Abstract
Current pooled CRISPR screens for cis-regulatory elements (CREs), based on transcriptional output changes, are typically limited to characterizing CREs of only one gene. Here, we describe CRISPRpath, a scalable screening strategy for parallelly characterizing CREs of genes linked to the same biological pathway and converging phenotypes. We demonstrate the ability of CRISPRpath for simultaneously identifying functional enhancers of six genes in the 6-thioguanine–induced DNA mismatch repair pathway using both CRISPR interference (CRISPRi) and CRISPR nuclease (CRISPRn) approaches. Sixty percent of the identified enhancers are known promoters with distinct epigenomic features compared to other active promoters, including increased chromatin accessibility and interactivity. Furthermore, by imposing different levels of selection pressure, CRISPRpath can distinguish enhancers exerting strong impact on gene expression from those exerting weak impact. Our results offer a nuanced view of cis-regulation and demonstrate that CRISPRpath can be leveraged for understanding the complex gene regulatory program beyond transcriptional output at scale.
Collapse
Affiliation(s)
- Xingjie Ren
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Mengchi Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Bingkun Li
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Kirsty Jamieson
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lina Zheng
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Ian R. Jones
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Bin Li
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Maya Asami Takagi
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Jerry Lee
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lenka Maliskova
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Tsz Wai Tam
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Miao Yu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Rong Hu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Armen Abnousi
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Gang Li
- Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Wei Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Liu M, Zhou X, Liu J, Lu C, Zhang G, Zhang J, Jiao S. Predictive Biomarkers of Dicycloplatin Resistance or Susceptibility in Prostate Cancer. Front Genet 2021; 12:669605. [PMID: 34386035 PMCID: PMC8353331 DOI: 10.3389/fgene.2021.669605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Prostate cancer (PCa) is among the leading causes of cancer mortality. Dicycloplatin is a newer generation platinum-based drug that has less side effects than cisplatin and carboplatin. However, its effects in PCa is mixed due to lack of appropriate stratifying biomarkers. Aiming to search for such biomarkers, here, we analyze a group of PCa patients with different responses to dicycloplatin. Methods We carried out whole-exome sequencing on cell-free DNA (cfDNA) and matched leukocyte DNA from 16 PCa patients before treatment with dicycloplatin. We then compared the clinical characteristics, somatic mutations, copy number variants (CNVs), and mutational signatures between the dicycloplatin-sensitive (nine patients) and dicycloplatin-resistant (seven patients) groups and tested the identified mutations, CNV, and their combinations as marker of dicycloplatin response. Results The mutation frequency of seven genes (SP8, HNRNPCL1, FRG1, RBM25, MUC16, ASTE1, and TMBIM4) and CNV rate of four genes (CTAGE4, GAGE2E, GAGE2C, and HORMAD1) were higher in the resistant group than in the sensitive group, while the CNV rate in six genes (CDSN, DPCR1, MUC22, TMSB4Y, VARS, and HISTCH2AC) were lower in the resistant group than in the sensitive group. A combination of simultaneous mutation in two genes (SP8/HNRNPCL1 or SP8/FRG1) and deletion of GAGE2C together were found capable to predict dicycloplatin resistance with 100% sensitivity and 100% specificity. Conclusion We successfully used cfDNA to monitor mutational profiles of PCa and designed an effective composite marker to select patients for dicycloplatin treatment based on their mutational profile.
Collapse
Affiliation(s)
- Minglu Liu
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyu Zhou
- GenomiCare Biotechnology Co., Ltd., Shanghai, China
| | - Jun Liu
- GenomiCare Biotechnology Co., Ltd., Shanghai, China
| | - Chelong Lu
- GenomiCare Biotechnology Co., Ltd., Shanghai, China
| | - Guoqing Zhang
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Jing Zhang
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Shunchang Jiao
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
He C, Wang Y, Xu Q, Xiong Y, Zhu J, Lin Y. Overexpression of Krueppel like factor 3 promotes subcutaneous adipocytes differentiation in goat Capra hircus. Anim Sci J 2021; 92:e13514. [PMID: 33522088 DOI: 10.1111/asj.13514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
Previous research reported that KLF3 plays different roles in the regulation of adipose deposition across species. However, the exact function of KLF3 in goat subcutaneous adipocyte remains unknown. Here, the goat KLF3 gene was firstly cloned and showed that the mRNA sequence of the goat KLF3 gene was 1,264 bp (GenBank accession number: KU041753.1) and its coding sequence was 1,037 bp, encoding 345 amino acids with three classic zinc finger domains of KLFs family at its C-terminus. The alignment of the amino acid sequence of KLF3 among various species demonstrated that goat had the highest homology to that of sheep, presenting 99.4% similarity, while the homology similarity to that of mice presented only 93.62% in contrast. Furthermore, KLF3 had highest mRNA level in fat tissue and lowest level in the heart in comparison. Additionally, the mRNA level of KLF3 gradually tended to increase during adipogenesis. Interestingly, overexpression of KLF3 increased lipid accumulation. In line with this, the gain-of-function of KLF3 dramatically elevated the mRNA levels of TG synthetic genes and adipogenic maker genes (p < .01) . Moreover, overexpression of KLF3 upregulated all the potential target genes, except for C/EBPα. These results suggested that KLF3 is a positive regulator for subcutaneous adipocyte differentiation in goats.
Collapse
Affiliation(s)
- Changsheng He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Qing Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| |
Collapse
|
17
|
Sun DP, Tian YF, Lin CC, Hung ST, Uen YH, Hseu YC, Chou CL, Cheng LC, Wang WC, Kuang YY, Fang CL, Lin KY. A novel mechanism driving poor-prognostic gastric cancer: overexpression of the transcription factor Krüppel-like factor 16 promotes growth and metastasis of gastric cancer through regulating the Notch pathway. Am J Cancer Res 2021; 11:2717-2735. [PMID: 34249424 PMCID: PMC8263687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/15/2021] [Indexed: 06/13/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors worldwide and has high rates of morbidity and mortality. This study investigated the role of Krüppel-like factor 16 (KLF16) in GC. Real-time polymerase chain reaction, Western blotting, and immunohistochemistry were used to examine the expression of KLF16 in gastric cells and tissues. Gene overexpression and silencing were applied to study the involvement of KLF16 in GC cell growth and metastasis along with its underlying mechanism. The results indicate that KLF16 overexpression is significantly associated with nodal status, distant metastasis, staging, degree of differentiation, vascular invasion, and patient survival. Multivariate Cox proportional hazards regression model analysis revealed that the overexpression of KLF16 is an independent prognostic biomarker of GC. The in vitro study revealed that up-regulated KLF16 accelerates cell growth and metastasis, whereas the inhibition of KLF16 suppresses these cellular activities. The results of an animal study also indicated that the overexpression and silencing of KLF16 accelerate and repress xenograft proliferation and metastasis. Further studies of affected cell growth and metastasis revealed that KLF16 modulates the cell cycle and epithelial-mesenchymal transition through transcriptional regulation of microfibrillar-associated protein 5. Collectively, these results reveal that KLF16 overexpression is a potential prognostic biomarker and therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Ding-Ping Sun
- Department of Surgery, Chi Mei Medical CenterTainan 71004, Taiwan
- Department of Food Science and Technology, Chia Nan University of Pharmacy and ScienceTainan 71710, Taiwan
| | - Yu-Feng Tian
- Department of Surgery, Chi Mei Medical CenterTainan 71004, Taiwan
| | - Chih-Chan Lin
- Department of Medical Research, Chi Mei Medical CenterTainan 71004, Taiwan
| | - Shih-Ting Hung
- Department of Medical Research, Chi Mei Medical CenterTainan 71004, Taiwan
| | - Yih-Huei Uen
- Department of Surgery, Asia University HospitalTaichung 41354, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 41354, Taiwan
- Department of Surgery, Tainan Municipal An-Nan HospitalTainan 70965, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, China Medical UniversityTaichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia UniversityTaichung 41354, Taiwan
- Chinese Medicine Research Center, China Medical UniversityTaichung 40402, Taiwan
| | - Chia-Lin Chou
- Department of Surgery, Chi Mei Medical CenterTainan 71004, Taiwan
| | - Li-Chin Cheng
- Department of Surgery, Chi Mei Medical CenterTainan 71004, Taiwan
| | - Wen-Ching Wang
- Department of Surgery, Chi Mei Medical CenterTainan 71004, Taiwan
| | - Yi-Yu Kuang
- Department of Medical Research, Chi Mei Medical CenterTainan 71004, Taiwan
| | - Chia-Lang Fang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei 11031, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 11031, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi Mei Medical CenterTainan 71004, Taiwan
- Department of Biotechnology, Chia Nan University of Pharmacy and ScienceTainan 71710, Taiwan
| |
Collapse
|
18
|
Du Z, Liu M, Wang Z, Lin Z, Feng Y, Tian D, Xia L. EZH2-mediated inhibition of KLF14 expression promotes HSCs activation and liver fibrosis by downregulating PPARγ. Cell Prolif 2021; 54:e13072. [PMID: 34031939 PMCID: PMC8249795 DOI: 10.1111/cpr.13072] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Induction of deactivation and apoptosis of hepatic stellate cells (HSCs) are principal therapeutic strategies for liver fibrosis. Krüppel-like factor 14 (KLF14) regulates various biological processes, however, roles, mechanisms and implications of KLF14 in liver fibrosis are unknown. MATERIALS AND METHODS KLF14 expression was detected in human, rat and mouse fibrotic models, and its effects on HSCs were assessed. Chromatin immunoprecipitation assays were utilized to investigate the binding of KLF14 to peroxisome proliferator-activated receptor γ (PPARγ) promoter, and the binding of enhancer of zeste homolog 2 (EZH2) to KLF14 promoter. In vivo, KLF14-overexpressing adenovirus was injected via tail vein to thioacetamide (TAA)-treated rats to investigate the role of KLF14 in liver fibrosis progression. EZH2 inhibitor EPZ-6438 was utilized to treat TAA-induced rat liver fibrosis. RESULTS KLF14 expression was remarkably decreased in human, rat and mouse fibrotic liver tissues. Overexpression of KLF14 increased LD accumulation, inhibited HSCs activation, proliferation, migration and induced G2/M arrest and apoptosis. Mechanistically, KLF14 transactivated PPARγ promoter activity. Inhibition of PPARγ blocked the suppressive role of KLF14 overexpression in HSCs. Downregulation of KLF14 in activated HSCs was mediated by EZH2-regulated histone H3 lysine 27 trimethylation. Adenovirus-mediated KLF14 overexpression ameliorated TAA-induced rat liver fibrosis in PPARγ-dependent manner. Furthermore, EPZ-6438 dramatically alleviated TAA-induced rat liver fibrosis. Importantly, KLF14 expression was decreased in human with liver fibrosis, which was significantly correlated with EZH2 upregulation and PPARγ downregulation. CONCLUSIONS KLF14 exerts a critical anti-fibrotic role in liver fibrosis, and targeting the EZH2/KLF14/PPARγ axis might be a novel therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Zhipeng Du
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihui Wang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoying Lin
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Feng
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Xia
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Jeon T, Ko MJ, Seo YR, Jung SJ, Seo D, Park SY, Park KU, Kim KS, Kim M, Seo JH, Park IC, Kim MJ, Bae JH, Song DK, Cho CH, Lee JH, Lee YH. Silencing CDCA8 Suppresses Hepatocellular Carcinoma Growth and Stemness via Restoration of ATF3 Tumor Suppressor and Inactivation of AKT/β-Catenin Signaling. Cancers (Basel) 2021; 13:cancers13051055. [PMID: 33801424 PMCID: PMC7958635 DOI: 10.3390/cancers13051055] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Although the overexpression of CDCA8 is frequently observed in hepatocellular carcinoma (HCC) tissues, the functions of CDCA8 during HCC development remain to be clarified. The aim of our study was to investigate if targeting CDCA8 could affect liver tumor phenotypes in vitro and in vivo and to identify underlying molecular mechanisms to exert its therapeutic effect. We found that silencing of CDCA8 by siRNA inhibits the growth of parental cancer cell culture and mice tumors and suppresses stemness of CD133+ cancer stem cell population through the common responses of the upregulation of the tumor suppressive ATF3/GADD34 functional pathway and inactivation of the Akt/β–catenin signaling axis. These findings suggest CDCA8 as a novel therapeutic target for both primary HCC treatment and the prevention of metastasis or recurrence providing mode of action performed by a CDCA8 inhibitor. Abstract Big data analysis has revealed the upregulation of cell division cycle associated 8 (CDCA8) in human hepatocellular carcinoma (HCC) and its poorer survival outcome. However, the functions of CDCA8 during HCC development remain unknown. Here, we demonstrate in vitro that CDCA8 silencing inhibits HCC cell growth and long-term colony formation and migration through the accumulation of the G2/M phase cell population. Conversely, CDCA8 overexpression increases the ability to undergo long-term colony formation and migration. RNA sequencing and bioinformatic analysis revealed that CDCA8 knockdown led to the same directional regulation in 50 genes (25 down- and 25 upregulated). It was affirmed based on protein levels that CDCA8 silencing downregulates the levels of cyclin B1 and p-cdc2 and explains how it could induce G2/M arrest. The same condition increased the protein levels of tumor-suppressive ATF3 and GADD34 and inactivated AKT/β–catenin signaling, which plays an important role in cell growth and stemness, reflecting a reduction in sphere-forming capacity. Importantly, it was demonstrated that the extent of CDCA8 expression is much greater in CD133+ cancer stem cells than in CD133− cancer cells, and that CDCA8 knockdown decreases levels of CD133, p-Akt and β-catenin and increases levels of ATF3 and GADD34 in the CD133+ cancer stem cell (CSC) population. These molecular changes led to the inhibition of cell growth and sphere formation in the CD133+ cell population. Targeting CDCA8 also effectively suppressed tumor growth in a murine xenograft model, showing consistent molecular alterations in tumors injected with CDCA8siRNA. Taken together, these findings indicate that silencing CDCA8 suppresses HCC growth and stemness via restoring the ATF3 tumor suppressor and inactivating oncogenic AKT/β–catenin signaling, and that targeting CDCA8 may be the next molecular strategy for both primary HCC treatment and the prevention of metastasis or recurrence.
Collapse
Affiliation(s)
- Taewon Jeon
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Korea; (T.J.); (M.J.K.); (Y.-R.S.); (S.-Y.P.); (M.-J.K.)
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Min Ji Ko
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Korea; (T.J.); (M.J.K.); (Y.-R.S.); (S.-Y.P.); (M.-J.K.)
| | - Yu-Ri Seo
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Korea; (T.J.); (M.J.K.); (Y.-R.S.); (S.-Y.P.); (M.-J.K.)
| | - Soo-Jung Jung
- Department of Anatomy, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Daekwan Seo
- Department of Bioinformatics, Psomagen Inc., Rockville, MD 20850, USA;
| | - So-Young Park
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Korea; (T.J.); (M.J.K.); (Y.-R.S.); (S.-Y.P.); (M.-J.K.)
| | - Keon Uk Park
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Kwang Seok Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (K.S.K.); (I.-C.P.)
| | - Mikyung Kim
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea; (M.K.); (J.H.S.)
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea; (M.K.); (J.H.S.)
| | - In-Chul Park
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (K.S.K.); (I.-C.P.)
| | - Min-Ji Kim
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Korea; (T.J.); (M.J.K.); (Y.-R.S.); (S.-Y.P.); (M.-J.K.)
| | - Jae-Hoon Bae
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea; (J.-H.B.); (D.-K.S.)
| | - Dae-Kyu Song
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea; (J.-H.B.); (D.-K.S.)
| | - Chi Heum Cho
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Daegu 42601, Korea;
- Correspondence: (J.-H.L.); (Y.-H.L.)
| | - Yun-Han Lee
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Korea; (T.J.); (M.J.K.); (Y.-R.S.); (S.-Y.P.); (M.-J.K.)
- Correspondence: (J.-H.L.); (Y.-H.L.)
| |
Collapse
|
20
|
Sun Y, Qu J, Wang J, Zhao R, Wang C, Chen L, Hou X. Clinical and Functional Characteristics of a Novel KLF11 Cys354Phe Variant Involved in Maturity-Onset Diabetes of the Young. J Diabetes Res 2021; 2021:7136869. [PMID: 33604390 PMCID: PMC7870296 DOI: 10.1155/2021/7136869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/18/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mutations in human KLF11 may lead to the development of maturity-onset diabetes of the young 7 (MODY7). This occurs due to impaired insulin synthesis in the pancreas. To date, the clinical and functional characteristics of the novel KLF11 mutation c.1061G > T have not yet been reported. METHODS Whole-exon sequencing was used to screen the proband and family members with clinical suspicion of the KLF11 variant. Luciferase reporter assays were used to investigate whether the KLF11 variant binds to the insulin promoter. Real-time PCR, western blotting, and glucose-stimulated insulin secretion (GSIS) analysis were used to analyze the KLF11 variant that regulates insulin expression and insulin secretion activity in beta cell lines. The Freestyle Libre H (Abbott Diabetes Care Ltd) was used to dynamically monitor the proband daily blood glucose levels. RESULTS Mutation screening for the whole exon genes identified a heterozygous KLF11 (c.1061G > T) variant in the proband, her mother, and her maternal grandfather. Cell-based luciferase reporter assays using wild-type and mutant transgenes revealed that the KLF11 (c.1061G > T) variant had impaired insulin promoter regulation activity. Moreover, this variant was found to impair insulin expression and insulin secretion in pancreatic beta cells. The proband had better blood glucose control without staple food intake (p < 0.05). CONCLUSIONS Herein, for the first time, we report a novel KLF11 (c.1061G > T) monogenic mutation associated with MODY7. This variant has impaired insulin promoter regulation activity and impairs insulin expression and secretion in pancreatic beta cells. Therefore, administering oral antidiabetic drugs along with dietary intervention may benefit the proband.
Collapse
Affiliation(s)
- Yujing Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| | - Jingru Qu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| | - Jing Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| | - Ruxing Zhao
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| | - Chuan Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012 Shandong Province, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012 Shandong Province, China
| |
Collapse
|
21
|
Khan K, Safi S, Abbas A, Badshah Y, Dilshad E, Rafiq M, Zahra K, Shabbir M. Unravelling Structure, Localization, and Genetic Crosstalk of KLF3 in Human Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1354381. [PMID: 33490232 PMCID: PMC7803292 DOI: 10.1155/2020/1354381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023]
Abstract
Breast cancer is the most prevailing disease among women. It actually develops from breast tissue and has heterogeneous and complex nature that constitutes multiple tumor quiddities. These features are associated with different histological forms, distinctive biological characteristics, and clinical patterns. The predisposition of breast cancer has been attributed to a number of genetic factors, associated with the worst outcomes. Unfortunately, their behavior with relevance to clinical significance remained poorly understood. So, there is a need to further explore the nature of the disease at the transcriptome level. The focus of this study was to explore the influence of Krüppel-like factor 3 (KLF3), tumor protein D52 (TPD52), microRNA 124 (miR-124), and protein kinase C epsilon (PKCε) expression on breast cancer. Moreover, this study was also aimed at predicting the tertiary structure of KLF3 protein. Expression of genes was analyzed through real-time PCR using the delta cycle threshold method, and statistical significance was calculated by two-way ANOVA in Graphpad Prism. For the construction of a 3D model, various bioinformatics software programs, Swiss Model and UCSF Chimera, were employed. The expression of KLF3, miR-124, and PKCε genes was decreased (fold change: 0.076443, 0.06969, and 0.011597, respectively). However, there was 2-fold increased expression of TPD52 with p value < 0.001 relative to control. Tertiary structure of KLF3 exhibited 80.72% structure conservation with its template KLF4 and was 95.06% structurally favored by a Ramachandran plot. These genes might be predictors of stage, metastasis, receptor, and treatment status and used as new biomarkers for breast cancer diagnosis. However, extensive investigations at the tissue level and in in vivo are required to further strengthen their role as a potential biomarker for prognosis of breast cancer.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Sadia Safi
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Asma Abbas
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Erum Dilshad
- Department of Biological Sciences, Capital University of Science & Technology, Islamabad 44000, Pakistan
| | - Mehak Rafiq
- Research Centre for Modelling & Simulation (RCMS), National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Kainat Zahra
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
22
|
Shi X, Zheng Y, Jiang L, Zhou B, Yang W, Li L, Ding L, Huang M, Gery S, Lin DC, Koeffler HP. EWS-FLI1 regulates and cooperates with core regulatory circuitry in Ewing sarcoma. Nucleic Acids Res 2020; 48:11434-11451. [PMID: 33080033 PMCID: PMC7672457 DOI: 10.1093/nar/gkaa901] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Core regulatory circuitry (CRC)-dependent transcriptional network is critical for developmental tumors in children and adolescents carrying few gene mutations. However, whether and how CRC contributes to transcription regulation in Ewing sarcoma is unknown. Here, we identify and functionally validate a CRC 'trio' constituted by three transcription factors (TFs): KLF15, TCF4 and NKX2-2, in Ewing sarcoma cells. Epigenomic analyses demonstrate that EWS-FLI1, the primary fusion driver for this cancer, directly establishes super-enhancers of each of these three TFs to activate their transcription. In turn, KLF15, TCF4 and NKX2-2 co-bind to their own and each other's super-enhancers and promoters, forming an inter-connected auto-regulatory loop. Functionally, CRC factors contribute significantly to cell proliferation of Ewing sarcoma both in vitro and in vivo. Mechanistically, CRC factors exhibit prominent capacity of co-regulating the epigenome in cooperation with EWS-FLI1, occupying 77.2% of promoters and 55.6% of enhancers genome-wide. Downstream, CRC TFs coordinately regulate gene expression networks in Ewing sarcoma, controlling important signaling pathways for cancer, such as lipid metabolism pathway, PI3K/AKT and MAPK signaling pathways. Together, molecular characterization of the oncogenic CRC model advances our understanding of the biology of Ewing sarcoma. Moreover, CRC-downstream genes and signaling pathways may contain potential therapeutic targets for this malignancy.
Collapse
Affiliation(s)
- Xianping Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease; Affiliated Cancer Hospital of Guangzhou Medical University; Sino-French Hoffmann institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, P.R. China
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yueyuan Zheng
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Liling Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease; Affiliated Cancer Hospital of Guangzhou Medical University; Sino-French Hoffmann institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510120, P.R. China
| | - Bo Zhou
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Liyan Li
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lingwen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117600, Singapore
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Sigal Gery
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117600, Singapore
- National University Cancer Institute, National University Hospital Singapore, Singapore 119074, Singapore
| |
Collapse
|
23
|
Discover novel disease-associated genes based on regulatory networks of long-range chromatin interactions. Methods 2020; 189:22-33. [PMID: 33096239 DOI: 10.1016/j.ymeth.2020.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/29/2020] [Accepted: 10/18/2020] [Indexed: 02/01/2023] Open
Abstract
Identifying genes and non-coding genetic variants that are genetically associated with complex diseases and the underlying mechanisms is one of the most important questions in functional genomics. Due to the limited statistical power and the lack of mechanistic modeling, traditional genome-wide association studies (GWAS) is restricted to fully address this question. Based on multi-omics data integration, cell-type specific regulatory networks can be built to improve GWAS analysis. In this study, we developed a new computational infrastructure, APRIL, to incorporate 3D chromatin interactions into regulatory network construction, which can extend the networks to include long-range cis-regulatory links between non-coding GWAS SNPs and target genes. Combinatorial transcription factors that co-regulate groups of genes are also inferred to further expand the networks with trans-regulation. A suite of machine learning predictions and statistical tests are incorporated in APRIL to predict novel disease-associated genes based on the expanded regulatory networks. Important features of non-coding regulatory elements and genetic variants are prioritized in network-based predictions, providing systems-level insights on the mechanisms of transcriptional dysregulation associated with complex diseases.
Collapse
|
24
|
Weng J, Wu J, Chen W, Fan H, Liu H. KLF14 inhibits osteogenic differentiation of human bone marrow mesenchymal stem cells by downregulating WNT3A. Am J Transl Res 2020; 12:4445-4455. [PMID: 32913518 PMCID: PMC7476154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
KLF14 belongs to the Krüppel-like factor (KLF) family of transcription factors. The KLF family activate and/or repress transcription in a promoter- and cell-dependent manner by interacting with co-suppressors or co-activators. However, the function and mechanism of KLF14 in osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs) is unknown. This study explores the impact and molecular mechanism of KLF14 in hMSC osteogenic differentiation in vitro. We found that KLF14 was highly expressed in hMSCs, and KLF14 expression gradually decreased after inducing osteogenic differentiation. Inhibiting KLF14 expression promoted osteogenic differentiation of hMSCs. We also found that KLF14 interacted with the WNT3A promoter. This interaction decreased expression of WNT3A and downstream osteogenesis-related target genes in the WNT signaling pathway, and resulted in cell cycle arrest. In conclusion, we describe a new mechanism for KLF14 in differentiation of hMSCs into osteoblasts and suggest a new target for clinical therapeutics related to human bone development.
Collapse
Affiliation(s)
- Junquan Weng
- Department of Stomatology, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan UniversityGuangdong, P. R. China
| | - Jiahua Wu
- Department of Stomatology, Union Hospital of Shenzhen, Huazhong University of Science and TechnologyGuangdong, P. R. China
| | - Weixuan Chen
- Department of Stomatology, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan UniversityGuangdong, P. R. China
| | - Haidong Fan
- Department of Stomatology, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan UniversityGuangdong, P. R. China
| | - Huijuan Liu
- Department of Stomatology, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan UniversityGuangdong, P. R. China
| |
Collapse
|
25
|
Wan Y, Luo H, Yang M, Tian X, Peng B, Zhan T, Chen X, Ding Y, He J, Cheng X, Huang X, Zhang Y. miR-324-5p Contributes to Cell Proliferation and Apoptosis in Pancreatic Cancer by Targeting KLF3. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:432-442. [PMID: 32913892 PMCID: PMC7452094 DOI: 10.1016/j.omto.2020.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer cells are characterized by high cell proliferation and low cell apoptosis, but the factors involved in these processes remain to be further studied. In this study, we report that miR-324-5p regulates the proliferation and apoptosis of pancreatic cancer cells through regulating the expression of Krüppel-like factor 3 (KLF3). In both pancreatic cancer tissues and cell lines, the levels of miR-324-5p are significantly increased. Inhibition of miR-324-5p represses cell proliferation but promotes cell apoptosis, whereas overexpression of miR-324-5p exerts the opposite effect. Furthermore, we identified KLF3, a factor regulating pancreatic cancer cell proliferation and apoptosis, as a new direct downstream target of miR-324-5p. Our results suggest that miR-324-5p plays an important role in pancreatic cancer cell proliferation and apoptosis via downregulating the expression of KLF3.
Collapse
Affiliation(s)
- Yiyuan Wan
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China.,Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ming Yang
- Department of Dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Bo Peng
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Zhan
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoli Chen
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xueting Cheng
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaodong Huang
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Yadong Zhang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| |
Collapse
|
26
|
The Distinct Roles of Transcriptional Factor KLF11 in Normal Cell Growth Regulation and Cancer as a Mediator of TGF-β Signaling Pathway. Int J Mol Sci 2020; 21:ijms21082928. [PMID: 32331236 PMCID: PMC7215894 DOI: 10.3390/ijms21082928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
KLF11 (Krüppel-like factor 11) belongs to the family of Sp1/Krüppel-like zinc finger transcription factors that play important roles in a variety of cell types and tissues. KLF11 was initially described as a transforming growth factor-beta (TGF-β) inducible immediate early gene (TIEG). KLF11 promotes the effects of TGF-β on cell growth control by influencing the TGFβ–Smads signaling pathway and regulating the transcription of genes that induce either apoptosis or cell cycle arrest. In carcinogenesis, KLF11 can show diverse effects. Its function as a tumor suppressor gene can be suppressed by phosphorylation of its binding domains via oncogenic pathways. However, KLF 11 can itself also show tumor-promoting effects and seems to have a crucial role in the epithelial–mesenchymal transition process. Here, we review the current knowledge about the function of KLF11 in cell growth regulation. We focus on its transcriptional regulatory function and its influence on the TGF-β signaling pathway. We further discuss its possible role in mediating crosstalk between various signaling pathways in normal cell growth and in carcinogenesis.
Collapse
|
27
|
Alam C, Kondo M, O'Connor DL, Bendayan R. Clinical Implications of Folate Transport in the Central Nervous System. Trends Pharmacol Sci 2020; 41:349-361. [PMID: 32200980 DOI: 10.1016/j.tips.2020.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Folates are essential for key biosynthetic processes in mammalian cells and play a crucial role in the maintenance of central nervous system homeostasis. Mammals lack the metabolic capacity for folate biosynthesis; hence, folate requirements are largely met through dietary sources. To date, three major folate transport pathways have been characterized: the folate receptors (FRs), reduced folate carrier (RFC), and proton-coupled folate transporter (PCFT). This article reviews current knowledge on the role of folate transport systems in mediating folate delivery to vital tissues, particularly the brain, and how these pathways are modulated by various regulatory mechanisms. We will also briefly highlight the clinical significance of cerebral folate transport in relation to neurodevelopmental disorders associated with folate deficiency.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Misaki Kondo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Deborah L O'Connor
- Translational Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada; Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
28
|
Cheng L, Shi L, Dai H. Bioinformatics analysis of potential prognostic biomarkers among Krüppel-like transcription Factors (KLFs) in breast cancer. Cancer Biomark 2019; 26:411-420. [PMID: 31640084 DOI: 10.3233/cbm-190199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lin Cheng
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Liang Shi
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hong Dai
- Department of General Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
29
|
Urrutia G, Salmonson A, Toro-Zapata J, de Assuncao TM, Mathison A, Dusetti N, Iovanna J, Urrutia R, Lomberk G. Combined Targeting of G9a and Checkpoint Kinase 1 Synergistically Inhibits Pancreatic Cancer Cell Growth by Replication Fork Collapse. Mol Cancer Res 2019; 18:448-462. [PMID: 31822519 DOI: 10.1158/1541-7786.mcr-19-0490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Because of its dismal outcome, pancreatic ductal adenocarcinoma (PDAC) remains a therapeutic challenge making the testing of new pharmacologic tools a goal of paramount importance. Here, we developed a rational approach for inhibiting PDAC growth based on leveraging cell-cycle arrest of malignant cells at a phase that shows increased sensitivity to distinct epigenomic inhibitors. Specifically, we simultaneously inhibited checkpoint kinase 1 (Chk1) by prexasertib and the G9a histone methyltransferase with BRD4770, thereby targeting two key pathways for replication fork stability. Methodologically, the antitumor effects and molecular mechanisms of the combination were assessed by an extensive battery of assays, utilizing cell lines and patient-derived cells as well as 3D spheroids and xenografts. We find that the prexasertib-BRD4770 combination displays a synergistic effect on replication-associated phenomena, including cell growth, DNA synthesis, cell-cycle progression at S phase, and DNA damage signaling, ultimately leading to a highly efficient induction of cell death. Moreover, cellular and molecular data reveal that the synergistic effect of these pathways can be explained, at least in large part, by the convergence of both Chk1 and G9a functions at the level of the ATR-RPA-checkpoint pathway, which is operational during replication stress. Thus, targeting the epigenetic regulator G9a, which is necessary for replication fork stability, combined with inhibition of the DNA damage checkpoint, offers a novel approach for controlling PDAC growth through replication catastrophe. IMPLICATIONS: This study offers an improved, context-dependent, paradigm for the use of epigenomic inhibitors and provides mechanistic insight into their potential therapeutic use against PDAC.
Collapse
Affiliation(s)
- Guillermo Urrutia
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ann Salmonson
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jorge Toro-Zapata
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Thiago M de Assuncao
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin.,Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Angela Mathison
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin.,Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Raul Urrutia
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin.,Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gwen Lomberk
- Division of Research, Department of Surgery; Medical College of Wisconsin, Milwaukee, Wisconsin. .,Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
30
|
Zhou Y, Li Y, Xu S, Lu J, Zhu Z, Chen S, Tan Y, He P, Xu J, Proud CG, Xie J, Shen K. Eukaryotic elongation factor 2 kinase promotes angiogenesis in hepatocellular carcinoma via PI3K/Akt and STAT3. Int J Cancer 2019; 146:1383-1395. [PMID: 31286509 DOI: 10.1002/ijc.32560] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/31/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy with increasing mortality in China. Angiogenesis is crucial for tumor formation, development and metastasis in HCC. Previous studies indicated that high expression levels of elongation factor 2 kinase (eEF2K), a protein kinase that negatively regulates the elongation stage of translation, were associated with poor prognosis of HCC. Here, we show that pharmacological inhibition or knockdown of eEF2K in highly metastatic liver cancer cells inhibits their colony forming and migratory capacities, as well as reducing their invasiveness. Importantly, knocking down eEF2K by lentiviral directed shRNA prevented tumor growth and angiogenesis of HCC in mice. Silencing of eEF2K in endothelial cells (HUVECs) led to a reduction in vascularization, evidenced by a decrease in capillary-like structures in the matrigel. Notably, knocking down eEF2K reduced the expression of angiogenesis-related growth factors in liver cancer cells and the expression of growth factor receptors on HUVECs, and thus restricted signaling crosstalk that promotes angiogenesis between HCC cells and endothelial cells. We also showed that silencing of eEF2K effectively reduced protein levels of SP1/KLF5 transcription factors and hence decreased the levels of bound SP1/KLF5 to the VEGF promoter, resulted in a decrease in VEGF mRNA expression. Knocking down eEF2K also led to a striking decrease in the phosphorylation of PI3K/Akt and STAT3, indicating inactivation of these tumorigenic pathways. Taken together, our data suggest that eEF2K contributes to angiogenesis and tumor progression in HCC via SP1/KLF5-mediated VEGF expression, as well as the subsequent stimulation of PI3K/Akt and STAT3 signaling.
Collapse
Affiliation(s)
- Ying Zhou
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yaoting Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shihao Xu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ziyi Zhu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoli Chen
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Tan
- Department of Integrated TCM & Western Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Peng He
- Department of Nephrology, Huabeishiyou Hospital of Traditional Chinese Medicine, Hebei, China
| | - Jin Xu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia
| | - Kaikai Shen
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Medical Research Council Toxicology Unit, University of Cambridge, Leicester, United Kingdom
| |
Collapse
|
31
|
Zhai B, Zhang L, Wang C, Zhao Z, Zhang M, Li X. Identification of microRNA-21 target genes associated with hair follicle development in sheep. PeerJ 2019; 7:e7167. [PMID: 31293827 PMCID: PMC6599667 DOI: 10.7717/peerj.7167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/22/2019] [Indexed: 01/20/2023] Open
Abstract
Aim The target molecule regulatory function of microRNA-21 (miR-21) in multiple signalling pathways has become a main focus of genetic and pharmacological regulatory studies of various diseases. The identification of target genes for miRNA-21 in the development of hair follicles can provide new research pathways for the regulation of cell development. Methods In the present study, eight six-month-old ewes from Super Merino (SM) and Small Tailed Han (STH) sheep breeds were selected. Target prediction and dual-luciferase wild-type and mutant vectors were used to identify the target genes of miR-21. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and bioinformatics analysis were conducted to analyze the effects of miR-21. Results The results show that the expressions of CNKSR2, KLF3 and TNPO1 were downregulated by miRNA-21 at rates of 36%, 26% and 48%, respectively. Moreover, there was a significant negative correlation between the expression of miR-21 and the three target genes in sheep with two extreme phenotypes. The expression of microRNA-21in October was significantly lower than that in January and February; while the expression of CNKSR2, KLF3 and TNPO1 in October was higher than that in January and February. Conclusions: These results suggest that CNKSR2, KLF3 and TNPO1 are three newly discovered target genes of miR-21 and might be involved in the effects of miR-21 on hair follicle development.
Collapse
Affiliation(s)
- Bo Zhai
- Jilin Academy of Agricultural Science, Branch of Animal Husbandry, Gongzhuling, China
| | - Lichun Zhang
- Jilin Academy of Agricultural Science, Branch of Animal Husbandry, Gongzhuling, China
| | - Chunxin Wang
- Jilin Academy of Agricultural Science, Branch of Animal Husbandry, Gongzhuling, China
| | - Zhuo Zhao
- Jilin Academy of Agricultural Science, Branch of Animal Husbandry, Gongzhuling, China
| | - Mingxin Zhang
- Jilin Academy of Agricultural Science, Branch of Animal Husbandry, Gongzhuling, China
| | - Xu Li
- Jilin Academy of Agricultural Science, Branch of Animal Husbandry, Gongzhuling, China
| |
Collapse
|
32
|
Yang W, Kang Y, Zhao Q, Bi L, Jiao L, Gu Y, Lu J, Yao J, Zhou D, Sun J, Zhao X, Xu L. Herbal formula Yangyinjiedu induces lung cancer cell apoptosis via activation of early growth response 1. J Cell Mol Med 2019; 23:6193-6202. [PMID: 31237749 PMCID: PMC6714142 DOI: 10.1111/jcmm.14501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese Medicine (TCM) has been extensively used in clinical practices and proven to be effective against cancer. However, the underlying mechanisms remain to be investigated. In this study, we examined the anticancer activities of Chinese herbal formula Yangyinjiedu (YYJD) and found that YYJD exhibits cytotoxicity against lung cancer cells. Transcriptome analysis indicated that 2178 genes were differentially expressed (P < 0.05) upon YYJD treatment, with 1464 being (67.2%) up‐regulated. Among these, we found that the tumour suppressor early growth response 1 (EGR1) is the most activated. We demonstrated that EGR1 contributes to YYJD‐induced apoptosis in A549. Through dissecting EGR1‐associated transcriptional network, we identified 275 genes as EGR1 direct targets, some targets are involved in apoptosis. Lastly, we observed that YYJD enhances EGR1 expression and induces cell death in tumour xenografts. Collectively, these findings suggest that YYJD exerts its anticancer activities through EGR1 activation, thus providing the evidence for its potential clinical application for lung cancer patients.
Collapse
Affiliation(s)
- Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhao Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Yao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cancer Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Protein profiling of cerebrospinal fluid from patients undergoing vestibular schwannoma surgery and clinical significance. Biomed Pharmacother 2019; 116:108985. [PMID: 31146115 DOI: 10.1016/j.biopha.2019.108985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Vestibular schwannoma (VS) is a common disease in the region of the cerebellopontine angle in the posterior cranial fossa. Large VS and its surgical management usually lead to severe cranial nerve dysfunction and affect the patient's quality of life. We aimed to find some possible progression markers of VS. Here, we sought to characterize the cerebrospinal fluid (CSF) proteome of patients with different VS grades and recurrence to identify biomarkers predictive of VS growth or recurrence. CSF was collected intraoperatively prior to removal of untreated VS, including grade I-V and recurrence. Isobaric tags for relative and absolute quantitation-based proteomic analysis of CSF from 43 VS patients and 3 control patients was used to identify candidate proteins. Ninety-three overlapping proteins were found to display differential expression in grade I, II, III, IV, and V VS patients compared with the control group. Nine proteins were chosen for validation with enzyme-linked immunosorbent assay. VS was distinguished from control patients based on the expression patterns of six proteins (ATP-binding cassette subfamily A member 3 [ABCA3], secretogranin-1 [SCG1], Krueppel-like factor 11 [KLF11], voltage-dependent calcium channel subunit alpha-2/delta-1 [CA2D1], brain acid soluble protein 1 [BASP1], and peroxiredoxin-2 [PRDX2]. ABCA3 and KLF11 were positively correlated with the size of early-phase of VS, while BASP1 and PRDX2 showed a negative correlation. ABCA3, CA2D1, and KLF11 were upregulated, while BASP1 and PRDX2 were downregulated in the CSF from VS recurrence. But SCG1 was increased only at early-phase. These data suggest that increased ABCA3 and KLF11 and decreased BASP1 and PRDX2 in CSF are associated with VS growth at the early phase or recurrence.
Collapse
|
34
|
Wu R, Yun Q, Zhang J, Bao J. Downregulation of KLF13 through DNMT1-mediated hypermethylation promotes glioma cell proliferation and invasion. Onco Targets Ther 2019; 12:1509-1520. [PMID: 30863117 PMCID: PMC6390852 DOI: 10.2147/ott.s188270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Recent evidence indicates that Kruppel-like factor 13 (KLF13) has critical roles in regulating cell differentiation, proliferation and may function as a tumor suppressor. However, its role in glioma progression is poorly understood. Methods Public database was used to explore the expression and prognostic value of KLF13 in glioma. Cell proliferation and invasion assays were used to explore the role of KLF13. Bisulfite sequencing and ChIP assay were used to determine the methylation of KLF13 promoter in glioma and the regulation of KLF13 by DNMT1. Results We found that KLF13 inhibited glioma cell proliferation and invasion, which could be reversed by AKT activation. DNMT1-mediated hypermethylation was responsible for downregulation of KLF13. Knocking down of DNMT1 restored KFL13 expression and inhibited cell proliferation and invasion as well. Patients with high expression of KLF13 might have a better prognosis. Conclusion KLF13 suppressed glioma aggressiveness and the regulation of KLF13 could be a potential therapeutic target.
Collapse
Affiliation(s)
- Rile Wu
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot 010017, China,
| | - Qiang Yun
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot 010017, China,
| | - Jianping Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot 010017, China,
| | - Jingang Bao
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot 010017, China,
| |
Collapse
|
35
|
LncRNA SNHG3 enhances the malignant progress of glioma through silencing KLF2 and p21. Biosci Rep 2018; 38:BSR20180420. [PMID: 30042166 PMCID: PMC6127675 DOI: 10.1042/bsr20180420] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/25/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
As a newly discovered long non-coding RNA, small nucleolar RNA host gene 3 (SHNG3) has been reported to be dysregulated in certain cancers. Nevertheless, the details about clinical values and biological effects of SNHG3 on glioma are still covered. In this paper, we determined the expression level of SNHG3 in glioma tissues and cells and evaluated the effect of SNHG3 expression on the prognosis of glioma patients. The functional assays were applied to define the effects of SNHG3 on the biological behaviors in glioma including cell proliferation, cell cycle, and apoptosis. It was revealed that SNHG3 was much more enriched in glioma tissues and cell lines than in normal ones. Furthermore, gain- or loss-of-function experiments indicated that the up-regulation of SNHG3 promoted cell proliferation, accelerate cell cycle progress, and repressed cell apoptosis. The mechanistic assays disclosed that SNHG3 facilitated the malignant progression of glioma through epigenetically repressing KLF2 and p21 via recruiting enhancer of zeste homolog 2 to the promoter of KLF2 and p21. Generally, it was exposed that SNHG3 might function as an oncogene in glioma and could be explored as a potential prognostic biomarker and therapeutic target for glioma.
Collapse
|
36
|
Wang X, He M, Li J, Wang H, Huang J. KLF15 suppresses cell growth and predicts prognosis in lung adenocarcinoma. Biomed Pharmacother 2018; 106:672-677. [PMID: 29990857 DOI: 10.1016/j.biopha.2018.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/01/2018] [Accepted: 07/01/2018] [Indexed: 02/07/2023] Open
Abstract
Krüppel-like factors (KLFs) are transcription factors containing three different C2H2-type zinc finger domains in their carboxy-terminal regions which have been identified to play important roles in a variety of cancers. However, little is known about KLF15 in lung adenocarcinoma (LAUD). Our study demonstrated that the expression levels of KLF15 were observably down-regulated in LAUD tissues compared to paired adjacent normal tissues. LUAD patients with low expression levels of KLF15 have worse prognosis than those with high expression levels of KLF15. KLF15 could suppress cell growth, which was partly via up-regulating CDKN1 A/p21 and CDKN2A/p15. Our findings suggested that KLF15 showed a significant role in LAUD progression and may shed light on a promising novel therapeutic target for blocking progression of LAUD.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, PR China; Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, PR China
| | - Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, PR China
| | - Jianzhong Li
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, PR China
| | - Haiying Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, PR China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, PR China.
| |
Collapse
|
37
|
Miyamoto M, Hayashi T, Kawasaki Y, Akiyama T. Sp5 negatively regulates the proliferation of HCT116 cells by upregulating the transcription of p27. Oncol Lett 2018; 15:4005-4009. [PMID: 29456745 DOI: 10.3892/ol.2018.7793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 10/14/2016] [Indexed: 12/23/2022] Open
Abstract
The Wnt signaling pathway is aberrantly activated in the majority of human colorectal tumors. β-catenin, a key component of the Wnt signaling pathway, interacts with the T-cell factor/lymphoid enhancer-binding factor family of transcription factors and activates transcription of Wnt target genes. Sp5 is one of the Wnt target genes, and its expression is commonly upregulated in colon cancer cells. The present study demonstrates that the expression of Sp5 is not upregulated in the colon cancer cell line HCT116, in which Wnt signaling is constitutively activated. Furthermore, the results demonstrate that Sp5 has the potential to inhibit cell proliferation through upregulation of the cell cycle inhibitor p27. These findings suggest that HCT116 cells downregulate Sp5 to avoid p27-mediated growth arrest.
Collapse
Affiliation(s)
- Masaya Miyamoto
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Tomoatsu Hayashi
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yoshihiro Kawasaki
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
38
|
Wang Q, Peng R, Wang B, Wang J, Yu W, Liu Y, Shi G. Transcription factor KLF13 inhibits AKT activation and suppresses the growth of prostate carcinoma cells. Cancer Biomark 2018; 22:533-541. [PMID: 29843216 PMCID: PMC6218114 DOI: 10.3233/cbm-181196] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Krüppel-like factor 13 (KLF13), a member of the KLF family, is involved in the development of immunological diseases and tumor progression. However, the expression patterns and potential functions of KLF13 in prostate carcinoma are still unknown. Here, we aimed to study the roles and mechanisms of KLF13 in prostate cancer. METHODS The expression levels of KLF13 was detected by Immunohistochemistry in prostate tumor tissues and the paired non-tumor tissues. The effects of KLF13 up-regulation was tested by performing CCK8, cell colon formation, flow cytometric analysis and measurement of tumor proliferation in nude mice. Signaling pathway was analyzed by Western blot. RESULTS The current study, for the first time, found that KLF13 was downregulated in prostate tumor tissues as compared to the paired non-tumor tissues. The overexpression of KLF13 dramatically inhibited cell proliferation and induced apoptosis by suppressing the AKT pathway in human prostate cancer cells. Moreover, the ectopic expression of KLF13 efficiently delayed the onset of PC3 xenografts and inhibited the tumor growth in vivo. CONCLUSIONS KLF13 functions as a tumor suppressor protein in PCa, and the pharmacological activation of KLF13 might represent a potential approach for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Urology, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ruixian Peng
- Department of Urology, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jifeng Wang
- Department of Urology, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wandong Yu
- Department of Urology, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guowei Shi
- Department of Urology, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Abstract
Pancreatic cancers arise through a series of genetic events both inherited and acquired. Inherited genetic changes, both high penetrance and low penetrance, are an important component of pancreatic cancer risk, and may be used to characterize populations who will benefit from early detection. Furthermore, pancreatic cancer patients with inherited mutations may be particularly sensitive to certain targeted agents, providing an opportunity to personalized treatment. Family history of pancreatic cancer is one of the strongest risk factors for the disease, and is associated with an increased risk of caners at other sites, including but not limited to breast, ovarian and colorectal cancer. The goal of this chapter is to discuss the importance of family history of pancreatic cancer, and the known genes that account for a portion of the familial clustering of pancreatic cancer.
Collapse
Affiliation(s)
- Fei Chen
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institution, Baltimore, MD, USA
| | - Alison P Klein
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Pathology, Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institution, Baltimore, MD, USA.
| |
Collapse
|
40
|
A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. J Mol Cell Cardiol 2017; 114:72-82. [PMID: 29122578 DOI: 10.1016/j.yjmcc.2017.11.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/22/2017] [Accepted: 11/05/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs), small non-coding RNAs that post-transcriptionally regulate target genes. MiR-125b-5p is downregulated in patients with end-stage dilated and ischemic cardiomyopathy, and has been proposed as a biomarker of heart failure. We previously reported that the β-blocker carvedilol promotes cardioprotection via β-arrestin-biased agonism of β1-adrenergic receptor while stimulating miR-125b-5p processing in the mouse heart. We hypothesize that β1-adrenergic receptor/β-arrestin1-responsive miR-125b-5p confers the improvement of cardiac function and structure after acute myocardial infarction. METHODS AND RESULTS Using cultured cardiomyocyte (CM) and in vivo approaches, we show that miR-125b-5p is an ischemic stress-responsive protector against CM apoptosis. CMs lacking miR-125b-5p exhibit increased susceptibility to stress-induced apoptosis, while CMs overexpressing miR-125b-5p have increased phospho-AKT pro-survival signaling. Moreover, we demonstrate that loss-of-function of miR-125b-5p in the mouse heart causes abnormalities in cardiac structure and function after acute myocardial infarction. Mechanistically, the improvement of cardiac function and structure elicited by miR-125b-5p is in part attributed to repression of the pro-apoptotic genes Bak1 and Klf13 in CMs. CONCLUSIONS In conclusion, these findings reveal a pivotal role for miR-125b-5p in regulating CM survival during acute myocardial infarction.
Collapse
|
41
|
Gao L, Qiu H, Liu J, Ma Y, Feng J, Qian L, Zhang J, Liu Y, Bian T. KLF15 promotes the proliferation and metastasis of lung adenocarcinoma cells and has potential as a cancer prognostic marker. Oncotarget 2017; 8:109952-109961. [PMID: 29299121 PMCID: PMC5746356 DOI: 10.18632/oncotarget.21972] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/24/2017] [Indexed: 12/19/2022] Open
Abstract
Lung adenocarcinoma (LADC)is a general form of non-small cell lung cancer that represents a significant threat to public health worldwide. The 5-year-survival rate for LADC is currently below 15%. The transcription factor KLF15, also called kidney-enriched KLF (KKLF), has been proven to play a role in inhibiting proliferation and diversification of carcinoma cells, including those of the endometrium, pancreas and breast, but the involvement of KLF15 in LADC has not previously been studied. In this study, we compared the in vitro expression of KLF15 in human LADC tissues and adjacent normal lung tissues. Expression of KLF15 was found to be abnormally high in LADC tissues and cells compared with adjacent non-tumorous tissues, and was correlated with tumor TNM stage and tumor differentiation (P = 0.003, P = 0.001, respectively). The effect of KLF15 on cell growth and migration were explored in vitro by Western Blotting, CCK8 and colony formation assays, flow cytometry analysis and transwell migration assays, and in vivo by analysis of tumorigenesis in 5-week old BALB/c nude mice. Knockdown of KLF15 significantly upregulated the protein levels of cleaved caspase-3, caspase-7, caspase-8 and PARP, thereby inducing apoptosis. Downregulation of KLF15 in A549 and NCI-H1650 cell lines resulted in these cell lines exhibiting markedly slower growth rates when injected subcutaneously into the flank of nude mice, compared with the comparator control groups (P < 0.05). Collectively, our findings suggest that KLF15 may have a significant effect on LADC cell survival, and that it represents a potential therapeutic and preventive biomarker for LADC prognosis and treatment.
Collapse
Affiliation(s)
- Lihua Gao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hongmei Qiu
- Department of Respiration, Nantong Geriatric Rehabilitation Hospital, Branch of Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jian Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yuzhen Ma
- Centre of Reproductive Medicine, Inner Mongolia Hospital, Inner Mongolia, Hohhot, 010021, China
| | - Jia Feng
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
42
|
Wang WY, Wang YF, Ma P, Xu TP, Shu YQ. Taurine‑upregulated gene 1: A vital long non‑coding RNA associated with cancer in humans (Review). Mol Med Rep 2017; 16:6467-6471. [PMID: 28901436 DOI: 10.3892/mmr.2017.7472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 07/06/2017] [Indexed: 11/06/2022] Open
Abstract
It is widely reported that long non‑coding RNAs (lncRNAs) are involved in regulating cell differentiation, proliferation, apoptosis and other biological processes. Certain lncRNAs have been found to be crucial in various types of tumor. Taurine‑upregulated gene 1 (TUG1) has been shown to be expressed in a tissue‑specific pattern and exert oncogenic or tumor suppressive functions in different types of cancer in humans. According to previous studies, TUG1 is predominantly located in the nucleus and may regulate gene expression at the transcriptional level. It mediates chromosomal remodeling and coordinates with polycomb repressive complex 2 (PRC2) to regulate gene expression. Although the mechanisms of how TUG1 affects the tumor genesis process remain to be fully elucidated, increasing studies have suggested that TUG1 offers potential as a diagnostic and prognostic biomarker, and as a therapeutic target in certain types of tumor. This review aims to summarize current evidence concerning the characteristics, mechanisms and associations with cancer of TUG1.
Collapse
Affiliation(s)
- Wen-Yu Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan-Fen Wang
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tong-Peng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
43
|
|
44
|
Ma P, Sun CQ, Wang YF, Pan YT, Chen QN, Liu WT, Liu J, Zhao CH, Shu YQ, Li W. KLF16 promotes proliferation in gastric cancer cells via regulating p21 and CDK4. Am J Transl Res 2017; 9:3027-3036. [PMID: 28670390 PMCID: PMC5489902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Krüppel-like factors (KLFs), such as KLF4, KLF2, KLF5 and KLF15, have been extensively investigated in multi-cancers. However, KLF16, a member of KLFs, hasn't been well identified in cancer, especially in gastric cancer (GC). Here, we investigated the roles of KLF16 in GC. In present study, we found that KLF16 expression levels were significantly up-regulated in GC tissues compared to adjacent normal tissues both in protein and mRNA levels by using immunohistochemistry assays (IHC) and real-time quantitative PCR (qPCR). And KLF16 expression levels were positively correlated to tumor size, invasion depth, lymphatic metastasis and TNM stage. Furthermore, KLF16 expression also could predict prognosis in patients with GC. Moreover, the knock-down of KLF16 could significantly suppress proliferation via increasing p21 expression and decreasing CDK4 expression in GC cell lines. In summary, these findings demonstrate that KLF16 plays a significant role in GC progression and could be a new therapeutic target for GC patients.
Collapse
Affiliation(s)
- Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Chong-Qi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Yan-Fen Wang
- Department of Pathology, Yangzhou No.1 People’s HospitalYangzhou, People’s Republic of China
| | - Yu-Tian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Qin-Nan Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Wei-Tao Liu
- Department of Pathology, Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Jie Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Chen-Hui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Medical Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Medical Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| |
Collapse
|
45
|
Sun C, Ma P, Wang Y, Liu W, Chen Q, Pan Y, Zhao C, Qian Y, Liu J, Li W, Shu Y. KLF15 Inhibits Cell Proliferation in Gastric Cancer Cells via Up-Regulating CDKN1A/p21 and CDKN1C/p57 Expression. Dig Dis Sci 2017; 62:1518-1526. [PMID: 28421457 DOI: 10.1007/s10620-017-4558-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/28/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Krüppel-like factors (KLFs) have been identified in multi-cancers and act as oncogenes or tumor suppressors. The function of KLF15, one member of KLFs, has not been well elucidated, especially in gastric cancer (GC). AIMS This study was designed to investigate the prognostic value and biological functions of KLF15 in GC. METHODS KLF15 protein expression in GC patients was evaluated by immunohistochemistry assays in 50 paired GC tissues and adjacent normal tissues, and correlations between KLF15 expression and clinicopathological characteristics and prognosis were analyzed. Then, we investigated the over-expression of KLF15 on cell proliferation and its mechanism in GC cells. RESULTS KLF15 expression levels were significantly down-regulated in GC tissues compared to adjacent normal tissues. And KLF15 expression was negatively correlated with clinical stage, lymphatic metastasis, and distant metastasis. Furthermore, KLF15 expression could predict prognosis in patients with GC. Moreover, over-expression of KLF15 could inhibit cell proliferation partly via regulating CDKN1A/p21 and CDKN1C/p57. CONCLUSION These findings demonstrate that KLF15 plays a significant role in GC progression and could be a therapeutic target for GC.
Collapse
Affiliation(s)
- Chongqi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Yanfen Wang
- Department of Pathology, Yangzhou No.1 People's Hospital, Yangzhou, People's Republic of China
| | - Weitao Liu
- Department of Pathology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qinnan Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Yingchen Qian
- Department of Pathology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jie Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China. .,Department of Medical Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China. .,Department of Medical Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
46
|
Mathison A, Salmonson A, Missfeldt M, Bintz J, Williams M, Kossak S, Nair A, de Assuncao TM, Christensen T, Buttar N, Iovanna J, Huebert R, Lomberk G. Combined AURKA and H3K9 Methyltransferase Targeting Inhibits Cell Growth By Inducing Mitotic Catastrophe. Mol Cancer Res 2017; 15:984-997. [PMID: 28442587 DOI: 10.1158/1541-7786.mcr-17-0063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Abstract
The current integrative pathobiologic hypothesis states that pancreatic cancer (PDAC) develops and progresses in response to an interaction between known oncogenes and downstream epigenomic regulators. Congruently, this study tests a new combinatorial therapy based on the inhibition of the Aurora kinase A (AURKA) oncogene and one of its targets, the H3K9 methylation-based epigenetic pathway. This therapeutic combination is effective at inhibiting the in vitro growth of PDAC cells both, in monolayer culture systems, and in three-dimensional spheroids and organoids. The combination also reduces the growth of PDAC xenografts in vivo Mechanistically, it was found that inhibiting methyltransferases of the H3K9 pathway in cells, which are arrested in G2-M after targeting AURKA, decreases H3K9 methylation at centromeres, induces mitotic aberrations, triggers an aberrant mitotic check point response, and ultimately leads to mitotic catastrophe. Combined, these data describe for the first time a hypothesis-driven design of an efficient combinatorial treatment that targets a dual oncogenic-epigenomic pathway to inhibit PDAC cell growth via a cytotoxic mechanism that involves perturbation of normal mitotic progression to end in mitotic catastrophe. Therefore, this new knowledge has significant mechanistic value as it relates to the development of new therapies as well as biomedical relevance.Implications: These results outline a model for the combined inhibition of a genetic-to-epigenetic pathway to inhibit cell growth and suggest an important and provocative consideration for harnessing the capacity of cell-cycle inhibitors to enhance the future use of epigenetic inhibitors. Mol Cancer Res; 15(8); 984-97. ©2017 AACR.
Collapse
Affiliation(s)
- Angela Mathison
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ann Salmonson
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mckenna Missfeldt
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jennifer Bintz
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Monique Williams
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Sarah Kossak
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Asha Nair
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Thiago M de Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Trace Christensen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Navtej Buttar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Robert Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota.,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Gwen Lomberk
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota. .,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota.,Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
47
|
Angermueller C, Lee HJ, Reik W, Stegle O. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol 2017; 18:67. [PMID: 28395661 PMCID: PMC5387360 DOI: 10.1186/s13059-017-1189-z] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/07/2017] [Indexed: 12/31/2022] Open
Abstract
Recent technological advances have enabled DNA methylation to be assayed at single-cell resolution. However, current protocols are limited by incomplete CpG coverage and hence methods to predict missing methylation states are critical to enable genome-wide analyses. We report DeepCpG, a computational approach based on deep neural networks to predict methylation states in single cells. We evaluate DeepCpG on single-cell methylation data from five cell types generated using alternative sequencing protocols. DeepCpG yields substantially more accurate predictions than previous methods. Additionally, we show that the model parameters can be interpreted, thereby providing insights into how sequence composition affects methylation variability.
Collapse
Affiliation(s)
- Christof Angermueller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Heather J Lee
- Epigenetics Programme, Babraham Institute, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
48
|
Wei X, Yang R, Wang C, Jian X, Li L, Liu H, Yang G, Li Z. A novel role for the Krüppel-like factor 14 on macrophage inflammatory response and atherosclerosis development. Cardiovasc Pathol 2016; 27:1-8. [PMID: 27923151 DOI: 10.1016/j.carpath.2016.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 01/09/2023] Open
Abstract
Genome-wide association studies have shown that Krüppel-like factor 14 (KLF14) is associated with both Type 2 diabetes mellitus and lipid metabolism. However, its role in chronic inflammatory responses and the pathogenesis of atherosclerosis remains unknown. The present study was designed to investigate both in vivo and in vitro the impact of KLF14 on chronic inflammatory responses and atherosclerosis. ApoE KO mice, a well-established animal model of atherosclerosis, had higher expressions of KLF14 in aorta tissues than that in C57BL/6 J mice when fed the high-fat diet (HFD) or standard chow diet. Adenovirus-mediated KLF14 knockdown markedly reduced the circulating levels of proinflammatory cytokines and the formation of atherosclerotic lesions in HFD-fed ApoE KO mice. In the in vitro study, KLF14 overexpression in the RAW264.7 macrophages significantly increased the expressions of inflammatory cytokines, total cholesterol (TC), cholesteryl ester (CE), and the ratio of CE to TC in the cells treated with acetylated low-density lipoproteins (AcLDL). Conversely, KLF14 knockdown remarkably attenuated AcLDL-induced increase in TC, CE, and the ratio of CE to TC as well as the expressions of inflammatory cytokines. Furthermore, up-regulation or down-regulation of KLF14 markedly elevated or inhibited the phosphorylation levels of p38 MAPK and ERK1/2 in AcLDL-stimulated RAW264.7 macrophages, respectively. Importantly, treatment with p38 MAPK or ERK1/2 inhibitor nullified the effects of KLF14 on inflammatory cytokine expressions in the cells. These data demonstrate an important role for KLF14 expression in atherosclerotic lesion formation.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Endocrinology, Yongchuan Hospital, Chongqing Medical University, 402160, Chongqing, China
| | - Ruomei Yang
- Department of Endocrinology, Yongchuan Hospital, Chongqing Medical University, 402160, Chongqing, China
| | - Chengpan Wang
- Department of Endocrinology, Yongchuan Hospital, Chongqing Medical University, 402160, Chongqing, China
| | - Xun Jian
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, 400010, Chongqing, China
| | - Ling Li
- Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400010, Chongqing, China
| | - Hua Liu
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gangyi Yang
- Department of Endocrinology, Yongchuan Hospital, Chongqing Medical University, 402160, Chongqing, China; Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, 400010, Chongqing, China.
| | - Zhiyong Li
- Department of Endocrinology, Yongchuan Hospital, Chongqing Medical University, 402160, Chongqing, China.
| |
Collapse
|
49
|
Asor E, Ben-Shachar D. Gene environment interaction in periphery and brain converge to modulate behavioral outcomes: Insights from the SP1 transient early in life interference rat model. World J Psychiatry 2016; 6:294-302. [PMID: 27679768 PMCID: PMC5031929 DOI: 10.5498/wjp.v6.i3.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/21/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
It is generally assumed that behavior results from an interaction between susceptible genes and environmental stimuli during critical life stages. The present article reviews the main theoretical and practical concepts in the research of gene environment interaction, emphasizing the need for models simulating real life complexity. We review a novel approach to study gene environment interaction in which a brief post-natal interference with the expression of multiple genes, by hindering the activity of the ubiquitous transcription factor specificity protein 1 (Sp1) is followed by later-in-life exposure of rats to stress. Finally, this review discusses the role of peripheral processes in behavioral responses, with the Sp1 model as one example demonstrating how specific behavioral patterns are linked to modulations in both peripheral and central physiological processes. We suggest that models, which take into account the tripartite reciprocal interaction between the central nervous system, peripheral systems and environmental stimuli will advance our understanding of the complexity of behavior.
Collapse
|
50
|
Abstract
Lung cancer is a heterogeneous disease, and there is a lack of adequate biomarkers for diagnosis. Long noncoding RNAs (lncRNAs) are emerging as an important set of molecules because of their roles in various key pathophysiological pathways, including cell growth, apoptosis, and metastasis. We review the current knowledge of the lncRNAs in lung cancer. In-depth analyses of lncRNAs in lung cancer have increased the number of potential effective biomarkers, thus providing options to increase the therapeutic benefit. In this review, we summarize the functions, mechanisms, and regulatory networks of lncRNAs in lung cancer, providing a basis for further research in this field.
Collapse
Affiliation(s)
- Zhenzi Peng
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Chunfang Zhang
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Chaojun Duan
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|