1
|
Ciancone-Chama AG, Bonaldo V, Biasini E, Bozzi Y, Balasco L. Gene Expression Profiling in Trigeminal Ganglia from Cntnap2 -/- and Shank3b -/- Mouse Models of Autism Spectrum Disorder. Neuroscience 2023; 531:75-85. [PMID: 37699442 DOI: 10.1016/j.neuroscience.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
Sensory difficulties represent a crucial issue in the life of autistic individuals. The diagnostic and statistical manual of mental disorders describes both hyper- and hypo-responsiveness to sensory stimulation as a criterion for the diagnosis autism spectrum disorders (ASD). Among the sensory domain affected in ASD, altered responses to tactile stimulation represent the most commonly reported sensory deficits. Although tactile abnormalities have been reported in monogenic cohorts of patients and genetic mouse models of ASD, the underlying mechanisms are still unknown. Traditionally, autism research has focused on the central nervous system as the target to infer the neurobiological bases of such tactile abnormalities. Nonetheless, the peripheral nervous system represents the initial site of processing of sensory information and a potential site of dysfunction in the sensory cascade. Here we investigated the gene expression deregulation in the trigeminal ganglion (which directly receives tactile information from whiskers) in two genetic models of syndromic autism (Shank3b and Cntnap2 mutant mice) at both adult and juvenile ages. We found several neuronal and non-neuronal markers involved in inhibitory, excitatory, neuroinflammatory and sensory neurotransmission to be differentially regulated within the trigeminal ganglia of both adult and juvenile Shank3b and Cntnap2 mutant mice. These results may help in disentangling the multifaced complexity of sensory abnormalities in autism and open avenues for the development of peripherally targeted treatments for tactile sensory deficits exhibited in ASD.
Collapse
Affiliation(s)
- Alessandra G Ciancone-Chama
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, TN, Italy
| | - Valerio Bonaldo
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | - Yuri Bozzi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, TN, Italy; CNR Neuroscience Institute, via Moruzzi 1, 56124 Pisa, Italy.
| | - Luigi Balasco
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, TN, Italy.
| |
Collapse
|
2
|
Carroll JB, Hamidi S, Gabriele ML. Microglial heterogeneity and complement component 3 elimination within emerging multisensory midbrain compartments during an early critical period. Front Neurosci 2023; 16:1072667. [PMID: 36685243 PMCID: PMC9846048 DOI: 10.3389/fnins.2022.1072667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
The lateral cortex of the inferior colliculus (LCIC) is a midbrain shell region that receives multimodal inputs that target discrete zones of its compartmental (modular-matrix) framework. This arrangement emerges perinatally in mice (postnatal day, P0-P12) as somatosensory and auditory inputs segregate into their respective modular and matrix terminal patterns. Microglial cells (MGCs) perform a variety of critical functions in the developing brain, among them identifying areas of active circuit assembly and selectively pruning exuberant or underutilized connections. Recent evidence in other brain structures suggest considerable MGC heterogeneity across the lifespan, particularly during established developmental critical periods. The present study examines the potential involvement of classical complement cascade signaling (C3-CR3/CD11b) in refining early multisensory networks, and identifies several microglial subsets exhibiting distinct molecular signatures within the nascent LCIC. Immunostaining was performed in GAD67-green fluorescent protein (GFP) and CX3CR1-GFP mice throughout and after the defined LCIC critical period. GAD labeling highlights the emerging LCIC modularity, while CX3CR1 labeling depicts MGCs expressing the fractalkine receptor. C3 expression is widespread throughout the LCIC neuropil early on, prior to its conspicuous absence from modular zones at P8, and more global disappearance following critical period closure. CD11b-expressing microglia while homogeneously distributed at birth, are biased to modular fields at P8 and then the surrounding matrix by P12. Temporal and spatial matching of the disappearance of C3 by LCIC compartment (i.e., modules then matrix) with CD11b-positive MGC occupancy implicates complement signaling in the selective refinement of early LCIC connectivity. Multiple-labeling studies for a variety of established MGC markers (CD11b, CX3CR1, Iba1, TMEM119) indicate significant MGC heterogeneity in the LCIC as its compartments and segregated multisensory maps emerge. Marker colocalization was the exception rather than the rule, suggesting that unique MGC subpopulations exist in the LCIC and perhaps serve distinct developmental roles. Potential mechanisms whereby microglia sculpt early multisensory LCIC maps and how such activity/inactivity may underlie certain neurodevelopmental conditions, including autism spectrum disorder and schizophrenia, are discussed.
Collapse
Affiliation(s)
| | | | - Mark L. Gabriele
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| |
Collapse
|
3
|
CRISPR/Cas9-engineered Gad1 elimination in rats leads to complex behavioral changes: implications for schizophrenia. Transl Psychiatry 2020; 10:426. [PMID: 33293518 PMCID: PMC7723991 DOI: 10.1038/s41398-020-01108-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
GABAergic dysfunctions have been implicated in the pathogenesis of schizophrenia, especially the associated cognitive impairments. The GABA synthetic enzyme glutamate decarboxylase 67-kDa isoform (GAD67) encoded by the GAD1 gene is downregulated in the brains of patients with schizophrenia. Furthermore, a patient with schizophrenia harboring a homozygous mutation of GAD1 has recently been discovered. However, it remains unclear whether loss of function of GAD1 leads to the symptoms observed in schizophrenia, including cognitive impairment. One of the obstacles faced in experimental studies to address this issue is the perinatal lethality of Gad1 knockout (KO) mice, which precluded characterization at the adult stage. In the present study, we successfully generated Gad1 KO rats using CRISPR/Cas9 genome editing technology. Surprisingly, 33% of Gad1 KO rats survived to adulthood and could be subjected to further characterization. The GABA concentration in the Gad1 KO cerebrum was reduced to ~52% of the level in wild-type rats. Gad1 KO rats exhibited impairments in both spatial reference and working memory without affecting adult neurogenesis in the hippocampus. In addition, Gad1 KO rats showed a wide range of behavioral alterations, such as enhanced sensitivity to an NMDA receptor antagonist, hypoactivity in a novel environment, and decreased preference for social novelty. Taken together, the results suggest that Gad1 KO rats could provide a novel model covering not only cognitive deficits but also other aspects of the disorder. Furthermore, the present study teaches an important lesson: differences between species should be considered when developing animal models of human diseases.
Collapse
|
4
|
Early Postnatal Treatment with Valproate Induces Gad1 Promoter Remodeling in the Brain and Reduces Apnea Episodes in Mecp2-Null Mice. Int J Mol Sci 2019; 20:ijms20205177. [PMID: 31635390 PMCID: PMC6834123 DOI: 10.3390/ijms20205177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022] Open
Abstract
The deletion of Mecp2, the gene encoding methyl-CpG-binding protein 2, causes severe breathing defects and developmental anomalies in mammals. In Mecp2-null mice, impaired GABAergic neurotransmission is demonstrated at the early stage of life. GABAergic dysfunction in neurons in the rostral ventrolateral medulla (RVLM) is considered as a primary cause of breathing abnormality in Mecp2-null mice, but its molecular mechanism is unclear. Here, we report that mRNA expression levels of Gad1, which encodes glutamate decarboxylase 67 (GAD67), in the RVLM of Mecp2-null (Mecp2-/y, B6.129P2(C)-Mecp2tm1.1Bird/J) mice is closely related to the methylation status of its promoter, and valproate (VPA) can upregulate transcription from Gad1 through epigenetic mechanisms. The administration of VPA (300 mg/kg/day) together with L-carnitine (30 mg/kg/day) from day 8 to day 14 after birth increased Gad1 mRNA expression in the RVLM and reduced apnea counts in Mecp2-/y mice on postnatal day 15. Cytosine methylation levels in the Gad1 promoter were higher in the RVLM of Mecp2-/y mice compared to wild-type mice born to C57BL/6J females, while VPA treatment decreased the methylation levels in Mecp2-/y mice. Chromatin immunoprecipitation assay revealed that the VPA treatment reduced the binding of methyl-CpG binding domain protein 1 (MBD1) to the Gad1 promoter in Mecp2-/y mice. These results suggest that VPA improves breathing of Mecp2-/y mice by reducing the Gad1 promoter methylation, which potentially leads to the enhancement of GABAergic neurotransmission in the RVLM.
Collapse
|
5
|
mir-500-Mediated GAD67 Downregulation Contributes to Neuropathic Pain. J Neurosci 2017; 36:6321-31. [PMID: 27277808 DOI: 10.1523/jneurosci.0646-16.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/28/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Neuropathic pain is a common neurobiological disease involving multifaceted maladaptations ranging from gene modulation to synaptic dysfunction, but the interactions between synaptic dysfunction and the genes that are involved in persistent pain remain elusive. In the present study, we found that neuropathic pain induced by the chemotherapeutic drug paclitaxel or L5 ventral root transection significantly impaired the function of GABAergic synapses of spinal dorsal horn neurons via the reduction of the GAD67 expression. We also found that mir-500 expression was significantly increased and involved in the modulation of GAD67 expression via targeting the specific site of Gad1 gene in the dorsal horn. In addition, knock-out of mir-500 or using mir-500 antagomir rescued the GABAergic synapses in the spinal dorsal horn neurons and attenuated the sensitized pain behavior in the rats with neuropathic pain. To our knowledge, this is the first study to investigate the function significance and the underlying molecular mechanisms of mir-500 in the process of neuropathic pain, which sheds light on the development of novel therapeutic options for neuropathic pain. SIGNIFICANCE STATEMENT Neuropathic pain is a common neurobiological disease involving multifaceted maladaptations ranging from gene modulation to synaptic dysfunction, but the underlying molecular mechanisms remain elusive. The present study illustrates for the first time a mir-500-mediated mechanism underlying spinal GABAergic dysfunction and sensitized pain behavior in neuropathic pain induced by the chemotherapeutic drug paclitaxel or L5 ventral root transection, which sheds light on the development of novel therapeutic options for neuropathic pain.
Collapse
|
6
|
Layer 3 Excitatory and Inhibitory Circuitry in the Prefrontal Cortex: Developmental Trajectories and Alterations in Schizophrenia. Biol Psychiatry 2017; 81:862-873. [PMID: 27455897 PMCID: PMC5136518 DOI: 10.1016/j.biopsych.2016.05.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 11/20/2022]
Abstract
Convergent evidence suggests that schizophrenia is a disorder of neurodevelopment with alterations in both early and late developmental processes hypothesized to contribute to the disease process. Abnormalities in certain clinical features of schizophrenia, such as working memory impairments, depend on distributed neural circuitry including the dorsolateral prefrontal cortex (DLPFC) and appear to arise during the protracted maturation of this circuitry across childhood and adolescence. In particular, the neural circuitry substrate for working memory in primates involves the coordinated activity of excitatory pyramidal neurons and a specific population of inhibitory gamma-aminobutyric acid neurons (i.e., parvalbumin-containing basket cells) in layer 3 of the DLPFC. Understanding the relationships between the normal development of-and the schizophrenia-associated alterations in-the DLPFC circuitry that subserves working memory could provide new insights into the nature of schizophrenia as a neurodevelopmental disorder. Consequently, we review the following in this article: 1) recent findings regarding alterations of DLPFC layer 3 circuitry in schizophrenia, 2) the developmental refinements in this circuitry that occur during the period when the working memory alterations in schizophrenia appear to arise and progress, and 3) how various adverse environmental exposures could contribute to developmental disturbances of this circuitry in individuals with schizophrenia.
Collapse
|
7
|
Odorant Sensory Input Modulates DNA Secondary Structure Formation and Heterogeneous Ribonucleoprotein Recruitment on the Tyrosine Hydroxylase and Glutamic Acid Decarboxylase 1 Promoters in the Olfactory Bulb. J Neurosci 2017; 37:4778-4789. [PMID: 28411275 DOI: 10.1523/jneurosci.1363-16.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022] Open
Abstract
Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. For a subset of olfactory bulb interneurons, activity-dependent changes in GABA are reflected by corresponding changes in Glutamate decarboxylase 1 (Gad1) expression levels. Mechanisms regulating Gad1 promoter activity are poorly understood, but here we show that a conserved G:C-rich region in the mouse Gad1 proximal promoter region both recruits heterogeneous nuclear ribonucleoproteins (hnRNPs) that facilitate transcription and forms single-stranded DNA secondary structures associated with transcriptional repression. This promoter architecture and function is shared with Tyrosine hydroxylase (Th), which is also modulated by odorant-dependent activity in the olfactory bulb. This study shows that the balance between DNA secondary structure formation and hnRNP binding on the mouse Th and Gad1 promoters in the olfactory bulb is responsive to changes in odorant-dependent sensory input. These findings reveal that Th and Gad1 share a novel transcription regulatory mechanism that facilitates sensory input-dependent regulation of dopamine and GABA expression.SIGNIFICANCE STATEMENT Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. This study shows that transcription of genes encoding rate-limiting enzymes for GABA and dopamine biosynthesis (Gad1 and Th, respectively) in the mammalian olfactory bulb is regulated by G:C-rich regions that both recruit heterogeneous nuclear ribonucleoproteins (hnRNPs) to facilitate transcription and form single-stranded DNA secondary structures associated with repression. hnRNP binding and formation of DNA secondary structure on the Th and Gad1 promoters are mutually exclusive, and odorant sensory input levels regulate the balance between these regulatory features. These findings reveal that Th and Gad1 share a transcription regulatory mechanism that facilitates odorant-dependent regulation of dopamine and GABA expression levels.
Collapse
|
8
|
Lewis DA, Glausier JR. Alterations in Prefrontal Cortical Circuitry and Cognitive Dysfunction in Schizophrenia. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2016; 63:31-75. [PMID: 27627824 DOI: 10.1007/978-3-319-30596-7_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Gonzalez-Burgos G, Cho RY, Lewis DA. Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry 2015; 77:1031-40. [PMID: 25863358 PMCID: PMC4444373 DOI: 10.1016/j.biopsych.2015.03.010] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/09/2015] [Accepted: 03/07/2015] [Indexed: 11/17/2022]
Abstract
Cognitive deficits are a core clinical feature of schizophrenia but respond poorly to available medications. Thus, understanding the neural basis of these deficits is crucial for the development of new therapeutic interventions. The types of cognitive processes affected in schizophrenia are thought to depend on the precisely timed transmission of information in cortical regions via synchronous oscillations at gamma band frequency. Here, we review 1) data from clinical studies suggesting that induction of frontal cortex gamma oscillations during tasks that engage cognitive or complex perceptual functions is attenuated in schizophrenia; 2) findings from basic neuroscience studies highlighting the features of parvalbumin-positive interneurons that are critical for gamma oscillation production; and 3) results from recent postmortem human brain studies providing additional molecular bases for parvalbumin-positive interneuron alterations in prefrontal cortical circuitry in schizophrenia.
Collapse
Affiliation(s)
| | - Raymond Y Cho
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburg, Pennsylvania.
| |
Collapse
|
10
|
Trifonov S, Yamashita Y, Kase M, Maruyama M, Sugimoto T. Glutamic acid decarboxylase 1 alternative splicing isoforms: characterization, expression and quantification in the mouse brain. BMC Neurosci 2014; 15:114. [PMID: 25322942 PMCID: PMC4295415 DOI: 10.1186/1471-2202-15-114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/25/2014] [Indexed: 11/24/2022] Open
Abstract
Background GABA has important functions in brain plasticity related processes like memory, learning, locomotion and during the development of the nervous system. It is synthesized by the glutamic acid decarboxylase (GAD). There are two isoforms of GAD, GAD1 and GAD2, which are encoded by different genes. During embryonic development the transcription of GAD1 mRNA is regulated by alternative splicing and several alternative transcripts were distinguished in human, mouse and rat. Despite the fact that the structure of GAD1 gene has been extensively studied, knowledge of its exact structural organization, alternative promoter usage and splicing have remained incomplete. Results In the present study we report the identification and characterization of novel GAD1 splicing isoforms (GenBank: KM102984, KM102985) by analyzing genomic and mRNA sequence data using bioinformatics, cloning and sequencing. Ten mRNA isoforms are generated from GAD1 gene locus by the combined actions of utilizing different promoters and alternative splicing of the coding exons. Using RT-PCR we found that GAD1 isoforms share similar pattern of expression in different mouse tissues and are expressed early during development. Quantitative RT-PCR was used to investigate the expression of GAD1 isoforms and GAD2 in olfactory bulb, cortex, medial and lateral striatum, hippocampus and cerebellum of adult mouse. Olfactory bulb showed the highest expression of GAD1 transcripts. Isoforms 1/2 are the most abundant forms. Their expression is significantly higher in the lateral compared to the medial striatum. Isoforms 3/4, 5/6, 7/8 and 9/10 are barely detectable in all investigated regions except of the high expression in olfactory bulb. When comparing GAD1 expression with GAD2 we found that Isoforms 1/2 are the predominant isoforms. In situ hybridization confirmed the predominant expression of Isoforms 7/8 and 9/10 in the olfactory bulb and revealed their weak expression in hippocampus, cerebellum and some other areas known to express GAD1. Conclusions Generation of ten splicing isoforms of GAD1 was described including two so far uncharacterized transcripts. GAD1 splicing isoforms producing the shorter, enzymatically inactive GAD25 protein are expressed at very low level in adult mouse brain except in the olfactory bulb that is associated with neurogenesis and synaptic plasticity even during adulthood. Electronic supplementary material The online version of this article (doi:10.1186/1471-2202-15-114) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Tetsuo Sugimoto
- Department of Anatomy and Brain Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
11
|
Kimoto S, Bazmi HH, Lewis DA. Lower expression of glutamic acid decarboxylase 67 in the prefrontal cortex in schizophrenia: contribution of altered regulation by Zif268. Am J Psychiatry 2014; 171:969-78. [PMID: 24874453 PMCID: PMC4376371 DOI: 10.1176/appi.ajp.2014.14010004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Cognitive deficits of schizophrenia may be due at least in part to lower expression of the 67-kDa isoform of glutamic acid decarboxylase (GAD67), a key enzyme for GABA synthesis, in the dorsolateral prefrontal cortex of individuals with schizophrenia. However, little is known about the molecular regulation of lower cortical GAD67 levels in schizophrenia. The GAD67 promoter region contains a conserved Zif268 binding site, and Zif268 activation is accompanied by increased GAD67 expression. Thus, altered expression of the immediate early gene Zif268 may contribute to lower levels of GAD67 mRNA in the dorsolateral prefrontal cortex in schizophrenia. METHOD The authors used polymerase chain reaction to quantify GAD67 and Zif268 mRNA levels in dorsolateral prefrontal cortex area 9 from 62 matched pairs of schizophrenia and healthy comparison subjects, and in situ hybridization to assess Zif268 expression at laminar and cellular levels of resolution. The effects of potentially confounding variables were assessed in human subjects, and the effects of antipsychotic treatments were tested in antipsychotic-exposed monkeys. The specificity of the Zif268 findings was assessed by quantifying mRNA levels for other immediate early genes. RESULTS GAD67 and Zif268 mRNA levels were significantly lower and were positively correlated in the schizophrenia subjects. Both Zif268 mRNA-positive neuron density and Zif268 mRNA levels per neuron were significantly lower in the schizophrenia subjects. These findings were robust to the effects of the confounding variables examined and differed from other immediate early genes. CONCLUSIONS Deficient Zif268 mRNA expression may contribute to lower cortical GAD67 levels in schizophrenia, suggesting a potential mechanistic basis for altered cortical GABA synthesis and impaired cognition in schizophrenia.
Collapse
|
12
|
|
13
|
MacDonald RB, Pollack JN, Debiais-Thibaud M, Heude E, Talbot JC, Ekker M. The ascl1a and dlx genes have a regulatory role in the development of GABAergic interneurons in the zebrafish diencephalon. Dev Biol 2013; 381:276-85. [PMID: 23747543 DOI: 10.1016/j.ydbio.2013.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/08/2013] [Accepted: 05/25/2013] [Indexed: 11/28/2022]
Abstract
During development of the mouse forebrain interneurons, the Dlx genes play a key role in a gene regulatory network (GRN) that leads to the GABAergic phenotype. Here, we have examined the regulatory relationships between the ascl1a, dlx, and gad1b genes in the zebrafish forebrain. Expression of ascl1a overlaps with dlx1a in the telencephalon and diencephalon during early forebrain development. The loss of Ascl1a function results in a loss of dlx expression, and subsequent losses of dlx5a and gad1b expression in the diencephalic prethalamus and hypothalamus. Loss of Dlx1a and Dlx2a function, and, to a lesser extent, of Dlx5a and Dlx6a, impairs gad1b expression in the prethalamus and hypothalamus. We conclude that dlx1a/2a act downstream of ascl1a but upstream of dlx5a/dlx6a and gad1b to activate GABAergic specification. This pathway is conserved in the diencephalon, but has diverged between mammals and teleosts in the telencephalon.
Collapse
Affiliation(s)
- Ryan B MacDonald
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | | | | | | | | | | |
Collapse
|
14
|
Banerjee K, Akiba Y, Baker H, Cave JW. Epigenetic control of neurotransmitter expression in olfactory bulb interneurons. Int J Dev Neurosci 2012; 31:415-23. [PMID: 23220178 DOI: 10.1016/j.ijdevneu.2012.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 12/24/2022] Open
Abstract
Defining the molecular mechanisms that underlie development and maintenance of neuronal phenotypic diversity in the CNS is a fundamental challenge in developmental neurobiology. The vast majority of olfactory bulb (OB) interneurons are GABAergic and this neurotransmitter phenotype is specified in migrating neuroblasts by transcription of either or both glutamic acid decarboxylase 1 (Gad1) and Gad2. A subset of OB interneurons also co-express dopamine, but transcriptional repression of tyrosine hydroxylase (Th) suppresses the dopaminergic phenotype until these neurons terminally differentiate. In mature OB interneurons, GABA and dopamine levels are modulated by odorant-induced synaptic activity-dependent regulation of Gad1 and Th transcription. The molecular mechanisms that specify and maintain the GABAergic and dopaminergic phenotypes in the OB are not clearly delineated. In this report, we review previous studies and present novel findings that provide insight into the contribution of epigenetic regulatory mechanisms for controlling expression of these neurotransmitter phenotypes in the OB. We show that HDAC enzymes suppress the dopaminergic phenotype in migrating neuroblasts by repressing Th transcription. In the mature interneurons, both Th and Gad1 transcription levels are modulated by synaptic activity-dependent recruitment of acetylated Histone H3 on both the Th and Gad1 proximal promoters. We also show that HDAC2 has the opposite transcriptional response to odorant-induced synaptic activity when compared to Th and Gad1. These findings suggest that HDAC2 mediates, in part, the activity-dependent chromatin remodeling of the Th and Gad1 proximal promoters in mature OB interneurons.
Collapse
Affiliation(s)
- Kasturi Banerjee
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, United States
| | | | | | | |
Collapse
|
15
|
Abstract
Persistent alterations in network activity trigger compensatory changes in excitation and inhibition that restore neuronal firing rate to an optimal range. One example of such synaptic homeostasis is the downregulation of inhibitory transmission by chronic inactivity, in part through the reduction of vesicular transmitter content. The enzyme glutamic acid decarboxylase 67 (GAD67) is critical for GABA synthesis, but its involvement in homeostatic plasticity is unclear. We explored the role of GAD67 in activity-dependent synaptic plasticity using a mouse line (Gad1(-/-)) in which GAD67 expression is disrupted by genomic insertion of the green fluorescent protein (GFP). Homozygous deletion of Gad1 significantly reduced miniature inhibitory postsynaptic current (mIPSC) amplitudes and GABA levels in cultured hippocampal neurons. The fractional block of mIPSC amplitude by a low affinity, competitive GABA(A) receptor antagonist was higher in GAD67-lacking neurons, suggesting that GABA concentration in the synaptic cleft is lower in knockout animals. Chronic suppression of activity by the application of tetrodotoxin (TTX) reduced mIPSC amplitudes and the levels of GAD67 and GABA. Moreover, TTX reduced GFP levels in interneurons, suggesting that GAD67 gene expression is a key regulatory target of activity. These in vitro experiments were corroborated by in vivo studies in which olfactory deprivation reduced mIPSC amplitudes and GFP levels in glomerular neurons in the olfactory bulb. Importantly, TTX-induced downregulation of mIPSC was attenuated in Gad1(-/-) neurons. Altogether, these findings indicate that activity-driven expression of GAD67 critically controls GABA synthesis and, thus, vesicular filling of the transmitter.
Collapse
|
16
|
Chen Y, Dong E, Grayson DR. Analysis of the GAD1 promoter: trans-acting factors and DNA methylation converge on the 5' untranslated region. Neuropharmacology 2010; 60:1075-87. [PMID: 20869372 DOI: 10.1016/j.neuropharm.2010.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/10/2010] [Accepted: 09/16/2010] [Indexed: 12/22/2022]
Abstract
GAD67 corresponds to one of two enzymes that decarboxylates glutamate to produce γ-aminobutyric acid, the main inhibitory neurotransmitter in the mammalian central nervous system, hence defining the cellular phenotype of a diverse set of inhibitory interneurons of the brain. Reduced cortical GAD67 mRNA levels have consistently been reported in schizophrenia and bipolar disorder with psychosis. The human gene encoding GAD67, GAD1, is located on chromosome 2q31.1 and the transcriptional start site resides within a large CpG island that spans a region extending from upstream through the first exon. We have analyzed the GAD1 promoter using transient transfection analysis of upstream and downstream sequences in NT2 cells, a human neuroprogenitor cell line. Interestingly, results from these studies show that cis-acting regulatory elements are located downstream of the RNA start site and are in the region corresponding to the first exon. Trans-acting factors such as Pitx2 and the Dlx family of transcription factors are active in promoting downstream reporter expression even when all of the 5' flanking sequences are removed. However, those constructs that contain an internal deletion from +66 to +173 bp fail to support expression even when these factors are provided in trans. We have previously shown that the Class I histone deacetylase inhibitor MS-275 potently activates GAD1 mRNA expression in NT2 cells suggesting the possibility that the promoter is sensitive to drugs that induce chromatin remodeling. Using methyl DNA immuneprecipitation of MS-275-treated NT2 cells, we provide data showing that Class I HDAC inhibition mediated an increase in GAD1 expression and that this was accompanied by decreased GAD1 promoter methylation. Moreover, the reduced levels of GAD1 DNA methylation are highest in those regions proximal to the location of the in vitro defined cis-acting regulatory elements. Our data suggest that changes in promoter methylation associated with gene regulation are not random but overlap the locations of proximal cis-acting elements. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Ying Chen
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | | | | |
Collapse
|
17
|
Cohen JN, Guidi CJ, Tewalt EF, Qiao H, Rouhani SJ, Ruddell A, Farr AG, Tung KS, Engelhard VH. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med 2010; 207:681-8. [PMID: 20308365 PMCID: PMC2856027 DOI: 10.1084/jem.20092465] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 02/22/2010] [Indexed: 12/15/2022] Open
Abstract
Peripheral immune tolerance is generally thought to result from cross-presentation of tissue-derived proteins by quiescent tissue-resident dendritic cells to self-reactive T cells that have escaped thymic negative selection, leading to anergy or deletion. Recently, we and others have implicated the lymph node (LN) stroma in mediating CD8 T cell peripheral tolerance. We demonstrate that LN-resident lymphatic endothelial cells express multiple peripheral tissue antigens (PTAs) independent of the autoimmune regulator (Aire). They directly present an epitope derived from one of these, the melanocyte-specific protein tyrosinase, to tyrosinase-specific CD8 T cells, leading to their deletion. We also show that other LN stromal subpopulations express distinct PTAs by mechanisms that vary in their Aire dependence. These results establish lymphatic endothelial cells, and potentially other LN-resident cells, as systemic mediators of peripheral immune tolerance.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Antigens, Neoplasm/genetics
- Autoantigens/genetics
- Autoantigens/immunology
- Autoantigens/metabolism
- Cell Proliferation
- Endothelial Cells/cytology
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Expression/genetics
- Gene Expression/immunology
- Glutamate Decarboxylase/genetics
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Immune Tolerance/immunology
- Immunophenotyping
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocyte Activation/immunology
- MART-1 Antigen
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Monophenol Monooxygenase/genetics
- Monophenol Monooxygenase/immunology
- Monophenol Monooxygenase/metabolism
- Neoplasm Proteins/genetics
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Stromal Cells/cytology
- Stromal Cells/immunology
- Stromal Cells/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Transcription Factors/genetics
- AIRE Protein
Collapse
Affiliation(s)
- Jarish N Cohen
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang Y, Kakizaki T, Sakagami H, Saito K, Ebihara S, Kato M, Hirabayashi M, Saito Y, Furuya N, Yanagawa Y. Fluorescent labeling of both GABAergic and glycinergic neurons in vesicular GABA transporter (VGAT)-venus transgenic mouse. Neuroscience 2009; 164:1031-43. [PMID: 19766173 DOI: 10.1016/j.neuroscience.2009.09.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 08/19/2009] [Accepted: 09/04/2009] [Indexed: 11/29/2022]
Abstract
Inhibitory neurons play important roles in a number of brain functions. They are composed of GABAergic neurons and glycinergic neurons, and vesicular GABA transporter (VGAT) is specifically expressed in these neurons. Since the inhibitory neurons are scattered around in the CNS, it is difficult to identify these cells in living brain preparations. The glutamate decarboxylase (GAD) 67-GFP knock-in mouse has been widely used for the identification of GABAergic neurons, but their GAD67 expression was decreased compared to the wild-type mice. To overcome such a problem and to highlight the function and morphology of inhibitory neurons, we generated four lines of VGAT-Venus transgenic mice (lines #04, #29, #39 and #49) expressing Venus fluorescent protein under the control of mouse VGAT promoter. We found higher expression level of Venus transcripts and proteins as well as brighter fluorescent signal in line #39 mouse brains, compared to brains of other lines examined. By Western blots and spectrofluorometric measurements of forebrain, the line #39 mouse showed stronger GFP immunoreactivity and brighter fluorescent intensity than the GAD67-GFP knock-in mouse. In addition, Venus was present not only in somata, but also in neurites in the line #39 mouse by histological studies. In situ hybridization analysis showed that the expression pattern of Venus in the line #39 mouse was similar to that of endogenous VGAT. Double immunostaining analysis in line #39 mouse showed that Venus-expressing cells are primarily immunoreactive for GABA in cerebral cortex, hippocampus and cerebellar cortex and for GABA or glycine in dorsal cochlear nucleus. These results demonstrate that the VGAT-Venus line #39 mouse should be useful for studies on function and morphology of inhibitory neurons in the CNS.
Collapse
Affiliation(s)
- Y Wang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kaneko K, Tamamaki N, Owada H, Kakizaki T, Kume N, Totsuka M, Yamamoto T, Yawo H, Yagi T, Obata K, Yanagawa Y. Noradrenergic excitation of a subpopulation of GABAergic cells in the basolateral amygdala via both activation of nonselective cationic conductance and suppression of resting K+ conductance: a study using glutamate decarboxylase 67-green fluorescent protein knock-in mice. Neuroscience 2008; 157:781-97. [PMID: 18950687 DOI: 10.1016/j.neuroscience.2008.09.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 08/31/2008] [Accepted: 09/16/2008] [Indexed: 11/29/2022]
Abstract
GABAergic interneurons play central roles in the regulation of neuronal activity in the basolateral nucleus of the amygdala (BLA). They are also suggested to be the principal targets of the brainstem noradrenergic afferents which are involved in the enhancement of the BLA-related memory. In addition, behavioral stress has been shown to impair noradrenergic facilitation of GABAergic transmission. However, the noradrenaline (NA) effects in the BLA have not been differentiated among medium- to large-sized GABAergic neurons and principal cells, and remain to be elucidated in terms of their underlying mechanisms. Glutamate decarboxylase 67 (GAD67) is a biosynthetic enzyme of GABA and is specifically expressed in GABAergic neurons. To facilitate the study of the NA effects on GABAergic neurons in live preparations, we generated GAD67-green fluorescent protein (GFP) knock-in mice, in which GFP was expressed under the control of an endogenous GAD67 gene promoter. Here, we show that GFP was specifically expressed in GABAergic neurons in the BLA of this GAD67-GFP knock-in mouse. Under whole-cell patch-clamp recordings in vitro, we identified a certain subpopulation of GABAergic neurons in the BLA chiefly on the basis of the electrophysiological properties. When depolarized by a current injection, these neurons, which are referred to as type A, generated action potentials at relatively low frequency. We found that NA directly excited type-A cells via alpha1-adrenoceptors, whereas its effects on the other types of neurons were negligible. Two ionic mechanisms were involved in this excitability: the activation of nonselective cationic conductance and the suppression of the resting K+ conductance. NA also increased the frequency of spontaneous IPSCs in the principal cells of the BLA. It is suggested that the NA-dependent excitation of type-A cells attenuates the BLA output for a certain period.
Collapse
Affiliation(s)
- K Kaneko
- Division of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, 683-0826, Japan; CREST, Japan Science and Technology Corporation, Kawaguchi, 332-0012, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Luo Y, Lathia J, Mughal M, Mattson MP. SDF1alpha/CXCR4 signaling, via ERKs and the transcription factor Egr1, induces expression of a 67-kDa form of glutamic acid decarboxylase in embryonic hippocampal neurons. J Biol Chem 2008; 283:24789-800. [PMID: 18606818 PMCID: PMC2529007 DOI: 10.1074/jbc.m800649200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 06/06/2008] [Indexed: 02/04/2023] Open
Abstract
Stromal cell-derived factor alpha (SDF1alpha) and its cognate receptor CXCR4 play an important role in neuronal development in the hippocampus, but the genes directly regulated by SDF1alpha/CXCR4 signaling are unknown. To study the role of CXCR4 targeted genes in neuronal development, we used neuronal cultures established from embryonic day 18 rats. Hippocampal neurons express CXCR4 receptor proteins and are stimulated by SDF1alpha resulting in activation of extracellular signal-regulated kinase (ERK)1/2 and the transcription factor cAMP-response element-binding protein. SDF1alpha rapidly induces the expression of the early growth response gene Egr1, a transcription factor involved in activity-dependent neuronal responses, in a concentration-dependent manner. Gel-shift analysis showed that SDF1alpha enhances DNA binding activity to the Egr1-containing promoter for GAD67. Chromatin immunoprecipitation analysis using an Egr1 antibody indicated that SDF1alpha stimulation increases binding of Egr1 to a GAD67 promoter DNA sequence. SDF1alpha stimulation increases the expression of GAD67 at both the mRNA and protein levels, and increases the amount and neurite localization of gamma-aminobutyric acid (GABA) in neurons already expressing GABA. SDF1alpha-induced Egr1/GAD67 expression is mediated by the G protein-coupled CXCR4 receptor and activation of the ERK pathway. Reduction of Egr1 gene expression using small interfering RNA technology lowers the level of GAD67 transcripts and inhibits SDF1alpha-induced GABA production. Inhibition of CXCR4 activation in the developing mouse brain in utero greatly reduced Egr1 and GAD67 mRNA levels and GAD67 protein levels, suggesting a pivotal role for CXCR4 signaling in the development of GABAergic neurons in vivo. Our data suggest that SDF1alpha/CXCR4/G protein/ERK signaling induces the expression of the GAD67 system via Egr1 activation, a mechanism that may promote the maturation of GABAergic neurons during development.
Collapse
MESH Headings
- Animals
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/pharmacology
- Dose-Response Relationship, Drug
- Early Growth Response Protein 1/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/enzymology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Glutamate Decarboxylase/biosynthesis
- Hippocampus/embryology
- Hippocampus/enzymology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Mice
- Neurites/enzymology
- Pregnancy
- RNA, Messenger/biosynthesis
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, CXCR4/agonists
- Receptors, CXCR4/metabolism
- Response Elements/physiology
- gamma-Aminobutyric Acid/biosynthesis
Collapse
Affiliation(s)
| | | | | | - Mark P. Mattson
- Laboratory of Neurosciences, NIA Intramural Research Program, National
Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
21
|
Obata K, Hirono M, Kume N, Kawaguchi Y, Itohara S, Yanagawa Y. GABA and synaptic inhibition of mouse cerebellum lacking glutamate decarboxylase 67. Biochem Biophys Res Commun 2008; 370:429-33. [PMID: 18384748 DOI: 10.1016/j.bbrc.2008.03.110] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
Abstract
gamma-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter and also presumed to be a neurotrophic factor. GABA is synthesized by glutamate decarboxylase (GAD). A mouse lacking a 67kDa isoform of GAD (GAD67) has a reduced GABA level in its brain at birth and does not survive postnatally because of cleft palate. In this study, to investigate the functional and developmental roles of GABA in the postnatal cerebellum, selective GAD67 deletion was achieved using a Cre-loxP strategy. In this mouse, GABA level was reduced to 16-44% in the cerebellum but not in the cerebrum. Inhibitory synaptic transmission to Purkinje cells was seriously impaired. However, the morphology of Purkinje cells and the density of synaptic terminals in the cerebellar cortex appeared unaffected, suggesting that GABA does not participate in cerebellar development substantially.
Collapse
Affiliation(s)
- Kunihiko Obata
- Obata Research Unit, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama-ken 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Uematsu M, Hirai Y, Karube F, Ebihara S, Kato M, Abe K, Obata K, Yoshida S, Hirabayashi M, Yanagawa Y, Kawaguchi Y. Quantitative Chemical Composition of Cortical GABAergic Neurons Revealed in Transgenic Venus-Expressing Rats. Cereb Cortex 2007; 18:315-30. [PMID: 17517679 DOI: 10.1093/cercor/bhm056] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although neocortical GABAergic (gamma-aminobutyric acidergic) interneurons have been the focus of intense study, especially in the rat, a consensus view of the functional diversity and organization of inhibitory cortical neurons has not yet been achieved. To better analyze GABAergic neurons in the rat, we used a bacterial artificial chromosome (BAC) construct and established 2 lines of transgenic rats that coexpress Venus, a yellow fluorescent protein, with the vesicular GABA transporter. The brain GABA content from both transgenic lines was similar to the level found in wild-type rats. In the frontal cortex, Venus was expressed in >95% of GABAergic neurons, most of which also expressed at least one of 6 biochemical markers, including alpha-actitin-2, which preferentially labeled late-spiking neurogliaform cells. Taking advantage of the fact that Venus expression allows for targeted recording from all classes of nonpyramidal cells, irrespective of their somatic morphologies, we demonstrated that fast-spiking neurons, which were heterogeneous in somatic size as well as vertical dendritic projection, had relatively uniform horizontal dimensions, suggesting a cell type-specific columnar input territory. Our data demonstrate the benefits of VGAT-Venus rats for investigating GABAergic circuits, as well as the feasibility of using BAC technology in rats to label subsets of specific, genetically defined neurons.
Collapse
Affiliation(s)
- Masakazu Uematsu
- Laboratory of Neurochemistry, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sosulina L, Meis S, Seifert G, Steinhäuser C, Pape HC. Classification of projection neurons and interneurons in the rat lateral amygdala based upon cluster analysis. Mol Cell Neurosci 2006; 33:57-67. [PMID: 16861000 DOI: 10.1016/j.mcn.2006.06.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/06/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022] Open
Abstract
Neurons in the rat lateral amygdala in situ were classified based upon electrophysiological and molecular parameters, as studied by patch-clamp, single-cell RT-PCR and unsupervised cluster analyses. Projection neurons (class I) were characterized by low firing rates, frequency adaptation and expression of the vesicular glutamate transporter (VGLUT1). Two classes were distinguished based upon electrotonic properties and the presence (IB) or absence (IA) of vasointestinal peptide (VIP). Four classes of glutamate decarboxylase (GAD67) containing interneurons were encountered. Class III reflected "classical" interneurons, generating fast spikes with no frequency adaptation. Class II neurons generated fast spikes with early frequency adaptation and differed from class III by the presence of VIP and the relatively rare presence of neuropeptide Y (NPY) and somatostatin (SOM). Class IV and V were not clearly separated by molecular markers, but by membrane potential values and spike patterns. Morphologically, projection neurons were large, spiny cells, whereas the other neuronal classes displayed smaller somata and spine-sparse dendrites.
Collapse
Affiliation(s)
- Ludmila Sosulina
- Institut für Physiologie I, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
24
|
Levinskaya N, Trenkner E, El Idrissi A. Increased GAD-positive neurons in the cortex of taurine-fed mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 583:411-7. [PMID: 17153627 DOI: 10.1007/978-0-387-33504-9_46] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Natalia Levinskaya
- Department of Biology and Center for Development, College of Staten Island, The City University of New York, Staten Island, NY 10314, USA.
| | | | | |
Collapse
|
25
|
Knapska E, Kaczmarek L. A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 2005; 74:183-211. [PMID: 15556287 DOI: 10.1016/j.pneurobio.2004.05.007] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Accepted: 05/26/2004] [Indexed: 11/25/2022]
Abstract
Zif268 is a transcription regulatory protein, the product of an immediate early gene. Zif268 was originally described as inducible in cell cultures; however, it was later shown to be activated by a variety of stimuli, including ongoing synaptic activity in the adult brain. Recently, mice with experimentally mutated zif268 gene have been obtained and employed in neurobiological research. In this review we present a critical overview of Zif268 expression patterns in the naive brain and following neuronal stimulation as well as functional data with Zif268 mutants. In conclusion, we suggest that Zif268 expression and function should be considered in a context of neuronal activity that is tightly linked to neuronal plasticity.
Collapse
Affiliation(s)
- Ewelina Knapska
- Department of Neurophysiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | | |
Collapse
|
26
|
Cheng CM, Hicks K, Wang J, Eagles DA, Bondy CA. Caloric restriction augments brain glutamic acid decarboxylase-65 and -67 expression. J Neurosci Res 2004; 77:270-6. [PMID: 15211593 DOI: 10.1002/jnr.20144] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ketogenic diet is a very low-carbohydrate, high-fat diet used to treat refractory epilepsy. We hypothesized that this diet may act by increasing expression of glutamic acid decarboxylase (GAD), the rate-limiting enzyme in gamma-aminobutyric acid (GABA) synthesis. Thus, we evaluated brain GAD levels in a well-established, seizure-suppressing, rodent model of the ketogenic diet. Because the diet is most effective when administered with a modest ( approximately 10%) calorie restriction, we studied three groups of animals: rats fed ad libitum standard rat chow (Ad lib-Std); calorie-restricted standard chow (CR-Std); and an isocaloric, calorie-restricted ketogenic diet (CR-Ket). We found that GAD67 mRNA was significantly increased in the inferior and superior colliculi and cerebellar cortex in both CR diet groups compared with control (e.g., by 45% in the superior colliculus and by 71% in the cerebellar cortex; P <.001). GAD65 mRNA was selectively increased in the superior colliculus and temporal cortex in both CR-Std and CR-Ket diet groups compared with ad lib controls. The only apparent CR-Ket-specific effect was a 30% increase in GAD67 mRNA in the striatum (P =.03). Enhanced GAD immunoreactivity was detected in parallel with the mRNA changes. These data clearly show that calorie restriction increases brain GAD65 and -67 expression in several brain regions, independent of ketogenic effects. These observations may explain why caloric restriction improves the efficacy of the ketogenic diet in treating epilepsy and suggest that diet modification might be useful in treatment of a number of brain disorders characterized by impaired GAD or GABA activity.
Collapse
Affiliation(s)
- Clara M Cheng
- Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
27
|
Ebihara S, Yamamoto T, Obata K, Yanagawa Y. Gene structure and alternative splicing of the mouse glycine transporter type-2. Biochem Biophys Res Commun 2004; 317:857-64. [PMID: 15081419 DOI: 10.1016/j.bbrc.2004.03.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Indexed: 11/22/2022]
Abstract
The type-2 glycine transporter GLYT2 is expressed in glycinergic neurons and is involved in the termination of inhibitory neurotransmission at strychnine-sensitive glycinergic synapses. We isolated cDNA of a GLYT2 isoform, GLYT2a, from mouse brain, and found that it contains a coding sequence of 798 amino acids. We also isolated and characterized the mouse GLYT2 (mGLYT2) gene, which was found to be divided into 18 exons and spread over 55 kb. 5'-rapid amplification of cDNA ends analyses demonstrated the existence of another two isoforms, mGLYT2b and mGLYT2c, in addition to mGLYT2a. Both mGLYT2b and mGLYT2c would produce a protein eight amino acids shorter than mGLYT2a. Analysis of the genomic clones encompassing the 5'-exons revealed that the three transcripts arose from a single gene by alternative splicing. RT-PCR analysis indicated that all three mGLYT2 isoforms were expressed at high levels in brain stem and spinal cord. These data will be useful for investigating the function of GLYT2 proteins and glycinergic neurons by gene targeting experiments.
Collapse
Affiliation(s)
- Satoe Ebihara
- Laboratory of Neuronal Circuit Mechanisms, Brain Science Institute, RIKEN, Hirosawa 2-1, Wako 351-0198, Japan
| | | | | | | |
Collapse
|
28
|
Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki JI, Obata K, Kaneko T. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 2004; 467:60-79. [PMID: 14574680 DOI: 10.1002/cne.10905] [Citation(s) in RCA: 1046] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gamma-aminobutyric acid (GABA)ergic neurons in the central nervous system regulate the activity of other neurons and play a crucial role in information processing. To assist an advance in the research of GABAergic neurons, here we produced two lines of glutamic acid decarboxylase-green fluorescence protein (GAD67-GFP) knock-in mouse. The distribution pattern of GFP-positive somata was the same as that of the GAD67 in situ hybridization signal in the central nervous system. We encountered neither any apparent ectopic GFP expression in GAD67-negative cells nor any apparent lack of GFP expression in GAD67-positive neurons in the two GAD67-GFP knock-in mouse lines. The timing of GFP expression also paralleled that of GAD67 expression. Hence, we constructed a map of GFP distribution in the knock-in mouse brain. Moreover, we used the knock-in mice to investigate the colocalization of GFP with NeuN, calretinin (CR), parvalbumin (PV), and somatostatin (SS) in the frontal motor cortex. The proportion of GFP-positive cells among NeuN-positive cells (neocortical neurons) was approximately 19.5%. All the CR-, PV-, and SS-positive cells appeared positive for GFP. The CR-, PV, and SS-positive cells emitted GFP fluorescence at various intensities characteristics to them. The proportions of CR-, PV-, and SS-positive cells among GFP-positive cells were 13.9%, 40.1%, and 23.4%, respectively. Thus, the three subtypes of GABAergic neurons accounted for 77.4% of the GFP-positive cells. They accounted for 6.5% in layer I. In accord with unidentified GFP-positive cells, many medium-sized spherical somata emitting intense GFP fluorescence were observed in layer I.
Collapse
Affiliation(s)
- Nobuaki Tamamaki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Dracheva S, Elhakem SL, McGurk SR, Davis KL, Haroutunian V. GAD67 and GAD65 mRNA and protein expression in cerebrocortical regions of elderly patients with schizophrenia. J Neurosci Res 2004; 76:581-92. [PMID: 15114630 DOI: 10.1002/jnr.20122] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gamma-Aminobutyric acid (GABA), the principal inhibitory neurotransmitter of CNS, has been consistently implicated in the pathophysiology of schizophrenia. GABA is synthesized from glutamate by the enzyme glutamic acid decarboxylase (GAD). Two isoforms of GAD have been identified and have been named GAD65 and GAD67 based on their apparent molecular weights. In this study, GAD65 and GAD67 mRNA and protein levels were measured by using real-time RT-PCR and immunoblotting, respectively, in post-mortem brain tissue from the dorsolateral prefrontal cortex (DLPFC) and the occipital cortex of the elderly persons with schizophrenia and matched normal controls. In addition, the mRNA expression of GAT-1, one of the principal transporters of GABA, was also studied in the same subjects. Expression of GAD65 and GAD67 mRNA in the DLPFC and in the occipital cortex was significantly elevated in patients with schizophrenia, whereas the expression of the corresponding proteins and GAT-1 mRNA was unchanged. Although the levels of GAD65 and GAD67 messages were increased in schizophrenia subjects, the proportion of the two GAD isoforms remained constant in controls and schizophrenics. In the human DLPFC, GAD65 mRNA was found to be expressed significantly less than the message for GAD67, approximately 16% of that observed for GAD67. On the contrary, the abundance of GAD65 protein in the DLPFC was about 350% of that observed for GAD67. The results suggest a substantial dysregulation of GAD mRNA expression in schizophrenia and, taken together with the results of protein expression studies, raise the possibility that both cortical and subcortical GABA function may be compromised in the disease.
Collapse
Affiliation(s)
- Stella Dracheva
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|
30
|
Kobayashi T, Ebihara S, Ishii K, Kobayashi T, Nishijima M, Endo S, Takaku A, Sakagami H, Kondo H, Tashiro F, Miyazaki JI, Obata K, Tamura S, Yanagawa Y. Structural and functional characterization of mouse glutamate decarboxylase 67 gene promoter. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:156-68. [PMID: 12932828 DOI: 10.1016/s0167-4781(03)00138-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neuronal expression of the mouse glutamate decarboxylase 67 (mGAD67) gene occurs exclusively in neurons that synthesize and release GABA (GABAergic neurons). This gene is also expressed in pancreatic islet cells and testicular spermatocytes. In order to elucidate the molecular mechanisms underlying the regulation of mGAD67 gene expression, we isolated and characterized the 5'-flanking region of this gene. Sequence analysis of a 10.2-kb DNA fragment of this gene containing a promoter region (8.4 kb) and noncoding exons 0A and 0B revealed the presence of numerous potential neuron-specific cis-regulatory elements. Functional analysis of the 5'-flanking region of exons 0A and 0B by transient transfection into cultured cells revealed that the region -98 to -52 close to exon 0A is important for the transcriptional activity of both exons 0A and 0B. In addition, we used transgenic mice to examine the expression pattern conferred by the 10.2 kb DNA fragment of the mGAD67 gene fused to the bacterial lacZ reporter gene. Transgene expression was observed in neurons of particular brain regions containing abundant GABAergic neurons such as the basal ganglia, in pancreatic islet cells and in testicular spermatocytes and spermatogonia. These results suggest that the 10.2 kb DNA fragment of the mGAD67 gene contains regulatory elements essential for its targeted expression in GABAergic neurons, islet cells and spermatocytes.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ebihara S, Obata K, Yanagawa Y. Mouse vesicular GABA transporter gene: genomic organization, transcriptional regulation and chromosomal localization. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 110:126-39. [PMID: 12573541 DOI: 10.1016/s0169-328x(02)00648-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The vesicular GABA transporter (VGAT) loads GABA from neuronal cytoplasm into synaptic vesicles and is selectively expressed in inhibitory neurons that contain GABA and/or glycine. To elucidate the molecular mechanisms of mouse VGAT (mVGAT) gene expression, we have isolated and characterized the mVGAT gene. The mVGAT gene was found to be 4.7 kilobases in size and to contain three exons and two introns by comparison of the cloned genomic DNA with the cDNA (termed mVGATa) sequence reported by Sagne et al. [FEBS Lett. 417 (1997) 177]. Analysis of transcripts and genomic DNA revealed an alternatively spliced mVGAT isoform (termed mVGATb) that retains intron 2 of mVGATa as an exon. This alternative transcript specifies 514 amino acid residues identical to VGATa followed by a unique C-terminal sequence of 11 amino acids encoded by intron 2. Fluorescent in situ hybridization studies showed that the mVGAT gene is localized on chromosome 2. One major transcription start site of the mVGAT gene is an A residue 209 bp upstream from the translational initiation site, as shown using the 5'-RACE method. RT-PCR analysis revealed that the mVGAT gene was expressed at a high level in retinoic acid-treated P19 embryonal carcinoma cells, at a very low level in non-treated P19 cells, and not detectably expressed in Neuro-2a neuroblastoma cells. Sequence analysis of the 5'-flanking region revealed a number of putative regulatory elements including Sp1, Egr-1 and Pitx binding sites. In transient transfection assays, 2 kilobases of the mVGAT 5'-flanking region generated similar levels of luciferase reporter activity in three kinds of cultured cells. Deletion analysis and gel mobility shift assays demonstrated that the region -161 to +155 contained the basal promoter activity of the mVGAT gene and that an activating region from -49 to -27 bound an Sp1-like protein. These results suggest a possible mechanism for regulation of the expression of the mVGAT gene.
Collapse
Affiliation(s)
- Satoe Ebihara
- Laboratory of Neurochemistry, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | | | | |
Collapse
|
32
|
Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 213:1-47. [PMID: 11837891 DOI: 10.1016/s0074-7696(02)13011-7] [Citation(s) in RCA: 379] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyrate (GABA) is a major inhibitory neurotransmitter in the adult mammalian brain. GABA is also considered to be a multifunctional molecule that has different situational functions in the central nervous system, the peripheral nervous system, and in some nonneuronal tissues. GABA is synthesized primarily from glutamate by glutamate decarboxylase (GAD), but alternative pathways may be important under certain situations. Two types of GAD appear to have significant physiological roles. GABA functions appear to be triggered by binding of GABA to its ionotropic receptors, GABA(A) and GABA(C), which are ligand-gated chloride channels, and its metabotropic receptor, GABA(B). The physiological, pharmacological, and molecular characteristics of GABA(A) receptors are well documented, and diversity in the pharmacologic properties of the receptor subtypes is important clinically. In addition to its role in neural development, GABA appears to be involved in a wide variety of physiological functions in tissues and organs outside the brain.
Collapse
|
33
|
Stewart RR, Hoge GJ, Zigova T, Luskin MB. Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABA(A) receptors. JOURNAL OF NEUROBIOLOGY 2002; 50:305-22. [PMID: 11891665 DOI: 10.1002/neu.10038] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interneurons of the olfactory bulb arise from precursor cells in the anterior part of the neonatal subventricular zone, the SVZa, and are distinctive in that they possess a neuronal phenotype and yet undergo cell division. To characterize the differentiation of neonatal SVZa progenitor cells, we analyzed the complement of ionotropic neurotransmitter receptors that they express in vitro. For this analysis, we tested the sensitivity of SVZa progenitor cells to gamma-amino-n-butyric acid (GABA), adenosine triphosphate (ATP), kainate, N-methyl-D-aspartate (NMDA), and acetylcholine (ACh) after 1 day in vitro. SVZa progenitor cells had chloride currents activated by GABA and muscimol, the GABA(A) receptor-specific agonist, but were insensitive to ATP, kainate, NMDA, and ACh. In addition, GABA- or muscimol-activated chloride currents were blocked nearly completely by 30 microM bicuculline, the GABA(A) receptor-specific antagonist, suggesting that GABA(B) and GABA(C) receptors are absent. Measurements of the chloride reversal potential by gramicidin-perforated patch clamp revealed that currents generated by activation of GABA(A) receptors were inward, and thus, depolarizing. A set of complementary experiments was undertaken to determine by reverse transcription and polymerase chain reaction (RT-PCR) whether SVZa progenitor cells express the messenger RNA (mRNA) coding for glutamic acid decarboxylase 67 (GAD67), used in the synthesis of GABA and for GABA(A) receptor subunits. Both postnatal day (P0) SVZa and olfactory bulb possessed detectable mRNA coding for GAD67. In P0 SVZa, the GABA(A) receptor subunits detected with RT-PCR included alpha 2-4, beta 1-3, and gamma 2S (short form). By comparison, the P0 olfactory bulb expressed all of the subunits detectable in the SVZa and additional subunit mRNAs: alpha 1, alpha 5, gamma 1, gamma 2L (long form), gamma 3, and delta subunit mRNAs. Antibodies recognizing GABA, GAD, and various GABA(A) receptor subunits were used to label SVZa cells harvested from P0-1 rats and cultured for 1 day. The cells were immunoreactive for GABA, GAD, and the GABA(A) receptor subunits alpha 2-5, beta 1-3, and gamma 2. To relate the characteristics of GABA(A) receptors in cultured SVZa precursor cells to particular combinations of subunits, the open reading frames of the dominant subunits detected by RT-PCR (alpha 2-4, beta 3, and gamma 2S) were cloned into a mammalian cell expression vector and different combinations were transfected into Chinese hamster ovary-K1 (CHO-K1) cells. A comparison of the sensitivity to inhibition by zinc of GABA(A) receptors in SVZa precursor cells and in CHO-K1 cells expressing various combinations of recombinant GABA(A) receptor subunits suggested that the gamma 2S subunit was present and functional in the GABA(A) receptor chloride channel complex. Thus, SVZa precursor cells are GABAergic and a subset of the GABA(A) receptor subunits detected in the olfactory bulb was found in the SVZa, as might be expected because SVZa progenitor cells migrate to the bulb as they differentiate.
Collapse
Affiliation(s)
- R R Stewart
- Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 12420 Parklawn Drive, Bethesda, Maryland 20892-8115, USA.
| | | | | | | |
Collapse
|
34
|
Conserved function of Caenorhabditis elegans UNC-30 and mouse Pitx2 in controlling GABAergic neuron differentiation. J Neurosci 2001. [PMID: 11517269 DOI: 10.1523/jneurosci.21-17-06810.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We are taking a cross-species approach to identify genes that are required for mammalian GABAergic neuron differentiation. On the basis of homeodomain similarity, the vertebrate Pitx genes appear to be orthologs of unc-30, a Caenorhabditis elegans gene necessary for differentiation of the GABAergic phenotype of type D neurons. One of the Pitx genes, Pitx2, is expressed in regions of GABAergic neurogenesis in the mammalian brain. These observations led us to test the functional conservation of the mouse Pitx2 and worm unc-30 genes using a rescue assay. Pitx2 rescues the GABAergic differentiation defect and partially rescues the axon guidance and behavioral phenotypes of unc-30 mutants, indicating a high degree of functional conservation between these evolutionarily related genes. Previous studies show that UNC-30 directly regulates the unc-25/glutamate decarboxylase gene that encodes the enzyme for GABA synthesis. We find that the promoter regions of the mouse and human genes coding for the 67 kDa glutamate decarboxylase (Gad1) also contain binding sites matching the UNC-30/Pitx2 consensus binding site sequence. We show that these sites specifically bind to Pitx2 protein in vitro and that in transfected neuroblastoma cells, the Pitx2 binding sites contribute to the basal activity of the Gad1 promoter. Furthermore, in cotransfection experiments, we find that Pitx2 strongly activates the Gad1 promoter. These results indicate that Pitx2 may regulate Gad1 expression in mammals, suggesting a new role for this key developmental transcription factor as a regulator of GABAergic differentiation during mammalian neural development. Our results suggest that some of the mechanisms regulating GABAergic differentiation are evolutionarily conserved.
Collapse
|
35
|
Westmoreland JJ, McEwen J, Moore BA, Jin Y, Condie BG. Conserved function of Caenorhabditis elegans UNC-30 and mouse Pitx2 in controlling GABAergic neuron differentiation. J Neurosci 2001; 21:6810-9. [PMID: 11517269 PMCID: PMC6763078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Revised: 06/05/2001] [Accepted: 06/18/2001] [Indexed: 02/21/2023] Open
Abstract
We are taking a cross-species approach to identify genes that are required for mammalian GABAergic neuron differentiation. On the basis of homeodomain similarity, the vertebrate Pitx genes appear to be orthologs of unc-30, a Caenorhabditis elegans gene necessary for differentiation of the GABAergic phenotype of type D neurons. One of the Pitx genes, Pitx2, is expressed in regions of GABAergic neurogenesis in the mammalian brain. These observations led us to test the functional conservation of the mouse Pitx2 and worm unc-30 genes using a rescue assay. Pitx2 rescues the GABAergic differentiation defect and partially rescues the axon guidance and behavioral phenotypes of unc-30 mutants, indicating a high degree of functional conservation between these evolutionarily related genes. Previous studies show that UNC-30 directly regulates the unc-25/glutamate decarboxylase gene that encodes the enzyme for GABA synthesis. We find that the promoter regions of the mouse and human genes coding for the 67 kDa glutamate decarboxylase (Gad1) also contain binding sites matching the UNC-30/Pitx2 consensus binding site sequence. We show that these sites specifically bind to Pitx2 protein in vitro and that in transfected neuroblastoma cells, the Pitx2 binding sites contribute to the basal activity of the Gad1 promoter. Furthermore, in cotransfection experiments, we find that Pitx2 strongly activates the Gad1 promoter. These results indicate that Pitx2 may regulate Gad1 expression in mammals, suggesting a new role for this key developmental transcription factor as a regulator of GABAergic differentiation during mammalian neural development. Our results suggest that some of the mechanisms regulating GABAergic differentiation are evolutionarily conserved.
Collapse
Affiliation(s)
- J J Westmoreland
- Institute of Molecular Medicine and Genetics and Departments of Medicine and Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
36
|
Szabó G, Kartarova Z, Hoertnagl B, Somogyi R, Sperk G. Differential regulation of adult and embryonic glutamate decarboxylases in rat dentate granule cells after kainate-induced limbic seizures. Neuroscience 2001; 100:287-95. [PMID: 11008167 DOI: 10.1016/s0306-4522(00)00275-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In adult brain, the inhibitory GABAergic neurons utilize two distinct molecular forms of the GABA-synthesizing enzyme glutamate decarboxylase (GAD), GAD65 and GAD67. During embryonic development, two truncated forms of GAD67 are also expressed (GAD25 and GAD44), which are translated from two embryonic-specific splice variants of GAD67 messenger RNA. It has recently been established that the excitatory dentate granule cells, in addition to the neurotransmitter glutamate, also contain low levels of GABA and GAD67, which are increased after limbic seizures. To study the seizure-induced activation of glutamate decarboxylase, we investigated the expression of both embryonic and adult glutamate decarboxylase messenger RNAs in the adult rat hippocampus after kainic acid administration by semi-quantitative reverse transcription-coupled polymerase chain reaction, in situ hybridization and immunoblotting. We observed a rapid induction of the embryonic glutamate decarboxylase messenger RNA in the granule cells of dentate gyrus. The expression of embryonic glutamate decarboxylase transcripts, identified here as the splice variant that contains exon 7/B, peaked at about 2h after kainic acid injection and gradually returned to nearly basal levels by 24h. Strikingly, this transient induction of embryonic glutamate decarboxylase messenger RNA was not accompanied by concomitant synthesis of its corresponding protein product GAD25. In contrast, the adult GAD67 messenger RNA and protein were both clearly up-regulated in granule cells, albeit with a certain delay, reaching a maximum around 4-6h after kainic acid injection and gradually returned to control levels by 24h. GAD65 remained unchanged at both messenger RNA and protein levels during the studied period. These characteristic and highly reproducible changes in the synthesis of glutamate decarboxylases indicate that GAD67 is the predominant form of glutamate decarboxylases involved in the elevated synthesis of GABA during seizures and suggest that the transient induction of the embryonic GAD67 messenger RNA that contains exon 7/B, but not GAD25 protein, may exert a role solely in the subsequent up-regulation of adult GAD67 transcription. Expression of the messenger RNA encoding for an alternatively spliced, truncated form of the GABA-synthesizing enzyme glutamate decarboxylase was detected in dentate granule cells briefly after kainic acid-induced seizures. Just as during embryonic development, expression of the alternatively spliced messenger RNA was transient and followed by transcription of its adult form, indicating a possible recapitulation of an embryonic program of gene expression in adult granule cells after epileptic seizures.
Collapse
Affiliation(s)
- G Szabó
- Laboratory of Molecular Neurogenetics BRC, Institute of Biochemistry, 6701, Szeged, Hungary
| | | | | | | | | |
Collapse
|
37
|
Makinae K, Kobayashi T, Kobayashi T, Shinkawa H, Sakagami H, Kondo H, Tashiro F, Miyazaki J, Obata K, Tamura S, Yanagawa Y. Structure of the mouse glutamate decarboxylase 65 gene and its promoter: preferential expression of its promoter in the GABAergic neurons of transgenic mice. J Neurochem 2000; 75:1429-37. [PMID: 10987822 DOI: 10.1046/j.1471-4159.2000.0751429.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GABA is synthesized by glutamate decarboxylase (GAD), which has two forms, GAD65 and GAD67. To elucidate the molecular mechanisms of mouse GAD65 (mGAD65) gene expression, we isolated and characterized the mGAD65 gene. The mGAD65 gene was found to be divided into 16 exons and spread over 75 kb. The sequence of the first exon and the 5'-flanking region indicated the presence of potential neuron-specific cis-regulatory elements. We used transgenic mice to examine the expression pattern conferred by a 9.2-kb promoter-proximal DNA fragment of the mGAD65 gene fused to the bacterial lacZ reporter gene. Transgenic mice showed high beta-galactosidase activity specifically in brain and testis. They also showed characteristic patterns of transgene expression in olfactory bulb, cerebellar cortex, and spinal cord, a similar expression pattern to that of endogenous mGAD65. However, no transgene expression was observed in the ventral thalamus or hypothalamus, in which high mGAD65 gene expression levels have been observed. These results suggest that the 9.2-kb DNA fragment of the mGAD65 gene is associated with its tissue-specific expression and its targeted expression in GABAergic neurons of specific brain regions but that additional regulatory elements are necessary to obtain fully correct expression.
Collapse
Affiliation(s)
- K Makinae
- Department of Biochemistry, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 2000. [PMID: 10777798 DOI: 10.1523/jneurosci.20-09-03354.2000] [Citation(s) in RCA: 335] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The chief inhibitory neurons of the mammalian brain, GABAergic neurons, are comprised of a myriad of diverse neuronal subtypes. To facilitate the study of these neurons, transgenic mice were generated that express enhanced green fluorescent protein (EGFP) in subpopulations of GABAergic neurons. In one of the resulting transgenic lines, called GIN (GFP-expressing Inhibitory Neurons), EGFP was found to be expressed in a subpopulation of somatostatin-containing GABAergic interneurons in the hippocampus and neocortex. In both live and fixed brain preparations from these mice, detailed microanatomical features of EGFP-expressing interneurons were readily observed. In stratum oriens of the hippocampus, EGFP-expressing interneurons were comprised almost exclusively of oriens/alveus interneurons with lacunosum-moleculare axon arborization (O-LM cells). In the neocortex, the somata of EGFP-expressing interneurons were largely restricted to layers II-IV and upper layer V. In hippocampal area CA1, two previously uncharacterized subtypes of interneurons were identified using the GIN mice: stratum pyramidale interneurons with lacunosum-moleculare axon arborization (P-LM cells) and stratum radiatum interneurons with lacunosum-moleculare axon arborization (R-LM cells). These newly identified interneuronal subtypes appeared to be closely related to O-LM cell, as they selectively innervate stratum lacunosum-moleculare. Whole-cell patch-clamp recordings revealed that these cells were fast-spiking and showed virtually no spike frequency accommodation. The microanatomical features of these cells suggest that they function primarily as "input-biasing" neurons, in that synaptic volleys in stratum radiatum would lead to their activation, which in turn would result in selective suppression of excitatory input from the entorhinal cortex onto CA1 pyramidal cells.
Collapse
|
39
|
Oliva AA, Jiang M, Lam T, Smith KL, Swann JW. Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 2000; 20:3354-68. [PMID: 10777798 PMCID: PMC6773106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/1999] [Revised: 02/14/2000] [Accepted: 02/24/2000] [Indexed: 02/16/2023] Open
Abstract
The chief inhibitory neurons of the mammalian brain, GABAergic neurons, are comprised of a myriad of diverse neuronal subtypes. To facilitate the study of these neurons, transgenic mice were generated that express enhanced green fluorescent protein (EGFP) in subpopulations of GABAergic neurons. In one of the resulting transgenic lines, called GIN (GFP-expressing Inhibitory Neurons), EGFP was found to be expressed in a subpopulation of somatostatin-containing GABAergic interneurons in the hippocampus and neocortex. In both live and fixed brain preparations from these mice, detailed microanatomical features of EGFP-expressing interneurons were readily observed. In stratum oriens of the hippocampus, EGFP-expressing interneurons were comprised almost exclusively of oriens/alveus interneurons with lacunosum-moleculare axon arborization (O-LM cells). In the neocortex, the somata of EGFP-expressing interneurons were largely restricted to layers II-IV and upper layer V. In hippocampal area CA1, two previously uncharacterized subtypes of interneurons were identified using the GIN mice: stratum pyramidale interneurons with lacunosum-moleculare axon arborization (P-LM cells) and stratum radiatum interneurons with lacunosum-moleculare axon arborization (R-LM cells). These newly identified interneuronal subtypes appeared to be closely related to O-LM cell, as they selectively innervate stratum lacunosum-moleculare. Whole-cell patch-clamp recordings revealed that these cells were fast-spiking and showed virtually no spike frequency accommodation. The microanatomical features of these cells suggest that they function primarily as "input-biasing" neurons, in that synaptic volleys in stratum radiatum would lead to their activation, which in turn would result in selective suppression of excitatory input from the entorhinal cortex onto CA1 pyramidal cells.
Collapse
Affiliation(s)
- A A Oliva
- The Cain Foundation Laboratories, Baylor College of Medicine Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
40
|
Schuller JJ, Marshall JF. Acute immediate-early gene response to 6-hydroxydopamine infusions into the medial forebrain bundle. Neuroscience 2000; 96:51-8. [PMID: 10683409 DOI: 10.1016/s0306-4522(99)00506-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the long-term neurobiological and behavioral effects of nigrostriatal lesions are well characterized, the events occurring soon after injury are not. These acute events can provide insight into the mechanisms underlying long-term adaptations to nigrostriatal lesions. The present experiments examined the basal ganglia immediate-early gene response to infusions of the catecholamine neurotoxin 6-hydroxydopamine into the nigrostriatal pathway in rats. Following 6-hydroxydopamine infusions into the medial forebrain bundle in awake, behaving rats, there was a rapid and transient induction of striatal c-fos and zif/268 messenger RNAs. Both immediate-early genes were maximally induced by 45min post-infusion, and returned to control levels by 1.5h (c-fos) or 3h (zif/268) post-infusion. Double-labeling experiments revealed that striatal c-fos expression occurred preferentially in preproenkephalin-expressing neurons. 6-Hydroxydopamine-induced c-fos messenger RNA was also observed in the substantia nigra pars reticulata and entopeduncular nucleus, but not the globus pallidus, 45 min after medial forebrain bundle 6-hydroxydopamine infusions. Finally, the role of ionotropic striatal glutamate receptors in nigrostriatal injury-induced striatal c-fos was examined by combining medial forebrain bundle 6-hydroxydopamine infusions with intrastriatal glutamate antagonist infusions. Both the N-methyl-D-aspartate antagonist, (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid, and the non-N-methyl-D-aspartate antagonist, 6,7-dinitroquinoxaline-2, 3-dione, blocked striatal induction of c-fos messenger RNA following 6-hydroxydopamine infusions into the medial forebrain bundle. These results provide evidence of rapidly developing, glutamate-dependent molecular responses in the basal ganglia which may contribute to some of the well-described long-term adaptations of this system to nigrostriatal injury.
Collapse
Affiliation(s)
- J J Schuller
- Department of Neurobiology and Behavior, University of California, Irvine 92697-4550, USA
| | | |
Collapse
|
41
|
Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:370-490. [PMID: 9858769 DOI: 10.1016/s0165-0173(98)00018-6] [Citation(s) in RCA: 1064] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews findings up to the end of 1997 about the inducible transcription factors (ITFs) c-Jun, JunB, JunD, c-Fos, FosB, Fra-1, Fra-2, Krox-20 (Egr-2) and Krox-24 (NGFI-A, Egr-1, Zif268); and the constitutive transcription factors (CTFs) CREB, CREM, ATF-2 and SRF as they pertain to gene expression in the mammalian nervous system. In the first part we consider basic facts about the expression and activity of these transcription factors: the organization of the encoding genes and their promoters, the second messenger cascades converging on their regulatory promoter sites, the control of their transcription, the binding to dimeric partners and to specific DNA sequences, their trans-activation potential, and their posttranslational modifications. In the second part we describe the expression and possible roles of these transcription factors in neural tissue: in the quiescent brain, during pre- and postnatal development, following sensory stimulation, nerve transection (axotomy), neurodegeneration and apoptosis, hypoxia-ischemia, generalized and limbic seizures, long-term potentiation and learning, drug dependence and withdrawal, and following stimulation by neurotransmitters, hormones and neurotrophins. We also describe their expression and possible roles in glial cells. Finally, we discuss the relevance of their expression for nervous system functioning under normal and patho-physiological conditions.
Collapse
Affiliation(s)
- T Herdegen
- Institute of Pharmacology, University of Kiel, Hospitalstrasse 4, 24105, Kiel,
| | | |
Collapse
|
42
|
Abstract
Adults express two isoforms of glutamate decarboxylase (GAD), GAD67 and GAD65, which are encoded by different independently regulated genes, a situation that differs from that of other neurotransmitters. In this article, J-J. Soghomonian and David Martin review current knowledge on the differences between these two isoforms. Both isoforms are present in most GABA-containing neurones in the CNS, but GAD65 appears to be targeted to membranes and nerve endings, whereas GAD67 is more widely distributed in cells. Both forms can synthesize transmitter GABA, but GAD67 might preferentially synthesize cytoplasmic GABA and GAD65 might preferentially synthesize GABA for vesicular release. Several lines of evidence suggest that the two forms have different roles in the coding of information by GABA-containing neurones.
Collapse
Affiliation(s)
- J J Soghomonian
- Department of Anatomy and Physiology, Laval University Medical Research Centre, Laurier, Sainte-Foy, Canada
| | | |
Collapse
|