1
|
Yin Y, Li JM, Metcalfe DD, Olivera A, Frischmeyer-Guerrerio PA, Carter MC, Komarow H. Increased expression of formyl peptide receptor-1 by basophils from patients with mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100296. [PMID: 39148513 PMCID: PMC11325225 DOI: 10.1016/j.jacig.2024.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 08/17/2024]
Abstract
Background Symptoms in patients with systemic mastocytosis (SM) are associated with an increase in mast cell burden and release of mast cell-derived mediators. The most frequent presentation of SM is indolent SM (ISM), with moderate symptoms and prognosis. Basophil numbers in these patients are generally normal. However, when examining basophil activation in patients with ISM, we noted an abnormal response to N-formylmethione-leucyl-phenylalanine (fMLP). Objective Our aim was to compare basophil responsiveness to fMLP and anti-IgE in healthy volunteers and patients with ISM and relate the findings to fMLP receptor (FPR) expression. Methods Basophils isolated from peripheral blood of 15 patients with ISM and 14 healthy volunteers were stimulated with fMLP or anti-IgE. CD63 expression to assess basophil activation and expression of FPRs were assessed by flow cytometry. Results Baseline expression of CD63 on basophils was similar between the healthy volunteers and patients with ISM. fMLP induced higher expression of CD63 on basophils from patients with ISM, whereas responses to anti-IgE were similar between groups. Basophils from patients with ISM also had higher fMLP1 receptor (FPR1) expression, wheresas FPR2 and FPR3 were not detected. fMLP blocked the binding of anti-FPR1 antibody to FPR1, consistent with the conclusion that fMLP signals through FPR1. Conclusions Level of fMLP-induced basophil activation is higher in patients with ISM, which is associated with an increase in FPR1 expression. Further investigation is needed to determine why FPR1 expression is elevated, whether such expression might serve as an additional surrogate marker in the diagnosis of ISM, and whether enhanced responses of basophils to fMPL might have some relationship to unexplained episodes of mediator release.
Collapse
Affiliation(s)
- Yuzhi Yin
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jenny Min Li
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Melody C Carter
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hirsh Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
2
|
Shen J, Su X, Wang S, Wang Z, Zhong C, Huang Y, Duan S. RhoJ: an emerging biomarker and target in cancer research and treatment. Cancer Gene Ther 2024; 31:1454-1464. [PMID: 38858534 DOI: 10.1038/s41417-024-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
RhoJ is a Rho GTPase that belongs to the Cdc42 subfamily and has a molecular weight of approximately 21 kDa. It can activate the p21-activated kinase family either directly or indirectly, influencing the activity of various downstream effectors and playing a role in regulating the cytoskeleton, cell movement, and cell cycle. RhoJ's expression and activity are controlled by multiple upstream factors at different levels, including expression, subcellular localization, and activation. High RhoJ expression is generally associated with a poor prognosis for cancer patients and is mainly due to an increased number of tumor blood vessels and abnormal expression in malignant cells. RhoJ promotes tumor progression through several pathways, particularly in tumor angiogenesis and drug resistance. Clinical data also indicates that high RhoJ expression is closely linked to the pathological features of tumor malignancy. There are various cancer treatment methods that target RhoJ signaling, such as direct binding to inhibit the RhoJ effector pocket, inhibiting RhoJ expression, blocking RhoJ upstream and downstream signals, and indirectly inhibiting RhoJ's effect. RhoJ is an emerging cancer biomarker and a significant target for future cancer clinical research and drug development.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shana Wang
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chenming Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
4
|
Sugimoto A, Iwata K, Kurogoushi R, Tanaka M, Nakashima Y, Yamakawa Y, Oishi A, Yoshizaki K, Fukumoto S, Yamamoto A, Ishimaru N, Iwamoto T. C-terminus of PIEZO1 governs Ca 2+ influx and intracellular ERK1/2 signaling pathway in mechanotransduction. Biochem Biophys Res Commun 2023; 682:39-45. [PMID: 37801988 DOI: 10.1016/j.bbrc.2023.09.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Cells sense and respond to extracellular mechanical stress through mechanotransduction receptors and ion channels, which regulate cellular behaviors such as cell proliferation and differentiation. Among them, PIEZO1, piezo-type mechanosensitive ion channel component 1, has recently been highlighted as a mechanosensitive ion channel in various cell types including mesenchymal stem cells. We previously reported that PIEZO1 is essential for ERK1/2 phosphorylation and osteoblast differentiation in bone marrow-derived mesenchymal stem cells (BMSCs), induced by hydrostatic pressure loading and treatment with the PIEZO1-specific activator Yoda1. However, the molecular mechanism underlying how PIEZO1 induces mechanotransduction remains unclear. In this study, we investigated that the role of the C-terminus in regulating extracellular Ca2+ influx and activating the ERK1/2 signaling pathway. We observed the activation of Fluo-4 AM in the Yoda1-stimulated human BMSC line UE7T-13, but not in a calcium-depleted cell culture medium. Similarly, Western blotting analysis revealed that Yoda1 treatment induced ERK1/2 phosphorylation, but this induction was not observed in calcium-depleted cell culture medium. To investigate the functional role of the C-terminus of PIEZO1, we generated HEK293 cells stably expressing the full-length mouse PIEZO1 (PIEZO1-FL) and a deletion-type PIEZO1 lacking the C-terminal intracellular region containing the R-Ras-binding domain (PIEZO1-ΔR-Ras). We found that Yoda1 treatment predominantly activated Flou-4 AM and ERK1/2 in PIEZO1-FL-trasfected cells but neither in PIEZO1-ΔR-Ras-transfected cells nor control cells. Our results indicate that the C-terminus of PIEZO1, which contains the R-Ras binding domain, plays an essential role in Ca2+ influx and activation of the ERK1/2 signaling pathway, suggesting that this domain is crucial for the mechanotransduction of osteoblastic differentiation in BMSCs.
Collapse
Affiliation(s)
- Asuna Sugimoto
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan; Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Kokoro Iwata
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Rika Kurogoushi
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Manami Tanaka
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Yumiko Nakashima
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Yoshihito Yamakawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Atsushi Oishi
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Keigo Yoshizaki
- Orthodontics and Dentofacial Orthopedics Section, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, 812-8582, Japan
| | - Satoshi Fukumoto
- Pediatric Dentistry Section, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, 812-8582, Japan
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan.
| |
Collapse
|
5
|
Bustamante Eduardo M, Keller I, Schuster N, Aebi S, Jaggi R. Molecular characterization of breast cancer cell pools with normal or reduced ability to respond to progesterone: a study based on RNA-seq. J Genet Eng Biotechnol 2023; 21:81. [PMID: 37550554 PMCID: PMC10406740 DOI: 10.1186/s43141-023-00541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND About one-third of patients with estrogen receptor alpha (ERα)-positive breast cancer have tumors which are progesterone receptor (PR) negative. PR is an important prognostic factor in breast cancer. Patients with ERα-positive/PR-negative tumors have shorter disease-free and overall survival than patients with ERα-positive/PR-positive tumors. New evidence has shown that progesterone (P4) has an anti-proliferative effect in ERα-positive breast cancer cells. However, the role of PR in breast cancer is only poorly understood. METHODS We disrupted the PR gene (PGR) in ERα-positive/PR-positive T-47D cells using the CRISPR/Cas9 system. This resulted in cell pools we termed PR-low as P4 mediated effects were inhibited or blocked compared to control T-47D cells. We analyzed the gene expression profiles of PR-low and control T-47D cells in the absence of hormone and upon treatment with P4 alone or P4 together with estradiol (E2). Differentially expressed (DE) genes between experimental groups were characterized based on RNA-seq and Gene Ontology (GO) enrichment analyses. RESULTS The overall gene expression pattern was very similar between untreated PR-low and untreated control T-47D cells. More than 6000 genes were DE in control T-47D cells upon stimulation with P4 or P4 plus E2. When PR-low pools were subjected to the same hormonal treatment, up- or downregulation was either blocked/absent or consistently lower. We identified more than 3000 genes that were DE between hormone-treated PR-low and control T-47D cells. GO analysis revealed seven significantly enriched biological processes affected by PR and associated with G protein-coupled receptor (GPCR) pathways which have been described to support growth, invasiveness, and metastasis in breast cancer cells. CONCLUSIONS The present study provides new insights into the complex role of PR in ERα-positive/PR-positive breast cancer cells. Many of the genes affected by PR are part of central biological processes of tumorigenesis.
Collapse
Affiliation(s)
- Mariana Bustamante Eduardo
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, USA.
| | - Irene Keller
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nathalie Schuster
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stefan Aebi
- Department of Medical Oncology, Cantonal Hospital, Lucerne, Switzerland
| | - Rolf Jaggi
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Li N, Qiu Z, Cai W, Shen Y, Wei D, Chen Y, Wang W. The Ras small GTPase RSR1 regulates cellulase production in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:87. [PMID: 37218014 PMCID: PMC10204303 DOI: 10.1186/s13068-023-02341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Lignocellulose is the most abundant renewable resource in the world and has attracted widespread attention. It can be hydrolyzed into sugars with the help of cellulases and hemicellulases that are secreted by filamentous fungi. Several studies have revealed that the Ras small GTPase superfamily regulates important cellular physiological processes, including synthesis of metabolites, sporulation, and cell growth and differentiation. However, it remains unknown how and to what extent Ras small GTPases participate in cellulase production. RESULTS In this study, we found that the putative Ras small GTPase RSR1 negatively regulated the expression of cellulases and xylanases. Deletion of rsr1 (∆rsr1) significantly increased cellulase production and decreased the expression levels of ACY1-cAMP-protein kinase A (PKA) signaling pathway genes and the concentration of intracellular cyclic adenosine monophosphate (cAMP). Loss of acy1 based on ∆rsr1 (∆rsr1∆acy1) could further increase cellulase production and the expression levels of cellulase genes, while overexpression of acy1 based on ∆rsr1 (∆rsr1-OEacy1) significantly reduced cellulase production and transcriptional levels of cellulase genes. In addition, our results revealed that RSR1 negatively controlled cellulase production via the ACY1-cAMP-PKA pathway. Transcriptome analysis revealed significantly increased expression of three G-protein coupled receptors (GPCRs; tre62462, tre58767, and tre53238) and approximately two-fold higher expression of ACE3 and XYR1, which transcriptionally activated cellulases with the loss of rsr1. ∆rsr1∆ tre62462 exhibited a decrease in cellulase activity compared to ∆rsr1, while that of ∆rsr1∆tre58767 and ∆rsr1∆tre53238 showed a remarkable improvement compared to ∆rsr1. These findings revealed that GPCRs on the membrane may sense extracellular signals and transmit them to rsr1 and then to ACY1-cAMP-PKA, thereby negatively controlling the expression of the cellulase activators ACE3 and XYR1. These data indicate the crucial role of Ras small GTPases in regulating cellulase gene expression. CONCLUSIONS Here, we demonstrate that some GPCRs and Ras small GTPases play key roles in the regulation of cellulase genes in Trichoderma reesei. Understanding the roles of these components in the regulation of cellulase gene transcription and the signaling processes in T. reesei can lay the groundwork for understanding and transforming other filamentous fungi.
Collapse
Affiliation(s)
- Ni Li
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Zhouyuan Qiu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Wanchuan Cai
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Yaling Shen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Dongzhi Wei
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Yumeng Chen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Wei Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China.
- Jiangsu Yiming Biological Technology Co., Ltd., Suqian, 223699, Jiangsu, China.
| |
Collapse
|
7
|
Unravelling biological roles and mechanisms of GABA BR on addiction and depression through mood and memory disorders. Biomed Pharmacother 2022; 155:113700. [PMID: 36152411 DOI: 10.1016/j.biopha.2022.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The metabotropic γ-aminobutyric acid type B receptor (GABABR) remains a hotspot in the recent research area. Being an idiosyncratic G-protein coupled receptor family member, the GABABR manifests adaptively tailored functionality under multifarious modulations by a constellation of agents, pointing to cross-talk between receptors and effectors that converge on the domains of mood and memory. This review systematically summarizes the latest achievements in signal transduction mechanisms of the GABABR-effector-regulator complex and probes how the up-and down-regulation of membrane-delimited GABABRs are associated with manifold intrinsic and extrinsic agents in synaptic strength and plasticity. Neuropsychiatric conditions depression and addiction share the similar pathophysiology of synapse inadaptability underlying negative mood-related processes, memory formations, and impairments. In the attempt to emphasize all convergent discoveries, we hope the insights gained on the GABABR system mechanisms of action are conducive to designing more therapeutic candidates so as to refine the prognosis rate of diseases and minimize side effects.
Collapse
|
8
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
9
|
Schellenberg LM, Regenthal R, Abraham G. The Rho kinase (ROCK) inhibitor Y-27632 reduces the β 2-adrenoceptor density but enhance cAMP formation in primary equine bronchial epithelial cells. Eur J Pharmacol 2021; 907:174323. [PMID: 34246652 DOI: 10.1016/j.ejphar.2021.174323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
The present study addresses the effect of the Rho-kinase (ROCK) inhibitor Y-27632 on the β2-adrenoceptor density and β-agonist-stimulated intracellular second messenger cAMP formation in primary equine bronchial epithelial cells (EBEC). Y-27632 significantly decreased the β2-adrenoceptor number (Bmax) without markedly affecting the receptor affinity (dissociation constant, KD) to the radioligand [125I]-iodocyanopindolol (ICYP). In contrast, Y-27632 augmented the β-agonist-stimulated intracellular cAMP production. Herein, Y-27632 markedly increased the maximal cAMP responses (Emax) (isoproterenol > epinephrine > norepinephrine) but did not shift the β-agonist concentration-effect curves to the left. The β2-selective antagonist ICI 118.551 and the β1/β2-antagonsit propranolol but not the β1-selctive antagonist CGP 20712A reversed the isoproterenol-induced cAMP formation equally in Y-27632-treated and control EBEC, suggesting the effect was merely related to the β2-subtype. These results show that Y-27632 differentially regulates the receptor density and function. Thus, these findings provide the first evidence that the functional interaction of the β2-adrenoceptor and Rho-kinase (ROCK) signaling pathways decreases the receptor expression but enhances receptor downstream cAMP formation. This differential regulation of the receptor density and function by Y-27632 should be further reconsidered with regard to the beneficial effect of the drug in asthma therapy.
Collapse
Affiliation(s)
- Linda Marie Schellenberg
- University of Leipzig, Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Ralf Regenthal
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, Härtelstr. 16 -18, D-04107 Leipzig, Germany.
| | - Getu Abraham
- University of Leipzig, Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology, An den Tierkliniken 15, 04103, Leipzig, Germany.
| |
Collapse
|
10
|
Desale SE, Chidambaram H, Chinnathambi S. G-protein coupled receptor, PI3K and Rho signaling pathways regulate the cascades of Tau and amyloid-β in Alzheimer's disease. MOLECULAR BIOMEDICINE 2021; 2:17. [PMID: 35006431 PMCID: PMC8607389 DOI: 10.1186/s43556-021-00036-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized by the presence of amyloid-β plaques in the extracellular environment and aggregates of Tau protein that forms neurofibrillary tangles (NFTs) in neuronal cells. Along with these pathological proteins, the disease shows neuroinflammation, neuronal death, impairment in the immune function of microglia and synaptic loss, which are mediated by several important signaling pathways. The PI3K/Akt-mediated survival-signaling pathway is activated by many receptors such as G-protein coupled receptors (GPCRs), triggering receptor expressed on myeloid cells 2 (TREM2), and lysophosphatidic acid (LPA) receptor. The signaling pathway not only increases the survival of neurons but also regulates inflammation, phagocytosis, cellular protection, Tau phosphorylation and Aβ secretion as well. In this review, we focused on receptors, which activate PI3K/Akt pathway and its potential to treat Alzheimer's disease. Among several membrane receptors, GPCRs are the major drug targets for therapy, and GPCR signaling pathways are altered during Alzheimer's disease. Several GPCRs are involved in the pathogenic progression, phosphorylation of Tau protein by activation of various cellular kinases and are involved in the amyloidogenic pathway of amyloid-β synthesis. Apart from various GPCR signaling pathways, GPCR regulating/ interacting proteins are involved in the pathogenesis of Alzheimer's disease. These include several small GTPases, Ras homolog enriched in brain, GPCR associated sorting proteins, β-arrestins, etc., that play a critical role in disease progression and has been elaborated in this review.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
11
|
Kawarazaki W, Fujita T. Role of Rho in Salt-Sensitive Hypertension. Int J Mol Sci 2021; 22:ijms22062958. [PMID: 33803946 PMCID: PMC8001214 DOI: 10.3390/ijms22062958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
A high amount of salt in the diet increases blood pressure (BP) and leads to salt-sensitive hypertension in individuals with impaired renal sodium excretion. Small guanosine triphosphatase (GTP)ase Rho and Rac, activated by salt intake, play important roles in the pathogenesis of salt-sensitive hypertension as key switches of intracellular signaling. Focusing on Rho, high salt intake in the central nervous system increases sodium concentrations of cerebrospinal fluid in salt-sensitive subjects via Rho/Rho kinase and renin-angiotensin system activation and causes increased brain salt sensitivity and sympathetic nerve outflow in BP control centers. In vascular smooth muscle cells, Rho-guanine nucleotide exchange factors and Rho determine sensitivity to vasoconstrictors such as angiotensin II (Ang II), and facilitate vasoconstriction via G-protein and Wnt pathways, leading to increased vascular resistance, including in the renal arteries, in salt-sensitive subjects with high salt intake. In the vascular endothelium, Rho/Rho kinase inhibits nitric oxide (NO) production and function, and high salt amounts further augment Rho activity via asymmetric dimethylarginine, an endogenous inhibitor of NO synthetase, causing aberrant relaxation and increased vascular tone. Rho-associated mechanisms are deeply involved in the development of salt-sensitive hypertension, and their further elucidation can help in developing effective protection and new therapies.
Collapse
|
12
|
Lamparter L, Galic M. Cellular Membranes, a Versatile Adaptive Composite Material. Front Cell Dev Biol 2020; 8:684. [PMID: 32850810 PMCID: PMC7419611 DOI: 10.3389/fcell.2020.00684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cellular membranes belong to the most vital yet least understood biomaterials of live matter. For instance, its biomechanical requirements substantially vary across species and subcellular sites, raising the question how membranes manage to adjust to such dramatic changes. Central to its adaptability at the cell surface is the interplay between the plasma membrane and the adjacent cell cortex, forming an adaptive composite material that dynamically adjusts its mechanical properties. Using a hypothetical composite material, we identify core challenges, and discuss how cellular membranes solved these tasks. We further muse how pathological changes in material properties affect membrane mechanics and cell function, before closing with open questions and future challenges arising when studying cellular membranes.
Collapse
Affiliation(s)
- Lucas Lamparter
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Müenster, Münster, Germany
| | - Milos Galic
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Müenster, Münster, Germany
| |
Collapse
|
13
|
Modzelewska K, Brown L, Culotti J, Moghal N. Sensory regulated Wnt production from neurons helps make organ development robust to environmental changes in C. elegans. Development 2020; 147:dev186080. [PMID: 32586974 DOI: 10.1242/dev.186080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/13/2020] [Indexed: 11/20/2022]
Abstract
Long-term survival of an animal species depends on development being robust to environmental variations and climate changes. We used C. elegans to study how mechanisms that sense environmental changes trigger adaptive responses that ensure animals develop properly. In water, the nervous system induces an adaptive response that reinforces vulval development through an unknown backup signal for vulval induction. This response involves the heterotrimeric G-protein EGL-30//Gαq acting in motor neurons. It also requires body-wall muscle, which is excited by EGL-30-stimulated synaptic transmission, suggesting a behavioral function of neurons induces backup signal production from muscle. We now report that increased acetylcholine during liquid growth activates an EGL-30-Rho pathway, distinct from the synaptic transmission pathway, that increases Wnt production from motor neurons. We also provide evidence that this neuronal Wnt contributes to EGL-30-stimulated vulval development, with muscle producing a parallel developmental signal. As diverse sensory modalities stimulate motor neurons via acetylcholine, this mechanism enables broad sensory perception to enhance Wnt-dependent development. Thus, sensory perception improves animal fitness by activating distinct neuronal functions that trigger adaptive changes in both behavior and developmental processes.
Collapse
Affiliation(s)
- Katarzyna Modzelewska
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Louise Brown
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Joseph Culotti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Nadeem Moghal
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
14
|
Rho GTPases in the Physiology and Pathophysiology of Peripheral Sensory Neurons. Cells 2019; 8:cells8060591. [PMID: 31208035 PMCID: PMC6627758 DOI: 10.3390/cells8060591] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous experimental studies demonstrate that the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases) Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42) are important regulators in somatosensory neurons, where they elicit changes in the cellular cytoskeleton and are involved in diverse biological processes during development, differentiation, survival and regeneration. This review summarizes the status of research regarding the expression and the role of the Rho GTPases in peripheral sensory neurons and how these small proteins are involved in development and outgrowth of sensory neurons, as well as in neuronal regeneration after injury, inflammation and pain perception. In sensory neurons, Rho GTPases are activated by various extracellular signals through membrane receptors and elicit their action through a wide range of downstream effectors, such as Rho-associated protein kinase (ROCK), phosphoinositide 3-kinase (PI3K) or mixed-lineage kinase (MLK). While RhoA is implicated in the assembly of stress fibres and focal adhesions and inhibits neuronal outgrowth through growth cone collapse, Rac1 and Cdc42 promote neuronal development, differentiation and neuroregeneration. The functions of Rho GTPases are critically important in the peripheral somatosensory system; however, their signalling interconnections and partially antagonistic actions are not yet fully understood.
Collapse
|
15
|
Shamri R, Young KM, Weller PF. Rho and Rac, but not ROCK, are required for secretion of human and mouse eosinophil-associated RNases. Clin Exp Allergy 2019; 49:190-198. [PMID: 30295352 PMCID: PMC6353669 DOI: 10.1111/cea.13292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eosinophil-associated RNases (EARs) are stored preformed in eosinophil cytoplasmic secretory granules and have a key role in eosinophil effector functions in host defence and inflammatory disorders. However, the secretion mechanisms of EARs are poorly understood. OBJECTIVE Our study aimed to understand the involvement of cytoskeleton machinery in EAR secretion. METHODS Fresh human and mouse eosinophils were stimulated with CCL11, and the secretion of enzymatically active EARs was detected using an RNase activity assay. The involvement of cytoskeletal elements or microtubules was probed using specific inhibitors. RESULTS We found that dynamic polymerization of microtubules and cytoskeletal elements, such as Rho and Rac, is required for chemokine-mediated EAR secretion from human and mouse eosinophils. However, inhibition of ROCK (Rho-associated protein kinase) increased EAR secretion in human and mouse eosinophils even in the absence of chemokine stimulation, suggesting ROCK negatively regulates EAR secretion. CONCLUSIONS Collectively, these data suggest a cytoskeleton-dependent mechanism of EAR secretion from eosinophils, findings that are pertinent to host defence, allergy and other eosinophil-associated diseases.
Collapse
Affiliation(s)
- Revital Shamri
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel 91120
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA 02215
| | - Kristen M. Young
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA 02215
| | - Peter F. Weller
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA 02215
| |
Collapse
|
16
|
Jara ZP, Singh KD, Unal H, Desnoyer R, Yokota R, Pesquero JL, Casarini DE, Karnik SS. Effect of novel GPCR ligands on blood pressure and vascular homeostasis. Methods Cell Biol 2018; 149:215-238. [PMID: 30616822 PMCID: PMC6490170 DOI: 10.1016/bs.mcb.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Maintenance of normal blood pressure under conditions of drug treatment is a measure of system-wide neuro-hormonal controls and electrolyte/fluid volume homeostasis in the body. With increased interest in designing and evaluating novel drugs that may functionally select or allosterically modulate specific GPCR signaling pathways, techniques that allow us to measure acute and long-term effects on blood pressure are very important. Therefore, this chapter describes techniques to measure acute and long-term impact of novel GPCR ligands on blood pressure regulation. We will use the angiotensin type 1 receptor, a powerful blood pressure regulating GPCR, in detailing the methodology. Normal blood pressure maintenance depends upon dynamic modulation of angiotensin type 1 receptor activity by the hormone peptide angiotensin II. Chronic activation of angiotensin type 1 receptor creates hypertension and related cardiovascular disease states which are treated with angiotensin type 1 receptor blockers (ARBs). Thus, a prototype for evaluation of blood pressure control under experimental evaluation of novel drugs.
Collapse
Affiliation(s)
- Zaira Palomino Jara
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | | | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Russell Desnoyer
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Rodrigo Yokota
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge Luis Pesquero
- Physiology and Biophysics Department, Biology and Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
17
|
Shokri-Gharelo R, Noparvar PM. Molecular response of canola to salt stress: insights on tolerance mechanisms. PeerJ 2018; 6:e4822. [PMID: 29844974 PMCID: PMC5969047 DOI: 10.7717/peerj.4822] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/02/2018] [Indexed: 01/16/2023] Open
Abstract
Canola (Brassica napus L.) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as ‘salt-tolerant’, plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests what researchers should focus on in future studies.
Collapse
Affiliation(s)
- Reza Shokri-Gharelo
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Pouya Motie Noparvar
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran.,Young Researchers and Elite Club, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
18
|
Buenaventura T, Kanda N, Douzenis PC, Jones B, Bloom SR, Chabosseau P, Corrêa IR, Bosco D, Piemonti L, Marchetti P, Johnson PR, Shapiro AMJ, Rutter GA, Tomas A. A Targeted RNAi Screen Identifies Endocytic Trafficking Factors That Control GLP-1 Receptor Signaling in Pancreatic β-Cells. Diabetes 2018; 67:385-399. [PMID: 29284659 DOI: 10.2337/db17-0639] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022]
Abstract
The glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) is a key target for type 2 diabetes (T2D) treatment. Because endocytic trafficking of agonist-bound receptors is one of the most important routes for regulation of receptor signaling, a better understanding of this process may facilitate the development of new T2D therapeutic strategies. Here, we screened 29 proteins with known functions in G protein-coupled receptor trafficking for their role in GLP-1R potentiation of insulin secretion in pancreatic β-cells. We identify five (clathrin, dynamin1, AP2, sorting nexins [SNX] SNX27, and SNX1) that increase and four (huntingtin-interacting protein 1 [HIP1], HIP14, GASP-1, and Nedd4) that decrease insulin secretion from murine insulinoma MIN6B1 cells in response to the GLP-1 analog exendin-4. The roles of HIP1 and the endosomal SNX1 and SNX27 were further characterized in mouse and human β-cell lines and human islets. While HIP1 was required for the coupling of cell surface GLP-1R activation with clathrin-dependent endocytosis, the SNXs were found to control the balance between GLP-1R plasma membrane recycling and lysosomal degradation and, in doing so, determine the overall β-cell incretin responses. We thus identify key modulators of GLP-1R trafficking and signaling that might provide novel targets to enhance insulin secretion in T2D.
Collapse
Affiliation(s)
- Teresa Buenaventura
- Section of Cell Biology and Functional Genomics and Pancreatic Islet Biology and Diabetes Consortium, Imperial College London, London, U.K
| | - Nisha Kanda
- Section of Cell Biology and Functional Genomics and Pancreatic Islet Biology and Diabetes Consortium, Imperial College London, London, U.K
| | - Phoebe C Douzenis
- Section of Cell Biology and Functional Genomics and Pancreatic Islet Biology and Diabetes Consortium, Imperial College London, London, U.K
| | - Ben Jones
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - Stephen R Bloom
- Section of Investigative Medicine, Imperial College London, London, U.K
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics and Pancreatic Islet Biology and Diabetes Consortium, Imperial College London, London, U.K
| | | | - Domenico Bosco
- Department of Surgery, University of Geneva, Geneva, Switzerland
| | - Lorenzo Piemonti
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Paul R Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, U.K
| | - A M James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics and Pancreatic Islet Biology and Diabetes Consortium, Imperial College London, London, U.K
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics and Pancreatic Islet Biology and Diabetes Consortium, Imperial College London, London, U.K.
| |
Collapse
|
19
|
Alfonzo-Méndez MA, Hernández-Espinosa DA, Carmona-Rosas G, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Protein Kinase C Activation Promotes α 1B-Adrenoceptor Internalization and Late Endosome Trafficking through Rab9 Interaction. Role in Heterologous Desensitization. Mol Pharmacol 2017; 91:296-306. [PMID: 28082304 DOI: 10.1124/mol.116.106583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/09/2017] [Indexed: 12/25/2022] Open
Abstract
Upon agonist stimulation, α1B-adrenergic receptors couple to Gq proteins, calcium signaling and protein kinase C activation; subsequently, the receptors are phosphorylated, desensitized, and internalized. Internalization seems to involve scaffolding proteins, such as β-arrestin and clathrin. However, the fine mechanisms that participate remain unsolved. The roles of protein kinase C and the small GTPase, Rab9, in α1B-AR vesicular traffic were investigated by studying α1B-adrenergic receptor-Rab protein interactions, using Förster resonance energy transfer (FRET), confocal microscopy, and intracellular calcium quantitation. In human embryonic kidney 293 cells overexpressing Discosoma spp. red fluorescent protein (DsRed)-tagged α1B-ARs and enhanced green fluorescent protein--tagged Rab proteins, pharmacological protein kinase C activation mimicked α1B-AR traffic elicited by nonrelated agents, such as sphingosine 1-phosphate (i.e., transient α1B-AR-Rab5 FRET signal followed by a sustained α1B-AR-Rab9 interaction), suggesting brief receptor localization in early endosomes and transfer to late endosomes. This latter interaction was abrogated by blocking protein kinase C activity, resulting in receptor retention at the plasma membrane. Similar effects were observed when a dominant-negative Rab9 mutant (Rab9-GDP) was employed. When α1B-adrenergic receptors that had been mutated at protein kinase C phosphorylation sites (S396A, S402A) were used, phorbol ester-induced desensitization of the calcium response was markedly decreased; however, interaction with Rab9 was only partially decreased and internalization was observed in response to phorbol esters and sphingosine 1-phosphate. Finally, Rab9-GDP expression did not affect adrenergic-mediated calcium response but abolished receptor traffic and altered desensitization. Data suggest that protein kinase C modulates α1B-adrenergic receptor transfer to late endosomes and that Rab9 regulates this process and participates in G protein-mediated signaling turn-off.
Collapse
Affiliation(s)
- Marco A Alfonzo-Méndez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - David A Hernández-Espinosa
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - Gabriel Carmona-Rosas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - M Teresa Romero-Ávila
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - Guadalupe Reyes-Cruz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| | - J Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México (M.A.A.-M., D.A.H.-E., G.C.-R., M.T.R.-A., J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Col. San Pedro Zacatenco, Ciudad de México (G.R.-C.)
| |
Collapse
|
20
|
Zhang X, Kim KM. Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis. Biomol Ther (Seoul) 2017; 25:26-43. [PMID: 28035080 PMCID: PMC5207461 DOI: 10.4062/biomolther.2016.186] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with β-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
21
|
Aoun J, Hayashi M, Sheikh IA, Sarkar P, Saha T, Ghosh P, Bhowmick R, Ghosh D, Chatterjee T, Chakrabarti P, Chakrabarti MK, Hoque KM. Anoctamin 6 Contributes to Cl- Secretion in Accessory Cholera Enterotoxin (Ace)-stimulated Diarrhea: AN ESSENTIAL ROLE FOR PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE (PIP2) SIGNALING IN CHOLERA. J Biol Chem 2016; 291:26816-26836. [PMID: 27799301 PMCID: PMC5207189 DOI: 10.1074/jbc.m116.719823] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 10/26/2016] [Indexed: 11/06/2022] Open
Abstract
Accessory cholera enterotoxin (Ace) of Vibrio cholerae has been shown to contribute to diarrhea. However, the signaling mechanism and specific type of Cl- channel activated by Ace are still unknown. We have shown here that the recombinant Ace protein induced ICl of apical plasma membrane, which was inhibited by classical CaCC blockers. Surprisingly, an Ace-elicited rise of current was neither affected by ANO1 (TMEM16A)-specific inhibitor T16A(inh)-AO1(TAO1) nor by the cystic fibrosis transmembrane conductance regulator (CFTR) blocker, CFTR inh-172. Ace stimulated whole-cell current in Caco-2 cells. However, the apical ICl was attenuated by knockdown of ANO6 (TMEM16F). This impaired phenotype was restored by re-expression of ANO6 in Caco-2 cells. Whole-cell patch clamp recordings of ANO currents in HEK293 cells transiently expressing mouse ANO1-mCherry or ANO6-GFP confirmed that Ace induced Cl- secretion. Application of Ace produced ANO6 but not the ANO1 currents. Ace was not able to induce a [Ca2+]i rise in Caco-2 cells, but cellular abundance of phosphatidylinositol 4,5-bisphosphate (PIP2) increased. Identification of the PIP2-binding motif at the N-terminal sequence among human and mouse ANO6 variants along with binding of PIP2 directly to ANO6 in HEK293 cells indicate likely PIP2 regulation of ANO6. The biophysical and pharmacological properties of Ace stimulated Cl- current along with intestinal fluid accumulation, and binding of PIP2 to the proximal KR motif of channel proteins, whose mutagenesis correlates with altered binding of PIP2, is comparable with ANO6 stimulation. We conclude that ANO6 is predominantly expressed in intestinal epithelia, where it contributes secretory diarrhea by Ace stimulation in a calcium-independent mechanism of RhoA-ROCK-PIP2 signaling.
Collapse
Affiliation(s)
- Joydeep Aoun
- From the Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Mikio Hayashi
- the Department of Physiology, Kansai Medical University, 5-1, Shimmachi 2, Hirakata, 573 1010 Osaka, Japan
| | - Irshad Ali Sheikh
- From the Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Paramita Sarkar
- From the Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Tultul Saha
- From the Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Priyanka Ghosh
- From the Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Rajsekhar Bhowmick
- From the Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Dipanjan Ghosh
- the Department of Biotechnology, College of Science and Technology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India, and
| | - Tanaya Chatterjee
- the Department of Biochemistry, Bose Institute, P-1/12 CIT Road, Scheme-VIIM, Kolkata 700054, India
| | - Pinak Chakrabarti
- the Department of Biochemistry, Bose Institute, P-1/12 CIT Road, Scheme-VIIM, Kolkata 700054, India
| | - Manoj K Chakrabarti
- From the Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Kazi Mirajul Hoque
- From the Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India,
| |
Collapse
|
22
|
Nakano N, Matsuda S, Ichimura M, Minami A, Ogino M, Murai T, Kitagishi Y. PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson's disease (Review). Int J Mol Med 2016; 39:253-260. [DOI: 10.3892/ijmm.2016.2833] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/12/2016] [Indexed: 11/05/2022] Open
|
23
|
Abstract
The recent recognition of the clinical association between type 2 diabetes (T2D) and several types of human cancer has been further highlighted by reports of antidiabetic drugs treating or promoting cancer. At the cellular level, a plethora of molecules operating within distinct signaling pathways suggests cross-talk between the multiple pathways at the interface of the diabetes–cancer link. Additionally, a growing body of emerging evidence implicates homeostatic pathways that may become imbalanced during the pathogenesis of T2D or cancer or that become chronically deregulated by prolonged drug administration, leading to the development of cancer in diabetes and vice versa. This notion underscores the importance of combining clinical and basic mechanistic studies not only to unravel mechanisms of disease development but also to understand mechanisms of drug action. In turn, this may help the development of personalized strategies in which drug doses and administration durations are tailored to individual cases at different stages of the disease progression to achieve more efficacious treatments that undermine the diabetes–cancer association.
Collapse
Affiliation(s)
- Slavica Tudzarova
- Wolfson Institute for Biomedical Research, University College London, London WC1E6BT, UK
| | - Mahasin A Osman
- Department of Molecular Physiology, Pharmacology and Biotechnology, Division of Biology and Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912 Department of Chemistry and Forensic Sciences, College of Sciences and Technology, Savannah State University, Savannah, GA 41404
| |
Collapse
|
24
|
Abstract
A multitude of physiological processes regulated by G protein-coupled receptors (GPCRs) signaling are accomplished by the participation of active rearrangements of the cytoskeleton. In general, it is common that a cross talk occurs among networks of microfilaments, microtubules, and intermediate filaments in order to reach specific cell responses. In particular, actin-cytoskeleton dynamics regulate processes such as cell shape, cell division, cell motility, and cell polarization, among others. This chapter describes the current knowledge about the regulation of actin-cytoskeleton dynamic by diverse GPCR signaling pathways, and also includes some protocols combining immunofluorescence and confocal microscopy for the visualization of the different rearrangements of the actin-cytoskeleton. We report how both the S1P-GPCR/G12/13/Rho/ROCK and glucagon-GPCR/Gs/cAMP axes induce differential actin-cytoskeleton rearrangements in epithelial cells. We also show that specific actin-binding molecules, like phalloidin and LifeAct, are very useful to analyze F-actin reorganization by confocal microscopy, and also that both molecules show similar results in fixed cells, whereas the anti-actin antibody is useful to detect both the G- and F-actin, as well as their compartmentalization. Thus, it is highly recommended to utilize different approaches to investigate the regulation of actin dynamics by GPCR signaling, with the aim to get a better picture of the phenomenon under study.
Collapse
|
25
|
Zhang Z, Zhang W, Huang S, Sun Q, Wang Y, Hu Y, Sun N, Zhang Y, Jiang Z, Minato N, Pin JP, Su L, Liu J. GABAB receptor promotes its own surface expression by recruiting a Rap1-dependent signaling cascade. J Cell Sci 2015; 128:2302-13. [DOI: 10.1242/jcs.167056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
G-protein-coupled receptors (GPCRs) are key players in cell signaling, and their cell surface expression is tightly regulated. For many GPCRs such as β2-AR (β2-adrenergic receptor), receptor activation leads to downregulation of receptor surface expression, a phenomenon that has been extensively characterized. By contrast, some other GPCRs, such as GABAB receptor, remain relatively stable at the cell surface even after prolonged agonist treatment; however, the underlying mechanisms are unclear. Here, we identify the small GTPase Rap1 as a key regulator for promoting GABAB receptor surface expression. Agonist stimulation of GABAB receptor signals through Gαi/o to inhibit Rap1GAPII (also known as Rap1GAP1b, an isoform of Rap1GAP1), thereby activating Rap1 (which has two isoforms, Rap1a and Rap1b) in cultured cerebellar granule neurons (CGNs). The active form of Rap1 is then recruited to GABAB receptor through physical interactions in CGNs. This Rap1-dependent signaling cascade promotes GABAB receptor surface expression by stimulating receptor recycling. Our results uncover a new mechanism regulating GPCR surface expression and also provide a potential explanation for the slow, long-lasting inhibitory action of GABA neurotransmitter.
Collapse
Affiliation(s)
- Zongyong Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenhua Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siluo Huang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Sun
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunyun Wang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongjian Hu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ninghua Sun
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilei Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhihua Jiang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS, UMR 5203, Université Montpellier 1 et 2, Montpellier cedex 5 34094, France
| | - Li Su
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
26
|
Raka F, Di Sebastiano AR, Kulhawy SC, Ribeiro FM, Godin CM, Caetano FA, Angers S, Ferguson SSG. Ca(2+)/calmodulin-dependent protein kinase II interacts with group I metabotropic glutamate and facilitates receptor endocytosis and ERK1/2 signaling: role of β-amyloid. Mol Brain 2015; 8:21. [PMID: 25885040 PMCID: PMC4378271 DOI: 10.1186/s13041-015-0111-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Agonist stimulation of Group I metabotropic glutamate receptors (mGluRs) initiates their coupling to the heterotrimeric G protein, Gαq/11, resulting in the activation of phospholipase C, the release of Ca(2+) from intracellular stores and the subsequent activation of protein kinase C. However, it is now recognized that mGluR5a also functions as a receptor for cellular prion protein (PrP(C)) and β-amyloid peptide (Aβ42) oligomers to facilitate intracellular signaling via the resulting protein complex. Intracellular mGluR5a signaling is also regulated by its association with a wide variety of intracellular regulation proteins. RESULTS In the present study, we utilized mass spectroscopy to identify calmodulin kinase IIα (CaMKIIα) as a protein that interacts with the second intracellular loop domain of mGluR5. We show that CaMKIIα interacts with both mGluR1a and mGluR5a in an agonist-independent manner and is co-immunoprecipitated with mGluR5a from hippocampal mouse brain. CaMKIIα positively regulates both mGluR1a and mGluR5a endocytosis, but selectively attenuates mGluR5a but not mGluR1a-stimulated ERK1/2 phosphorylation in a kinase activity-dependent manner. We also find that Aβ42 oligomers stimulate the association of CaMKIIα with mGluR5a and activate ERK1/2 in an mGluR5a-dependent manner. However, Aβ42 oligomer-stimulated ERK1/2 phosphorylation is not regulated by mGluR5a/CaMKIIα interactions suggesting that agonist and Aβ42 oligomers stabilize distinct mGluR5a activation states that are differentially regulated by CaMKIIα. The expression of both mGluR5a and PrP(C) together, but not alone resulted in the agonist-stimulated subcellular distribution of CaMKIIα into cytoplasmic puncta. CONCLUSIONS Taken together these results indicate that CaMKIIα selectively regulates mGluR1a and mGluR5a ERK1/2 signaling. As mGluR5 and CaMKIIα are involved in learning and memory and Aβ and mGluR5 are implicated in Alzheimer's disease, results of these studies could provide insight into potential pharmacological targets for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Fitore Raka
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr. London, Ontario, N6A 5K8, Canada.
| | - Andrea R Di Sebastiano
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr. London, Ontario, N6A 5K8, Canada.
| | - Stephanie C Kulhawy
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr. London, Ontario, N6A 5K8, Canada.
| | - Fabiola M Ribeiro
- Departamento de Bioquimica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Christina M Godin
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr. London, Ontario, N6A 5K8, Canada.
| | - Fabiana A Caetano
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr. London, Ontario, N6A 5K8, Canada.
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, University of Toronto, Room 901 144 College Street, Toronto, Ontario, Canada.
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr. London, Ontario, N6A 5K8, Canada.
| |
Collapse
|
27
|
Castillo-Badillo JA, Sánchez-Reyes OB, Alfonzo-Méndez MA, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. α1B-adrenergic receptors differentially associate with Rab proteins during homologous and heterologous desensitization. PLoS One 2015; 10:e0121165. [PMID: 25799564 PMCID: PMC4370394 DOI: 10.1371/journal.pone.0121165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/28/2015] [Indexed: 11/24/2022] Open
Abstract
Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs. heterologous).
Collapse
Affiliation(s)
- Jean A. Castillo-Badillo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Omar B. Sánchez-Reyes
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Marco A. Alfonzo-Méndez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - M. Teresa Romero-Ávila
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, CP 07360, México, D.F., Mexico
| | - J. Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
- * E-mail:
| |
Collapse
|
28
|
Ségaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol 2015; 4:1-12. [PMID: 26579483 PMCID: PMC4620971 DOI: 10.1016/j.jbo.2015.01.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 01/13/2023] Open
Abstract
Bone cancers are characterised by the development of tumour cells in bone sites, associated with a dysregulation of their environment. In the last two decades, numerous therapeutic strategies have been developed to target the cancer cells or tumour niche. As the crosstalk between these two entities is tightly controlled by the release of polypeptide mediators activating signalling pathways through several receptor tyrosine kinases (RTKs), RTK inhibitors have been designed. These inhibitors have shown exciting clinical impacts, such as imatinib mesylate, which has become a reference treatment for chronic myeloid leukaemia and gastrointestinal tumours. The present review gives an overview of the main molecular and functional characteristics of RTKs, and focuses on the clinical applications that are envisaged and already assessed for the treatment of bone sarcomas and bone metastases.
Collapse
Affiliation(s)
- Aude I Ségaliny
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France
| | - Marta Tellez-Gabriel
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France
| | - Marie-Françoise Heymann
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France ; CHU de Nantes, France
| | - Dominique Heymann
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France ; CHU de Nantes, France
| |
Collapse
|
29
|
Reyes BAS, Bangasser DA, Valentino RJ, Van Bockstaele EJ. Using high resolution imaging to determine trafficking of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus. Life Sci 2014; 112:2-9. [PMID: 25058917 DOI: 10.1016/j.lfs.2014.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 12/01/2022]
Abstract
Trafficking of G protein-coupled receptors (GPCRs) is a critical determinant of cellular sensitivity of neurons. To understand how endogenous or exogenous ligands impact cell surface expression of GPCRs, it is essential to employ approaches that achieve superior anatomical resolution at the synaptic level. In situations in which light and fluorescence microscopy techniques may provide only limited resolution, electron microscopy provides enhanced subcellular precision. Dual labeling immunohistochemistry employing visually distinct immunoperoxidase and immunogold markers has been an effective approach for elucidating complex receptor profiles at the synapse and to definitively establish the localization of individual receptors and neuromodulators to common cellular profiles. The immuno-electron microscopy approach offers the potential for determining membrane versus intracellular protein localization, as well as the association with various identifiable cellular organelles. Corticotropin-releasing factor (CRF) is an important regulator of endocrine, autonomic, immunological, behavioral and cognitive limbs of the stress response. Dysfunction of this neuropeptide system has been associated with several psychiatric disorders. This review summarizes findings from neuroanatomical studies, with superior spatial resolution, that indicate that the distribution of CRF receptors is a highly dynamic process that, in addition to being sexually dimorphic, involves complex regulation of receptor trafficking within extrasynaptic sites that have significant consequences for adaptations to stress, particularly within the locus coeruleus (LC), the major brain norepinephrine-containing nucleus.
Collapse
Affiliation(s)
- B A S Reyes
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - D A Bangasser
- Psychology Department and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - R J Valentino
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - E J Van Bockstaele
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| |
Collapse
|
30
|
Nodal signals via β-arrestins and RalGTPases to regulate trophoblast invasion. Cell Signal 2014; 26:1935-42. [PMID: 24863882 DOI: 10.1016/j.cellsig.2014.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 01/05/2023]
Abstract
Placentation is critical for establishing a healthy pregnancy. Trophoblasts mediate implantation and placentation and certain subtypes, most notably extravillous cytotrophoblast, are highly invasive. Trophoblast invasion is tightly regulated by microenvironmental cues that dictate placental morphology and depth. In choriocarcinomas, malignant trophoblast cells become hyperinvasive, breaching the myometrium and leading to major complications. Nodal, a member of the TGF-β superfamily, is expressed throughout the endometrium during the peri-implantation period and in invasive trophoblast cells. Nodal promotes the invasion of numerous types of cancer cells. However, Nodal's role in trophoblast and choriocarcinoma cell invasion is unclear. Here we show that Nodal stimulates the invasion of both the non-malignant HTR-8SV/neo trophoblast and JAR choriocarcinoma cells in a dose-dependent manner. We found that endogenous β-arrestins and Ral GTPases, key regulators of the cell cytoskeleton, are constitutively associated with Nodal receptors (ALK4 and ALK7) in trophoblast cells and that RalA is colocalized with ALK4 in endocytic vesicles. Nodal stimulates endogenous β-arrestin2 to associate with phospho-ERK1/2, and knockdown of β-arrestin or Ral proteins impairs Nodal-induced trophoblast and choriocarcinoma cell invasion. These results demonstrate, for the first time, that β-arrestins and RalGTPases are important regulators of Nodal-induced invasion.
Collapse
|
31
|
Lam PY, Huttenlocher A. Interstitial leukocyte migration in vivo. Curr Opin Cell Biol 2013; 25:650-8. [PMID: 23797028 DOI: 10.1016/j.ceb.2013.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/12/2013] [Accepted: 05/31/2013] [Indexed: 01/06/2023]
Abstract
Rapid leukocyte motility is essential for immunity and host defense. There has been progress in understanding the molecular signals that regulate leukocyte motility both in vitro and in vivo. However, a gap remains in understanding how complex signals are prioritized to result in directed migration, which is critical for both adaptive and innate immune function. Here we focus on interstitial migration and how external cues are translated into intracellular signaling pathways that regulate leukocyte polarity, directional sensing and motility in three-dimensional spaces.
Collapse
Affiliation(s)
- Pui-ying Lam
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
32
|
Gruber S, Omann M, Zeilinger S. Comparative analysis of the repertoire of G protein-coupled receptors of three species of the fungal genus Trichoderma. BMC Microbiol 2013; 13:108. [PMID: 23679152 PMCID: PMC3664084 DOI: 10.1186/1471-2180-13-108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/07/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Eukaryotic organisms employ cell surface receptors such as the seven-transmembrane G protein-coupled receptors (GPCRs) as sensors to connect to the environment. GPCRs react to a variety of extracellular cues and are considered to play central roles in the signal transduction in fungi. Several species of the filamentous ascomycete Trichoderma are potent mycoparasites, i.e. can attack and parasitize other fungi, which turns them into successful bio-fungicides for the protection of plants against fungal phytopathogens. The identification and characterization of GPCRs will provide insights into how Trichoderma communicates with its environment and senses the presence of host fungi. RESULTS We mined the recently published genomes of the two mycoparasitic biocontrol agents Trichoderma atroviride and Trichoderma virens and compared the identified GPCR-like proteins to those of the saprophyte Trichoderma reesei. Phylogenetic analyses resulted in 14 classes and revealed differences not only among the three Trichoderma species but also between Trichoderma and other fungi. The class comprising proteins of the PAQR family was significantly expanded both in Trichoderma compared to other fungi as well as in the two mycoparasites compared to T. reesei. Expression analysis of the PAQR-encoding genes of the three Trichoderma species revealed that all except one were actually transcribed. Furthermore, the class of receptors with a DUF300 domain was expanded in T. atroviride, and T. virens showed an expansion of PTH11-like receptors compared to T. atroviride and T. reesei. CONCLUSIONS Comparative genome analyses of three Trichoderma species revealed a great diversity of putative GPCRs with genus- and species- specific differences. The expansion of certain classes in the mycoparasites T. atroviride and T. virens is likely to reflect the capability of these fungi to establish various ecological niches and interactions with other organisms such as fungi and plants. These GPCRs consequently represent interesting candidates for future research on the mechanisms underlying mycoparasitism and biocontrol.
Collapse
Affiliation(s)
- Sabine Gruber
- Research Area Molecular Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, Wien, Austria
| | | | | |
Collapse
|
33
|
Profiling and semiquantitative analysis of the cell surface proteome in human mesenchymal stem cells. Anal Bioanal Chem 2013; 405:5501-17. [DOI: 10.1007/s00216-013-6969-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/13/2013] [Accepted: 04/03/2013] [Indexed: 12/20/2022]
|
34
|
Esseltine JL, Ferguson SSG. Regulation of G protein-coupled receptor trafficking and signaling by Rab GTPases. Small GTPases 2013; 4:132-5. [PMID: 23511852 DOI: 10.4161/sgtp.24304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Rab GTPases play an essential role in the regulation of intracellular transport including the budding, tethering, and fusion of vesicles as well as organelle motility. The regulation of G protein-coupled receptor (GPCR) trafficking by Rab GTPases has traditionally been regarded as a non-specific process that facilitates the movement of the receptors between intracellular membrane compartments. Thus, alterations in GPCR signal transduction and trafficking following the overexpression of constitutively active and dominant negative Rabs were originally considered to be solely the passive by-product of perturbations in intracellular compartmental dynamics. Recently, an explosion of experimental studies has provided increasingly convincing evidence that receptor trafficking actively affects the signal transduction of cargo proteins and that the signaling of GPCR vesicular cargo can in turn modulate Rab GTPase regulated intracellular transport processes. This research is revealing how different Rabs coordinate with themselves and other regulatory molecules to mediate protein trafficking, as well as uncovers novel functions for traditional Rabs, while illustrating the active role these trafficking molecules play in pathology of disease. Recently published in the Journal of Neuroscience, Esseltine et al., present a novel role for the typified exocytic small G protein Rab8 in the intracellular trafficking and signal transduction of metabotropic glutamate receptor 1.
Collapse
Affiliation(s)
- Jessica L Esseltine
- The J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
35
|
Bhaskaran SS, Stebbins CE. Structure of the catalytic domain of the Salmonella virulence factor SseI. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1613-21. [PMID: 23151626 PMCID: PMC3498931 DOI: 10.1107/s0907444912039042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/12/2012] [Indexed: 11/15/2022]
Abstract
SseI is secreted into host cells by Salmonella and contributes to the establishment of systemic infections. The crystal structure of the C-terminal domain of SseI has been solved to 1.70 Å resolution, revealing it to be a member of the cysteine protease superfamily with a catalytic triad consisting of Cys178, His216 and Asp231 that is critical to its virulence activities. Structure-based analysis revealed that SseI is likely to possess either acyl hydrolase or acyltransferase activity, placing this virulence factor in the rapidly growing class of enzymes of this family utilized by bacterial pathogens inside eukaryotic cells.
Collapse
Affiliation(s)
- Shyam S. Bhaskaran
- Laboratory of Structural Microbiology, The Rockefeller University, New York, NY 10065, USA
| | - C. Erec Stebbins
- Laboratory of Structural Microbiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
36
|
Hou L, Cai MJ, Liu W, Song Q, Zhao XF. Small GTPase Rab4b participates in the gene transcription of 20-hydroxyecdysone and insulin pathways to regulate glycogen level and metamorphosis. Dev Biol 2012; 371:13-22. [PMID: 22824427 DOI: 10.1016/j.ydbio.2012.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 05/13/2012] [Accepted: 06/20/2012] [Indexed: 12/26/2022]
Abstract
The insulin and 20-hydroxyecdysone (20E) pathways coordinately regulate insect growth and metamorphosis. However, the molecular mechanism of the interaction of these two pathways in regulating insect development is not well understood. In the present study, we found that a small GTPase Rab4b from a lepidopteran insect Helicoverpa armigera participates in gene transcription in the two pathways. The results show that RNA interference of Rab4b in larvae results in a decrease in glycogen levels, small pupae, abnormal metamorphic transition, or larval death. The molecular mechanisms are demonstrated that knockdown of Rab4b in the larvae suppresses the transcription of glycogen synthase (GS), as well as the metamorphic-initiating factor (Br) and hormone receptor 3 (HR3), but increases the transcription of Forkhead box class O (FOXO). Further studies in the cell line confirm that Rab4b is necessary for gene transcription in the insulin and 20E pathways. Rab4b locates in the cytoplasm and takes part in regulation on FOXO cytoplasmic location by insulin induction, but travels toward the cell membrane upon 20E induction without affecting the FOXO location. The transcription of Rab4b could be upregulated by insulin injection or glucose feeding to the larvae, but not by 20E or juvenile hormone analogy methoprene. Our data suggest that Rab4b takes part in metamorphosis by regulating gene transcription and glycogen level in the insulin and 20E pathways.
Collapse
Affiliation(s)
- Li Hou
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| | | | | | | | | |
Collapse
|
37
|
Magalhaes AC, Dunn H, Ferguson SS. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol 2012; 165:1717-1736. [PMID: 21699508 DOI: 10.1111/j.1476-5381.2011.01552.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
GPCRs represent the largest family of integral membrane proteins and were first identified as receptor proteins that couple via heterotrimeric G-proteins to regulate a vast variety of effector proteins to modulate cellular function. It is now recognized that GPCRs interact with a myriad of proteins that not only function to attenuate their signalling but also function to couple these receptors to heterotrimeric G-protein-independent signalling pathways. In addition, intracellular and transmembrane proteins associate with GPCRs and regulate their processing in the endoplasmic reticulum, trafficking to the cell surface, compartmentalization to plasma membrane microdomains, endocytosis and trafficking between intracellular membrane compartments. The present review will overview the functional consequence of β-arrestin, receptor activity-modifying proteins (RAMPS), regulators of G-protein signalling (RGS), GPCR-associated sorting proteins (GASPs), Homer, small GTPases, PSD95/Disc Large/Zona Occludens (PDZ), spinophilin, protein phosphatases, calmodulin, optineurin and Src homology 3 (SH3) containing protein interactions with GPCRs.
Collapse
Affiliation(s)
- Ana C Magalhaes
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| | - Henry Dunn
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| | - Stephen Sg Ferguson
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| |
Collapse
|
38
|
Sickling cells, cyclic nucleotides, and protein kinases: the pathophysiology of urogenital disorders in sickle cell anemia. Anemia 2012; 2012:723520. [PMID: 22745902 PMCID: PMC3382378 DOI: 10.1155/2012/723520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/16/2012] [Accepted: 04/22/2012] [Indexed: 02/01/2023] Open
Abstract
Sickle cell anemia is one of the best studied inherited diseases, and despite being caused by a single point mutation in the HBB gene, multiple pleiotropic effects of the abnormal hemoglobin S production range from vaso-occlusive crisis, stroke, and pulmonary hypertension to osteonecrosis and leg ulcers. Urogenital function is not spared, and although priapism is most frequently remembered, other related clinical manifestations have been described, such as nocturia, enuresis, increased frequence of lower urinary tract infections, urinary incontinence, hypogonadism, and testicular infarction. Studies on sickle cell vaso-occlusion and priapism using both in vitro and in vivo models have shed light on the pathogenesis of some of these events. The authors review what is known about the deleterious effects of sickling on the genitourinary tract and how the role of cyclic nucleotides signaling and protein kinases may help understand the pathophysiology underlying these manifestations and develop novel therapies in the setting of urogenital disorders in sickle cell disease.
Collapse
|
39
|
Signaling through the extracellular calcium-sensing receptor (CaSR). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:103-42. [PMID: 22453940 DOI: 10.1007/978-94-007-2888-2_5] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extracellular calcium ([Formula: see text])-sensing receptor (CaSR) was the first GPCR identified whose principal physiological ligand is an ion, namely extracellular Ca(2+). It maintains the near constancy of [Formula: see text] that complex organisms require to ensure normal cellular function. A wealth of information has accumulated over the past two decades about the CaSR's structure and function, its role in diseases and CaSR-based therapeutics. This review briefly describes the CaSR and key features of its structure and function, then discusses the extracellular signals modulating its activity, provides an overview of the intracellular signaling pathways that it controls, and, finally, briefly describes CaSR signaling both in tissues participating in [Formula: see text] homeostasis as well as those that do not. Factors controlling CaSR signaling include various factors affecting the expression of the CaSR gene as well as modulation of its trafficking to and from the cell surface. The dimeric cell surface CaSR, in turn, links to various heterotrimeric and small molecular weight G proteins to regulate intracellular second messengers, lipid kinases, various protein kinases, and transcription factors that are part of the machinery enabling the receptor to modulate the functions of the wide variety of cells in which it is expressed. CaSR signaling is impacted by its interactions with several binding partners in addition to signaling elements per se (i.e., G proteins), including filamin-A and caveolin-1. These latter two proteins act as scaffolds that bind signaling components and other key cellular elements (e.g., the cytoskeleton). Thus CaSR signaling likely does not take place randomly throughout the cell, but is compartmentalized and organized so as to facilitate the interaction of the receptor with its various signaling pathways.
Collapse
|
40
|
Bielnicki JA, Shkumatov AV, Derewenda U, Somlyo AV, Svergun DI, Derewenda ZS. Insights into the molecular activation mechanism of the RhoA-specific guanine nucleotide exchange factor, PDZRhoGEF. J Biol Chem 2011; 286:35163-75. [PMID: 21816819 PMCID: PMC3186380 DOI: 10.1074/jbc.m111.270918] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 07/07/2011] [Indexed: 11/06/2022] Open
Abstract
PDZRhoGEF (PRG) belongs to a small family of RhoA-specific nucleotide exchange factors that mediates signaling through select G-protein-coupled receptors via Gα(12/13) and activates RhoA by catalyzing the exchange of GDP to GTP. PRG is a multidomain protein composed of PDZ, regulators of G-protein signaling-like (RGSL), Dbl-homology (DH), and pleckstrin-homology (PH) domains. It is autoinhibited in cytosol and is believed to undergo a conformational rearrangement and translocation to the membrane for full activation, although the molecular details of the regulation mechanism are not clear. It has been shown recently that the main autoregulatory elements of PDZRhoGEF, the autoinhibitory "activation box" and the "GEF switch," which is required for full activation, are located directly upstream of the catalytic DH domain and its RhoA binding surface, emphasizing the functional role of the RGSL-DH linker. Here, using a combination of biophysical and biochemical methods, we show that the mechanism of PRG regulation is yet more complex and may involve an additional autoinhibitory element in the form of a molten globule region within the linker between RGSL and DH domains. We propose a novel, two-tier model of autoinhibition where the activation box and the molten globule region act synergistically to impair the ability of RhoA to bind to the catalytic DH-PH tandem. The molten globule region and the activation box become less ordered in the PRG-RhoA complex and dissociate from the RhoA-binding site, which may constitute a critical step leading to PRG activation.
Collapse
Affiliation(s)
- Jakub A. Bielnicki
- From the Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia 22908 and
| | - Alexander V. Shkumatov
- the European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Urszula Derewenda
- From the Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia 22908 and
| | - Avril V. Somlyo
- From the Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia 22908 and
| | - Dmitri I. Svergun
- the European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Zygmunt S. Derewenda
- From the Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia 22908 and
| |
Collapse
|
41
|
Van den Broeke C, Favoreel HW. Actin' up: herpesvirus interactions with Rho GTPase signaling. Viruses 2011; 3:278-92. [PMID: 21994732 PMCID: PMC3185701 DOI: 10.3390/v3040278] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 01/06/2023] Open
Abstract
Herpesviruses constitute a very large and diverse family of DNA viruses, which can generally be subdivided in alpha-, beta- and gammaherpesvirus subfamilies. Increasing evidence indicates that many herpesviruses interact with cytoskeleton-regulating Rho GTPase signaling pathways during different phases of their replication cycle. Because of the large differences between herpesvirus subfamilies, the molecular mechanisms and specific consequences of individual herpesvirus interactions with Rho GTPase signaling may differ. However, some evolutionary distinct but similar general effects on Rho GTPase signaling and the cytoskeleton have also been reported. Examples of these include Rho GTPase-mediated nuclear translocation of virus during entry in a host cell and Rho GTPase-mediated viral cell-to-cell spread during later stages of infection. The current review gives an overview of both general and individual interactions of herpesviruses with Rho GTPase signaling.
Collapse
Affiliation(s)
- Céline Van den Broeke
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | | |
Collapse
|
42
|
Pluder F, Barjaktarovic Z, Azimzadeh O, Mörtl S, Krämer A, Steininger S, Sarioglu H, Leszczynski D, Nylund R, Hakanen A, Sriharshan A, Atkinson MJ, Tapio S. Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA.hy926. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:155-166. [PMID: 21104263 DOI: 10.1007/s00411-010-0342-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/01/2010] [Indexed: 05/30/2023]
Abstract
High doses of ionising radiation damage the heart by an as yet unknown mechanism. A concern for radiological protection is the recent epidemiological data indicating that doses as low as 100-500 mGy may induce cardiac damage. The aim of this study was to identify potential molecular targets and/or mechanisms involved in the pathogenesis of low-dose radiation-induced cardiovascular disease. The vascular endothelium plays a pivotal role in the regulation of cardiac function and is therefore a potential target tissue. We report here that low-dose radiation induced rapid and time-dependent changes in the cytoplasmic proteome of the human endothelial cell line EA.hy926. The proteomes were investigated at 4 and 24 h after irradiation at two different dose rates (Co-60 gamma ray total dose 200 mGy; 20 mGy/min and 190 mGy/min) using 2D-DIGE technology. Differentially expressed proteins were identified, after in-gel trypsin digestion, by MALDI-TOF/TOF tandem mass spectrometry, and peptide mass fingerprint analyses. We identified 15 significantly differentially expressed proteins, of which 10 were up-regulated and 5 down-regulated, with more than ±1.5-fold difference compared with unexposed cells. Pathways influenced by the low-dose exposures included the Ran and RhoA pathways, fatty acid metabolism and stress response.
Collapse
Affiliation(s)
- Franka Pluder
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Daniëls V, Vancraenenbroeck R, Law BMH, Greggio E, Lobbestael E, Gao F, De Maeyer M, Cookson MR, Harvey K, Baekelandt V, Taymans JM. Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant. J Neurochem 2011; 116:304-15. [PMID: 21073465 PMCID: PMC3005098 DOI: 10.1111/j.1471-4159.2010.07105.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent known cause of autosomal dominant Parkinson's disease. The LRRK2 gene encodes a Roco protein featuring a Ras of complex proteins (ROC) GTPase and a kinase domain linked by the C-terminal of ROC (COR) domain. Here, we explored the effects of the Y1699C pathogenic LRRK2 mutation in the COR domain on GTPase activity and interactions within the catalytic core of LRRK2. We observed a decrease in GTPase activity for LRRK2 Y1699C comparable to the decrease observed for the R1441C pathogenic mutant and the T1348N dysfunctional mutant. To study the underlying mechanism, we explored the dimerization in the catalytic core of LRRK2. ROC-COR dimerization was significantly weakened by the Y1699C or R1441C/G mutation. Using a competition assay, we demonstrated that the intra-molecular ROC : COR interaction is favoured over ROC : ROC dimerization. Interestingly, the intra-molecular ROC : COR interaction was strengthened by the Y1699C mutation. This is supported by a 3D homology model of the ROC-COR tandem of LRRK2, showing that Y1699 is positioned at the intra-molecular ROC : COR interface. In conclusion, our data provides mechanistic insight into the mode of action of the Y1699C LRRK2 mutant: the Y1699C substitution, situated at the intra-molecular ROC : COR interface, strengthens the intra-molecular ROC : COR interaction, thereby locally weakening the dimerization of LRRK2 at the ROC-COR tandem domain resulting in decreased GTPase activity.
Collapse
Affiliation(s)
- Veronique Daniëls
- Laboratory for Neurobiology and Gene Therapy, division of Molecular Medicine, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Belgium
| | - Renée Vancraenenbroeck
- Laboratory for biomolecular modelling, Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, Katholieke Universiteit Leuven, Belgium
| | - Bernard MH Law
- Department of Pharmacology, The School of Pharmacy, University of London, 29-39 Brunswick Square, London, UK
| | | | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, division of Molecular Medicine, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Belgium
| | - Fangye Gao
- Laboratory for Neurobiology and Gene Therapy, division of Molecular Medicine, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Belgium
| | - Marc De Maeyer
- Laboratory for biomolecular modelling, Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, Katholieke Universiteit Leuven, Belgium
| | - Mark R Cookson
- Cell Biology and Gene Expression Unit, Laboratory of Neurogenetics, NIA, National Institutes of Health, Bethesda Maryland
| | - Kirsten Harvey
- Department of Pharmacology, The School of Pharmacy, University of London, 29-39 Brunswick Square, London, UK
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, division of Molecular Medicine, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Belgium
| | - Jean-Marc Taymans
- Laboratory for Neurobiology and Gene Therapy, division of Molecular Medicine, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
44
|
Fernández-Medarde A, Santos E. The RasGrf family of mammalian guanine nucleotide exchange factors. Biochim Biophys Acta Rev Cancer 2010; 1815:170-88. [PMID: 21111786 DOI: 10.1016/j.bbcan.2010.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/14/2010] [Indexed: 12/31/2022]
Abstract
RasGrf1 and RasGrf2 are highly homologous mammalian guanine nucleotide exchange factors which are able to activate specific Ras or Rho GTPases. The RasGrf genes are preferentially expressed in the central nervous system, although specific expression of either locus may also occur elsewhere. RasGrf1 is a paternally-expressed, imprinted gene that is expressed only after birth. In contrast, RasGrf2 is not imprinted and shows a wider expression pattern. A variety of isoforms for both genes are also detectable in different cellular contexts. The RasGrf proteins exhibit modular structures composed by multiple domains including CDC25H and DHPH motifs responsible for promoting GDP/GTP exchange, respectively, on Ras or Rho GTPase targets. The various domains are essential to define their intrinsic exchanger activity and to modulate the specificity of their functional activity so as to connect different upstream signals to various downstream targets and cellular responses. Despite their homology, RasGrf1 and RasGrf2 display differing target specificities and non overlapping functional roles in a variety of signaling contexts related to cell growth and differentiation as well as neuronal excitability and response or synaptic plasticity. Whereas both RasGrfs are activatable by glutamate receptors, G-protein-coupled receptors or changes in intracellular calcium concentration, only RasGrf1 is reported to be activated by LPA, cAMP, or agonist-activated Trk and cannabinoid receptors. Analysis of various knockout mice strains has uncovered a specific functional contribution of RasGrf1 in processes of memory and learning, photoreception, control of post-natal growth and body size and pancreatic β-cell function and glucose homeostasis. For RasGrf2, specific roles in lymphocyte proliferation, T-cell signaling responses and lymphomagenesis have been described.
Collapse
|
45
|
Lima VV, Giachini FR, Hardy DM, Webb RC, Tostes RC. O-GlcNAcylation: a novel pathway contributing to the effects of endothelin in the vasculature. Am J Physiol Regul Integr Comp Physiol 2010; 300:R236-50. [PMID: 21068200 DOI: 10.1152/ajpregu.00230.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc) or O-GlcNAcylation on serine and threonine residues of nuclear and cytoplasmic proteins is a posttranslational modification that alters the function of numerous proteins important in vascular function, including kinases, phosphatases, transcription factors, and cytoskeletal proteins. O-GlcNAcylation is an innovative way to think about vascular signaling events both in physiological conditions and in disease states. This posttranslational modification interferes with vascular processes, mainly vascular reactivity, in conditions where endothelin-1 (ET-1) levels are augmented (e.g. salt-sensitive hypertension, ischemia/reperfusion, and stroke). ET-1 plays a crucial role in the vascular function of most organ systems, both in physiological and pathophysiological conditions. Recognition of ET-1 by the ET(A) and ET(B) receptors activates intracellular signaling pathways and cascades that result in rapid and long-term alterations in vascular activity and function. Components of these ET-1-activated signaling pathways (e.g., mitogen-activated protein kinases, protein kinase C, RhoA/Rho kinase) are also targets for O-GlcNAcylation. Recent experimental evidence suggests that ET-1 directly activates O-GlcNAcylation, and this posttranslational modification mediates important vascular effects of the peptide. This review focuses on ET-1-activated signaling pathways that can be modified by O-GlcNAcylation. A brief description of the O-GlcNAcylation biology is presented, and its role on vascular function is addressed. ET-1-induced O-GlcNAcylation and its implications for vascular function are then discussed. Finally, the interplay between O-GlcNAcylation and O-phosphorylation is addressed.
Collapse
Affiliation(s)
- Victor V Lima
- Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | |
Collapse
|
46
|
Godin CM, Ferreira LT, Dale LB, Gros R, Cregan SP, Ferguson SSG. The small GTPase Ral couples the angiotensin II type 1 receptor to the activation of phospholipase C-delta 1. Mol Pharmacol 2010; 77:388-95. [PMID: 20018811 DOI: 10.1124/mol.109.061069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The angiotensin II type 1 receptor (AT(1)R) plays an important role in cardiovascular function and as such represents a primary target for therapeutic intervention. The AT(1)R has traditionally been considered to be coupled to the activation of phospholipase C (PLC) beta via its association with G alpha(q/11), leading to increases in intracellular inositol phosphate (IP) and release of calcium from intracellular stores. In the present study, we investigated whether the small GTPase RalA contributed to the regulation of AT(1)R endocytosis and signaling. We find that neither RalA nor RalB is required for the endocytosis of the AT(1)R, but that RalA expression is required for AT(1)R-stimulated IP formation but not 5-HT(2A) receptor-mediated IP formation. AT(1)R-activated IP formation is lost in the absence of Ral guanine nucleotide dissociation stimulator (RalGDS), and requires the beta-arrestin-dependent plasma membrane translocation of RalGDS. G alpha(q/11) small interfering RNA (siRNA) treatment also significantly attenuates both AT(1)R- and 5-HT(2A) receptor-stimulated IP formation after 30 min of agonist stimulation. PLC-delta1 has been reported to be activated by RalA, and we show that AT(1)R-stimulated IP formation is attenuated after PLC-delta 1 siRNA treatment. Taken together, our results provide evidence for a G protein-coupled recepto-activated and RalGDS/Ral-mediated mechanism for PLC-delta 1 stimulation.
Collapse
Affiliation(s)
- Christina M Godin
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, University of Western Ontario, 100 Perth Dr., London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Notcovich C, Diez F, Tubio MR, Baldi A, Kazanietz MG, Davio C, Shayo C. Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways. Exp Cell Res 2010; 316:401-11. [DOI: 10.1016/j.yexcr.2009.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/06/2023]
|
48
|
Ogura T, Tan A, Tsubota T, Nakakura T, Shiotsuki T. Identification and expression analysis of ras gene in silkworm, Bombyx mori. PLoS One 2009; 4:e8030. [PMID: 19946625 PMCID: PMC2777509 DOI: 10.1371/journal.pone.0008030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/24/2009] [Indexed: 12/15/2022] Open
Abstract
Ras proteins play important roles in development especially for cell proliferation and differentiation in various organisms. However, their functions in the most insect species are still not clear. We identified three ras cDNAs from the silk worm, Bombyx mori. These sequences corresponded to three Ras of Drosophila melanogaster, but not to three mammalian Ras (H-Ras, K-Ras, N-Ras). Subsequently, the expression profiles of ras were investigated by quantitative real-time PCR using whole body of individuals from the embryonic to adult stages, and various tissues of 4th and 5th instar larvae. Each of three Bombyx ras showed different expression patterns. We also showed membrane localization of their products. These results indicate that the three Bombyx Ras are functional and have different roles.
Collapse
Affiliation(s)
- Takehiko Ogura
- Department of Applied Life Sciences, Kyoto University, Kyoto, Japan
| | - Anjiang Tan
- Invertebrate Gene Function Research Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| | - Takuya Tsubota
- Invertebrate Gene Function Research Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| | - Takayo Nakakura
- Invertebrate Gene Function Research Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| | - Takahiro Shiotsuki
- Invertebrate Gene Function Research Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
49
|
Beaumont KA, Liu YY, Sturm RA. The melanocortin-1 receptor gene polymorphism and association with human skin cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:85-153. [PMID: 20374726 DOI: 10.1016/s1877-1173(09)88004-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a key gene involved in the regulation of melanin synthesis and encodes a G-protein coupled receptor expressed on the surface of the melanocyte in the skin and hair follicles. MC1R activation after ultraviolet radiation exposure results in the production of the dark eumelanin pigment and the tanning process in humans, providing physical protection against DNA damage. The MC1R gene is highly polymorphic in Caucasian populations with a number of MC1R variant alleles associated with red hair, fair skin, freckling, poor tanning, and increased risk of melanoma and nonmelanoma skin cancer. Variant receptors have shown alterations in biochemical function, largely due to intracellular retention or impaired G-protein coupling, but retain some signaling ability. The association of MC1R variant alleles with skin cancer risk remains after correction for pigmentation phenotype, indicating regulation of nonpigmentary pathways. Notably, MC1R activation has been linked to DNA repair and may also contribute to the regulation of immune responses.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
50
|
Aziziyeh AI, Li TT, Pape C, Pampillo M, Chidiac P, Possmayer F, Babwah AV, Bhattacharya M. Dual regulation of lysophosphatidic acid (LPA1) receptor signalling by Ral and GRK. Cell Signal 2009; 21:1207-17. [PMID: 19306925 DOI: 10.1016/j.cellsig.2009.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 02/15/2009] [Accepted: 03/12/2009] [Indexed: 11/29/2022]
Abstract
Lysophosphatidic acid (LPA) is a major constituent of blood and is involved in a variety of physiological and pathophysiological processes. LPA signals via the ubiquitously expressed G protein-coupled receptors (GPCRs), LPA(1) and LPA(2) that are specific for LPA. However, in large, the molecular mechanisms that regulate the signalling of these receptors are unknown. We show that the small GTPase RalA associates with both LPA(1) and LPA(2) in human embryonic kidney (HEK 293) cells and that stimulation of LPA(1) receptors with LPA triggers the activation of RalA. While RalA was not found to play a role in the endocytosis of LPA receptors, we reveal that LPA(1) receptor stimulation promoted Ral-dependent phospholipase C activity. Furthermore, we found that GRK2 is required for the desensitization of LPA(1) and LPA(2) and have identified a novel interaction between RalA and GRK2, which is promoted by LPA(1) receptor activity. Taken together, these results establish RalA and GRK2 as key regulators of LPA receptor signalling and demonstrate for the first time that LPA(1) activity facilitates the formation of a novel protein complex between these two proteins.
Collapse
Affiliation(s)
- Adel I Aziziyeh
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|