1
|
Li J, Liang J, Liu Y, Sun W, Sun W. Basal metabolic rate mediates the causal relationship between gut microbiota and osteoarthritis: a two-step bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1371679. [PMID: 39411433 PMCID: PMC11473340 DOI: 10.3389/fmicb.2024.1371679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Background The relationship between gut microbiota and osteoarthritis (OA) occurrence remains unclear. Existing research needs to clearly understand how basal metabolic rate (BMR) regulates this relationship. Therefore, using a two-step bidirectional Mendelian Randomization approach, our study aims to investigate whether BMR levels mediate the causal relationship between gut microbiota and OA. Methods In this study, we examined publicly available summary statistics from Genome-Wide Association Studies (GWAS) to determine the correlation between gut microbiota and OA. The analysis included one primary dataset and two secondary datasets. Initially, a two-step, two-sample, and reverse MR analysis was performed to identify the causal relationship between gut microbiota and OA. Subsequently, a two-step MR analysis revealed that the relationship between microbiota and OA is mediated by BMR. Sensitivity analyses confirmed the robustness of the study results. Results In our analysis of the primary dataset, we discovered a positive correlation between three taxa and the outcome of OA, and eight taxa exhibited a negative correlation with the OA outcome. Through comparisons with the secondary dataset and multiple testing corrections, we found a negative association between the class Actinobacteria (OR=0.992886277, p-value = 0.003) and the likelihood of OA occurrence. Notably, knee osteoarthritis (KOA) and hip osteoarthritis (HOA) had a strong negative correlation (OR = 0.927237553/0.892581219). Our analysis suggests that BMR significantly mediates the causal pathway from Actinobacteria to OA, with a mediated effect of 2.59%. Additionally, BMR mediates 3.98% of the impact in the path from the order Bifidobacteriales and the family Bifidobacteriaceae to OA. Besides these findings, our reverse analysis did not indicate any significant effect of OA on gut microbiota or BMR. Conclusion Our research results indicate that an increase in the abundance of specific gut microbial taxa is associated with a reduced incidence of OA, and BMR levels mediate this causal relationship. Further large-scale randomized controlled trials are necessary to validate the causal impact of gut microbiota on the risk of OA. This study provides new insights into the potential prevention of OA by modulating the gut microbiota.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, China
| | - Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Xu H, Luo Y, Li Q, Zhu H. Acupuncture influences multiple diseases by regulating gut microbiota. Front Cell Infect Microbiol 2024; 14:1371543. [PMID: 39040602 PMCID: PMC11260648 DOI: 10.3389/fcimb.2024.1371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Acupuncture, an important green and side effect-free therapy in traditional Chinese medicine, is widely use both domestically and internationally. Acupuncture can interact with the gut microbiota and influence various diseases, including metabolic diseases, gastrointestinal diseases, mental disorders, nervous system diseases, and other diseases. This review presents a thorough analysis of these interactions and their impacts and examines the alterations in the gut microbiota and the potential clinical outcomes following acupuncture intervention to establish a basis for the future utilization of acupuncture in clinical treatments.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaoqi Li
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Rahman SO, Bariguian F, Mobasheri A. The Potential Role of Probiotics in the Management of Osteoarthritis Pain: Current Status and Future Prospects. Curr Rheumatol Rep 2023; 25:307-326. [PMID: 37656392 PMCID: PMC10754743 DOI: 10.1007/s11926-023-01108-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE OF REVIEW This narrative review article comprehensively explains the pathophysiology of osteoarthritis (OA) pain perception, how the gut microbiota is correlated with it, possible molecular pathways involved in probiotics-mediated OA pain reduction, limitations in the current research approaches, and future perspectives. RECENT FINDINGS The initiation and progression of OA, including the development of chronic pain, is intricately associated with activation of the innate immune system and subsequent inflammatory responses. Trauma, lifestyle (e.g., obesity and metabolic disease), and chronic antibiotic treatment can disrupt commensal homeostasis of the human microbiome, thereby affecting intestinal integrity and promoting leakage of bacterial endotoxins and metabolites such as lipopolysaccharides (LPS) into circulation. Increased level of LPS is associated with knee osteophyte severity and joint pain. Both preclinical and clinical studies strongly suggest that probiotics may benefit patients with OA pain through positive gut microbiota modulation and attenuating low-grade inflammation via multiple pathways. Patent data also suggests increased interest in the development of new innovations that involve probiotic use for reducing OA and joint pain. Recent data suggest that probiotics are attracting more and more attention for OA pain management. The advancement of knowledge in this area may pave the way for developing different probiotic strains that can be used to support joint health, improve treatment outcomes in OA, and reduce the huge impact of the disease on healthcare systems worldwide.
Collapse
Affiliation(s)
| | - Frédérique Bariguian
- Haleon (Formerly GSK Consumer Healthcare), Route de L'Etraz 2, Case Postale 1279, 1260, Nyon 1, Switzerland.
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, 90014, Oulu, FI, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium.
| |
Collapse
|
4
|
Shirinsky I, Kalinovskaya N, Filatova K, Shirinsky V. Serum markers of gut permeability and endotoxemia in patients with osteoarthritis of the knee associated with metabolic syndrome. Int J Rheum Dis 2023; 26:2344-2346. [PMID: 37345895 DOI: 10.1111/1756-185x.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Affiliation(s)
- Ivan Shirinsky
- Laboratory of Clinical Immunopharmacology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Natalia Kalinovskaya
- Laboratory of Clinical Immunopharmacology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | | | - Valery Shirinsky
- Laboratory of Clinical Immunopharmacology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
5
|
Álvarez-Herms J, González A, Corbi F, Odriozola I, Odriozola A. Possible relationship between the gut leaky syndrome and musculoskeletal injuries: the important role of gut microbiota as indirect modulator. AIMS Public Health 2023; 10:710-738. [PMID: 37842270 PMCID: PMC10567981 DOI: 10.3934/publichealth.2023049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 10/17/2023] Open
Abstract
This article aims to examine the evidence on the relationship between gut microbiota (GM), leaky gut syndrome and musculoskeletal injuries. Musculoskeletal injuries can significantly impair athletic performance, overall health, and quality of life. Emerging evidence suggests that the state of the gut microbiota and the functional intestinal permeability may contribute to injury recovery. Since 2007, a growing field of research has supported the idea that GM exerts an essential role maintaining intestinal homeostasis and organic and systemic health. Leaky gut syndrome is an acquired condition where the intestinal permeability is impaired, and different bacteria and/or toxins enter in the bloodstream, thereby promoting systemic endotoxemia and chronic low-grade inflammation. This systemic condition could indirectly contribute to increased local musculoskeletal inflammation and chronificate injuries and pain, thereby reducing recovery-time and limiting sport performance. Different strategies, including a healthy diet and the intake of pre/probiotics, may contribute to improving and/or restoring gut health, thereby modulating both systemically as local inflammation and pain. Here, we sought to identify critical factors and potential strategies that could positively improve gut microbiota and intestinal health, and reduce the risk of musculoskeletal injuries and its recovery-time and pain. In conclusion, recent evidences indicate that improving gut health has indirect consequences on the musculoskeletal tissue homeostasis and recovery through the direct modulation of systemic inflammation, the immune response and the nociceptive pain.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
- Phymo Lab, Physiology, and Molecular laboratory, Spain
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| | - Francisco Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| |
Collapse
|
6
|
Gambari L, Cellamare A, Grassi F, Grigolo B, Panciera A, Ruffilli A, Faldini C, Desando G. Targeting the Inflammatory Hallmarks of Obesity-Associated Osteoarthritis: Towards Nutraceutical-Oriented Preventive and Complementary Therapeutic Strategies Based on n-3 Polyunsaturated Fatty Acids. Int J Mol Sci 2023; 24:ijms24119340. [PMID: 37298291 DOI: 10.3390/ijms24119340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity (Ob), which has dramatically increased in the last decade, is one of the main risk factors that contribute to the incidence and progression of osteoarthritis (OA). Targeting the characteristics of obesity-associated osteoarthritis (ObOA) may offer new chances for precision medicine strategies in this patient cohort. First, this review outlines how the medical perspective of ObOA has shifted from a focus on biomechanics to the significant contribution of inflammation, mainly mediated by changes in the adipose tissue metabolism through the release of adipokines and the modification of fatty acid (FA) compositions in joint tissues. Preclinical and clinical studies on n-3 polyunsaturated FAs (PUFAs) are critically reviewed to outline the strengths and weaknesses of n-3 PUFAs' role in alleviating inflammatory, catabolic and painful processes. Emphasis is placed on potential preventive and therapeutic nutritional strategies based on n-3 PUFAs, with a focus on ObOA patients who could specifically benefit from reformulating the dietary composition of FAs towards a protective phenotype. Finally, tissue engineering approaches that involve the delivery of n-3 PUFAs directly into the joint are explored to address the perspectives and current limitations, such as safety and stability issues, for implementing preventive and therapeutic strategies based on dietary compounds in ObOA patients.
Collapse
Affiliation(s)
- Laura Gambari
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Antonella Cellamare
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Panciera
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Giovanna Desando
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
7
|
Wang X, Wu Y, Liu Y, Chen F, Chen S, Zhang F, Li S, Wang C, Gong Y, Huang R, Hu M, Ning Y, Zhao H, Guo X. Altered gut microbiome profile in patients with knee osteoarthritis. Front Microbiol 2023; 14:1153424. [PMID: 37250055 PMCID: PMC10213253 DOI: 10.3389/fmicb.2023.1153424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a kind of chronic, degenerative disorder with unknown causes. In this study, we aimed to improve our understanding of the gut microbiota profile in patients with knee OA. Methods 16S rDNA gene sequencing was performed to detect the gut microbiota in fecal samples collected from the patients with OA (n = 32) and normal control (NC, n = 57). Then the metagenomic sequencing was used to identify the genes or functions linked with gut microbial changes at the species level in the fecal samples from patients with OA and NC groups. Results The Proteobacteria was identified as dominant bacteria in OA group. We identified 81 genera resulted significantly different in abundance between OA and NC. The abundance of Agathobacter, Ruminococcus, Roseburia, Subdoligranulum, and Lactobacillus showed significant decrease in the OA compared to the NC. The abundance of genera Prevotella_7, Clostridium, Flavonifractor and Klebsiella were increasing in the OA group, and the families Lactobacillaceae, Christensenellaceae, Clostridiaceae_1 and Acidaminococcaceae were increasing in the NC. The metagenomic sequencing showed that the abundance of Bacteroides stercoris, Bacteroides vulgatus and Bacteroides uniformis at the species level were significantly decreasing in the OA, and the abundance of Escherichia coli, Klebsiella pneumoniae, Shigella flexneri and Streptococcus salivarius were significantly increased in OA. Discussion The results of our study interpret a comprehensive profile of the gut microbiota in patients with knee OA and offer the evidence that the cartilage-gut-microbiome axis could play a crucial role in underlying the mechanisms and pathogenesis of OA.
Collapse
Affiliation(s)
- Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sijie Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Feiyu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Shujin Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Chaowei Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Minhan Hu
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Cruz CJ, Dewberry LS, Otto KJ, Allen KD. Neuromodulation as a Potential Disease-Modifying Therapy for Osteoarthritis. Curr Rheumatol Rep 2023; 25:1-11. [PMID: 36435890 PMCID: PMC11438129 DOI: 10.1007/s11926-022-01094-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW The following review discusses the therapeutic potential of targeting the autonomic nervous system (ANS) for osteoarthritis (OA) treatment and encourages the field to consider the candidacy of bioelectronic medicine as a novel OA treatment strategy. RECENT FINDINGS The study of OA pathogenesis has focused on changes occurring at the joint level. As such, treatments for OA have been aimed at the local joint environment, intending to resolve local inflammation and decrease pain. However, OA pathogenesis has shown to be more than joint wear and tear. Specifically, OA-related peripheral and central sensitization can prompt neuroplastic changes in the nervous system beyond the articular joint. These neuroplastic changes may alter physiologic systems, like the neuroimmune axis. In this way, OA and related comorbidities may share roots in the form of altered neuroimmune communication and autonomic dysfunction. ANS modulation may be able to modify OA pathogenesis or reduce the impact of OA comorbidities. Moreover, blocking chronic nociceptive drive from the joint may help to prevent maladaptive nervous system plasticity in OA.
Collapse
Affiliation(s)
- Carlos J Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
- Pain Research and Intervention Center of Excellence, Gainesville, FL, USA
| | - L Savannah Dewberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA.
- Pain Research and Intervention Center of Excellence, Gainesville, FL, USA.
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Rios JL, Sapède D, Djouad F, Rapp AE, Lang A, Larkin J, Ladel C, Mobasheri A. Animal Models of Osteoarthritis Part 1-Preclinical Small Animal Models: Challenges and Opportunities for Drug Development. Curr Protoc 2022; 2:e596. [PMID: 36342311 DOI: 10.1002/cpz1.596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Osteoarthritis (OA) is the most common form of arthritis and a major source of pain and disability in the adult population. There is a significant unmet medical need for the development of effective pharmacological therapies for the treatment of OA. In addition to spontaneously occurring animal models of OA, many experimental animal models have been developed to provide insights into mechanisms of pathogenesis and progression. Many of these animal models are also being used in the drug development pipeline. Here, we provide an overview of commonly used and emerging preclinical small animal models of OA and highlight the strengths and limitations of small animal models in the context of translational drug development. There is limited information in the published literature regarding the technical reliability of these small animal models and their ability to accurately predict clinical drug development outcomes. The cost and complexity of the available models however is an important consideration for pharmaceutical companies, biotechnology startups, and contract research organizations wishing to incorporate preclinical models in target validation, discovery, and development pipelines. Further considerations relevant to industry include timelines, methods of induction, the key issue of reproducibility, and appropriate outcome measures needed to objectively assess outcomes of experimental therapeutics. Preclinical small animal models are indispensable tools that will shine some light on the pathogenesis of OA and its molecular endotypes in the context of drug development. This paper will focus on small animal models used in preclinical OA research. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jaqueline Lourdes Rios
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Percuros BV, Leiden, The Netherlands
| | - Dora Sapède
- IRMB, Université de Montpellier, INSERM, Montpellier, France
| | - Farida Djouad
- IRMB, Université de Montpellier, INSERM, Montpellier, France
| | - Anna E Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopaedics (Friedrichsheim), University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Annemarie Lang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | | | | | - Ali Mobasheri
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Departments of Orthopaedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| |
Collapse
|
10
|
Lee SY, Kim BR, Kim SR, Choi JH, Jeong EJ, Kim J. The combination of osteoporosis and low lean mass correlates with physical function in end-stage knee osteoarthritis: A retrospective observational study. Medicine (Baltimore) 2022; 101:e29960. [PMID: 35945717 PMCID: PMC9351889 DOI: 10.1097/md.0000000000029960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We aimed to investigate the prevalence of osteoporosis and low lean mass, either together or in isolation, and their association with physical function, pain, and quality of life (QOL) in patients with end-stage knee osteoarthritis (OA). This retrospective cross-sectional observational study included 578 patients (77 males and 501 females) diagnosed with end-stage knee OA. Patients were divided into 4 groups based on body composition parameters: control, osteoporosis, low lean mass, and osteoporosis + low lean mass. All participants underwent performance-based physical function tests, including a stair climbing test (SCT), a 6-minute walk test, a timed up and go test, and instrumental gait analysis, to examine spatiotemporal parameters. Self-reported physical function and pain levels were measured using the Western Ontario McMaster Universities Osteoarthritis Index and visual analog scale, respectively. Self-reported QOL was measured using the EuroQOL 5 dimensions (EQ-5D) questionnaire. Of 578 patients, 268 (46.4%) were included in the control group, 148 (25.6%) in the osteoporosis group, 106 (18.3%) in the low lean mass group, and 56 (9.7%) in the osteoporosis + low lean mass group. Analysis of variance revealed that the scores for the osteoporosis + low lean mass group in the SCT-ascent, SCT-descent, and timed up and go test were significantly higher, whereas those for the 6-minute walk test, gait speed, and cadence were significantly lower than those for the other groups (P < .05). After adjusting for age, sex, and body mass index, multiple linear regression analysis identified SCT-ascent (β = 0.140, P = .001, R2 = 0.126), SCT-descent (β = 0.182, P < .001, R2 = 0.124), gait speed (β = -0.116, P = .005, R2 = 0.079), and cadence (β = -0.093, P = .026, R2 = 0.031) as being significantly associated with osteoporosis + low lean mass. Thus, osteoporosis + low lean mass correlates with poor physical function, but not pain and QOL, in patients with end-stage knee OA.
Collapse
Affiliation(s)
- So Young Lee
- Department of Rehabilitation Medicine, Jeju National University Hospital, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Bo Ryun Kim
- Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, Seoul, Republic of Korea
- *Correspondence: Bo Ryun Kim, Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea (e-mail: )
| | - Sang Rim Kim
- Department of Orthopaedic Surgery, Jeju National University Hospital, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Jun Hwan Choi
- Department of Rehabilitation Medicine, Jeju National University Hospital, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Eui Jin Jeong
- Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Jinseok Kim
- Division of Rheumatology, Department of Internal Medicine, Jeju National University Hospital, Jeju National University College of Medicine, Jeju, Republic of Korea
| |
Collapse
|
11
|
Ning Y, Hu M, Gong Y, Huang R, Xu K, Chen S, Zhang F, Liu Y, Chen F, Chang Y, Zhao G, Li C, Zhou R, Lammi MJ, Guo X, Wang X. Comparative analysis of the gut microbiota composition between knee osteoarthritis and Kashin-Beck disease in Northwest China. Arthritis Res Ther 2022; 24:129. [PMID: 35637503 PMCID: PMC9150333 DOI: 10.1186/s13075-022-02819-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background Osteoarthritis (OA) and Kashin-Beck disease (KBD) both are two severe osteochondral disorders. In this study, we aimed to compare the gut microbiota structure between OA and KBD patients. Methods Fecal samples collected from OA and KBD patients were used to characterize the gut microbiota using 16S rDNA gene sequencing. To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria between OA and KBD groups, metagenomic sequencing of fecal samples from OA and KBD subjects was performed. Results The OA group was characterized by elevated Epsilonbacteraeota and Firmicutes levels. A total of 52 genera were identified to be significantly differentially abundant between the two groups. The genera Raoultella, Citrobacter, Flavonifractor, g__Lachnospiraceae_UCG-004, and Burkholderia-Caballeronia-Paraburkholderia were more abundant in the OA group. The KBD group was characterized by higher Prevotella_9, Lactobacillus, Coprococcus_2, Senegalimassilia, and Holdemanella. The metagenomic sequencing showed that the Subdoligranulum_sp._APC924/74, Streptococcus_parasanguinis, and Streptococcus_salivarius were significantly increased in abundance in the OA group compared to those in the KBD group, and the species Prevotella_copri, Prevotella_sp._CAG:386, and Prevotella_stercorea were significantly decreased in abundance in the OA group compared to those in the KBD group by using metagenomic sequencing. Conclusion Our study provides a comprehensive landscape of the gut microbiota between OA and KBD patients and provides clues for better understanding the mechanisms underlying the pathogenesis of OA and KBD. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02819-5.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Minhan Hu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yi Gong
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ruitian Huang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanli Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feihong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanhai Chang
- Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Guanghui Zhao
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Cheng Li
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Rong Zhou
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Mikko J Lammi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China.,Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China. .,Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China. .,Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
12
|
Wei Z, Li F, Pi G. Association Between Gut Microbiota and Osteoarthritis: A Review of Evidence for Potential Mechanisms and Therapeutics. Front Cell Infect Microbiol 2022; 12:812596. [PMID: 35372125 PMCID: PMC8966131 DOI: 10.3389/fcimb.2022.812596] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by degeneration of articular cartilage, which leads to joints pain, disability and reduced quality of life in patients with OA. Interpreting the potential mechanisms underlying OA pathogenesis is crucial to the development of new disease modifying treatments. Although multiple factors contribute to the initiation and progression of OA, gut microbiota has gradually been regarded as an important pathogenic factor in the development of OA. Gut microbiota can be regarded as a multifunctional “organ”, closely related to a series of immune, metabolic and neurological functions. This review summarized research evidences supporting the correlation between gut microbiota and OA, and interpreted the potential mechanisms underlying the correlation from four aspects: immune system, metabolism, gut-brain axis and gut microbiota modulation. Future research should focus on whether there are specific gut microbiota composition or even specific pathogens and the corresponding signaling pathways that contribute to the initiation and progression of OA, and validate the potential of targeting gut microbiota for the treatment of patients with OA.
Collapse
Affiliation(s)
| | - Feng Li
- *Correspondence: Feng Li, ; Guofu Pi,
| | - Guofu Pi
- *Correspondence: Feng Li, ; Guofu Pi,
| |
Collapse
|
13
|
Chisari E, Wouthuyzen-Bakker M, Friedrich AW, Parvizi J. The relation between the gut microbiome and osteoarthritis: A systematic review of literature. PLoS One 2021; 16:e0261353. [PMID: 34914764 PMCID: PMC8675674 DOI: 10.1371/journal.pone.0261353] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background Along with mechanical and genetic factors, emerging evidence suggests that the presence of low-grade inflammation has a role in the pathogenesis of osteoarthritis (OA) and seems to be related to the microbiome composition of the gut. Purpose To provide evidence whether there is clinical or preclinical evidence of gut-joint axis in the pathogenesis and symptoms of OA. Methods An extensive review of the current literature was performed using three different databases. Human, as well as animal studies, were included. The risk of bias was identified using ROBINS and SYRCLE tools, while the quality of evidence was assessed using GRADE and CAMADARES criteria. Results A total of nineteen articles were included. Multiple animal studies demonstrated that both obesity, and high-fat and high-sugar diets resulted in a gut dysbiosis status characterized by increased Firmicutes/Bacteroidetes (F/B) phyla ratio and increased permeability. These changes were associated with increased lipopolysaccharide serum levels, which consequently resulted in synovitis and OA severity. The administration of pre-and probiotics partially reversed this bacterial composition. In addition, in human studies, a decreased amount of gut Bacteroidetes, subsequent increased F/B ratio, have also been observed in OA patients. Conclusions Our review confirms preliminary yet sound evidence supporting a gut-joint axis in OA in primarily preclinical models, by showing an association between diet, gut dysbiosis and OA radiological severity and self-reported symptoms. Clinical studies are needed to confirm these findings, and to investigate whether interventions targeting the composition of the microbiome will have a beneficial clinical effect.
Collapse
Affiliation(s)
- Emanuele Chisari
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America.,Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, RB, Groningen, Netherlands
| | - Marjan Wouthuyzen-Bakker
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, RB, Groningen, Netherlands
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, RB, Groningen, Netherlands
| | - Javad Parvizi
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
14
|
Yu XH, Yang YQ, Cao RR, Bo L, Lei SF. The causal role of gut microbiota in development of osteoarthritis. Osteoarthritis Cartilage 2021; 29:1741-1750. [PMID: 34425228 DOI: 10.1016/j.joca.2021.08.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE There is considerable evidence for relationship between gut microbiota and osteoarthritis (OA), but no studies have investigated their causal relationship. METHOD This study utilized large-scale genome-wide association studies (GWAS) summary statistics to evaluate the causal association between gut microbiota and OA risk. Specifically, two-sample Mendelian randomization (MR) approach was used to identify the causal microbial taxa for OA. Comprehensively sensitive analyses were performed to validate the robustness of results and novel multivariable MR analyses were further conducted to ensure the independence of causal association. Reverse-direction MR analyses were performed to rule out the possibility of reverse associations. Finally, enrichment analyses were used to investigate the biofunction. RESULTS After correction, three microbial taxa were identified to be causally associated with diverse joint OA (PFDR < 0.100), namely Methanobacteriaceae family for knee OA (PFDR = 0.043) and any OA (PFDR = 0.028), Desulfovibrionales order for knee OA (PFDR = 0.045) and Ruminiclostridium5 genus for knee OA (PFDR = 0.063). In addition, we also identified five suggestive microbial taxa that were significant with three different methods under the nominal significance (P < 0.05). Sensitive analysis excluded the influence of heterogeneity and horizontal pleiotropy and multivariable MR analysis ruled out the possibility of horizontal pleiotropy of BMI. GO enrichment analysis illustrates the protective mechanism of the identified taxa against OA. CONCLUSIONS This study found that several microbial taxa were causally associated with diverse joint OA. The results enhanced our understanding of gut microbiota in the pathology of OA.
Collapse
Affiliation(s)
- X-H Yu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, PR China
| | - Y-Q Yang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, PR China
| | - R-R Cao
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, PR China
| | - L Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - S-F Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
15
|
Guido G, Ausenda G, Iascone V, Chisari E. Gut permeability and osteoarthritis, towards a mechanistic understanding of the pathogenesis: a systematic review. Ann Med 2021; 53:2380-2390. [PMID: 34933614 PMCID: PMC8725942 DOI: 10.1080/07853890.2021.2014557] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Osteoarthritis (OA) is the most common condition affecting human joints. Along with mechanical and genetic factors, low-grade inflammation is increasingly supported as a causal factor in the development of OA. Gut microbiota and intestinal permeability, via the disruption of tight junction competency, are proposed to explain a gut-joint axis through the interaction with the host immune system. Since previous studies and methods have underestimated the role of the gut-joint axis in OA and have only focussed on the characterisation of microbiota phenotypes, this systematic review aims to appraise the current evidence concerning the influence of gut permeability in the pathogenesis of OA. We propose that the tight junction disruption may be due to an increase in zonulin activity as already demonstrated for many other chronic inflammatory disorders. After years of unreliable quantification, one study optimised the methodology, showing a positive validated correlation between plasma lipopolysaccharide (LPS), obesity, joint inflammation, and OA severity. Chemokines show a prominent role in pain development. Our systematic review confirms preliminary evidence supporting a gut-joint axis in OA pathogenesis and progression. Being modifiable by several factors, the gut microbiota is a promising target for treatment. We propose a pathogenetic model in which dysbiosis is correlated to the bipartite graph of tight junctions and bacterially-produced products, aiming to direct future studies in the search of other bacterial products and tight junction disassembly regulators.KEY MESSAGESPrevious studies and methods have underestimated the impact of the gut-joint axis in osteoarthritis and have focussed on the characterisation of microbiota phenotypes rather than clear molecular mediators of disease.Gut dysbiosis is related to higher levels of bacterial toxins that elicit cartilage and synovium inflammatory pathways.Future research may benefit from focussing on both tight junctions and bacterially-produced products.
Collapse
Affiliation(s)
- Giorgio Guido
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Guido Ausenda
- Faculty of Medicine, University of Milan, Milan, Italy
| | - Veronica Iascone
- Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Emanuele Chisari
- Rothman Orthopaedic Institute at Thomas Jefferson University, Washington Township, NJ, USA
| |
Collapse
|
16
|
Collins KH, Schwartz DJ, Lenz KL, Harris CA, Guilak F. Taxonomic changes in the gut microbiota are associated with cartilage damage independent of adiposity, high fat diet, and joint injury. Sci Rep 2021; 11:14560. [PMID: 34267289 PMCID: PMC8282619 DOI: 10.1038/s41598-021-94125-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/30/2021] [Indexed: 12/02/2022] Open
Abstract
Lipodystrophic mice are protected from cartilage damage following joint injury. This protection can be reversed by the implantation of a small adipose tissue graft. The purpose of this study was to evaluate the relationship between the gut microbiota and knee cartilage damage while controlling for adiposity, high fat diet, and joint injury using lipodystrophic (LD) mice. LD and littermate control (WT) mice were fed a high fat diet, chow diet, or were rescued with fat implantation, then challenged with destabilization of the medial meniscus surgery to induce osteoarthritis (OA). 16S rRNA sequencing was conducted on feces. MaAslin2 was used to determine associations between taxonomic relative abundance and OA severity. While serum LPS levels between groups were similar, synovial fluid LPS levels were increased in both limbs of HFD WT mice compared to all groups, except for fat transplanted animals. The Bacteroidetes:Firmicutes ratio of the gut microbiota was significantly reduced in HFD and OA-rescued animals when compared to chow. Nine novel significant associations were found between gut microbiota taxa and OA severity. These findings suggest the presence of causal relationships the gut microbiome and cartilage health, independent of diet or adiposity, providing potential therapeutic targets through manipulation of the microbiome.
Collapse
Affiliation(s)
- Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Drew J Schwartz
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristin L Lenz
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
| | - Charles A Harris
- Division of Endocrinology, Washington University, St. Louis, MO, USA
- Early Clinical Development & Experimental Sciences, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA.
- Shriners Hospitals for Children, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.
| |
Collapse
|
17
|
Tan TC, Chong TKY, Low AHL, Leung YY. Microbiome and osteoarthritis: New insights from animal and human studies. Int J Rheum Dis 2021; 24:984-1003. [PMID: 33961348 DOI: 10.1111/1756-185x.14123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 01/08/2023]
Abstract
Osteoarthritis (OA) is a common cause of disability, especially among the elderly. With an ageing and increasingly obese population, OA will become more prevalent. Obesity and metabolic syndrome are risk factors for OA and have been implicated in its pathogenesis. The gut microbiome may shed light on this possible common pathogenesis. Recent animal and human studies have gained important insights into the relationship between OA, obesity, and the gut microbiome. Animal studies have demonstrated links between obesity and increased severity of OA and altered gut microbial DNA profile. Use of prebiotics and probiotics in animal trials provides proof-of-concept that interventional options to the gut microbiome can modulate the progression of OA favorably. Current evidence in human studies is limited. Shifts in gut microbial profile and reduced gut microbial diversity have been associated with people with OA, as well as blood and synovial fluid lipopolysaccharide endotoxemia. Linkages between microbiome dysbiosis and host responses may help in the understanding of OA pathogenesis and the discovery of therapeutic targets. This narrative review provides a summary of up-to-date animal and human studies on the gut microbiome and its link with OA.
Collapse
Affiliation(s)
- Tze Chin Tan
- Department of Rheumatology & Immunology, Singapore General Hospital, Singapore City, Singapore.,Duke-NUS Medical School, Singapore City, Singapore
| | - Timothy Kit Yeong Chong
- Department of Rheumatology & Immunology, Singapore General Hospital, Singapore City, Singapore
| | - Andrea Hsiu Ling Low
- Department of Rheumatology & Immunology, Singapore General Hospital, Singapore City, Singapore.,Duke-NUS Medical School, Singapore City, Singapore
| | - Ying Ying Leung
- Department of Rheumatology & Immunology, Singapore General Hospital, Singapore City, Singapore.,Duke-NUS Medical School, Singapore City, Singapore
| |
Collapse
|
18
|
Lee YH, Song GG. The Gut Microbiome and Osteoarthritis: A Two-Sample Mendelian Randomization Study. JOURNAL OF RHEUMATIC DISEASES 2021; 28:94-100. [PMID: 37476017 PMCID: PMC10324885 DOI: 10.4078/jrd.2021.28.2.94] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 07/22/2023]
Abstract
Objective The aim of this study was to examine if the intestinal microbiome is causally correlated with osteoarthritis (OA) incidence. Methods A two-sample Mendelian randomization (MR) study was conducted using inverse variance weighting (IVW), weighted median, and MR-Egger regression techniques Publicly accessible summary statistics dataset of intestinal microbiomes of European descent from genome-wide association studies (GWASs) (a total with 3,326 individuals) was used as an exposure As an outcome, summary data from the GWAS include 3,498 patients with OA of the knee and hip from the arcOGEN sample and 11,009 controls of European descent. Results We identified 29 single-nucleotide polymorphisms from GWAS of intestinal microbiomes as instrumental variables The IVW approach found no evidence to suggest a causal relationship between the intestinal microbiota and OA (beta=-0001, standard error [SE]=0004, p=0748) The regression test of MR-Egger showed that the directional pleiotropy was unlikely to be a bias (intercept=0002, SE=0007, p=0697) and the MR-Egger study showed no causal relation between the intestinal microbiota and the OA (beta=-0002, SE=0005, p=0630) The weighted median analysis also did not have indications of a causal relationship between the intestinal microbiota and OA (beta=-0002, SE=0005, p=0630) The MR results calculated using IVW, the median weighted and the MR-Egger regression approaches were consistent. Conclusion The findings of the MR analysis did not support a causal relationship between intestinal microbiome and OA risk.
Collapse
Affiliation(s)
- Young Ho Lee
- Department of Rheumatology, Korea University College of Medicine, Seoul, Korea
| | - Gwan Gyu Song
- Department of Rheumatology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Arora V, Singh G, O-Sullivan I, Ma K, Natarajan Anbazhagan A, Votta-Velis EG, Bruce B, Richard R, van Wijnen AJ, Im HJ. Gut-microbiota modulation: The impact of thegut-microbiotaon osteoarthritis. Gene 2021; 785:145619. [PMID: 33781857 DOI: 10.1016/j.gene.2021.145619] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is one of the most common medical conditions affecting > 300 million people globally which represents the formidable public health challenge. Despite its clinical and financial ramifications, there are currently no approved disease modifying OA drugs available and symptom palliation is the only alternative. Currently, the amount of data on the human intestinal microbiome is growing at a high rate, both in health and in various pathological conditions. With an increase in the amount of the accumulated data, there is an expanded understanding that the microbiome provides compelling evidence of a link between thegut microbiomeand development ofOA. The microbiota management tools of probiotics and/or prebiotics or symbiotic have been developed and indeed, commercialized over the past few decades with the expressed purpose of altering the microbiota within the gastrointestinal tract which could be a potentially novel intervention to tackle or prevent OA. However, the mechanisms how intestinal microbiota affects the OA pathogenesis are still not clear and further research targeting specific gut microbiota or its metabolites is still needed to advance OA treatment strategies from symptomatic management to individualized interventions of OA pathogenesis. This article provides an overview of the various preclinical and clinical studies using probiotics and prebiotics as plausible therapeutic options that can restore the gastrointestinal microbiota and its impact on the OA pathogenesis. May be in the near future the targeted alterations of gut microbiota may pave the way for developing new interventions to prevent and treat OA.
Collapse
Affiliation(s)
- Vipin Arora
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Gurjit Singh
- Departments of Bioengineering, the University of Illinois at Chicago, Chicago, IL, USA
| | - InSug O-Sullivan
- Departments of Medicine, the University of Illinois at Chicago, Chicago, IL, USA
| | - Kaige Ma
- Departments of Bioengineering, the University of Illinois at Chicago, Chicago, IL, USA
| | | | - E Gina Votta-Velis
- Departments of Anesthesiology, the University of Illinois at Chicago, Chicago, IL, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Benjamin Bruce
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ripper Richard
- Departments of Anesthesiology, the University of Illinois at Chicago, Chicago, IL, USA
| | | | - Hee-Jeong Im
- Departments of Bioengineering, the University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center (JBVAMC) at Chicago, IL, USA.
| |
Collapse
|
20
|
Tan Q, Jiang A, Li W, Song C, Leng H. Metabolic syndrome and osteoarthritis: Possible mechanisms and management strategies. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2020.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Zeng R, Lu X, Lin J, Ron Z, Fang J, Liu Z, Zeng W. FOXM1 activates JAK1/STAT3 pathway in human osteoarthritis cartilage cell inflammatory reaction. Exp Biol Med (Maywood) 2021; 246:644-653. [PMID: 33297736 PMCID: PMC7988721 DOI: 10.1177/1535370220974933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/28/2020] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA), the most prevalent form of arthritis disease, is characterized by destruction of articular cartilage, osteophyte development, and sclerosis of subchondral bone. Transcription factors Janus kinase 1/signal transducer and activator of transcription 3 (JAK1/STAT3) and Forkhead box M1 (FOXM1) are key mediators of this inflammatory reaction. In this study, we investigated the interaction between JAK1/STAT3 and FOXM1 in OA. Inflammation is related to the cartilage damage, and lipopolysaccharides (LPS) are a major pro-inflammatory inducer, so LPS was utilized to stimulate chondrocytes and establish a cell-based OA model. We found LPS treatment caused a generation of inflammatory cell factors (IL-1β, IL-6, and TNF-α), and upregulation of inducible nitric oxide synthases (iNOS), cyclooxygenase-2 (COX-2), nitric oxide (NO), prostaglandin E2 (PGE2) and other inflammatory mediators. Cell viability of chondrocytes was impaired with LPS stimulation, along with an upregulation of JAK1 expression, and phosphorylation and nuclear accumulation of STAT3. The administration of STAT3 inhibitor WP1066, which abated activation and nuclear location of STAT3, depleted the effect of LPS on inflammation and cell death. Co-immunoprecipitation showed that STAT3 was able to bind to FOXM1, and deactivation of STAT3 resulted in the downregulation of FOXM1. Moreover, FOXM1 silencing inhibited the generation of inflammatory cytokines induced by LPS, and the attenuation of cell survival. These findings indicated that the interaction between JAK1/STAT3 and FOXM1 may play a key role in OA pathogenic studies, and suggest the JAK1/STAT3 pathway may be a potential target for OA therapy.
Collapse
Affiliation(s)
- Runming Zeng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Runming Zeng.
| | - Xiaohui Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jing Lin
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zhijie Ron
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jiezhuang Fang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zewa Liu
- Department of Oncology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wanting Zeng
- Division of Medicine, University College London, London WC1E 6BT, UK
| |
Collapse
|
22
|
Electroacupuncture Prevents Osteoarthritis of High-Fat Diet-Induced Obese Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9380965. [PMID: 32724821 PMCID: PMC7366230 DOI: 10.1155/2020/9380965] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023]
Abstract
The effects of acupuncture on osteoarthritis (OA) pathogenesis have been demonstrated in vitro and in animal models. However, the potential for acupuncture to mediate protective effects on obese-induced OA has not been examined. Here, we investigated the effects of different acupuncture patterns on OA pathogenesis in high-fat diet- (HFD-) induced obese rats. After 12-week diet-induced obesity, obese rats were treated with three acupuncture protocols for 2 weeks, including ST36, GB34, and ST36+GB34. The results showed that the three acupuncture protocols both prevented obesity-induced cartilage matrix degradation and MMP expression and mitigated obesity-induced systemic and local inflammation but had different regulatory effects on lipid metabolism and gut microbiota disorder of obese-induced OA rats. Furthermore, the three acupuncture protocols increased the microbial diversity and altered the structure of community of feces in obese rats. We found that ST36 and GB34 could inhibit proinflammatory shift in the gut microbiome with an increase in the ratio of Bacteroidetes/Firmicutes and promote the recovery of relative abundance of Clostridium, Akkermansia, Butyricimonas, and Lactococcus. Although both ST36 and GB34 had an anti-inflammatory effect on serum inflammatory mediators, only the acupuncture protocol with both ST36 and GB34 could effectively inhibit LPS-mediated joint inflammation in obesity rats. Therefore, relieving obesity-related chronic inflammation, lipid metabolism disorder, and gut microbiota disorder may be an important mechanism for acupuncture with ST36 and GB34 to promote OA recovery.
Collapse
|
23
|
Dunn CM, Velasco C, Rivas A, Andrews M, Garman C, Jacob PB, Jeffries MA. Identification of Cartilage Microbial DNA Signatures and Associations With Knee and Hip Osteoarthritis. Arthritis Rheumatol 2020; 72:1111-1122. [PMID: 31961065 PMCID: PMC7336391 DOI: 10.1002/art.41210] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Alterations of the gut microbiota have been implicated in many forms of arthritis, but an examination of cartilage microbial patterns has not been performed. This study was undertaken to characterize the microbial DNA profile of articular cartilage and determine changes associated with osteoarthritis (OA). METHODS We performed 16S ribosomal RNA gene deep sequencing on eroded and intact cartilage samples from knee OA patients (n = 21 eroded and 21 intact samples) and hip OA patients (n = 34 eroded and 33 intact samples) and cadaver controls (n = 10 knee samples and 10 hip samples). Microbial DNA diversity was assessed, groups were compared, and metagenomic profiles were reconstructed. Confirmation was performed in an independent cohort by clade-specific quantitative polymerase chain reaction. Findings in human cartilage were compared to those in cartilage from OA-susceptible C57BL/6 (B6) mice and OA-resistant MRL/MpJ (MRL) mice. Germ-free B6 mouse cartilage was analyzed as a methodologic control. RESULTS Alpha diversity was reduced in human OA versus control samples (P < 0.0001), and in hip versus knee samples (P < 0.0001). Numerous clades were different in human OA versus control samples, and similar findings were noted in comparisons of murine B6 versus MRL mice. Hip samples were microbiologically distinct from knee samples. OA microbial DNA demonstrated increased gram-negative constituents (P = 0.02). Functional analysis demonstrated increases in lipopolysaccharide production (P = 9.9 × 10-3 ), phosphatidylinositol signaling (P = 4.2 × 10-4 ), and nitrogen metabolism (P = 8 × 10-3 ) and decreases in sphingolipid metabolism (P = 7.7 × 10-4 ) associated with OA. CONCLUSION Our study reveals a microbial DNA signature in human and mouse cartilage. Alterations in this signature, including increases in gram-negative constituents, occur during the development and progression of human OA. Furthermore, our findings indicate that strain-specific signatures exist within mouse cartilage that mirror human patterns. Further study of the establishment and potential pathogenic role of these DNA signatures is needed.
Collapse
MESH Headings
- Aged
- Animals
- Arthroplasty, Replacement, Hip
- Arthroplasty, Replacement, Knee
- Cartilage, Articular/metabolism
- Cartilage, Articular/microbiology
- Cartilage, Articular/pathology
- Classification
- DNA, Bacterial/analysis
- Disease Susceptibility
- Female
- Genetic Variation
- Humans
- Male
- Metagenome/genetics
- Mice
- Microbiota/genetics
- Middle Aged
- Osteoarthritis, Hip/microbiology
- Osteoarthritis, Hip/surgery
- Osteoarthritis, Knee/microbiology
- Osteoarthritis, Knee/surgery
- Polymerase Chain Reaction
- RNA, Ribosomal, 16S/genetics
Collapse
Affiliation(s)
- Christopher M. Dunn
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK
| | - Cassandra Velasco
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK
| | - Alexander Rivas
- University of Arkansas for Medical Sciences, Little Rock, AR
| | - Madison Andrews
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK
| | - Cassandra Garman
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK
| | - Paul B. Jacob
- Oklahoma Joint Reconstruction Institute, Oklahoma City, OK
| | - Matlock A. Jeffries
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK
| |
Collapse
|
24
|
|
25
|
Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J Endocr Soc 2020; 4:bvz039. [PMID: 32099951 PMCID: PMC7033038 DOI: 10.1210/jendso/bvz039] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/05/2020] [Indexed: 12/24/2022] Open
Abstract
The intestinal barrier is complex and consists of multiple layers, and it provides a physical and functional barrier to the transport of luminal contents to systemic circulation. While the epithelial cell layer and the outer/inner mucin layer constitute the physical barrier and are often referred to as the intestinal barrier, intestinal alkaline phosphatase (IAP) produced by epithelial cells and antibacterial proteins secreted by Panneth cells represent the functional barrier. While antibacterial proteins play an important role in the host defense against gut microbes, IAP detoxifies bacterial endotoxin lipopolysaccharide (LPS) by catalyzing the dephosphorylation of the active/toxic Lipid A moiety, preventing local inflammation as well as the translocation of active LPS into systemic circulation. The causal relationship between circulating LPS levels and the development of multiple diseases underscores the importance of detailed examination of changes in the “layers” of the intestinal barrier associated with disease development and how this dysfunction can be attenuated by targeted interventions. To develop targeted therapies for improving intestinal barrier function, it is imperative to have a deeper understanding of the intestinal barrier itself, the mechanisms underlying the development of diseases due to barrier dysfunction (eg, high circulating LPS levels), the assessment of intestinal barrier function under diseased conditions, and of how individual layers of the intestinal barrier can be beneficially modulated to potentially attenuate the development of associated diseases. This review summarizes the current knowledge of the composition of the intestinal barrier and its assessment and modulation for the development of potential therapies for barrier dysfunction-associated diseases.
Collapse
Affiliation(s)
| | - Jing Wang
- Department of Internal Medicine, VCU Medical Center, Richmond, Virginia
| | - Paul J Yannie
- Hunter Homes McGuire VA Medical Center, Richmond, Virginia
| | - Shobha Ghosh
- Department of Internal Medicine, VCU Medical Center, Richmond, Virginia.,Hunter Homes McGuire VA Medical Center, Richmond, Virginia
| |
Collapse
|
26
|
Metcalfe D, Perry DC, Claireaux HA, Simel DL, Zogg CK, Costa ML. Does This Patient Have Hip Osteoarthritis?: The Rational Clinical Examination Systematic Review. JAMA 2019; 322:2323-2333. [PMID: 31846019 PMCID: PMC7583647 DOI: 10.1001/jama.2019.19413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
IMPORTANCE Hip osteoarthritis (OA) is a common cause of pain and disability. OBJECTIVE To identify the clinical findings that are most strongly associated with hip OA. DATA SOURCES Systematic search of MEDLINE, PubMed, EMBASE, and CINAHL from inception until November 2019. STUDY SELECTION Included studies (1) quantified the accuracy of clinical findings (history, physical examination, or simple tests) and (2) used plain radiographs as the reference standard for diagnosing hip OA. DATA EXTRACTION AND SYNTHESIS Studies were assigned levels of evidence using the Rational Clinical Examination scale and assessed for risk of bias using the Quality Assessment of Diagnostic Accuracy Studies tool. Data were extracted using individual hips as the unit of analysis and only pooled when findings were reported in 3 or more studies. MAIN OUTCOMES AND MEASURES Sensitivity, specificity, and likelihood ratios (LRs). RESULTS Six studies were included, with data from 1110 patients and 1324 hips, of which 509 (38%) showed radiographic evidence of OA. Among patients presenting to primary care physicians with hip or groin pain, the affected hip showed radiographic evidence of OA in 34% of cases. A family history of OA, personal history of knee OA, or pain on climbing stairs or walking up slopes all had LRs of 2.1 (sensitivity range, 33%-68%; specificity range, 68%-84%; broadest LR range: 95% CI, 1.1-3.8). To identify patients most likely to have OA, the most useful findings were squat causing posterior pain (sensitivity, 24%; specificity, 96%; LR, 6.1 [95% CI, 1.3-29]), groin pain on passive abduction or adduction (sensitivity, 33%; specificity, 94%; LR, 5.7 [95% CI, 1.6-20]), abductor weakness (sensitivity, 44%; specificity, 90%; LR, 4.5 [95% CI, 2.4-8.4]), and decreased passive hip adduction (sensitivity, 80%; specificity, 81%; LR, 4.2 [95% CI, 3.0-6.0]) or internal rotation (sensitivity, 66%; specificity, 79%; LR, 3.2 [95% CI, 1.7-6.0]) as measured by a goniometer or compared with the contralateral leg. The presence of normal passive hip adduction was most useful for suggesting the absence of OA (negative LR, 0.25 [95% CI, 0.11-0.54]). CONCLUSIONS AND RELEVANCE Simple tests of hip motion and observing for pain during that motion were helpful in distinguishing patients most likely to have OA on plain radiography from those who will not. A combination of findings efficiently detects those most likely to have severe hip OA.
Collapse
Affiliation(s)
- David Metcalfe
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Daniel C Perry
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Henry A Claireaux
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - David L Simel
- Durham Veterans Affairs Health System, Durham, North Carolina
- Duke University, Durham, North Carolina
| | - Cheryl K Zogg
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Matthew L Costa
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Biver E, Berenbaum F, Valdes AM, Araujo de Carvalho I, Bindels LB, Brandi ML, Calder PC, Castronovo V, Cavalier E, Cherubini A, Cooper C, Dennison E, Franceschi C, Fuggle N, Laslop A, Miossec P, Thomas T, Tuzun S, Veronese N, Vlaskovska M, Reginster JY, Rizzoli R. Gut microbiota and osteoarthritis management: An expert consensus of the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Ageing Res Rev 2019; 55:100946. [PMID: 31437484 DOI: 10.1016/j.arr.2019.100946] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of osteoarthritis (OA) increases not only because of longer life expectancy but also because of the modern lifestyle, in particular physical inactivity and diets low in fiber and rich in sugar and saturated fats, which promote chronic low-grade inflammation and obesity. Adverse alterations of the gut microbiota (GMB) composition, called microbial dysbiosis, may favor metabolic syndrome and inflammaging, two important components of OA onset and evolution. Considering the burden of OA and the need to define preventive and therapeutic interventions targeting the modifiable components of OA, an expert working group was convened by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) to review the potential contribution of GMB to OA. Such a contribution is supported by observational or dietary intervention studies in animal models of OA and in humans. In addition, several well-recognized risk factors of OA interact with GMB. Lastly, GMB is a critical determinant of drug metabolism and bioavailability and may influence the response to OA medications. Further research targeting GMB or its metabolites is needed to move the field of OA from symptomatic management to individualized interventions targeting its pathogenesis.
Collapse
Affiliation(s)
- Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Francis Berenbaum
- Sorbonne Université, INSERM CRSA, Department of Rheumatology, AP-HP Saint-Antoine Hospital, Paris, France
| | - Ana M Valdes
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Islene Araujo de Carvalho
- Department of Ageing and Life Course, World Health Organization, 20 Avenue Appia, 1211, Geneva 27, Switzerland
| | - Laure B Bindels
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université Catholique de Louvain, Brussels, Belgium
| | - Maria Luisa Brandi
- Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Vincenzo Castronovo
- Metastases Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liege, CHU de Liège, Liège, Belgium
| | - Antonio Cherubini
- Geriatria, Accettazione geriatrica e Centro di ricerca per l'invecchiamento, IRCCS INRCA, Ancona, Italy
| | - Cyrus Cooper
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Claudio Franceschi
- Department of Specialty, Diagnostic and Experimental Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Nicholas Fuggle
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Andrea Laslop
- Scientific Office, Austrian Medicines & Medical Devices Agency, Federal Office for Safety in Health Care, Vienna, Austria
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, EA 4130, University of Lyon, and Department of Clinical Immunology and Rheumatology, Hospices Civils de Lyon, Lyon, France
| | - Thierry Thomas
- Department of Rheumatology, Hôpital Nord, CHU de Saint-Etienne, and INSERM U1059, University of Lyon, Saint-Etienne, France
| | - Sansin Tuzun
- Department of Physical Medicine and Rehabilitation, Cerrahpaşa Medical Faculty, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy
| | - Mila Vlaskovska
- Medical Faculty, Department of Pharmacology, Medical University Sofia, Sofia, Bulgaria
| | - Jean-Yves Reginster
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium; Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - René Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Intestinal microbiome composition and its relation to joint pain and inflammation. Nat Commun 2019; 10:4881. [PMID: 31653850 PMCID: PMC6814863 DOI: 10.1038/s41467-019-12873-4] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 10/03/2019] [Indexed: 12/21/2022] Open
Abstract
Macrophage-mediated inflammation is thought to have a causal role in osteoarthritis-related pain and severity, and has been suggested to be triggered by endotoxins produced by the gastrointestinal microbiome. Here we investigate the relationship between joint pain and the gastrointestinal microbiome composition, and osteoarthritis-related knee pain in the Rotterdam Study; a large population based cohort study. We show that abundance of Streptococcus species is associated with increased knee pain, which we validate by absolute quantification of Streptococcus species. In addition, we replicate these results in 867 Caucasian adults of the Lifelines-DEEP study. Finally we show evidence that this association is driven by local inflammation in the knee joint. Our results indicate the microbiome is a possible therapeutic target for osteoarthritis-related knee pain.
Collapse
|
29
|
Lorenzo D, GianVincenzo Z, Carlo Luca R, Karan G, Jorge V, Roberto M, Javad P. Oral-Gut Microbiota and Arthritis: Is There an Evidence-Based Axis? J Clin Med 2019; 8:jcm8101753. [PMID: 31652577 PMCID: PMC6832398 DOI: 10.3390/jcm8101753] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
The gut microbiome appears to be a significant contributor to musculoskeletal health and disease. Recently, it has been found that oral microbiota are involved in arthritis pathogenesis. Microbiome composition and its functional implications have been associated with the prevention of bone loss and/or reducing fracture risk. The link between gut–oral microbiota and joint inflammation in animal models of arthritis has been established, and it is now receiving increasing attention in human studies. Recent papers have demonstrated substantial alterations in the gut and oral microbiota in patients with rheumatoid arthritis (RA) and osteoarthritis (OA). These alterations resemble those established in systemic inflammatory conditions (inflammatory bowel disease, spondyloarthritides, and psoriasis), which include decreased microbial diversity and a disturbance of immunoregulatory properties. An association between abundance of oral Porphyromonas gingivalis and intestinal Prevotella copri in RA patients compared to healthy controls has been clearly demonstrated. These new findings open important future horizons both for understanding disease pathophysiology and for developing novel biomarkers and treatment strategies. The changes and decreased diversity of oral and gut microbiota seem to play an important role in the etiopathogenesis of RA and OA. However, specific microbial clusters and biomarkers belonging to oral and gut microbiota need to be further investigated to highlight the mechanisms related to alterations in bones and joints inflammatory pathway.
Collapse
Affiliation(s)
- Drago Lorenzo
- Laboratory of Clinical Microbiology, Department of Biomedical Sciences for Health & Microbiome, Culturomics and Biofilm related infections (MCB) Unit, "Invernizzi" Pediatric Clinical Research Center, University of Milan, 20133 Milan, Italy.
| | - Zuccotti GianVincenzo
- Department of Pediatrics, V. Buzzi Childrens' Hospital & "Invernizzi" Pediatric Clinical Research Center University of Milan, 20141 Milan, Italy.
| | - Romanò Carlo Luca
- Carlo Luca Romanò, Studio Medico Cecca-Romanò, Corso Venezia, 2, 20121 Milano, Italy.
- Romano Institute, Rruga Ibrahim Rugova, 1, 00100 Tirane, Albania.
| | - Goswami Karan
- Rothman Institute, Thomas Jefferson University, Philadelphia, PA 89814, USA.
| | | | - Mattina Roberto
- Department of Biomedical, Surgical and Dental Science, University of Milan, 20133 Milan, Italy.
| | - Parvizi Javad
- Rothman Institute, Thomas Jefferson University, Philadelphia, PA 89814, USA.
| |
Collapse
|
30
|
Berthelot JM, Sellam J, Maugars Y, Berenbaum F. Cartilage-gut-microbiome axis: a new paradigm for novel therapeutic opportunities in osteoarthritis. RMD Open 2019; 5:e001037. [PMID: 31673418 PMCID: PMC6803002 DOI: 10.1136/rmdopen-2019-001037] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
DNA of gut microbiota can be found in synovium of osteoarthritis and rheumatoid arthritis. This finding could result from the translocation of still alive bacteria from gut to joints through blood, since the diversified dormant microbiota of healthy human blood can be transiently resuscitated in vitro. The recent finding of gut microbiome in human cartilage, which differed between osteoarthritis and controls, suggests that a similar trafficking of dead or alive bacteria from gut microbiota physiologically occurs between gut and epiphysial bone marrow. Subchondral microbiota could enhance cartilage healing and transform components of deep cartilage matrix in metabolites with immunosuppressive properties. The differences of microbiome observed between hip and knee cartilage, either in osteoarthritis or controls, might be the counterpart of subtle differences in chondrocyte metabolism, themselves in line with differences in DNA methylation according to joints. Although bacteria theoretically cannot reach chondrocytes from the surface of intact cartilage, some bacteria enter the vascular channels of the epiphysial growth cartilage in young animals, whereas others can infect chondrocytes in vitro. In osteoarthritis, the early osteochondral plate angiogenesis may further enhance the ability of microbiota to locate close to the deeper layers of cartilage, and this might lead to focal dysbiosis, low-grade inflammation, cartilage degradation, epigenetic changes in chondrocytes and worsening of osteoarthritis. More studies on cartilage across different ethnic groups, weights, and according to age, are needed, to confirm the silent presence of gut microbiota close to human cartilage and better understand its physiologic and pathogenic significance.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Unit, Nantes University Hospital, CHU Nantes, 44093 Nantes Cedex 01, France
| | - Jérémie Sellam
- Sorbonne University, Paris, France.,INSERM UMRS_938, CRSA, Paris, France.,Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint- Antoine Hospital, DMU 3iD, Paris, France
| | - Yves Maugars
- Rheumatology Unit, Nantes University Hospital, CHU Nantes, 44093 Nantes Cedex 01, France
| | - Francis Berenbaum
- Sorbonne University, Paris, France.,INSERM UMRS_938, CRSA, Paris, France.,Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint- Antoine Hospital, DMU 3iD, Paris, France
| |
Collapse
|
31
|
Gut microbiota and obesity-associated osteoarthritis. Osteoarthritis Cartilage 2019; 27:1257-1265. [PMID: 31146016 DOI: 10.1016/j.joca.2019.05.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 02/02/2023]
Abstract
Obesity is a well-known primary risk factor for osteoarthritis (OA). In recent decades, the biomechanics-based theoretical paradigm for the pathogenesis of obesity-associated OA has been gradually but fundamentally modified. This modification is a result of accumulating evidence that biological factors also contribute to the etiology of the disease. The gut microbiota is a complicated ecosystem that profoundly influences the health of the host and can be modulated by the combined effects of environmental stimuli and genetic factors. Recently, enteric dysbacteriosis has been identified as a causal factor in the initiation and propagation of obesity-associated OA in animal models. Gut microbes and their components, microbe-associated lipid metabolites, and OA interact at both systemic and local levels through mechanisms that involve interplay with the innate immune system. However, the demonstration of causality in humans will require further studies. Nonetheless, probiotics, prebiotics, dietary habits and exercise, which aid the restoration of a healthy microbial community, are potential therapeutic approaches in the treatment of obesity-associated OA.
Collapse
|
32
|
Kuehn F, Adiliaghdam F, Hamarneh SR, Vasan R, Liu E, Liu Y, Ramirez JM, Hoda RS, Munoz AR, Ko FC, Armanini M, Brooks DJ, Bouxsein ML, Demay MB, Hodin RA. Loss of Intestinal Alkaline Phosphatase Leads to Distinct Chronic Changes in Bone Phenotype. J Surg Res 2018; 232:325-331. [DOI: 10.1016/j.jss.2018.06.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/02/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
|
33
|
Ghosh SS, He H, Wang J, Gehr TW, Ghosh S. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects. Tissue Barriers 2018; 6:e1425085. [PMID: 29420166 PMCID: PMC5823546 DOI: 10.1080/21688370.2018.1425085] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
Curcumin has anti-inflammatory, anti-oxidant and anti-proliferative properties established largely by in vitro studies. Accordingly, oral administration of curcumin beneficially modulates many diseases including diabetes, fatty-liver disease, atherosclerosis, arthritis, cancer and neurological disorders such as depression, Alzheimer's or Parkinson's disease. However, limited bioavailability and inability to detect curcumin in circulation or target tissues has hindered the validation of a causal role. We established curcumin-mediated decrease in the release of gut bacteria-derived lipopolysaccharide (LPS) into circulation by maintaining the integrity of the intestinal barrier function as the mechanism underlying the attenuation of metabolic diseases (diabetes, atherosclerosis, kidney disease) by curcumin supplementation precluding the need for curcumin absorption. In view of the causative role of circulating LPS and resulting chronic inflammation in the development of diseases listed above, this review summarizes the mechanism by which curcumin affects the several layers of the intestinal barrier and, despite negligible absorption, can beneficially modulate these diseases.
Collapse
Affiliation(s)
- Siddhartha S. Ghosh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Hongliang He
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Todd W. Gehr
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA
| |
Collapse
|
34
|
Berthelot JM, Claudepierre P. Trafficking of antigens from gut to sacroiliac joints and spine in reactive arthritis and spondyloarthropathies: Mainly through lymphatics? Joint Bone Spine 2016; 83:485-90. [DOI: 10.1016/j.jbspin.2015.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022]
|
35
|
Chung SM, Hyun MH, Lee E, Seo HS. Novel effects of sarcopenic osteoarthritis on metabolic syndrome, insulin resistance, osteoporosis, and bone fracture: the national survey. Osteoporos Int 2016; 27:2447-57. [PMID: 27177746 DOI: 10.1007/s00198-016-3548-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/19/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED This study compared the effects sarcopenic osteoarthritis on metabolic syndrome, insulin resistance, osteoporosis, and bone fracture. By using national survey data, we suggest that the relationship between sarcopenia and metabolic syndrome or insulin resistance is potentiated by the severity of osteoarthritis and is independent of body weight. INTRODUCTION Sarcopenia and osteoarthritis are known risk factors for metabolic syndrome. However, their combined effects on metabolic syndrome, insulin resistance and osteoporosis remain uncertain. METHODS We used data from the fifth Korean National Health and Nutrition Examination Survey using a total of 3158 adults (age >50 years). Sarcopenia was defined as a skeletal muscle index score (appendicular skeletal muscle mass/body weight) within the fifth percentile of sex-matched younger reference participants. Radiographic knee osteoarthritis was defined as a Kellgren-Lawrence (K-L) grade of 2 or greater. Metabolic syndrome was diagnosed using the National Cholesterol Education Program criteria. Insulin resistance was evaluated using the homeostasis model assessment-estimated insulin resistance index (HOMA-IR). Osteoporosis was defined using the World Health Organization T-score criteria. RESULTS In multivariable logistic regression analysis, the sarcopenic osteoarthritis group had a higher odds ratio (OR) for metabolic syndrome (OR = 11.00, 95 % confidential interval (CI) = 2.12-56.99, p = 0.013) than the non-sarcopenic osteoarthritis (OR = 1.02, 95 % CI = 0.65-1.62, p = 0.972) and sarcopenic non-osteoarthritis groups (OR = 7.15, 95 % CI = 1.57-32.53, p = 0.027). Similarly, sarcopenic osteoarthritis had a greater OR of highest HOMA-IR quartiles (OR = 8.19, 95 % CI = 2.03-33.05, p = 0.003) than the other groups. Overall, the association between the K-L grade and body mass index was significant; however, this significance was lower in individuals with sarcopenia and was lost in those with sarcopenic osteoarthritis. Additionally, osteoporosis and bone fracture were not associated to sarcopenic osteoarthritis (p > 0.05). CONCLUSIONS These results suggest that the relationship between sarcopenia and metabolic syndrome or insulin resistance is potentiated by the severity of osteoarthritis and is independent of body weight.
Collapse
Affiliation(s)
- S M Chung
- Cardiovascular Center, Korea University Guro Hospital, Korea University Medical Center, 148 Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - M H Hyun
- Cardiovascular Center, Korea University Guro Hospital, Korea University Medical Center, 148 Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - E Lee
- Department of Cardiology, Wonkwang University Sanbon Hospital, Wonkwang University College of Medicine, 321, Sanbon-ro, Gunpo, Gyeonggi-province, 435-040, Republic of Korea.
| | - H S Seo
- Cardiovascular Center, Korea University Guro Hospital, Korea University Medical Center, 148 Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea.
- Korea Institute of Science and Technology (KU-KIST) Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Rathod T, Marshall M, Thomas MJ, Menz HB, Myers HL, Thomas E, Downes T, Peat G, Roddy E. Investigations of Potential Phenotypes of Foot Osteoarthritis: Cross-Sectional Analysis From the Clinical Assessment Study of the Foot. Arthritis Care Res (Hoboken) 2016; 68:217-27. [PMID: 26238801 PMCID: PMC4819686 DOI: 10.1002/acr.22677] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/24/2015] [Accepted: 07/21/2015] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the existence of distinct foot osteoarthritis (OA) phenotypes based on pattern of joint involvement and comparative symptom and risk profiles. METHODS Participants ages ≥50 years reporting foot pain in the previous year were drawn from a population-based cohort. Radiographs were scored for OA in the first metatarsophalangeal (MTP) joint, first and second cuneometatarsal, navicular first cuneiform, and talonavicular joints according to a published atlas. Chi-square tests established clustering, and odds ratios (ORs) examined symmetry and pairwise associations of radiographic OA in the feet. Distinct underlying classes of foot OA were investigated by latent class analysis (LCA) and their association with symptoms and risk factors was assessed. RESULTS In 533 participants (mean age 64.9 years, 55.9% female) radiographic OA clustered across both feet (P < 0.001) and was highly symmetrical (adjusted OR 3.0, 95% confidence interval 2.1, 4.2). LCA identified 3 distinct classes of foot OA: no or minimal foot OA (64%), isolated first MTP joint OA (22%), and polyarticular foot OA (15%). After adjustment for age and sex, polyarticular foot OA was associated with nodal OA, increased body mass index, and more pain and functional limitation compared to the other classes. CONCLUSION Patterning of radiographic foot OA has provided insight into the existence of 2 forms of foot OA: isolated first MTP joint OA and polyarticular foot OA. The symptom and risk factor profiles in individuals with polyarticular foot OA indicate a possible distinctive phenotype of foot OA, but further research is needed to explore the characteristics of isolated first MTP joint and polyarticular foot OA.
Collapse
Affiliation(s)
- Trishna Rathod
- Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele UniversityKeeleStaffordshireUK
| | - Michelle Marshall
- Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele UniversityKeeleStaffordshireUK
| | - Martin J. Thomas
- Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele UniversityKeeleStaffordshireUK
| | - Hylton B. Menz
- Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele University, Keele, Staffordshire, UK, and Lower Extremity and Gait Studies Program, School of Allied Health, La Trobe UniversityBundooraVictoriaAustralia
| | - Helen L. Myers
- Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele UniversityKeeleStaffordshireUK
| | - Elaine Thomas
- Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele UniversityKeeleStaffordshireUK
| | - Thomas Downes
- Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele UniversityKeeleStaffordshireUK
| | - George Peat
- Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele UniversityKeeleStaffordshireUK
| | - Edward Roddy
- Arthritis Research UK Primary Care Centre, Research Institute for Primary Care & Health Sciences, Keele UniversityKeeleStaffordshireUK
| |
Collapse
|
37
|
Abstract
The nature of the gastrointestinal microbiome determines the reservoir of lipopolysaccharide, which can migrate from the gut into the circulation, where it contributes to low-grade inflammation. Osteoarthritis (OA) is a low-grade inflammatory condition, and the elevation of levels of lipopolysaccharide in association with obesity and metabolic syndrome could contribute to OA. A 'two- hit' model of OA susceptibility and potentiation suggests that lipopolysaccharide primes the proinflammatory innate immune response via Toll-like receptor 4 and that progression to a full-blown inflammatory response and structural damage of the joint results from coexisting complementary mechanisms, such as inflammasome activation or assembly by damage-associated molecular patterns in the form of fragmented cartilage-matrix molecules. Lipopolysaccharide could be considered a major hidden risk factor that provides a unifying mechanism to explain the association between obesity, metabolic syndrome and OA.
Collapse
Affiliation(s)
- Zeyu Huang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute and Division of Rheumatology, Department of Medicine, Duke University School of Medicine, 300 North Duke Street, Durham, North Carolina 27701, USA
| |
Collapse
|
38
|
Clarke A, Pulikottil-Jacob R, Grove A, Freeman K, Mistry H, Tsertsvadze A, Connock M, Court R, Kandala NB, Costa M, Suri G, Metcalfe D, Crowther M, Morrow S, Johnson S, Sutcliffe P. Total hip replacement and surface replacement for the treatment of pain and disability resulting from end-stage arthritis of the hip (review of technology appraisal guidance 2 and 44): systematic review and economic evaluation. Health Technol Assess 2015; 19:1-668, vii-viii. [PMID: 25634033 DOI: 10.3310/hta19100] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Total hip replacement (THR) involves the replacement of a damaged hip joint with an artificial hip prosthesis. Resurfacing arthroplasty (RS) involves replacement of the joint surface of the femoral head with a metal surface covering. OBJECTIVES To undertake clinical effectiveness and cost-effectiveness analysis of different types of THR and RS for the treatment of pain and disability in people with end-stage arthritis of the hip, in particular to compare the clinical effectiveness and cost-effectiveness of (1) different types of primary THR and RS for people in whom both procedures are suitable and (2) different types of primary THR for people who are not suitable for hip RS. DATA SOURCES Electronic databases including MEDLINE, EMBASE, The Cochrane Library, Current Controlled Trials and UK Clinical Research Network (UKCRN) Portfolio Database were searched in December 2012, with searches limited to publications from 2008 and sample sizes of ≥ 100 participants. Reference lists and websites of manufacturers and professional organisations were also screened. REVIEW METHODS Systematic reviews of the literature were undertaken to appraise the clinical effectiveness and cost-effectiveness of different types of THR and RS for people with end-stage arthritis of the hip. Included randomised controlled trials (RCTs) and systematic reviews were data extracted and risk of bias and methodological quality were independently assessed by two reviewers using the Cochrane Collaboration risk of bias tool and the Assessment of Multiple Systematic Reviews (AMSTAR) tool. A Markov multistate model was developed for the economic evaluation of the technologies. Sensitivity analyses stratified by sex and controlled for age were carried out to assess the robustness of the results. RESULTS A total of 2469 records were screened of which 37 were included, representing 16 RCTs and eight systematic reviews. The mean post-THR Harris Hip Score measured at different follow-up times (from 6 months to 10 years) did not differ between THR groups, including between cross-linked polyethylene and traditional polyethylene cup liners (pooled mean difference 2.29, 95% confidence interval -0.88 to 5.45). Five systematic reviews reported evidence on different types of THR (cemented vs. cementless cup fixation and implant articulation materials) but these reviews were inconclusive. Eleven cost-effectiveness studies were included; four provided relevant cost and utility data for the model. Thirty registry studies were included, with no studies reporting better implant survival for RS than for all types of THR. For all analyses, mean costs for RS were higher than those for THR and mean quality-adjusted life-years (QALYs) were lower. The incremental cost-effectiveness ratio for RS was dominated by THR, that is, THR was cheaper and more effective than RS (for a lifetime horizon in the base-case analysis, the incremental cost of RS was £11,284 and the incremental QALYs were -0.0879). For all age and sex groups RS remained clearly dominated by THR. Cost-effectiveness acceptability curves showed that, for all patients, THR was almost 100% cost-effective at any willingness-to-pay level. There were age and sex differences in the populations with different types of THR and variations in revision rates (from 1.6% to 3.5% at 9 years). For the base-case analysis, for all age and sex groups and a lifetime horizon, mean costs for category E (cemented components with a polyethylene-on-ceramic articulation) were slightly lower and mean QALYs for category E were slightly higher than those for all other THR categories in both deterministic and probabilistic analyses. Hence, category E dominated the other four categories. Sensitivity analysis using an age- and sex-adjusted log-normal model demonstrated that, over a lifetime horizon and at a willingness-to-pay threshold of £20,000 per QALY, categories A and E were equally likely (50%) to be cost-effective. LIMITATIONS A large proportion of the included studies were inconclusive because of poor reporting, missing data, inconsistent results and/or great uncertainty in the treatment effect estimates. This warrants cautious interpretation of the findings. The evidence on complications was scarce, which may be because of the absence or rarity of these events or because of under-reporting. The poor reporting meant that it was not possible to explore contextual factors that might have influenced study results and also reduced the applicability of the findings to routine clinical practice in the UK. The scope of the review was limited to evidence published in English in 2008 or later, which could be interpreted as a weakness; however, systematic reviews would provide summary evidence for studies published before 2008. CONCLUSIONS Compared with THR, revision rates for RS were higher, mean costs for RS were higher and mean QALYs gained were lower; RS was dominated by THR. Similar results were obtained in the deterministic and probabilistic analyses and for all age and sex groups THR was almost 100% cost-effective at any willingness-to-pay level. Revision rates for all types of THR were low. Category A THR (cemented components with a polyethylene-on-metal articulation) was more cost-effective for older age groups. However, across all age-sex groups combined, the mean cost for category E THR (cemented components with a polyethylene-on-ceramic articulation) was slightly lower and the mean QALYs gained were slightly higher. Category E therefore dominated the other four categories. Certain types of THR appeared to confer some benefit, including larger femoral head sizes, use of a cemented cup, use of a cross-linked polyethylene cup liner and a ceramic-on-ceramic as opposed to a metal-on-polyethylene articulation. Further RCTs with long-term follow-up are needed. STUDY REGISTRATION This study is registered as PROSPERO CRD42013003924. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Aileen Clarke
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Amy Grove
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | - Karoline Freeman
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | - Hema Mistry
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Martin Connock
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | - Rachel Court
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Matthew Costa
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | - Gaurav Suri
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | - David Metcalfe
- Warwick Orthopaedics, University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Michael Crowther
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Sarah Morrow
- Oxford Medical School, University of Oxford, Oxford, UK
| | - Samantha Johnson
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| | - Paul Sutcliffe
- Warwick Evidence, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
39
|
Collins KH, Paul HA, Reimer RA, Seerattan RA, Hart DA, Herzog W. Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model. Osteoarthritis Cartilage 2015; 23:1989-98. [PMID: 26521745 DOI: 10.1016/j.joca.2015.03.014] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/03/2015] [Accepted: 03/05/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Osteoarthritis (OA) may result from intrinsic inflammation related to metabolic disturbance. Obesity-associated inflammation is triggered by lipopolysaccharide (LPS) derived from the gut microbiota. However, the relationship between gut microbiota, LPS, inflammation, and OA remain unclear. OBJECTIVE To evaluate the associations between gut microbiota, systemic LPS levels, serum and local inflammatory profiles, and joint damage in a high fat/high sucrose diet induced obese rat model. METHODS 32 rats were randomized to a high fat/high sucrose diet (diet-induced obese (DIO), 40% fat, 45% sucrose, n = 21) or chow diet group (12% fat, 3.7% sucrose n = 11) for 28 weeks. After a 12-week obesity induction period, DIO animals were stratified into Obesity Prone (DIO-P, top 33% by change in body mass, n = 7), and Obesity Resistant groups (DIO-R, bottom 33%, n = 7). At sacrifice, joints were scored using a Modified Mankin Criteria. Blood and synovial fluid analytes, serum LPS, and fecal gut microbiota were analyzed. RESULTS DIO animals had greater Modified Mankin scores than chow animals (P = 0.002). There was a significant relationship (r = 0.604, p = 0.001) between body fat, but not body mass, and Modified Mankin score. Eighteen synovial fluid and four serum analytes were increased in DIO animals. DIO serum LPS levels were increased compared to chow (P = 0.031). Together, Lactobacillus species (spp.) and Methanobrevibacter spp. abundance had a strong predictive relationship with Modified Mankin Score (r(2) = 0.5, P < 0.001). CONCLUSIONS Increased OA in DIO animals is associated with greater body fat, not body mass. The link between gut microbiota and adiposity-derived inflammation and metabolic OA warrants further investigation.
Collapse
Affiliation(s)
- K H Collins
- Human Performance Laboratory, University of Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, AB, Canada.
| | - H A Paul
- Human Performance Laboratory, University of Calgary, AB, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada.
| | - R A Reimer
- Human Performance Laboratory, University of Calgary, AB, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada.
| | - R A Seerattan
- Human Performance Laboratory, University of Calgary, AB, Canada.
| | - D A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, AB, Canada; The Centre for Hip Health & Mobility, Department of Family Practice, University of British Columbia, Vancouver, BC, Canada.
| | - W Herzog
- Human Performance Laboratory, University of Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, AB, Canada.
| |
Collapse
|
40
|
Metabolic stress-induced joint inflammation and osteoarthritis. Osteoarthritis Cartilage 2015; 23:1955-65. [PMID: 26033164 DOI: 10.1016/j.joca.2015.05.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/20/2015] [Accepted: 05/20/2015] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a heterogeneous disorder with several risk factors. Among them, obesity has a major impact on both loading and non-loading joints. Mechanical overload and activity of systemic inflammatory mediators derived from adipose tissue (adipokines, free fatty acids (FFA), reactive oxygen species (ROS)) provide clues to the increased incidence and prevalence of OA in obesity. Recently, research found greater OA prevalence and incidence in obese patients with cardiometabolic disturbances than "healthy" obese patients, which led to the description of a new OA phenotype - metabolic syndrome (MetS)-associated OA. Indeed, individual metabolic factors (diabetes, dyslipidemia, and hypertension) may increase the risk of obesity-induced OA. This review discusses hypotheses based on pathways specific to a metabolic factor in MetS-associated OA, such as the role of advanced glycation end products (AGEs) and glucose toxicity. A better understanding of these phenotypes based on risk factors will be critical for designing trials of this specific subset of OA.
Collapse
|
41
|
Muthuri SG, Zhang W, Maciewicz RA, Muir K, Doherty M. Beer and wine consumption and risk of knee or hip osteoarthritis: a case control study. Arthritis Res Ther 2015; 17:23. [PMID: 25652201 PMCID: PMC4355424 DOI: 10.1186/s13075-015-0534-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 01/21/2015] [Indexed: 12/15/2022] Open
Abstract
Introduction The aim of this study was to investigate the association between alcoholic and non-alcoholic beverages and knee or hip osteoarthritis (OA). Methods We conducted a case–control study of Caucasian men and women aged 45 to 86 years of age from Nottingham, UK. Cases had clinically severe symptoms and radiographic knee or hip OA; controls had no symptoms and no radiographic knee or hip OA. Exposure information was sought using interview-based questionnaires and a semi-quantitative food frequency questionnaire to assess beverage consumption at ages 21 to 50 years. Odds ratios (ORs), adjusted ORs (aORs), 95% confidence intervals (CI) and P values were estimated using logistic regression models. Results A total of 1,001 knee OA, 993 hip OA and 933 control participants were included in the study. Increasing beer consumption was associated with an increasing risk of OA (P for trend ≤0.001). Compared to those who did not consume beer, aORs for people who consumed 20 or more servings of beer were 1.93 (95% CI 1.26 to 2.94) and 2.15 (95% CI 1.45 to 3.19) for knee OA and hip OA, respectively. In contrast, increasing levels of wine consumption were associated with decreased likelihood of knee OA (P for trend <0.001). Compared to those who did not consume wine, aOR for knee OA among those who consumed 4 to 6 glasses of wine per week and ≥7 glasses of wine per week was 0.55 (95% CI 0.34 to 0.87) and 0.48 (95% CI 0.29 to 0.80), respectively. No association was identified between non-alcoholic beverages and knee or hip OA. Conclusions Beer consumption appears to be a risk factor for knee and hip OA whereas consumption of wine has a negative association with knee OA. The mechanism behind these findings is speculative but warrants further study. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0534-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stella G Muthuri
- Division of Epidemiology and Public Health, University of Nottingham, Clinical Sciences Building, Nottingham City Hospital, Nottingham, NG5 1PB, UK.
| | - Weiya Zhang
- Academic Rheumatology, University of Nottingham, Clinical Sciences Building, Nottingham City Hospital, Nottingham, NG5 1PB, UK.
| | - Rose A Maciewicz
- Respiratory, Inflammation, Autoimmunity Innovative Medicines, AstraZeneca AB, SE-432 83, Mölndal, Sweden.
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, UK. .,Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, CV4 7AL, UK.
| | - Michael Doherty
- Academic Rheumatology, University of Nottingham, Clinical Sciences Building, Nottingham City Hospital, Nottingham, NG5 1PB, UK.
| |
Collapse
|
42
|
Lorenz W, Buhrmann C, Mobasheri A, Lueders C, Shakibaei M. Bacterial lipopolysaccharides form procollagen-endotoxin complexes that trigger cartilage inflammation and degeneration: implications for the development of rheumatoid arthritis. Arthritis Res Ther 2014; 15:R111. [PMID: 24020912 PMCID: PMC3978890 DOI: 10.1186/ar4291] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/10/2013] [Accepted: 09/10/2013] [Indexed: 01/06/2023] Open
Abstract
Introduction We have previously reported that bacterial toxins, especially endotoxins such as lipopolysaccharides (LPS), might be important causative agents in the pathogenesis of rheumatoid arthritis (RA) in an in vitro model that simulates the potential effects of residing in damp buildings. Since numerous inflammatory processes are linked with the nuclear factor-κB (NF-κB), we investigated in detail the effects of LPS on the NF-κB pathway and the postulated formation of procollagen-endotoxin complexes. Methods An in vitro model of human chondrocytes was used to investigate LPS-mediated inflammatory signaling. Results Immunoelectron microscopy revealed that LPS physically interact with collagen type II in the extracellular matrix (ECM) and anti-collagen type II significantly reduced this interaction. BMS-345541 (a specific inhibitor of IκB kinase (IKK)) or wortmannin (a specific inhibitor of phosphatidylinositol 3-kinase (PI-3K)) inhibited the LPS-induced degradation of the ECM and apoptosis in chondrocytes. This effect was completely inhibited by combining BMS-345541 and wortmannin. Furthermore, BMS-345541 and/or wortmannin suppressed the LPS-induced upregulation of catabolic enzymes that mediate ECM degradation (matrix metalloproteinases-9, -13), cyclooxygenase-2 and apoptosis (activated caspase-3). These proteins are regulated by NF-κB, suggesting that the NF-κB and PI-3K pathways are involved in LPS-induced cartilage degradation. The induction of NF-κB correlated with activation of IκBα kinase, IκBα phosphorylation, IκBα degradation, p65 phosphorylation and p65 nuclear translocation. Further upstream, LPS induced the expression of Toll-like receptor 4 (TLR4) and bound with TLR4, indicating that LPS acts through TLR4. Conclusion These results suggest that molecular associations between LPS/TLR4/collagen type II in chondrocytes upregulate the NF-κB and PI-3K signaling pathways and activate proinflammatory activity.
Collapse
|
43
|
Marshall M, Peat G, Nicholls E, van der Windt D, Myers H, Dziedzic K. Subsets of symptomatic hand osteoarthritis in community-dwelling older adults in the United Kingdom: prevalence, inter-relationships, risk factor profiles and clinical characteristics at baseline and 3-years. Osteoarthritis Cartilage 2013; 21:1674-84. [PMID: 23954700 PMCID: PMC3819994 DOI: 10.1016/j.joca.2013.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/04/2013] [Accepted: 08/03/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare the population prevalence, inter-relationships, risk factor profiles and clinical characteristics of subsets of symptomatic hand osteoarthritis (OA) with a view to understanding their relative frequency and distinctiveness. METHOD 1076 community-dwelling adults with hand symptoms (60% women, mean age 64.7 years) were recruited and classified into pre-defined subsets using physical examination and standardised hand radiographs, scored with the Kellgren & Lawrence (K&L) and Verbruggen-Veys grading systems. Detailed information on selected risk factors was obtained from direct measurement (Body Mass Index (BMI)), self-complete questionnaires (excessive use of hands, previous hand injury) and medical record review (hypertension, dyslipidaemia, type 2 diabetes). Hand pain and disability were self-reported at baseline and 3-year follow-up using Australian/Canadian Osteoarthritis Hand Index (AUSCAN). RESULTS Crude population prevalence estimates for symptomatic hand OA subsets in the adult population aged 50 years and over were: thumb base OA (22.4%), nodal interphalangeal joint (IPJ) OA (15.5%), generalised hand OA (10.4%), non-nodal IPJ OA (4.9%), erosive OA (1.0%). Apart from thumb base OA, there was considerable overlap between the subsets. Erosive OA appeared the most distinctive with the highest female: male ratio, and the most disability at baseline and 3-years. A higher frequency of obesity, hypertension, dyslipidaemia, and metabolic syndrome was observed in this subset. CONCLUSION Overlap in the occurrence of hand OA subsets poses conceptual and practical challenges to the pursuit of distinct phenotypes. Erosive OA may nevertheless provide particular insight into the role of metabolic and cardiovascular risk factors in the pathogenesis of OA.
Collapse
Affiliation(s)
- M. Marshall
- Arthritis Research UK Primary Care Centre, Primary Care Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - G. Peat
- Arthritis Research UK Primary Care Centre, Primary Care Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - E. Nicholls
- Arthritis Research UK Primary Care Centre, Primary Care Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - D. van der Windt
- Arthritis Research UK Primary Care Centre, Primary Care Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - H. Myers
- Arthritis Research UK Primary Care Centre, Primary Care Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - K. Dziedzic
- Arthritis Research UK Primary Care Centre, Primary Care Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
44
|
Serum lipopolysaccharide-binding protein as a marker of atherosclerosis. Atherosclerosis 2013; 230:223-7. [DOI: 10.1016/j.atherosclerosis.2013.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/04/2013] [Accepted: 07/08/2013] [Indexed: 11/17/2022]
|
45
|
Lafeber FPJG, van Spil WE. Osteoarthritis year 2013 in review: biomarkers; reflecting before moving forward, one step at a time. Osteoarthritis Cartilage 2013; 21:1452-64. [PMID: 23954702 DOI: 10.1016/j.joca.2013.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/25/2013] [Accepted: 08/03/2013] [Indexed: 02/02/2023]
Abstract
In 2010, in Osteoarthritis and Cartilage, we published a comprehensive systematic review applying the consensus BIPED criteria (Burden of Disease, Investigative, Prognostic, Efficacy of Intervention and Diagnostic) criteria on serum and urinary biochemical markers for knee and hip osteoarthritis (OA) using publications that were available at that time. It appeared that none of the biochemical markers at that time were sufficiently discriminating to allow diagnosis and prognosis of OA in individual or limited numbers of patients, nor performed so consistently that they could function as primary outcome parameters in clinical trials. Also at present, almost 3 years later, this ultimate goal has not been reached (yet). Frankly, it might be questioned whether we are making the most adequate steps ahead and maybe we have to take a step back to reconsider our approaches. Some reflections are made and discussed: A critical review of molecular metabolism in OA and validation of currently investigated marker molecules in this may be vital and may lead to new and better markers. Creating cohorts in which synovial fluid (SF) is obtained in a systematic way, together with serum and urine, may also bring the field a further step ahead. Thirdly, better understanding of different phenotypes (subtypes) of OA may facilitate identification and validation of biochemical markers. Finally, the systems biology approach as discussed in the last years OA in review on biomarkers, although very complex, might provide steps forward. Looking ahead, we are optimistic but realistic in our expectations, we believe that the field can be brought forward by critically and cautiously reconsidering our approaches, and making changes forward, one step at a time.
Collapse
Affiliation(s)
- F P J G Lafeber
- Rheumatology & Clin. Immunol., University Medical Centre Utrecht, The Netherlands.
| | | |
Collapse
|
46
|
Irkulla S, Ujam B, Gaze D, Kumar D, Mendall MA. Abdominal adiposity is the main determinant of the C-reactive response to injury in subjects undergoing inguinal hernia repair. JOURNAL OF INFLAMMATION-LONDON 2013; 10:5. [PMID: 23391158 PMCID: PMC3579693 DOI: 10.1186/1476-9255-10-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/17/2013] [Indexed: 01/19/2023]
Abstract
Background Obesity and serum C-reactive protein (CRP) (a sensitive marker of inflammatory activity) are associated with most chronic diseases. Abdominal adiposity along with age is the strongest determinant of baseline CRP levels in healthy subjects. The mechanism of the association of serum CRP with disease is uncertain. We hypothesized that baseline serum CRP is a marker of inflammatory responsiveness to injury and that abdominal adiposity is the main determinant of this responsiveness. We studied the effect of abdominal adiposity, age and other environmental risk factors for chronic disease on the CRP response to a standardised surgical insult, unilateral hernia repair to not only test this hypothesis but to inform the factors which must be taken into account when assessing systemic inflammatory responses to surgery. Methods 102 male subjects aged 24-94 underwent unilateral hernia repair by a single operator. CRP was measured at 0, 6, 24 and 48 hrs. Response was defined as the peak CRP adjusted for baseline CRP. Results Age and waist:hip ratio (WHR) were associated both with basal CRP and CRP response with similar effect sizes after adjustment for a wide-range of covariates. The adjusted proportional difference in CRP response per 10% increase in WHR was 1.50 (1.17-1.91) p = 0.0014 and 1.15(1.00-1.31) p = 0.05 per decade increase in age. There was no evidence of important effects of other environmental cardiovascular risk factors on CRP response. Conclusion Waist:hip ratio and age need to be considered when studying the inflammatory response to surgery. The finding that age and waist:hip ratio influence baseline and post-operative CRP levels to a similar extent suggests that baseline CRP is a measure of inflammatory responsiveness to casual stimuli and that higher age and obesity modulate the generic excitability of the inflammatory system leading to both higher baseline CRP and higher CRP response to surgery. The mechanism for the association of baseline CRP and waist:hip ratio to chronic disease outcomes could be through this increase in inflammatory system excitability.
Collapse
Affiliation(s)
- Sashidhar Irkulla
- Croydon University Hospital, Mayday Rd, Thornton Heath, Surrey, CR7 7YE, UK.
| | | | | | | | | |
Collapse
|