1
|
Wang Q, Liu Y, Zhang C, Guo F, Feng C, Li X, Shi H, Su Z. High hydrostatic pressure enables almost 100% refolding of recombinant human ciliary neurotrophic factor from inclusion bodies at high concentration. Protein Expr Purif 2017; 133:152-159. [PMID: 28323167 DOI: 10.1016/j.pep.2017.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 11/28/2022]
Abstract
Protein refolding from inclusion bodies (IBs) often encounters a problem of low recovery at high protein concentration. In this study, we demonstrated that high hydrostatic pressure (HHP) could simultaneously achieve high refolding concentration and high refolding yield for IBs of recombinant human ciliary neurotrophic factor (rhCNTF), a potential therapeutic for neurodegenerative diseases. The use of dilution refolding obtained 18% recovery at 3 mg/mL, even in the presence of 4 M urea. In contrast, HHP refolding could efficiently increase the recovery up to almost 100% even at 4 mg/mL. It was found that in the dilution, hydrophobic aggregates were the off-path products and their amount increased with the protein concentration. However, HHP could effectively minimize the formation of hydrophobic aggregates, leading to almost complete conversion of the rhCNTF IBs to the correct configuration. The stable operation range of concentration is 0.5-4.0 mg/mL, in which the refolding yield was almost 100%. Compared with the literatures where HHP failed to increase the refolding yield beyond 90%, the reason could be attributed to the structural difference that rhCNTF has no disulfide bond and is a monomeric protein. After purification by one-step of anionic chromatography, the purity of rhCNTF reached 95% with total process recovery of 54.1%. The purified rhCNTF showed similar structure and in vitro bioactivity to the native species. The whole process featured integration of solubilization/refolding, a high refolding yield of 100%, a high concentration of 4 mg/mL, and a simple chromatography to ensure a high productivity.
Collapse
Affiliation(s)
- Qi Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongdong Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China.
| | - Chun Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Fangxia Guo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cui Feng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Xiunan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Hong Shi
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Zhiguo Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
2
|
Pasquin S, Sharma M, Gauchat JF. Cytokines of the LIF/CNTF family and metabolism. Cytokine 2016; 82:122-4. [DOI: 10.1016/j.cyto.2015.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/24/2015] [Indexed: 12/17/2022]
|
3
|
Pasquin S, Sharma M, Gauchat JF. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine Growth Factor Rev 2015; 26:507-15. [PMID: 26187860 DOI: 10.1016/j.cytogfr.2015.07.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is the most extensively studied member of the cytokine family that signal through intracellular chains of the gp130/LIFRβ receptor. The severe phenotype in patients suffering from mutations inactivating LIFRβ indicates that members of this cytokine family play key, non-redundant roles during development. Accordingly, three decades of research has revealed potent and promising trophic and regulatory activities of CNTF in neurons, oligodendrocytes, muscle cells, bone cells, adipocytes and retinal cells. These findings led to clinical trials to test the therapeutic potential of CNTF and CNTF derivatives for treating neurodegenerative and metabolic diseases. Promising results have encouraged continuation of studies for treating retinal degenerative diseases. Results of some clinical trials showed that side-effects may limit the systemically administrated doses of CNTF. Therefore, therapies being currently tested rely on local delivery of CNTF using encapsulated cytokine-secreting implants. Since the side effects of CNTF might be linked to its ability to activate the alternative IL6Rα-LIFRβ-gp130 receptor, CNTFR-specific mutants of CNTF have been developed that bind to the CNTFRα-LIFRβ-gp130 receptor. These developments may prove to be a breakthrough for therapeutic applications of systemically administered CNTF in pathologies such as multiple sclerosis or Alzheimer's disease. The "designer cytokine approach" offers future opportunities to further enhance specificity by conjugating mutant CNTF with modified soluble CNTFRα to target therapeutically relevant cells that express gp130-LIFRβ and a specific cell surface marker.
Collapse
Affiliation(s)
- Sarah Pasquin
- Département de Pharmacologie, Université de Montréal, 2900 Édouard Montpetit, Montreal, QC H3T 1J4, Canada
| | - Mukut Sharma
- Renal Division, KCVA Medical Center, 4801 Linwood Blvd, Kansas City, MO 64128, USA
| | - Jean-François Gauchat
- Département de Pharmacologie, Université de Montréal, 2900 Édouard Montpetit, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
4
|
Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014; 171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions.
Collapse
Affiliation(s)
- Jingcheng Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
5
|
Purser MJ, Dalvi PS, Wang ZC, Belsham DD. The cytokine ciliary neurotrophic factor (CNTF) activates hypothalamic urocortin-expressing neurons both in vitro and in vivo. PLoS One 2013; 8:e61616. [PMID: 23626705 PMCID: PMC3633986 DOI: 10.1371/journal.pone.0061616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/12/2013] [Indexed: 12/11/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) induces neurogenesis, reduces feeding, and induces weight loss. However, the central mechanisms by which CNTF acts are vague. We employed the mHypoE-20/2 line that endogenously expresses the CNTF receptor to examine the direct effects of CNTF on mRNA levels of urocortin-1, urocortin-2, agouti-related peptide, brain-derived neurotrophic factor, and neurotensin. We found that treatment of 10 ng/ml CNTF significantly increased only urocortin-1 mRNA by 1.84-fold at 48 h. We then performed intracerebroventricular injections of 0.5 mg/mL CNTF into mice, and examined its effects on urocortin-1 neurons post-exposure. Through double-label immunohistochemistry using specific antibodies against c-Fos and urocortin-1, we showed that central CNTF administration significantly activated urocortin-1 neurons in specific areas of the hypothalamus. Taken together, our studies point to a potential role for CNTF in regulating hypothalamic urocortin-1-expressing neurons to mediate its recognized effects on energy homeostasis, neuronal proliferaton/survival, and/or neurogenesis.
Collapse
Affiliation(s)
- Matthew J. Purser
- Department of Physiology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Prasad S. Dalvi
- Department of Physiology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zi C. Wang
- Department of Physiology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Denise D. Belsham
- Department of Physiology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Departments of Obstetrics, Gynaecology and Medicine, University of Toronto and Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
6
|
Guan C, Zhang S, Sun Y, Zheng X. Assess the effect of ciliary neurotrophic factor on extracellular level of neuropeptide Y in paraventricular nucleus using microdialysis. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2012; 2005:3608-11. [PMID: 17281007 DOI: 10.1109/iembs.2005.1617262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study we investigated the effect of ciliary neurotrophic factor (CNTF) on dynamic changes in the release of hypothalamic neuropeptide Y (NPY) of freely moving rats using radioimmunoassay-microdialysis procedure. NPY concentrations in paraventricular nucleus (PVN) dialysate rapidly decreased to the lowest point, 47% of basal level (P<0.01), in 30 minutes after intracerebroventricular injection 5μg CNTF, and then increased slowly to 58%, 78% and 85% of basal level respectively at 60, 90 and 120 min (P<0.05). It became no significant difference with basal level at 150 and 180 min. These results suggested CNTF administration could directly down-regulate NPY release from hypothalamic PVN to reduce food intake and PVN was a target of CNTF's anorectic effect.
Collapse
Affiliation(s)
- Chen Guan
- College of Biomedical engineering and Instrument Science, Zhejiang University. Hangzhou 310027, P.R.China
| | | | | | | |
Collapse
|
7
|
Abstract
The hypothalamus is one of the master regulators of various physiological processes, including energy balance and nutrient metabolism. These regulatory functions are mediated by discrete hypothalamic regions that integrate metabolic sensing with neuroendocrine and neural controls of systemic physiology. Neurons and nonneuronal cells in these hypothalamic regions act supportively to execute metabolic regulations. Under conditions of brain and hypothalamic inflammation, which may result from overnutrition-induced intracellular stresses or disease-associated systemic inflammatory factors, extracellular and intracellular environments of hypothalamic cells are disrupted, leading to central metabolic dysregulations and various diseases. Recent research has begun to elucidate the effects of hypothalamic inflammation in causing diverse components of metabolic syndrome leading to diabetes and cardiovascular disease. These new understandings have provocatively expanded previous knowledge on the cachectic roles of brain inflammatory response in diseases, such as infections and cancers. This review describes the molecular and cellular characteristics of hypothalamic inflammation in metabolic syndrome and related diseases as opposed to cachectic diseases, and also discusses concepts and potential applications of inhibiting central/hypothalamic inflammation to treat nutritional diseases.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
8
|
Allen TL, Matthews VB, Febbraio MA. Overcoming insulin resistance with ciliary neurotrophic factor. Handb Exp Pharmacol 2011:179-99. [PMID: 21484573 DOI: 10.1007/978-3-642-17214-4_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The incidence of obesity and related co-morbidities such as insulin resistance, dyslipidemia and hypertension are increasing at an alarming rate worldwide. Current interventions seem ineffective to halt this progression. With the failure of leptin as an anti-obesity therapeutic, ciliary neurotrophic factor (CNTF) has proven efficacious in models of obesity and leptin resistance, where leptin proved ineffective. CNTF is a gp130 ligand that has been found to act centrally and peripherally to promote weight loss and insulin sensitivity in both human and rodent models. Future research into novel gp130 ligands may offer new candidates for obesity-related drug therapy.
Collapse
Affiliation(s)
- Tamara L Allen
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, 6492, St Kilda Road Central, Melbourne, 8008, VIC, Australia
| | | | | |
Collapse
|
9
|
Vieira AS, Rezende ACS, Grigoletto J, Rogério F, Velloso LA, Skaper SD, Negro A, Langone F. Ciliary neurotrophic factor infused intracerebroventricularly shows reduced catabolic effects when linked to the TAT protein transduction domain. J Neurochem 2009; 110:1557-66. [PMID: 19573019 DOI: 10.1111/j.1471-4159.2009.06259.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ciliary neurotrophic factor (CNTF) regulates the differentiation and survival of a wide spectrum of developing and adult neurons, including motor neuron loss after injury. We recently described a cell-penetrant recombinant human CNTF (rhCNTF) molecule, formed by fusion with the human immunodeficiency virus-1 transactivator of transcription (TAT) protein transduction domain (TAT-CNTF) that, upon subcutaneous administration, retains full neurotrophic activity without cytokine-like side-effects. Although the CNTF receptor is present in hypothalamic nuclei, which are involved in the control of energy, rhCNTF but not TAT-CNTF stimulates signal transducers and activators of transcription 3 phosphorylation in the rat hypothalamus after subcutaneous administration. This could be due limited TAT-CNTF distribution in the hypothalamus and/or altered intracellular signaling by the fusion protein. To explore these possibilities, we examined the effect of intracerebroventricular administration of TAT-CNTF in male adult rats. TAT-CNTF-induced weight loss, although the effect was smaller than that seen with either rhCNTF or leptin (which exerts CNTF-like effects via its receptor). In contrast to rhCNTF and leptin, TAT-CNTF neither induced morphological changes in adipose tissues nor increased uncoupling protein 1 expression in brown adipose tissue, a characteristic feature of rhCNTF and leptin. Acute intracerebroventricular administration of TAT-CNTF induced a less robust phosphorylation of signal transducers and activators of transcription 3 in the hypothalamus, compared with rhCNTF. The data show that fusion of a protein transduction domain may change rhCNTF CNS distribution, while further strengthening the utility of cell-penetrating peptide technology to neurotrophic factor biology beyond the neuroscience field.
Collapse
Affiliation(s)
- André S Vieira
- Department of Genetics, Evolution and Bioagents, State University of Campinas, Campinas, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yeh SS, Blackwood K, Schuster MW. The cytokine basis of cachexia and its treatment: are they ready for prime time? J Am Med Dir Assoc 2008; 9:219-36. [PMID: 18457797 DOI: 10.1016/j.jamda.2008.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 01/14/2023]
Abstract
Cachexia is a hypercatabolic condition that is often associated with the terminal stages of many diseases, in which the patient's resting metabolic rate is high and loss of muscle and fat tissue mass occur at an alarming rate. The patient also usually has concurrent anorexia, amplifying the wasting syndrome that is cachexia. The greater the extent of cachexia (regardless of underlying disease), the worse the prognosis. Efforts to treat cachexia over the years have fallen short of satisfactorily reversing the wasting syndrome. This article reviews the pathophysiology of cachexia, enumerating the different pro-inflammatory cytokines that contribute to the syndrome and attempting to illustrate their interwoven pathways. We also review the different treatments that have been explored, as well as the recent literature addressing the use of anti-cytokine therapy to treat cachexia.
Collapse
|
11
|
Sato I, Arima H, Ozaki N, Ozaki N, Watanabe M, Goto M, Shimizu H, Hayashi M, Banno R, Nagasaki H, Oiso Y. Peripherally administered baclofen reduced food intake and body weight indb/dbas well as diet-induced obese mice. FEBS Lett 2007; 581:4857-64. [PMID: 17888909 DOI: 10.1016/j.febslet.2007.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/07/2007] [Accepted: 09/09/2007] [Indexed: 10/22/2022]
Abstract
Peripheral administration of baclofen significantly reduced food intake and body weight increase in both diabetic (db/db) and diet-induced obese mice for 5 weeks, whereas it had no significant effects on energy balance in their lean control mice. Despite the decreased body weight, neuropeptide Y expression in the arcuate nucleus was significantly decreased, whereas pro-opiomelanocortin expression was significantly increased by baclofen treatment. These data demonstrate that the inhibitory effects of baclofen on body weight in the obese mice were mediated via the arcuate nucleus at least partially, and suggest that GABA(B) agonists could be a new therapeutic reagent for obesity.
Collapse
Affiliation(s)
- Ikuko Sato
- Department of Endocrinology and Diabetes, Field of Internal Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ambati S, Duan J, Duff E, Choi YH, Hartzell DL, Della-Fera MA, Baile CA. Gene expression in arcuate nucleus-median eminence of rats treated with leptin or ciliary neurotrophic factor. Biofactors 2007; 31:133-44. [PMID: 18806317 DOI: 10.1002/biof.5520310204] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ciliary neurotrophic factor (CNTF) and leptin are cytokine-like% hormones and act on their corresponding receptors in the hypothalamic arcuate nucleus (ARC). The present study was designed to assess effects of intracerebroventricular (ICV) injection of leptin and CNTF on gene expression in micropunched hypothalamic arcuate nucleus-median eminence (ARC-ME) complex samples from rats. Male Sprague Dawley rats were implanted with lateral cerebroventricular cannulas for administration of control, 10 microg/d leptin or 5 microg/d CNTF for four days. Real-time Taqmantrade mark RT-PCR was used to quantitatively compare the mRNA levels of selected genes in the ARC-ME complex. Leptin and CNTF increased ARC-ME mRNA levels of signal transducer and activator of transcription 3 (STAT3) by 64.5 and 124.7% (p<0.01), suppressor of cytokine signaling 3 (SOCS3) by 258.9 and 1063.9% (p<0.01), cocaine and amphetamine regulated transcript (CART) by 102.7 and 123.1% (p<0.01), and proopiomelanocortin (POMC2) by 374.1 and 264.9% (p<0.01), respectively. Leptin increased growth hormone releasing hormone (GHRH) by 309.9% (p<0.01), while CNTF increased janus kinase 2 (JAK2) mRNA by 31.7% (p<0.01) and decreased gonadotropin releasing hormone 1 (GNRH1) by 59.7% (p<0.01), mitogen activated protein kinase 1 (MAPK1) by 19.4% (p<0.05) and tyrosine hydroxylase (TH) by 74.5% (p<0.05). Significant reduction in daily food intake and body weights by both the treatments was observed. Also, decrease in weights of fat pads was concomitant with lowered serum insulin and leptin levels. Our findings show that leptin and CNTF engage both convergent and divergent pathways involved in feeding, cellular signaling, inflammation, and other related regulatory systems.
Collapse
Affiliation(s)
- Suresh Ambati
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602-2771, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Evidence both from mice and cultured cells suggests an important role of soluble leptin receptors in obesity and leptin signaling. However, the direct effects of soluble receptors on leptin uptake by cells are not clear. This study shows that soluble leptin receptors antagonize the permeation of leptin across the mouse blood-brain barrier by reducing the binding and endocytosis of leptin. This is illustrated by analysis of radioactively labeled and fluorescent-tagged leptin in normal mice and in cultured cells overexpressing various forms of leptin receptors. Three constructs of soluble leptin receptors were generated in this study: ObRe (805 aa), ObR839, and ObR852. (125)I-leptin was injected intravenously and its influx rate from blood to brain determined by multiple-time regression analysis. Pre-incubation with ObR839 caused a significant reduction of leptin influx across the blood-brain barrier. Endocytosis assays and fluorescent image analysis further showed that ObRe, ObR839, and ObR852 failed to mediate leptin internalization and trafficking within the cells. Instead, these soluble receptors inhibited surface binding and endocytosis of leptin. Thus, we provide novel direct evidence both in vivo and in vitro that soluble receptors of leptin serve as antagonists of the transport of leptin.
Collapse
Affiliation(s)
- Hong Tu
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | | | | | | |
Collapse
|
14
|
Janoschek R, Plum L, Koch L, Münzberg H, Diano S, Shanabrough M, Müller W, Horvath TL, Brüning JC. gp130 signaling in proopiomelanocortin neurons mediates the acute anorectic response to centrally applied ciliary neurotrophic factor. Proc Natl Acad Sci U S A 2006; 103:10707-12. [PMID: 16818888 PMCID: PMC1502296 DOI: 10.1073/pnas.0600425103] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) exerts anorectic effects by overcoming leptin resistance via activation of hypothalamic neurons. However, the exact site of CNTF action in the hypothalamus has not yet been identified. Using Cre-loxP-mediated recombination in vivo, we have selectively ablated the common cytokine signaling chain gp130, which is required for functional CNTF signaling, in proopiomelanocortin (POMC)-expressing neurons. POMC-specific gp130 knockout mice exhibit unaltered numbers of POMC cells and normal energy homeostasis under standard and high fat diet. Endotoxin (LPS) and stress-induced anorexia and adrenocorticotropin regulation were unaffected in these animals. Strikingly, the anorectic effect of centrally administered CNTF was abolished in POMC-specific gp130 knockout mice. Correspondingly, in these animals, CNTF failed to activate STAT3 phosphorylation in POMC neurons and to induce c-Fos expression in the paraventricular nucleus. These data reveal POMC neurons as a critical site of CNTF action in mediating its anorectic effect.
Collapse
Affiliation(s)
- Ruth Janoschek
- *Institute for Genetics and Center for Molecular Medicine Cologne, Department of Mouse Genetics and Metabolism, University of Cologne, D-50674 Cologne, Germany
| | - Leona Plum
- *Institute for Genetics and Center for Molecular Medicine Cologne, Department of Mouse Genetics and Metabolism, University of Cologne, D-50674 Cologne, Germany
- Klinik II und Poliklinik für Innere Medizin, University of Cologne, D-50931 Cologne, Germany
| | - Linda Koch
- *Institute for Genetics and Center for Molecular Medicine Cologne, Department of Mouse Genetics and Metabolism, University of Cologne, D-50674 Cologne, Germany
| | - Heike Münzberg
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Molecular Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-0638
| | - Sabrina Diano
- Obstetrics, Gynecology, and Reproductive Sciences and
- Neurobiology and
| | | | - Werner Müller
- German Research Centre for Biotechnology, D-38124 Braunschweig, Germany; and Departments of
| | - Tamas L. Horvath
- Obstetrics, Gynecology, and Reproductive Sciences and
- Neurobiology and
- **Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06519
| | - Jens C. Brüning
- *Institute for Genetics and Center for Molecular Medicine Cologne, Department of Mouse Genetics and Metabolism, University of Cologne, D-50674 Cologne, Germany
- To whom correspondence should be addressed at:
Institute for Genetics, Department of Mouse Genetics and Metabolism, University of Cologne, Zülpicher Strasse 47, D-50674 Cologne, Germany. E-mail:
| |
Collapse
|
15
|
Guijarro A, Laviano A, Meguid MM. Hypothalamic integration of immune function and metabolism. PROGRESS IN BRAIN RESEARCH 2006; 153:367-405. [PMID: 16876587 PMCID: PMC7119041 DOI: 10.1016/s0079-6123(06)53022-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The immune and neuroendocrine systems are closely involved in the regulation of metabolism at peripheral and central hypothalamic levels. In both physiological (meals) and pathological (infections, traumas and tumors) conditions immune cells are activated responding with the release of cytokines and other immune mediators (afferent signals). In the hypothalamus (central integration), cytokines influence metabolism by acting on nucleus involved in feeding and homeostasis regulation leading to the acute phase response (efferent signals) aimed to maintain the body integrity. Peripheral administration of cytokines, inoculation of tumor and induction of infection alter, by means of cytokine action, the normal pattern of food intake affecting meal size and meal number suggesting that cytokines acted differentially on specific hypothalamic neurons. The effect of cytokines-related cancer anorexia is also exerted peripherally. Increase plasma concentrations of insulin and free tryptophan and decrease gastric emptying and d-xylose absorption. In addition, in obesity an increase in interleukin (IL)-1 and IL-6 occurs in mesenteric fat tissue, which together with an increase in corticosterone, is associated with hyperglycemia, dyslipidemias and insulin resistance of obesity-related metabolic syndrome. These changes in circulating nutrients and hormones are sensed by hypothalamic neurons that influence food intake and metabolism. In anorectic tumor-bearing rats, we detected upregulation of IL-1beta and IL-1 receptor mRNA levels in the hypothalamus, a negative correlation between IL-1 concentration in cerebro-spinal fluid and food intake and high levels of hypothalamic serotonin, and these differences disappeared after tumor removal. Moreover, there is an interaction between serotonin and IL-1 in the development of cancer anorexia as well as an increase in hypothalamic dopamine and serotonin production. Immunohistochemical studies have shown a decrease in neuropeptide Y (NPY) and dopamine (DA) and an increase in serotonin concentration in tumor-bearing rats, in first- and second-order hypothalamic nuclei, while tumor resection reverted these changes and normalized food intake, suggesting negative regulation of NPY and DA systems by cytokines during anorexia, probably mediated by serotonin that appears to play a pivotal role in the regulation of food intake in cancer. Among the different forms of therapy, nutritional manipulation of diet in tumor-bearing state has been investigated. Supplementation of tumor bearing rats with omega-3 fatty acid vs. control diet delayed the appearance of tumor, reduced tumor-growth rate and volume, negated onset of anorexia, increased body weight, decreased cytokines production and increased expression of NPY and decreased alpha-melanocyte-stimulating hormone (alpha-MSH) in hypothalamic nuclei. These data suggest that omega-3 fatty acid suppressed pro-inflammatory cytokines production and improved food intake by normalizing hypothalamic food intake-related peptides and point to the possibility of a therapeutic use of these fatty acids. The sum of these data support the concept that immune cell-derived cytokines are closely related with the regulation of metabolism and have both central and peripheral actions, inducing anorexia via hypothalamic anorectic factors, including serotonin and dopamine, and inhibiting NPY leading to a reduction in food intake and body weight, emphasizing the interconnection of the immune and neuroendocrine systems in regulating metabolism during infectious process, cachexia and obesity.
Collapse
Affiliation(s)
- Ana Guijarro
- Surgical Metabolism and Nutrition Laboratory, Neuroscience Program, University Hospital, SUNY Upstate Medical University, 750 Adams St., Syracuse, NY 13210, USA
| | | | | |
Collapse
|
16
|
Abstract
The healthcare burden that the obesity epidemic now poses in highly significant, in part due to increased risk of secondary chronic diseases such as hypertension. A lack of physical activity and high fat diets are major factors contributing to this condition. However, increasingly apparent is the genetic predisposition of individuals and ethnic groups to obesity. Present treatment strategies are currently inadequate and unlikely to have a major effect on the future prevalence of obesity. To slow the obesity epidemic, the source needs to be tackled now through fundamental research into the mechanisms by which obesity is manifest, and education on the risks and how to prevent it. This article will describe current and emerging treatments for obesity and review the recent advances in research that may provide the antiobesity treatments of the future. Research into obesity has escalated at considerable pace, catalysed by the discovery of the obese gene product leptin. Leptin is secreted by adipose tissue and acts via specific receptors in the brain to engage central neural pathways involved in regulating energy homeostasis. Since this discovery, numerous significant advances have been made in our understanding of how the brain integrates and responds to central and peripheral signals involved in maintaining energy homeostasis, and how disruption of these signalling mechanisms can manifest as obesity. As a consequence of these findings, numerous potential sites for therapeutic intervention into this condition have and are materializing. The aim of this review is to highlight current treatment strategies for obesity, recent advances in our understanding of the central neural control of energy balance, and what the authors consider to be the most promising targets for the development of novel antiobesity drugs in the future. Thus, the review focuses on leptin, neuropeptide Y, melanocortin and ghrelin signalling at the level of the CNS, and strategies targeting the sympathetic innervation of fat cells at the periphery.
Collapse
Affiliation(s)
- David Spanswick
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK/NeuroSolutions Ltd, Warwick BioVentures, Coventry CV4 7AL, UK
| | | |
Collapse
|
17
|
Kalra SP, Kalra PS. NPY and cohorts in regulating appetite, obesity and metabolic syndrome: beneficial effects of gene therapy. Neuropeptides 2004; 38:201-11. [PMID: 15337372 DOI: 10.1016/j.npep.2004.06.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 06/04/2004] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y is the most potent physiological appetite transducer known. The NPY network is the conductor of the hypothalamic appetite regulating orchestra in the arcuate nucleus-paraventricular nucleus (ARC-PVN) of the hypothalamus. NPY and cohorts, AgrP, GABA and adrenergic transmitters, initiate appetitive drive directly through Y1, Y5, GABAA and alpha1 receptors, co-expressed in the magnocellular PVN (mPVN) and ARC neurons and by simultaneously repressing anorexigenic melanocortin signaling in the ARC-PVN axis. The circadian and ultradian rhythmicities in NPY secretion imprint the daily circadian and episodic feeding patterns. Although a number of afferent hormonal signals from the periphery can directly modulate NPYergic signaling, the reciprocal circadian and ultradian rhythmicities of anorexigenic leptin from adipocytes and orexigenic ghrelin from stomach, encode a corresponding pattern of NPY discharge for daily meal patterning. Subtle and progressive derangements produced by environmental and genetic factors in this exquisitely intricate temporal relationship between the two opposing humoral signals and the NPY network promote hyperphagia and abnormal rate of weight gain culminating in obesity and attendant metabolic disorders. Newer insights at cellular and molecular levels demonstrate that a breakdown of the integrated circuit due both to high and low abundance of NPY at target sites, underlies hyperphagia and increased adiposity. Consequently, interruption of NPYergic signaling at a single locus with NPY receptor antagonists may not be the most efficacious therapy to suppress hyperphagia and obesity. Central leptin gene therapy in rodents has been shown to subjugate, i.e. bring under homeostatic control, NPYergic signaling and suppress the age-related and dietary obesity for extended periods and thus shows promise as a newer treatment modality to curb the pandemic of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- S P Kalra
- Department of Neuroscience, University of Florida, McKnight Brain Institute, PO Box 100244, Gainesville, FL 32610, USA.
| | | |
Collapse
|
18
|
Ramos EJB, Suzuki S, Marks D, Inui A, Asakawa A, Meguid MM. Cancer anorexia-cachexia syndrome: cytokines and neuropeptides. Curr Opin Clin Nutr Metab Care 2004; 7:427-34. [PMID: 15192446 DOI: 10.1097/01.mco.0000134363.53782.cb] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Cancer anorexia-cachexia syndrome is observed in 80% of patients in the advanced stages of cancer and is a strong independent risk factor for mortality. Numerous cytokines produced by tumor and immune cells, interacting with the neuropeptidergic system, mediate the cachectic effect of cancer. Since there is currently no effective pharmacological treatment and the anorexia-cachexia syndrome continues to be defined biochemically, we review the role of cytokines and neuropeptides in this process. RECENT FINDINGS Currently data suggest that cancer anorexia-cachexia syndrome results from a multifactorial process involving many mediators, including hormones (e.g. leptin), neuropeptides (e.g. neuropeptide Y, melanocortin, melanin-concentrating hormone and orexin) and cytokines (e.g. interleukin 1, interleukin 6, tumor necrosis factor alpha and interferon gamma). It is likely that close interrelation among these mediators exists in the hypothalamus, decreasing food intake and leading to cachexia. SUMMARY In the pathogenesis of cancer anorexia, cytokines play a pivotal role influencing the imbalance of orexigenic and anorexigenic circuits that regulate the homeostatic loop of body-weight regulation, leading to cachexia. Interfering pharmacologically with cytokine expression or neural transduction of cytokine signals can be an effective therapeutic strategy in anorectic patients before they develop cancer anorexia-cachexia syndrome.
Collapse
Affiliation(s)
- Eduardo J B Ramos
- Surgical Metabolism and Nutrition Laboratory, Neuroscience Program, Department of Surgery, University Hospital, Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
19
|
Davis MP, Dreicer R, Walsh D, Lagman R, LeGrand SB. Appetite and Cancer-Associated Anorexia: A Review. J Clin Oncol 2004; 22:1510-7. [PMID: 15084624 DOI: 10.1200/jco.2004.03.103] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Appetite is governed by peripheral hormones and central neurotransmitters that act on the arcuate nucleus of the hypothalamus and nucleus tactus solitarius of the brainstem. Cancer anorexia appears to be the result of an imbalance between neuropeptide-Y and pro-opiomelanocortin signals favoring pro-opiomelanocortin. Many of the appetite stimulants redress this imbalance. Most of our understanding of appetite neurophysiology and tumor-associated anorexia is derived from animals and has not been verified in humans. There have been few clinical trials and very little translational research on anorexia despite its prevalence in cancer.
Collapse
Affiliation(s)
- Mellar P Davis
- Harry R. Horvitz Center for Palliative Medicine, Department of Hematology/Medical Oncology, FCCP, Cleveland Clinic Foundation, 9500 Euclid Avenue, R35, Cleveland, OH 44195, USA.
| | | | | | | | | |
Collapse
|
20
|
Sleeman MW, Garcia K, Liu R, Murray JD, Malinova L, Moncrieffe M, Yancopoulos GD, Wiegand SJ. Ciliary neurotrophic factor improves diabetic parameters and hepatic steatosis and increases basal metabolic rate in db/db mice. Proc Natl Acad Sci U S A 2003; 100:14297-302. [PMID: 14610276 PMCID: PMC283586 DOI: 10.1073/pnas.2335926100] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Indexed: 11/18/2022] Open
Abstract
Obesity plays a central role in the development of insulin resistance and type 2 diabetes. We therefore examined the effects of a modified form of ciliary neurotrophic factor [Axokine, which is hereafter referred to as ciliary neurotrophic factor (CNTF)Ax15], which uses a leptin-like mechanism to reduce body weight, in the db/db murine model of type 2 diabetes. In previous studies, weight loss produced by CNTF treatment could largely be attributed to its effects on food intake. In contrast, CNTFAx15 treatment of db/db mice caused significantly greater weight loss and marked improvements in diabetic parameters (e.g., levels of glucose, insulin, triglyceride, cholesterol, and nonesterified free fatty acids) than could be accounted for by reduced caloric intake alone. These beneficial effects, above and beyond those seen in animals controlled for either food restriction or body weight, correlated with the ability of CNTFAx15 to increase metabolic rate and energy expenditure and reduce hepatic steatosis while enhancing hepatic responsiveness to insulin. The hepatic effects were linked to rapid alterations in hepatic gene expression, most notably reduced expression of stearoyl-CoA desaturase 1, a rate-limiting enzyme in the synthesis of complex lipids that is also markedly suppressed by leptin in ob/ob mice. These observations further link the mechanisms of CNTF and leptin action, and they suggest important, beneficial effects for CNTF in diabetes that may be distinct from its ability to decrease food intake; instead, these effects may be more related to its influence on energy expenditure and hepatic gene expression.
Collapse
Affiliation(s)
- M W Sleeman
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kalra SP, Kalra PS. Neuropeptide Y: a physiological orexigen modulated by the feedback action of ghrelin and leptin. Endocrine 2003; 22:49-56. [PMID: 14610298 DOI: 10.1385/endo:22:1:49] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 04/14/2003] [Indexed: 01/16/2023]
Abstract
Neuropeptide Y (NPY), a 36-amino-acid neuropeptide is the most potent physiological appetite transducer known. Episodic NPY neurosecretion in hypothalamic target sites is temporally linked with onset of the daily feeding pattern. Upregulation of NPY signaling in the arcuate nucleus-paraventricular nucleus (ARC-PVN) neural axis is responsible for the hyperphagia evoked by dieting, fasting, hormonal and genetic factors, and disruption in intrahypothalamic signaling. Clusters of NPY-producing neurons in the ARC that coexpress gamma- amino butyric acid and agouti-related peptide, and those in the brain stem (BS) that coexpress catecholamines and galanin, participate in disparate manners to regulate appetitive behavior. NPY receptors, Y1, Y2, and Y5, expressed by various components of the NPY network, mediate NPY-induced feeding. Imbalance in NPY signaling due either to high or low abundance of NPY at target sites elicits hyperphagia leading to increased fat accretion and obesity. Recent studies show that intermittent, feedback action of opposing afferent hormonal signals-leptin from adipose tissue and ghrelin from stomach-regulate the episodic secretion of orexigenic NPY in the PVN-ARC. Apparently, the hypothalamic NPY network is the primary common pathway intimately involved in genesis of appetite- stimulating impulses.
Collapse
Affiliation(s)
- Satya P Kalra
- Department of Neuroscience, McKnight Brain Institute, PO Box 100244, University of Florida, Gainesville, FL 32610-0244, USA.
| | | |
Collapse
|
22
|
Jho DH, Engelhard HH, Juarez A, Espat NJ. Simplified Surgical Placement and Stabilization Methods for Intracerebroventricular Cannulas in Rat Lateral Ventricles. Lab Anim (NY) 2003; 32:43-8. [PMID: 15235663 DOI: 10.1038/laban1003-43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Accepted: 07/21/2003] [Indexed: 11/09/2022]
Abstract
Intracerebroventricular cannulation in rat models is an efficient tool for exploring the effects of substances directly injected into the CNS, bypassing the blood-brain barrier. Techniques for surgically securing the ICV cannula require a balance between ease of application and adequate stability. The authors tested several methods of lateral ventricle cannula stabilization, especially focusing on a comparison of cyanoacrylate gel to cranioplastic cement with an anchoring bone screw.
Collapse
Affiliation(s)
- David H Jho
- Department of Surgery, University of Illinois at Chicago, 60612, USA
| | | | | | | |
Collapse
|
23
|
Anderson KD, Lambert PD, Corcoran TL, Murray JD, Thabet KE, Yancopoulos GD, Wiegand SJ. Activation of the hypothalamic arcuate nucleus predicts the anorectic actions of ciliary neurotrophic factor and leptin in intact and gold thioglucose-lesioned mice. J Neuroendocrinol 2003; 15:649-60. [PMID: 12787049 DOI: 10.1046/j.1365-2826.2003.01043.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Similar to leptin, ciliary neurotrophic factor (CNTF) suppresses appetite and selectively reduces body fat in leptin-deficient ob/ob mice. To assess the relative importance of specific regions of the hypothalamus in mediating these effects, we administered a CNTF analogue (CNTFAx15) or leptin to mice made obese by administration of gold thioglucose (GTG), which destroys a well-defined portion of the medial basal hypothalamus. CNTFAx15 treatment reduced appetite and body weight in obese GTG-lesioned C57BL/6 mice, whereas leptin failed to effect similar changes regardless of whether treatment was initiated before or after the lesioned mice had become obese. Because leptin does not reduce food intake or body weight in most forms of obesity (a condition termed 'leptin resistance'), we also investigated the actions of leptin in GTG-lesioned leptin-deficient (ob/ob) mice. By contrast to C57BL/6 mice, leptin treatment reduced food intake and body weight in GTG-lesioned ob/ob mice, although the effect was attenuated. To further compare the neural substrates mediating the anorectic actions of leptin and CNTF, we determined the patterns of neurone activation induced by these proteins in the hypothalamus of intact and GTG-lesioned mice by staining for phosphorylated signal transducer and activator of transcription 3 (pSTAT3). CNTFAx15 stimulated robust pSTAT3 signalling in neurones of the medial arcuate nucleus in both intact and lesioned C57BL/6 and ob/ob mice. Leptin administration stimulated pSTAT3 signalling in only a few neurones of the medial arcuate nucleus in intact or lesioned C57BL/6 mice, but elicited a robust response in intact or lesioned ob/ob mice. By contrast to CNTFAx15, leptin treatment also resulted in prominent activation of STAT3 in several areas of the hypothalamus outside the medial arcuate nucleus. This leptin-induced pSTAT3 signal was at least as prominent in intact and GTG-lesioned C57BL/6 mice as it was in ob/ob mice, and thus was not correlated with appetite suppression or weight loss. These results indicate that the medial arcuate nucleus is a key mediator of appetite suppression and weight loss produced by CNTF and leptin, whereas GTG-vulnerable regions play a role only in leptin-induced weight loss. Other regions of hypothalamus in which pSTAT3 signal is induced by leptin may regulate energy metabolism through mechanisms other than appetite reduction.
Collapse
Affiliation(s)
- K D Anderson
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY10591-6707, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Zvonic S, Cornelius P, Stewart WC, Mynatt RL, Stephens JM. The regulation and activation of ciliary neurotrophic factor signaling proteins in adipocytes. J Biol Chem 2003; 278:2228-35. [PMID: 12424252 DOI: 10.1074/jbc.m205871200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is primarily known for its roles as a lesion factor released by the ruptured glial cells that prevent neuronal degeneration. However, CNTF has also been shown to cause weight loss in a variety of rodent models of obesity/type II diabetes, whereas a modified form also causes weight loss in humans. CNTF administration can correct or improve hyperinsulinemia, hyperphagia, and hyperlipidemia associated with these models of obesity. In order to investigate the effects of CNTF on fat cells, we examined the expression of CNTF receptor complex proteins (LIFR, gp130, and CNTFRalpha) during adipocyte differentiation and the effects of CNTF on STAT, Akt, and MAPK activation. We also examined the ability of CNTF to regulate the expression of adipocyte transcription factors and other adipogenic proteins. Our studies clearly demonstrate that the expression of two of the three CNTF receptor complex components, CNTFRalpha and LIFR, decreases during adipocyte differentiation. In contrast, gp130 expression is relatively unaffected by differentiation. In addition, preadipocytes are more sensitive to CNTF treatment than adipocytes, as judged by both STAT 3 and Akt activation. Despite decreased levels of CNTFRalpha expression in fully differentiated 3T3-L1 adipocytes, CNTF treatment of these cells resulted in a time-dependent activation of STAT 3. Chronic treatment of adipocytes resulted in a substantial decrease in fatty-acid synthase and a notable decline in SREBP-1 levels but had no effect on the expression of peroxisome proliferator-activated receptor gamma, acrp30, adipocyte-expressed STAT proteins, or C/EBPalpha. However, CNTF resulted in a significant increase in IRS-1 expression. CNTFRalpha receptor expression was substantially induced in the fat pads of four rodent models of obesity/type II diabetes as compared with lean littermates. Moreover, we demonstrated that CNTF can activate STAT 3 in adipose tissue and skeletal muscle in vivo. In summary, CNTF affects adipocyte gene expression, and the specific receptor for this cytokine is induced in rodent models of obesity/type II diabetes.
Collapse
Affiliation(s)
- Sanjin Zvonic
- Department of Biological Sciences, Louisiana State University, Baton Rouge 70803, USA
| | | | | | | | | |
Collapse
|
26
|
Makarenko IG, Meguid MM, Gatto L, Chen C, Ugrumov MV. Decreased NPY innervation of the hypothalamic nuclei in rats with cancer anorexia. Brain Res 2003; 961:100-8. [PMID: 12535782 DOI: 10.1016/s0006-8993(02)03850-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Whether the decrease in food intake that occurs at the onset of anorexia in tumor bearing (TB) rats is related to a change in the hypothalamic neuropeptide Y (NPY) system was tested by comparing NPY expression in sham operated Fischer Control and anorectic TB rats. Coronal cryocut sections of their fixed brain were processed by the peroxidase-antiperoxidase method with NPY polyclonal antibodies. NPY-immunoreactive fibers were widely distributed throughout the forebrain, but were most prominent in the hypothalamic paraventricular, suprachiasmatic, arcuate and periventricular nuclei. NPY-immunoreactive neurons were visualized in Control and anorectic TB rats in the preoptic region, the arcuate nucleus, and occasionally in the lateral hypothalamus. Semiquantitative image analysis showed a significant decrease in the NPY immunostaining in some hypothalamic nuclei of the anorectic TB rats, most prominently in the supraoptic nucleus, the parvocellular portion of the paraventricular nucleus, and, to a lesser extent, the suprachiasmatic and arcuate nuclei. No changes in NPY innervation were seen in the ventromedial nucleus and the lateral hypothalamus. The data support the hypothesis of an altered hypothalamic NPY system at the onset of anorexia in TB rats and also reveal the hypothalamic nuclei through which NPY influences food intake.
Collapse
Affiliation(s)
- Irina G Makarenko
- Surgical Metabolism and Nutrition Laboratory, Neuroscience/Physiology Program, Department of Surgery, University Hospital, Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
27
|
Cytokines and chemokines. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1567-7443(03)80049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Beretta E, Dhillon H, Kalra PS, Kalra SP. Central LIF gene therapy suppresses food intake, body weight, serum leptin and insulin for extended periods. Peptides 2002; 23:975-84. [PMID: 12084530 DOI: 10.1016/s0196-9781(02)00021-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Leukemia inhibitory factor (LIF) overexpression, induced by the intracerebroventricular (i.c.v.) injection of an recombinant adeno-associated viral vector encoding LIF (rAAV-LIF), resulted in a dose-dependent reduction in body weight (BW) gain, food intake (FI) and adiposity, evidenced by suppression of serum leptin and free fatty acids for an extended period in outbred adult female rats. A dose-dependent reduction in serum insulin levels and unchanged serum glucose, energy expenditure through thermogenesis as indicated by uncoupling protein-1 (UCP-1) mRNA expression in brown adipose tissue (BAT), and metabolism as indicated by serum T3 and T4, accompanied the blockade of weight gain. Thus, central rAAV-LIF therapy is a viable strategy to voluntarily reduce appetite and circumvent leptin resistance, a primary factor underlying age-dependent weight gain and obesity in rodents and humans.
Collapse
Affiliation(s)
- Elena Beretta
- Department of Neuroscience, College of Medicine, University of Florida McKnight Brain Institute, Gainesville, FL 32610-0244, USA
| | | | | | | |
Collapse
|
29
|
Chamorro S, Della-Zuana O, Fauchère JL, Félétou M, Galizzi JP, Levens N. Appetite suppression based on selective inhibition of NPY receptors. Int J Obes (Lond) 2002; 26:281-98. [PMID: 11896483 DOI: 10.1038/sj.ijo.0801948] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2001] [Revised: 07/01/2001] [Accepted: 11/07/2001] [Indexed: 11/08/2022]
Abstract
AIM The aim of this review is to critically assess available evidence that blockade of the actions of NPY at one of the five NPY receptor subtypes represents an attractive new drug discovery target for the development of an appetite suppressant drug. RESULTS Blockade of the central actions of NPY using anti-NPY antibodies, antisense oligodeoxynucleotides against NPY and NPY receptor antagonists results in a decrease in food intake in energy-deprived animals. These results appear to show that endogenous NPY plays a role in the control of appetite. The fact that NPY receptors exist as at least five different subtypes raises the possibility that the actions of endogenous NPY on food intake can be adequately dissociated from other effects of the peptide. Current drug discovery has produced a number of highly selective NPY receptor antagonists which have been used to establish the NPY Y(1) receptor subtype as the most critical in regulating short-term food intake. However, additional studies are now needed to more clearly define the relative contribution of NPY acting through the NPY Y2 and NPY Y5 receptors in the complex sequence of physiological and behavioral events that underlie the long-term control of appetite. CONCLUSIONS Blockade of the NPY receptor may produce appetite-suppressing drugs. However, it is too early to state with certainty whether a single subtype selective drug used alone or a combination of NPY receptor selective antagonists used in combination will be necessary to adequately influence appetite regulation.
Collapse
Affiliation(s)
- S Chamorro
- Division of Metabolic Diseases, Institut de Recherches Servier, Suresnes, France
| | | | | | | | | | | |
Collapse
|
30
|
de Almeida LP, Zala D, Aebischer P, Déglon N. Neuroprotective effect of a CNTF-expressing lentiviral vector in the quinolinic acid rat model of Huntington's disease. Neurobiol Dis 2001; 8:433-46. [PMID: 11442352 DOI: 10.1006/nbdi.2001.0388] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases represent promising targets for gene therapy approaches provided effective transfer vectors. In the present study, we evaluated the effectiveness of LacZ-expressing lentiviral vectors with two different internal promoters, the mouse phosphoglycerate kinase 1 (PGK) and cytomegalovirus (CMV), to infect striatal cells. The intrastriatal injection of lenti-beta-Gal vectors lead to 207, 400 +/- 11,500 and 303,100 +/- 4,300 infected cells in adult rats, respectively. Importantly, the beta-galactosidase activity was higher in striatal extracts from PGK-LacZ-injected animals as compared to CMV-LacZ animals. The efficacy of the system was further examined with a potential therapeutic gene for the treatment of Huntington's disease, the human ciliary neurotrophic factor (CNTF). PGK-LacZ- or PGK-CNTF-expressing viruses were stereotaxically injected into the striatum of rats, 3 weeks later the animals were unilaterally lesioned with 180 nmol of quinolinic acid (QA). Control animals displayed 148 +/- 43 apomorphine-induced rotations ipsilateral to the lesion 5 days postlesion as compared to 26 +/- 22 turns/45 min in the CNTF-treated group. The extent of the striatal damage was significantly diminished in the CNTF-treated rats as indicated by the 52 +/- 9.7% decrease of the lesion volume and the sparing of DARPP-32, ChAT and NADPH-d neuronal populations. These results further establish that lentiviruses may represent an efficient gene delivery system for the screening of therapeutic molecules in Huntington's disease.
Collapse
Affiliation(s)
- L P de Almeida
- Division of Surgical Research and Gene Therapy Center, Lausanne Medical School, Switzerland
| | | | | | | |
Collapse
|
31
|
Lambert PD, Anderson KD, Sleeman MW, Wong V, Tan J, Hijarunguru A, Corcoran TL, Murray JD, Thabet KE, Yancopoulos GD, Wiegand SJ. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc Natl Acad Sci U S A 2001; 98:4652-7. [PMID: 11259650 PMCID: PMC31889 DOI: 10.1073/pnas.061034298] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ciliary Neurotrophic Factor (CNTF) was first characterized as a trophic factor for motor neurons in the ciliary ganglion and spinal cord, leading to its evaluation in humans suffering from motor neuron disease. In these trials, CNTF caused unexpected and substantial weight loss, raising concerns that it might produce cachectic-like effects. Countering this possibility was the suggestion that CNTF was working via a leptin-like mechanism to cause weight loss, based on the findings that CNTF acts via receptors that are not only related to leptin receptors, but also similarly distributed within hypothalamic nuclei involved in feeding. However, although CNTF mimics the ability of leptin to cause fat loss in mice that are obese because of genetic deficiency of leptin (ob/ob mice), CNTF is also effective in diet-induced obesity models that are more representative of human obesity, and which are resistant to leptin. This discordance again raised the possibility that CNTF might be acting via nonleptin pathways, perhaps more analogous to those activated by cachectic cytokines. Arguing strongly against this possibility, we now show that CNTF can activate hypothalamic leptin-like pathways in diet-induced obesity models unresponsive to leptin, that CNTF improves prediabetic parameters in these models, and that CNTF acts very differently than the prototypical cachectic cytokine, IL-1. Further analyses of hypothalamic signaling reveals that CNTF can suppress food intake without triggering hunger signals or associated stress responses that are otherwise associated with food deprivation; thus, unlike forced dieting, cessation of CNTF treatment does not result in binge overeating and immediate rebound weight gain.
Collapse
Affiliation(s)
- P D Lambert
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- S P Kalra
- Departments of Neuroscience and Physiology, College of Medicine, University of Florida McKnight Brain Institute, Gainesville, FL 32610-0244, USA.
| |
Collapse
|
33
|
Dhillon H, Ge Y, Minter RM, Prima V, Moldawer LL, Muzyczka N, Zolotukhin S, Kalra PS, Kalra SP. Long-term differential modulation of genes encoding orexigenic and anorexigenic peptides by leptin delivered by rAAV vector in ob/ob mice. Relationship with body weight change. REGULATORY PEPTIDES 2000; 92:97-105. [PMID: 11024571 DOI: 10.1016/s0167-0115(00)00155-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the long-term effects of physiological levels of leptin produced by gene therapy on body weight (BW) and expression of genes that encode orexigenic and anorexigenic peptides in the hypothalamus. Recombinant adeno-associated viral vector (rAAV), a non-pathogenic and non-immunogenic vector, encoding leptin (betaOb) was generated and administered iv to ob/ob mice lacking endogenous leptin. Whereas the lowest dose of rAAV-betaOb (6x10(9) particles) was ineffective, the middle dose (6x10(10) particles) curbed BW gain without affecting food consumption for 75 days of observation. A ten-fold higher dose (6x10(11) particles) resulted in increased blood leptin levels and suppressed both BW gain and food consumption throughout the duration of the experiment. rAAV-betaOb doses that either curbed BW without affecting food consumption or evoked BW loss and reduced food intake, decreased the expression of genes encoding the orexigenic peptides, neuropeptide Y and agouti-related peptide in the ARC, and the two doses were equally effective. Concomitantly, the expression of genes encoding the anorexigenic peptide, alpha-melanocyte stimulating hormone and cocaine-and-amphetamine regulatory transcript, was augmented with the latter gene displaying a dose-dependant response. These results document the efficacy of delivering biologically active leptin for extended periods by an iv injection of rAAV-betaOb and show that physiological leptin concentrations simultaneously exert a tonic inhibitory effect on orexigenic and a stimulatory effect on anorexigenic signaling in the hypothalamus. This intricate dynamic interplay induced by leptin regulates BW with or without an effect on food intake in leptin-deficient ob/ob mice. Further, these results suggest that gene therapy is an effective mode of delivery to the hypothalamus of those therapeutic proteins that cross the blood-brain barrier to ameliorate neuroendocrine disorders.
Collapse
Affiliation(s)
- H Dhillon
- Department of Physiology, University of Florida Brain Institute, College of Medicine, 32610, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|