1
|
Ytterbrink C, Shubbar E, Parris TZ, Langen B, Druid M, Schüler E, Strand SE, Åkerström B, Gram M, Helou K, Forssell-Aronsson E. Effects of Recombinant α 1-Microglobulin on Early Proteomic Response in Risk Organs after Exposure to 177Lu-Octreotate. Int J Mol Sci 2024; 25:7480. [PMID: 39000587 PMCID: PMC11242497 DOI: 10.3390/ijms25137480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Recombinant α1-microglobulin (A1M) is proposed as a protector during 177Lu-octreotate treatment of neuroendocrine tumors, which is currently limited by bone marrow and renal toxicity. Co-administration of 177Lu-octreotate and A1M could result in a more effective treatment by protecting healthy tissue, but the radioprotective action of A1M is not fully understood. The aim of this study was to examine the proteomic response of kidneys and bone marrow early after 177Lu-octreotate and/or A1M administration. Mice were injected with 177Lu-octreotate and/or A1M, while control mice received saline or A1M vehicle solution. Bone marrow, kidney medulla, and kidney cortex were sampled after 24 h or 7 d. The differential protein expression was analyzed with tandem mass spectrometry. The dosimetric estimation was based on 177Lu activity in the kidney. PHLDA3 was the most prominent radiation-responsive protein in kidney tissue. In general, no statistically significant difference in the expression of radiation-related proteins was observed between the irradiated groups. Most canonical pathways were identified in bone marrow from the 177Lu-octreotate+A1M group. Altogether, a tissue-dependent proteomic response followed exposure to 177Lu-octreotate alone or together with A1M. Combining 177Lu-octreotate with A1M did not inhibit the radiation-induced protein expression early after exposure, and late effects should be further studied.
Collapse
Affiliation(s)
- Charlotte Ytterbrink
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; (C.Y.); (E.S.); (M.D.)
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
| | - Emman Shubbar
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; (C.Y.); (E.S.); (M.D.)
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
| | - Toshima Z. Parris
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Britta Langen
- Section of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Malin Druid
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; (C.Y.); (E.S.); (M.D.)
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sven-Erik Strand
- Department of Clinical Sciences Lund, Oncology, Lund University, 221 00 Lund, Sweden;
| | - Bo Åkerström
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, 221 00 Lund, Sweden;
| | - Magnus Gram
- Department of Clinical Sciences Lund, Pediatrics, Lund University, 221 00 Lund, Sweden;
- Department of Neonatology, Skåne University Hospital, 222 42 Lund, Sweden
- Biofilms—Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | - Khalil Helou
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; (C.Y.); (E.S.); (M.D.)
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (T.Z.P.); (K.H.)
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| |
Collapse
|
2
|
Kristiansson A, Vilhelmsson Timmermand O, Altai M, Strand SE, Åkerström B, Örbom A. Hematological and renal toxicity in mice after three cycles of high activity [ 177Lu]Lu-PSMA-617 with or without human α 1-microglobulin. Sci Rep 2024; 14:10787. [PMID: 38734765 PMCID: PMC11088679 DOI: 10.1038/s41598-024-61370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Radioligand therapy with [177Lu]Lu-PSMA-617 can be used to prolong life and reduce tumor burden in terminally ill castration resistant prostate cancer patients. Still, accumulation in healthy tissue limits the activity that can be administered. Therefore, fractionated therapy is used to lower toxicity. However, there might be a need to reduce toxicity even further with e.g. radioprotectors. The aim of this study was to (i). establish a preclinical mouse model with fractionated high activity therapy of three consecutive doses of 200 MBq [177Lu]Lu-PSMA-617 in which we aimed to (ii). achieve measurable hematotoxicity and nephrotoxicity and to (iii). analyze the potential protective effect of co-injecting recombinant α1-microglobulin (rA1M), a human antioxidant previously shown to have radioprotective effects. In both groups, three cycles resulted in increased albuminuria for each cycle, with large individual variation. Another marker of kidney injury, serum blood urea nitrogen (BUN), was only significantly increased compared to control animals after the third cycle. The number of white and red blood cells decreased significantly and did not reach the levels of control animals during the experiment. rA1M did reduce absorbed dose to kidney but did not show significant protection here, but future studies are warranted due to the recent clinical studies showing a significant renoprotective effect in patients.
Collapse
Affiliation(s)
- Amanda Kristiansson
- Department of Clinical Sciences Lund, Section for Oncology, Lund University, Barngatan 4, 222 42, Lund, Sweden
- Department of Clinical Sciences Lund, Section for Pediatrics, Lund University, Lund, Sweden
- Department of Neonatology, Skåne University Hospital, Lund, Sweden
| | - Oskar Vilhelmsson Timmermand
- Department of Clinical Sciences Lund, Section for Oncology, Lund University, Barngatan 4, 222 42, Lund, Sweden
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Mohamed Altai
- Department of Clinical Sciences Lund, Section for Oncology, Lund University, Barngatan 4, 222 42, Lund, Sweden
| | - Sven-Erik Strand
- Department of Clinical Sciences Lund, Section for Oncology, Lund University, Barngatan 4, 222 42, Lund, Sweden
- Department of Clinical Sciences Lund, Section for Medical Radiation Physics, Lund University, Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences Lund, Section for Infection Medicine, Lund University, Lund, Sweden
| | - Anders Örbom
- Department of Clinical Sciences Lund, Section for Oncology, Lund University, Barngatan 4, 222 42, Lund, Sweden.
| |
Collapse
|
3
|
Quail DF, Park M, Welm AL, Ekiz HA. Breast Cancer Immunity: It is TIME for the Next Chapter. Cold Spring Harb Perspect Med 2024; 14:a041324. [PMID: 37188526 PMCID: PMC10835621 DOI: 10.1101/cshperspect.a041324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Our ability to interrogate the tumor immune microenvironment (TIME) at an ever-increasing granularity has uncovered critical determinants of disease progression. Not only do we now have a better understanding of the immune response in breast cancer, but it is becoming possible to leverage key mechanisms to effectively combat this disease. Almost every component of the immune system plays a role in enabling or inhibiting breast tumor growth. Building on early seminal work showing the involvement of T cells and macrophages in controlling breast cancer progression and metastasis, single-cell genomics and spatial proteomics approaches have recently expanded our view of the TIME. In this article, we provide a detailed description of the immune response against breast cancer and examine its heterogeneity in disease subtypes. We discuss preclinical models that enable dissecting the mechanisms responsible for tumor clearance or immune evasion and draw parallels and distinctions between human disease and murine counterparts. Last, as the cancer immunology field is moving toward the analysis of the TIME at the cellular and spatial levels, we highlight key studies that revealed previously unappreciated complexity in breast cancer using these technologies. Taken together, this article summarizes what is known in breast cancer immunology through the lens of translational research and identifies future directions to improve clinical outcomes.
Collapse
Affiliation(s)
- Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
- Departments of Biochemistry, Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, 35430 Urla, Izmir, Turkey
| |
Collapse
|
4
|
Bergwik J, Kristiansson A, Allhorn M, Gram M, Åkerström B. Structure, Functions, and Physiological Roles of the Lipocalin α 1-Microglobulin (A1M). Front Physiol 2021; 12:645650. [PMID: 33746781 PMCID: PMC7965949 DOI: 10.3389/fphys.2021.645650] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
α1-microglobulin (A1M) is found in all vertebrates including humans. A1M was, together with retinol-binding protein and β-lactoglobulin, one of the three original lipocalins when the family first was proposed in 1985. A1M is described as an antioxidant and tissue cleaning protein with reductase, heme- and radical-binding activities. These biochemical properties are driven by a strongly electronegative surface-exposed thiol group, C34, on loop 1 of the open end of the lipocalin barrel. A1M has been shown to have protective effects in vitro and in vivo in cell-, organ-, and animal models of oxidative stress-related medical conditions. The gene coding for A1M is unique among lipocalins since it is flanked downstream by four exons coding for another non-lipocalin protein, bikunin, and is consequently named α1-microglobulin-bikunin precursor gene (AMBP). The precursor is cleaved in the Golgi, and A1M and bikunin are secreted from the cell separately. Recent publications have suggested novel physiological roles of A1M in regulation of endoplasmic reticulum activities and erythrocyte homeostasis. This review summarizes the present knowledge of the structure and functions of the lipocalin A1M and presents a current model of its biological role(s).
Collapse
Affiliation(s)
- Jesper Bergwik
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| | - Amanda Kristiansson
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden.,Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Allhorn
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| | - Magnus Gram
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Serchenya T, Shcharbin D, Shyrochyna I, Sviridov O, Terekhova M, Dzmitruk V, Abashkin V, Apartsin E, Mignani S, Majoral JP, Ionov M, Bryszewska M. Immunoreactivity changes of human serum albumin and alpha-1-microglobulin induced by their interaction with dendrimers. Colloids Surf B Biointerfaces 2019; 179:226-232. [DOI: 10.1016/j.colsurfb.2019.03.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 01/15/2023]
|
6
|
Kristiansson A, Ahlstedt J, Holmqvist B, Brinte A, Tran TA, Forssell-Aronsson E, Strand SE, Gram M, Åkerström B. Protection of Kidney Function with Human Antioxidation Protein α 1-Microglobulin in a Mouse 177Lu-DOTATATE Radiation Therapy Model. Antioxid Redox Signal 2019; 30:1746-1759. [PMID: 29943622 PMCID: PMC6477591 DOI: 10.1089/ars.2018.7517] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS Peptide receptor radionuclide therapy (PRRT) is in clinical use today to treat metastatic neuroendocrine tumors. Infused, radiolabeled, somatostatin analog peptides target tumors that are killed by irradiation damage. The peptides, however, are also retained in kidneys due to glomerular filtration, and the administered doses must be limited to avoid kidney damage. The human radical scavenger and antioxidant, α1-microglobulin (A1M), has previously been shown to protect bystander tissue against irradiation damage and has pharmacokinetic and biodistribution properties similar to somatostatin analogs. In this study, we have investigated if A1M can be used as a renal protective agent in PRRT. RESULTS We describe nephroprotective effects of human recombinant A1M on the short- and long-term renal damage observed following lutetium 177 (177Lu)-DOTATATE (150 MBq) exposure in BALB/c mice. After 1, 4, and 8 days (short term), 177Lu-DOTATATE injections resulted in increased formation of DNA double-strand breaks in the renal cortex, upregulated expression of apoptosis and stress response-related genes, and proteinuria (albumin in urine), all of which were significantly suppressed by coadministration of A1M (7 mg/kg). After 6, 12, and 24 weeks (long term), 177Lu-DOTATATE injections resulted in increased animal death, kidney lesions, glomerular loss, upregulation of stress genes, proteinuria, and plasma markers of reduced kidney function, all of which were suppressed by coadministration of A1M. Innovation and Conclusion: This study demonstrates that A1M effectively inhibits radiation-induced renal damage. The findings suggest that A1M may be used as a radioprotector during clinical PRRT, potentially facilitating improved tumor control and enabling more patients to receive treatment.
Collapse
Affiliation(s)
- Amanda Kristiansson
- 1 Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden
| | - Jonas Ahlstedt
- 1 Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden
| | | | | | - Thuy A Tran
- 3 Lund University Bioimaging Center , Lund, Sweden .,4 Department of Clinical Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | - Eva Forssell-Aronsson
- 5 Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, University of Gothenburg , Sweden
| | - Sven-Erik Strand
- 6 Medical Radiation Physics, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden
| | - Magnus Gram
- 1 Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden .,7 Pediatrics, Department of Clinical Sciences in Lund, Skane University Hospital, Lund University , Lund, Sweden
| | - Bo Åkerström
- 1 Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden
| |
Collapse
|
7
|
Pedziwiatr-Werbicka E, Serchenya T, Shcharbin D, Terekhova M, Prokhira E, Dzmitruk V, Shyrochyna I, Sviridov O, Peña-González CE, Gómez R, Sánchez-Nieves J, Javier de la Mata F, Bryszewska M. Dendronization of gold nanoparticles decreases their effect on human alpha-1-microglobulin. Int J Biol Macromol 2018; 108:936-941. [DOI: 10.1016/j.ijbiomac.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/30/2023]
|
8
|
Olsson MG, Rosenlöf LW, Kotarsky H, Olofsson T, Leanderson T, Mörgelin M, Fellman V, Åkerström B. The radical-binding lipocalin A1M binds to a Complex I subunit and protects mitochondrial structure and function. Antioxid Redox Signal 2013; 18:2017-28. [PMID: 23157686 DOI: 10.1089/ars.2012.4658] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS During cell death, energy-consuming cell degradation and recycling programs are performed. Maintenance of energy delivery during cell death is therefore crucial, but the mechanisms to keep the mitochondrial functions intact during these processes are poorly understood. We have investigated the hypothesis that the heme- and radical-binding ubiquitous protein α1-microglobulin (A1M) is involved in protection of the mitochondria against oxidative insult during cell death. RESULTS Using blood cells, keratinocytes, and liver cells, we show that A1M binds with high affinity to apoptosis-induced cells and is localized to mitochondria. The mitochondrial Complex I subunit NDUFAB1 was identified as a major molecular target of the A1M binding. Furthermore, A1M was shown to inhibit the swelling of mitochondria, and to reverse the severely abrogated ATP-production of mitochondria when exposed to heme and reactive oxygen species (ROS). INNOVATION Import of the radical- and heme-binding protein A1M from the extracellular compartment confers protection of the mitochondrial structure and function during cellular insult. CONCLUSION A1M binds to a subunit of Complex I and has a role in assisting the mitochondria to maintain its energy delivery during cell death. A1M may also, at the same time, counteract and eliminate the ROS generated by the mitochondrial respiration to prevent oxidative damage to surrounding healthy tissue.
Collapse
Affiliation(s)
- Magnus G Olsson
- Division of Infection Medicine, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Rutardottir S, Nilsson EJC, Pallon J, Gram M, Åkerström B. The cysteine 34 residue of A1M/α1-microglobulin is essential for protection of irradiated cell cultures and reduction of carbonyl groups. Free Radic Res 2013; 47:541-50. [DOI: 10.3109/10715762.2013.801555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Nalepa AI, Taing JJ, Savitsky A, Knipp M. Preparation of cysteine-34-nitroxide spin labeled human α₁-microglobulin. Protein Expr Purif 2012. [PMID: 23201281 DOI: 10.1016/j.pep.2012.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
α(1)-Microglobulin (α(1)m) is a protein of yet unresolved function occurring in blood plasma and urine. It consists of a lipocaline type of fold with two cysteine residues forming a disulfide bridge and the third cysteine-34 remaining a free, somewhat reactive thiol. A number of investigations point to an interaction with heme and we have recently reported, that heme binding triggers the formation of a stable α(1)m trimer upon modification of cysteine-34 with 2-iodoacetamide, i.e., [α(1)m(heme)(2)](3) [J.F. Siebel, R.L. Kosinsky, B. Åkerström, M. Knipp, Insertion of heme b into the structure of the Cys34-carbamidomethylated human lipocalin α(1)-microglobulin-formation of a [(heme)(2)(α(1)-microglobulin)](3) complex, ChemBioChem 13 (2012) 879-887]. For further structural and functional investigations, an improved purification protocol for α(1)m was sought, in particular yielding an untagged amino acid sequence. The method reported herein improves the speed and the yield of the protein production even when an expression plasmid without tag was applied. Furthermore, for the purpose of future structural studies using electron paramagnetic resonance (EPR) techniques, in accordance to the modification with 2-iodoacetamide (α(1)m(AM)), the protein was modified with 3-(2-iodoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (3-(2-iodoacetamido)-PROXYL) yielding the nitroxide spin labeled α(1)m(N-O). The extinction coefficient of the protein was calibrated using magnetic circular dichroism (MCD) spectroscopy of tryptophan (ε(280nm)=40,625M(-1)cm(-1)). The parallel quantification by absorbance spectroscopy (protein) and cw-EPR spectroscopy (radical spin) determined the degree of spin labeling to 90%. Characterization of the protein by circular dichroism (CD) spectroscopy and matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) upon tryptic digestion further demonstrated the similar fold of α(1)m(AM) and α(1)m(N-O), but also established the modification of cystein-34 as well as the formation of the cysteine-72-cysteine-169 disulfide bond.
Collapse
Affiliation(s)
- Anna I Nalepa
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
11
|
Siebel JF, Kosinsky RL, Åkerström B, Knipp M. Insertion of heme b into the structure of the Cys34-carbamidomethylated human lipocalin α(1)-microglobulin: formation of a [(heme)(2) (α(1)-Microglobulin)](3) complex. Chembiochem 2012; 13:879-87. [PMID: 22492620 DOI: 10.1002/cbic.201100808] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
α(1)-Microglobulin (α(1)m) is a 26 kDa plasma and tissue protein belonging to the lipocalin protein family. Previous investigations indicate that the protein interacts with heme and suggest that it has a function in heme metabolism. However, detailed characterizations of the α(1)m-heme interactions are lacking. Here, we report for the first time the preparation and analysis of a stable α(1)m-heme complex upon carbamidomethylation of the reactive Cys34 by using recombinantly expressed human α(1)m. Analytical size-exclusion chromatography coupled with a diode-array absorbance spectrophotometry demonstrates that at first an α(1)m-heme monomer is formed. Subsequently, a second heme triggers oligomerization that leads to trimerization. The resulting (α(1)m[heme](2))(3) complex was characterized by resonance Raman and EPR spectroscopy, which support the presence of two ferrihemes, thus indicating an unusual spin-state admixed ground state with S=(3)/(2), (5)/(2).
Collapse
Affiliation(s)
- Judith F Siebel
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
12
|
Olsson MG, Allhorn M, Bülow L, Hansson SR, Ley D, Olsson ML, Schmidtchen A, Akerström B. Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α(1)-microglobulin. Antioxid Redox Signal 2012; 17:813-46. [PMID: 22324321 DOI: 10.1089/ars.2011.4282] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hemoglobin (Hb) is the major oxygen (O(2))-carrying system of the blood but has many potentially dangerous side effects due to oxidation and reduction reactions of the heme-bound iron and O(2). Extracellular Hb, resulting from hemolysis or exogenous infusion, is shown to be an important pathogenic factor in a growing number of diseases. This review briefly outlines the oxidative/reductive toxic reactions of Hb and its metabolites. It also describes physiological protection mechanisms that have evolved against extracellular Hb, with a focus on the most recently discovered: the heme- and radical-binding protein α(1)-microglobulin (A1M). This protein is found in all vertebrates, including man, and operates by rapidly clearing cytosols and extravascular fluids of heme groups and free radicals released from Hb. Five groups of pathological conditions with high concentrations of extracellular Hb are described: hemolytic anemias and transfusion reactions, the pregnancy complication pre-eclampsia, cerebral intraventricular hemorrhage of premature infants, chronic inflammatory leg ulcers, and infusion of Hb-based O(2) carriers as blood substitutes. Finally, possible treatments of these conditions are discussed, giving a special attention to the described protective effects of A1M.
Collapse
|
13
|
The crystal structure of human α1-microglobulin reveals a potential haem-binding site. Biochem J 2012; 445:175-82. [DOI: 10.1042/bj20120448] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We describe the 2.3 Å (1 Å=0.1 nm) X-ray structure of α1m (α1-microglobulin), an abundant protein in human blood plasma, which reveals the β-barrel fold typical for lipocalins with a deep pocket lined by four loops at its open rim. Loop #1 harbours the residue Cys34 which is responsible for covalent cross-linking with plasma IgA. A single disulfide bond between Cys72 and Cys169 connects the C-terminal segment to the β-barrel, as in many other lipocalins. The exposed imidazole side chains of His122 and His123 in loop #4 give rise to a double Ni2+-binding site together with a crystallographic neighbour. The closest structural relatives of α1m are the complement protein component C8γ, the L-prostaglandin D synthase and lipocalin 15, three other structurally characterized members of the lipocalin family in humans that have only distant sequence similarity. In contrast with these, α1m is initially expressed as a bifunctional fusion protein with the protease inhibitor bikunin. Neither the electron density nor ESI–MS (electrospray ionization MS) provide evidence for a chromophore bound to the recombinant α1m, also known as ‘yellow/brown lipocalin’. However, the three side chains of Lys92, Lys118 and Lys130 that were reported to be involved in covalent chromophore binding appear to be freely accessible to ligands accommodated in the hydrophobic pocket. A structural feature similar to the well-known Cys–Pro haem-binding motif indicates the presence of a haem-binding site within the loop region of α1m, which explains previous biochemical findings and supports a physiological role in haem scavenging, as well as redox-mediated detoxification.
Collapse
|
14
|
Molecular cloning and expression analysis of feline α1-microglobulin. Vet Immunol Immunopathol 2010; 139:79-82. [PMID: 20828833 DOI: 10.1016/j.vetimm.2010.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 07/24/2010] [Accepted: 08/09/2010] [Indexed: 11/20/2022]
Abstract
Full-length cDNA that encodes feline α₁-microglobulin (Feα₁m)-bikunin was obtained from a feline liver and cloned using an oligo-capping method. The Feα₁m-bikunin cDNA was found to contain 1284 nucleotides, and Feα₁m was found to include an open reading frame encoding a polypeptide of 201 amino acids. The deduced amino acid sequence of Feα₁m showed varying amino acid identity when compared with the published sequences of the related α₁-m of other species, ranging from 71.1 to 82.1%. Feα₁m mRNA expression was confirmed by reverse transcription polymerase chain reaction (RT-PCR) and real-time PCR analysis in the cerebrum, cerebellum, lung, heart, liver, spleen, pancreas, kidney, adrenal gland, and testicle. The highest Feα₁m mRNA level was found in the liver.
Collapse
|
15
|
Kobayashi H, Yamada Y, Kanayama S, Furukawa N, Noguchi T, Haruta S, Yoshida S, Sakata M, Sado T, Oi H. The role of iron in the pathogenesis of endometriosis. Gynecol Endocrinol 2009; 25:39-52. [PMID: 19165662 DOI: 10.1080/09513590802366204] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endometriosis may cause symptoms including chronic pelvic pain and infertility, and increases susceptibility to the development of ovarian cancer. Genomic studies have started to delineate the wide array of mediators involved in the development of endometriosis. Understanding the mechanisms of endometriosis development and elucidating its pathogenesis and pathophysiology are intrinsic to prevention and the search for effective therapies. METHOD OF STUDY The present article reviews the English language literature for biological, pathogenetic and pathophysiological studies on endometriosis. Several recent genomic studies are discussed in the context of endometriosis biology. RESULTS Severe hemolysis occurring during the development of endometriosis results in high levels of free heme and iron. These compounds oxidatively modify lipids and proteins, leading to cell and DNA damage, and subsequently fibrosis development. Recent studies based on genome-wide expression analysis technology have noted specific expression of heme/iron-dependent mediators in endometriosis. The heme/iron-dependent signaling pathway of endometriosis, which is providing new insights into the regulation of inflammation, detoxification and survival, is discussed. CONCLUSION Several important endometriosis-specific genes overlap with those known to be regulated by iron. Other genes are involved in oxidative stress. Iron has a significant impact on endometriotic-cell gene expression. This review summarizes recent advances in the heme/iron-mediated signaling and its target genes, outlines the potential challenges to understanding of the pathogenesis and pathophysiology of endometriosis, and proposes a possible novel model.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Akerström B, Maghzal GJ, Winterbourn CC, Kettle AJ. The Lipocalin α1-Microglobulin Has Radical Scavenging Activity. J Biol Chem 2007; 282:31493-503. [PMID: 17766242 DOI: 10.1074/jbc.m702624200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipocalin alpha(1)-microglobulin (alpha(1)m) is a 26-kDa glycoprotein present in plasma and in interstitial fluids of all tissues. The protein was recently shown to have reductase properties, reducing heme-proteins and other substrates, and was also reported to be involved in binding and scavenging of heme and tryptophan metabolites. To investigate its possible role as a reductant of organic radicals, we have studied the interaction of alpha(1)m with the synthetic radical, 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS radical). The lipocalin readily reacted with the ABTS radical forming reduced ABTS. The apparent rate constant for this reaction was 6.3 +/- 2.5 x 10(3) M(-1) s(-1). A second reaction product with an intense purple color and an absorbance maximum at 550 nm was formed at a similar rate. This was shown by liquid chromatography/mass spectrometry to be derived from covalent attachment of a portion of ABTS radical to tyrosine residues on alpha(1)m. The relative yields of reduced ABTS and the purple ABTS derivative bound to alpha(1)m were approximately 2:1. Both reactions were dependent on the thiolate group of the cysteine residue in position 34 of the alpha(1)m polypeptide. Our results indicate that alpha(1)m is involved in a sequential reduction of ABTS radicals followed by trapping of these radicals by covalent attachment. In combination with the reported physiological properties of the protein, our results suggest that alpha(1)m may be a radical reductant and scavenger in vivo.
Collapse
Affiliation(s)
- Bo Akerström
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden.
| | | | | | | |
Collapse
|
17
|
Kwasek A, Osmark P, Allhorn M, Lindqvist A, Akerström B, Wasylewski Z. Production of recombinant human alpha1-microglobulin and mutant forms involved in chromophore formation. Protein Expr Purif 2006; 53:145-52. [PMID: 17169572 DOI: 10.1016/j.pep.2006.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 10/30/2006] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
Alpha(1)-Microglobulin, a 26 kDa lipocalin present in plasma and tissues, carries a set of unknown chromophores, bound to C34, K92, K118 and K130, which cause its charge and size heterogeneity. In man, the protein is found in two forms, full length and lacking the C-terminal tetrapeptide LIPR (t-alpha(1)-microglobulin), both which are heme-binding and the latter with heme-degrading properties. We report cloning and overexpression of full length alpha(1)-microglobulin (wt protein), t-alpha(1)-microglobulin (wtdeltaLIPR) and the mutants C34S, K(92,118,130)T and C34S/K(92,118,130)T, the latter subsequently abbreviated as K(3)T and C34S/K(3)T, in Escherichia coli. After purification and refolding from inclusion bodies, all proteins were correctly folded as determined by far-UV circular dichroism and radioimmunoassay. As revealed by gel filtration, recombinant alpha(1)-microglobulins had lower tendencies to form dimers than human plasma or urine analogues. All alpha(1)-microglobulin forms displayed higher amounts of the chromophore than bovine serum albumin but significantly lower than the human urine or plasma counterparts. Differences in the absorbance and fluorescence profiles are consistent with a model where the chromophore is formed by a series of reactions with heme or other chromophore precursors and where C34 is essential for binding of the ligand, K92, K118 and K130 are involved in transformation into the chromophore and LIPR inhibits the latter reaction.
Collapse
Affiliation(s)
- Anna Kwasek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
18
|
Grewal JS, Tsai JY, Khan SR. Oxalate-inducible AMBP gene and its regulatory mechanism in renal tubular epithelial cells. Biochem J 2006; 387:609-16. [PMID: 15533056 PMCID: PMC1134990 DOI: 10.1042/bj20041465] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The AMBP [A1M (alpha1-microglobulin)/bikunin precursor] gene encodes two plasma glycoproteins: A1M, an immunosuppressive lipocalin, and bikunin, a member of plasma serine proteinase inhibitor family with prototypical Kunitz-type domain. Although previously believed to be constitutively expressed exclusively in liver, the present study demonstrates the induction of this gene by oxalate in porcine proximal tubular LLC-PK1 cells and rat kidney. In liver, the precursor protein is cleaved in the Golgi network by a furin-like enzyme to release constituent proteins, which undergo glycosylation before their export from the cell. In the renal tubular cells, A1M and bikunin co-precipitate, indicating lack of cleavage of the precursor protein. As the expression of the AMBP gene is regulated by A1M-specific cis elements and transcription factors, A1M protein was studied as a representative of AMBP gene expression in renal cells. Oxalate treatment (500 microM) resulted in a time- and dose-dependent induction of A1M protein in LLC-PK1 cells. Of the four transcription factors, HNF-4 (hepatocyte nuclear factor-4) has been reported previously to be a major regulator of AMBP gene expression in liver. Electrophoretic mobility-shift assay, supershift assay, immunoreactivity assay and transfection-based studies showed the presence of an HNF-4 or an HNF-4-like protein in the kidney, which can affect the expression of the AMBP gene. In situ hybridization and immunocytochemical studies showed that the expression of this gene in kidney was mainly restricted to cells lining the renal tubular system.
Collapse
Affiliation(s)
- Jasjit S Grewal
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610-0275, USA.
| | | | | |
Collapse
|
19
|
Penders J, Delanghe JR. Alpha 1-microglobulin: clinical laboratory aspects and applications. Clin Chim Acta 2005; 346:107-18. [PMID: 15256311 DOI: 10.1016/j.cccn.2004.03.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 03/22/2004] [Accepted: 03/24/2004] [Indexed: 02/06/2023]
Abstract
BACKGROUND Urinary microproteins are becoming increasingly important in clinical diagnostics. They can contribute in the non-invasive early detection of renal abnormalities and the differentiation of various nephrological and urological pathologies. Alpha 1-microglobulin (A1M) is an immunomodulatory protein with a broad spectrum of possible clinical applications and seems a promising marker for evaluation of tubular function. METHOD We performed a systematic review of the peer-reviewed literature (until end of November 2003) on A1M with emphasis on clinical diagnostic utility and laboratory aspects. CONCLUSIONS A1M is a 27-kDa glycoprotein, present in various body fluids, with unknown exact biological function. The protein acts as a mediator of bacterial adhesion to polymer surfaces and is involved in inhibiting renal lithogenesis. Because A1M is not an acute phase protein, is stable in a broad range of physiological conditions and sensitive immunoassays have been developed, its measurement can be used for clinical purposes. Unfortunately, international standardisation is still lacking. Altered plasma/serum levels are usually due to impaired liver or kidney functions but are also observed in clinical conditions such as HIV and mood disorders. Urinary A1M provides a non-invasive, inexpensive diagnostic alternative for the diagnosis and monitoring of urinary tract disorders (early detection of tubular disorders such as heavy metal intoxications, diabetic nephropathy, urinary outflow disorders and pyelonephritis).
Collapse
Affiliation(s)
- Joris Penders
- Department of Clinical Chemistry, University Hospital Ghent-2P8, De Pintelaan 185, B-9000 Ghent, Belgium
| | | |
Collapse
|
20
|
Allhorn M, Klapyta A, Akerström B. Redox properties of the lipocalin alpha1-microglobulin: reduction of cytochrome c, hemoglobin, and free iron. Free Radic Biol Med 2005; 38:557-67. [PMID: 15683711 DOI: 10.1016/j.freeradbiomed.2004.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 10/26/2004] [Accepted: 12/01/2004] [Indexed: 10/26/2022]
Abstract
alpha1-Microglobulin (alpha1m) is a 26-kDa plasma and tissue glycoprotein. The protein has a heterogeneous yellow-brown chromophore consisting of small unidentified prosthetic groups localized to a free thiol group (C34) and three lysyl residues (K92, K118, and K130) around the entrance to a hydrophobic pocket. It was recently reported that alpha1m can bind heme and that a C-terminally processed form of alpha1m degrades heme. It is shown here that alpha1m has catalytic reductase and NADH-dehydrogenase-like activities. Cytochrome c, nitroblue tetrazolium (NBT), methemoglobin, and ferricyanide were reduced by alpha1m. Comparison of the reduction rates suggests that methemoglobin is a better substrate than cytochrome c, NBT, and ferricyanide. The reactions with cytochrome c and NBT were mediated by superoxide anions since they were inhibited by superoxide dismutase. The addition of the biological electron donors NADH, NADPH, or ascorbate enhanced the reduction rate of cytochrome c approximately 30-fold. Recombinant alpha1m, which has much less chromophore than plasma and urine alpha1m, was a stronger reductant than the latter alpha1m forms. Site-directed mutagenesis of C34, K92, K118, and K130 and thiol group chemistry showed that the C34 thiol group was involved in the redox reaction but relies upon cooperation with the lysyl residues. The redox properties of alpha1m may provide a physiological protection mechanism against extracellularly exposed heme groups and other oxidants.
Collapse
Affiliation(s)
- Maria Allhorn
- Department of Cell and Molecular Biology, Lund University, BMC, B14, 221 84 Lund, Sweden
| | | | | |
Collapse
|
21
|
Wojnar P, Lechner M, Redl B. Antisense down-regulation of lipocalin-interacting membrane receptor expression inhibits cellular internalization of lipocalin-1 in human NT2 cells. J Biol Chem 2003; 278:16209-15. [PMID: 12591932 DOI: 10.1074/jbc.m210922200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
There is increasing experimental evidence demonstrating that many lipocalins bind to specific cell surface receptors. However, whereas the binding of lipocalins to their lipophilic ligands has now been characterized in much detail, there is a lack of knowledge about the nature of lipocalin receptors, the physiological role of receptor binding, and the molecular mechanism of ligand delivery. We previously identified a novel human membrane protein (lipocalin-1-interacting membrane receptor (LIMR)), which interacts with lipocalin-1 (Wojnar, P., Lechner, M., Merschak, P., and Redl, B. (2001) J. Biol. Chem. 276, 20206-20212). In the present study, we investigated the physiological role of LIMR and found this protein to be essential for mediating internalization of lipocalin-1 (Lcn-1) in NT2 cells, leading to its degradation. Whereas control NT2 cells rapidly internalized (125)I-Lcn-1 or fluorescein isothiocyanate-labeled Lcn-1, NT2 cells that were made LIMR deficient by cDNA antisense expression greatly accumulated Lcn-1 in the culture medium but did not internalize it. Because sequence and structure analysis indicated that proteins similar to LIMR are present in several organisms and at least two closely related orthologues are found in human and mouse, we suggest LIMR to be the prototype of a new family of endocytic receptors, which are topographically characterized by nine putative transmembrane domains and a characteristic large central cytoplasmic loop.
Collapse
Affiliation(s)
- Petra Wojnar
- Department of Molecular Biology, University of Innsbruck, Fritz Pregl Strasse 3, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
22
|
Xia CQ, Kao KJ. Heparin induces differentiation of CD1a+ dendritic cells from monocytes: phenotypic and functional characterization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1131-8. [PMID: 11801647 DOI: 10.4049/jimmunol.168.3.1131] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) play important roles in initiation and regulation of immune responses. DCs derived from human monocytes can be classified according to presence of CD1a molecules. Although CD1a+ DCs can be prepared from monocytes in media containing GM-CSF, IL-4, and FCS, it has been reported that CD1a+ DCs could not be easily obtained from monocytes using media containing human serum or plasma. In this study, we demonstrate for the first time that heparin can reliably induce differentiation of CD1a+ DCs from monocytes with or without autologous serum or plasma. The development of CD1a+ DCs is heparin concentration dependent (0-50 U/ml). Comparing with CD1a- DCs developed without heparin, CD1a+ DCs express higher CD40 and CD80 and lower CD86. Both CD1a+ and CD1a- DCs express similar levels of HLA-DR. CD80, CD86, HLA-DR, and CD40 are proportionally up-regulated when both types of DCs are stimulated with LPS or LPS plus IFN-gamma. The effect of heparin is neutralized by heparin-binding proteins, such as protamine sulfate, platelet factor-4, and beta-thromboglobulin. Functionally, heparin-treated DCs respond to LPS or LPS plus IFN-gamma with higher IL-10 and less IL-12 production than heparin-untreated DCs. Heparin-treated DCs are more potent in priming allogeneic and autologous CD4+ T cells to proliferate and to produce both type 1 and type 2 cytokines. The results of our study show that CD1a+ DCs can be prepared from monocytes ex vivo without using xenogeneic serum and may be used for immunotherapy.
Collapse
Affiliation(s)
- Chang-Qing Xia
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
23
|
Wojnar P, Lechner M, Merschak P, Redl B. Molecular cloning of a novel lipocalin-1 interacting human cell membrane receptor using phage display. J Biol Chem 2001; 276:20206-12. [PMID: 11287427 DOI: 10.1074/jbc.m101762200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human lipocalin-1 (Lcn-1, also called tear lipocalin), a member of the lipocalin structural superfamily, is produced by a number of glands and tissues and is known to bind an unusually large array of hydrophobic ligands. Apart from its specific function in stabilizing the lipid film of human tear fluid, it is suggested to act as a physiological scavenger of potentially harmful lipophilic compounds, in general. To characterize proteins involved in the reception, detoxification, or degradation of these ligands, a cDNA phage-display library from human pituitary gland was constructed and screened for proteins interacting with Lcn-1. Using this method an Lcn-1 interacting phage was isolated that expressed a novel human protein. Molecular cloning and analysis of the entire cDNA indicated that it encodes a 55-kDa protein, lipocalin-1 interacting membrane receptor (LIMR), with nine putative transmembrane domains. The cell membrane location of this protein was confirmed by immunocytochemistry and Western blot analysis of membrane fractions of human NT2 cells. Independent biochemical investigations using a recombinant N-terminal fragment of LIMR also demonstrated a specific interaction with Lcn-1 in vitro. Based on these data, we suggest LIMR to be a receptor of Lcn-1 ligands. These findings constitute the first report of cloning of a lipocalin interacting, plasma membrane-located receptor, in general. In addition, a sequence comparison supports the biological relevance of this novel membrane protein, because genes with significant nucleotide sequence similarity are present in Takifugu rubripes, Drosophila melanogaster, Caenorhabditis elegans, Mus musculus, Bos taurus, and Sus scrofa. According to data derived from the human genome sequencing project, the LIMR-encoding gene has to be mapped on human chromosome 12, and its intron/exon organization could be established. The entire LIMR-encoding gene consists of about 13.7 kilobases in length and contains 16 introns with a length between 91 and 3438 base pairs.
Collapse
Affiliation(s)
- P Wojnar
- Department of Microbiology (Medical School), University of Innsbruck, Fritz Pregl Strasse 3, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
24
|
Larsson J, Wingårdh K, Berggård T, Davies JR, Lögdberg L, Strand SE, Akerström B. Distribution of iodine 125-labeled alpha1-microglobulin in rats after intravenous injection. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2001; 137:165-75. [PMID: 11241026 DOI: 10.1067/mlc.2001.112957] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 28-kd plasma protein alpha(1)-microglobulin is found in the blood of mammals and fish in a free, monomeric form and as high-molecular-weight complexes with molecular masses above 200 kd. In this study, iodine 125-labeled free and high-molecular weight rat alpha(1)-microglobulin (a mixture of alpha(1)-microglobulin/alpha(1)-inhibitor-3 and alpha(1)-microglobulin/fibronectin complexes) were injected intravenously into rats. The distribution of the proteins was measured by using scintillation camera imaging. Both forms of (125)I-labeled alpha(1)-microglobulin were rapidly cleared from the blood, with a half-life of 2 and 16 minutes for the initial and late phase, respectively, for free alpha(1)-microglobulin; and a half-life of 3 and 130 minutes for the initial and late phase, respectively, for the complexes. After 45 minutes, 6%, 16%, 27%, 13%, and 34% of the free (125)I-labeled alpha(1)-microglobulin and 18%, 21%, 6%, 10%, and 42% of the (125)I-labeled alpha(1)-microglobulin complexes were found in the blood, gastrointestinal tract, kidneys, liver, and the remainder of the body, respectively. The local distribution of injected (125)I-labeled alpha(1)-microglobulin in intestines and kidneys was investigated by microscopy and autoradiography. In the intestine, both forms were distributed in the basal layers, villi, and luminal contents. The results also suggested intracellular labeling of epithelial cells. Well-defined local regions containing higher concentrations of injected protein could be seen in the intestine. In the kidneys, both forms were found mostly in the cortex. Free (125)I-labeled alpha(1)-microglobulin was found predominantly in epithelial cells of a subset of the tubules, whereas the (125)I-labeled complexes were more evenly distributed. Intracellular labeling was indicated for both alpha(1)-microglobulin forms. The results thus indicate a rapid transport of (125)I-labeled alpha(1)-microglobulin from the blood to most tissues.
Collapse
Affiliation(s)
- J Larsson
- Section for Molecular Signalling, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
25
|
Lögdberg LE, Akerström B, Badve S. Tissue distribution of the lipocalin alpha-1 microglobulin in the developing human fetus. J Histochem Cytochem 2000; 48:1545-52. [PMID: 11036097 DOI: 10.1177/002215540004801111] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alpha-1 microglobulin (alpha(1)m), a lipocalin, is an evolutionarily conserved immunomodulatory plasma protein. In all species studied, alpha(1)m is synthesized by hepatocytes and catabolized in the renal proximal tubular cells. alpha(1)m deficiency has not been reported in any species, suggesting that its absence is lethal and indicating an important physiological role for this protein To clarify its functional role, tissue distribution studies are crucial. Such studies in humans have been restricted largely to adult fresh/frozen tissue. Formalin-fixed, paraffin-embedded multi-organ block tissue from aborted fetuses (gestational age range 7-22 weeks) was immunohistochemically examined for alpha(1)m reactivity. Moderate to strong reactivity was seen at all ages in hepatocytes, renal proximal tubule cells, and a subset of pancreatic islet cells. Muscle (cardiac, skeletal, or smooth), adrenal cortex, a scattered subset of intestinal mucosal cells, tips of small intestinal villi, and Leydig cells showed weaker and/or variable levels of reactivity. Connective tissue stained with variable location and intensity. The following cells/sites were consistently negative: thymus, spleen, hematopoietic cells, lung parenchyma, glomeruli, exocrine pancreas, epidermis, cartilage/bone, ovary, seminiferous tubules, epididymis, thyroid, and parathyroid. The results underscore the dominant role of liver and kidney in fetal alpha(1)m metabolism and provide a framework for understanding the functional role of this immunoregulatory protein.
Collapse
Affiliation(s)
- L E Lögdberg
- Department of Pathology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA.
| | | | | |
Collapse
|
26
|
Akerström B, Lögdberg L, Berggård T, Osmark P, Lindqvist A. alpha(1)-Microglobulin: a yellow-brown lipocalin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1482:172-84. [PMID: 11058759 DOI: 10.1016/s0167-4838(00)00157-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
alpha(1)-Microglobulin, also called protein HC, is a lipocalin with immunosuppressive properties. The protein has been found in a number of vertebrate species including frogs and fish. This review summarizes the present knowledge of its structure, biosynthesis, tissue distribution and immunoregulatory properties. alpha(1)-Microglobulin has a yellow-brown color and is size and charge heterogeneous. This is caused by an array of small chromophore prosthetic groups, attached to amino acid residues at the entrance of the lipocalin pocket. A gene in the lipocalin cluster encodes alpha(1)-microglobulin together with a Kunitz-type proteinase inhibitor, bikunin. The gene is translated into the alpha(1)-microglobulin-bikunin precursor, which is subsequently cleaved and the two proteins secreted to the blood separately. alpha(1)-Microglobulin is found in blood and in connective tissue in most organs. It is most abundant at interfaces between the cells of the body and the environment, such as in lungs, intestine, kidneys and placenta. alpha(1)-Microglobulin inhibits immunological functions of white blood cells in vitro, and its distribution is consistent with an anti-inflammatory and protective role in vivo.
Collapse
Affiliation(s)
- B Akerström
- Department of Cell and Molecular Biology, University of Lund, Sweden.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Lipocalins are characterized by multiple molecular recognition properties including the ability to bind to cell surface receptors. Receptors for a number of lipocalins have been identified. These include receptors for alpha-1-microglobulin, insecticyanin, glycodelin, retinol-binding protein, alpha-1-acid glycoprotein, beta-lactoglobulin and odorant-binding protein. The properties of these receptors are summarized and discussed.
Collapse
Affiliation(s)
- D R Flower
- The Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire RG20 7NN, UK.
| |
Collapse
|
28
|
Lögdberg L, Wester L. Immunocalins: a lipocalin subfamily that modulates immune and inflammatory responses. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1482:284-97. [PMID: 11058769 DOI: 10.1016/s0167-4838(00)00164-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A subset of the lipocalins, notably alpha(1)-acid glycoprotein, alpha(1)-microglobulin, and glycodelin, exert significant immunomodulatory effects in vitro. Interestingly, all three are encoded from the q32-34 region of human chromosome 9, together with at least four other lipocalins (neutrophil gelatinase-associated lipocalin, complement factor gamma-subunit, tear prealbumin, and prostaglandin D synthase) that also may have anti-inflammatory and/or antimicrobial activity. This review addresses important features of this genetically linked subfamily of lipocalins (involvement with the acute phase response, immunomodulatory and anti-inflammatory properties, the tissue localization, complex formation with other proteins and receptors, etc.). It is likely that these proteins have evolved to be an integrated part of the body's defense system as part of the extended cytokine network. Its members exert a regulatory, dampening influence on the inflammatory cascade, thereby protecting against tissue damage from excessive inflammation. That most major mammalian allergens are lipocalins may reflect this connection of lipocalins with the immune system. We propose that this immunologically active lipocalin subset be named the 'immunocalins', signifying not only the structural homology and close genetic linkage of its members, but also their protective involvement with immunological and inflammatory processes. As immune mediators, immunocalins appear to use at least three interactive sites: the lipocalin 'pocket', binding sites for other plasma proteins, and binding sites for cell surface receptors.
Collapse
Affiliation(s)
- L Lögdberg
- Laboratory of Stem Cell Biology, New York Blood Center, NY 10021, USA.
| | | |
Collapse
|
29
|
Wester L, Fast J, Labuda T, Cedervall T, Wingårdh K, Olofsson T, Akerström B. Carbohydrate groups of alpha1-microglobulin are important for secretion and tissue localization but not for immunological properties. Glycobiology 2000; 10:891-900. [PMID: 10988251 DOI: 10.1093/glycob/10.9.891] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role of the carbohydrates for the structure and functions of the plasma and tissue protein alpha1-microglobulin (alpha1m) was investigated by deletion of the sites for N-glycosylation by site-directed mutagenesis (N17,96-->Q). The mutated cDNA was expressed in a baculovirus-insect cell system resulting in a nonglycosylated protein. The biochemical properties of N17,96Q-alpha1m were compared to nonmutated alpha1m, which carries two short non-sialylated N-linked oligosaccharides when expressed in the same system. Both proteins carried a yellow-brown chromophore and were heterogeneous in charge. Circular dichroism spectra and antibody binding indicated a similar overall structure. However, the secretion of N17,96Q-alpha1m was significantly reduced and approximately 75% of the protein were found accumulated intracellularly. The in vitro immunological effects of recombinant nonmutated alpha1m and N17,96Q-alpha1m were compared to the effects of alpha1m isolated from plasma, which is sialylated and carries an additional O-linked oligosaccharide. All three alpha1m variants bound to human peripheral lymphocytes and mouse T cell hybridomas to the same extent. They also inhibited the antigen-stimulated proliferation of peripheral lymphocytes and antigen-stimulated interleukin 2-secretion of T cell hybridomas in a similar manner. After injection of rats intravenously, the blood clearance of recombinant nonmutated and N17,96Q-alpha1m was faster than that of plasma alpha1m. Nonmutated alpha1m was located primarily to the liver, most likely via binding to asialoglycoprotein receptors, and N17,96Q-alpha1m was located mainly to the kidneys. It is concluded that the carbohydrates of alpha1m are important for the secretion and the in vivo turnover of the protein, but not for the structure or immunological properties.
Collapse
Affiliation(s)
- L Wester
- Department of Cell and Molecular Biology, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Amoresano A, Minchiotti L, Cosulich ME, Campagnoli M, Pucci P, Andolfo A, Gianazza E, Galliano M. Structural characterization of the oligosaccharide chains of human alpha1-microglobulin from urine and amniotic fluid. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2105-12. [PMID: 10727951 DOI: 10.1046/j.1432-1327.2000.01217.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human alpha1-microglobulin (alpha1-m; also called protein HC), a glycoprotein belonging to the lipocalin superfamily, was isolated by sequential anion-exchange chromatography and gel filtration from the urine of hemodialized patients and from amniotic fluid collected in the week 16-18 of pregnancy. The carbohydrate chains of the protein purified from the two sources, which are organized in two Asn-linked and one Thr-linked oligosaccharides, were structurally characterized using matrix-assisted laser desorption ionization and electrospray mass spectrometry. The glycans attached to Thr5 are differently truncated NeuHexHexNAc sequences, and O-glycosylation in the amniotic fluid protein is only partial. Asn96 has both diantennary and triantennary structures attached in the case of urinary alpha1-m and only diantennary glycans in the amniotic fluid protein. The main carbohydrate units attached to Asn17 are in both proteins monosialylated and disialylated diantennary glycans. The position of the oligosaccharide chains in a three-dimensional model of the protein, produced using the automated Swiss-Model service, is also discussed.
Collapse
Affiliation(s)
- A Amoresano
- Centro Internazionale di Servizi di Spettrometria di Massa e Dipartimento di Chimica Organica e Biologica, Università di Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kuroda E, Sugiura T, Zeki K, Yoshida Y, Yamashita U. Sensitivity difference to the suppressive effect of prostaglandin E2 among mouse strains: a possible mechanism to polarize Th2 type response in BALB/c mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2386-95. [PMID: 10679074 DOI: 10.4049/jimmunol.164.5.2386] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PGE2 has been shown to play a prominent role in regulating Th1 and Th2 type responses. We studied the role of PGE2 in IFN-gamma production by Staphylococcus aureus Cowan I-stimulated spleen cells from several mouse strains such as BALB/c, C3H/HeN, and C57BL/6. When spleen cells were pretreated with indomethacin (cyclooxygenase (COX)-1 and COX-2 inhibitor) or NS-398 (COX-2-specific inhibitor), S. aureus Cowan I -induced IFN-gamma production was increased more markedly in spleen cells from BALB/c mice than from C3H/HeN and C57BL/6 mouse. However, PGE2 production was not significantly different among spleen cells from three mouse strains. When various concentrations of PGE2 were exogeneously added to spleen cells, PGE2 showed a stronger suppressive effect on IFN-gamma production in spleen cells from BALB/c mice than from other strains of mice. This suppressive effect of PGE2 in BALB/c mice mainly depended on IL-12p70 production by APCs. More PGE2 binding sites were found in BALB/c spleen cells than in C3H/HeN spleen cells, indicating that the sensitivity difference to the suppressive effect of PGE2 was due to the difference of the number of PGE2 receptors. The administration of NS-398 into BALB/c mice enhanced Ag-specific IFN-gamma production, but not IL-4 production. This effect is the same as IL-12 administration in vivo. From these results, we propose that the modulation of PGE2 is important for Th1 activation via IFN-gamma and IL-12p70 production in vitro and in vivo and that PGE2 is one of the pivotal factors in the Th2-dominant immune response in BALB/c mice.
Collapse
Affiliation(s)
- E Kuroda
- Department of Immunology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
32
|
Santin M, Cannas M. Collagen-bound alpha1-microglobulin in normal and healed tissues and its effect on immunocompetent cells. Scand J Immunol 1999; 50:289-95. [PMID: 10447938 DOI: 10.1046/j.1365-3083.1999.00597.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms devoted to the protection of the extracellular matrix collagen from the inflammatory insult are not fully understood. We investigated the presence of the immunosuppressive glycoprotein alpha1-microglobulin in healed tissues such as scars and periprosthetic membranes, comparing them with normal skin. Immunohistochemistry showed that alpha1-microglobulin was mainly present along collagen fibrils and in the epidermis. The presence of this protein was confirmed by Western blot of the tissue homogenates, while ELISA showed lower levels in the healed tissues. In vitro, the purified alpha1-microglobulin bound collagen by a cooperative mechanism and attenuated the collagen-induced activation of the mononuclear cells.
Collapse
Affiliation(s)
- M Santin
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, East Sussex, UK
| | | |
Collapse
|
33
|
Lindqvist A, Rouet P, Salier JP, Akerström B. The alpha1-microglobulin/bikunin gene: characterization in mouse and evolution. Gene 1999; 234:329-36. [PMID: 10395906 DOI: 10.1016/s0378-1119(99)00191-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 129Sv mouse gene coding for the alpha1-microglobulin/bikunin precursor has been isolated and characterized. The 11kb long gene contains ten exons, including six 5'-exons coding for alpha1-microglobulin and four 3'-exons encoding bikunin. Exon 7 also codes for the tribasic tetrapeptide RARR which connects the alpha1-microglobulin and bikunin parts. The sixth intron, which separates the alpha1-microglobulin and bikunin encoding parts, was compared in the human, mouse and a fish (plaice) gene. The size of this intron varies considerably, 6.5, 3.3 and 0.1kb in man, mouse and plaice, respectively. In all three genes, this intron contains A/T-rich regions, and retroposon elements are found in the first two genes. This indicates that this sixth intron is an unstable region and a hotspot for recombinational events, supporting the concept that the alpha1-microglobulin and bikunin parts of this gene are assembled from two ancestral genes. Finally, the nonsynonymous nucleotide substitution rate of the gene was determined by comparing coding sequences from ten vertebrate species. The results indicate that the alpha1-microglobulin part of the gene has evolved faster than the bikunin part.
Collapse
Affiliation(s)
- A Lindqvist
- Section for Molecular Signalling, Department of Cell and Molecular Biology, Lund University, P.O. Box 94, S-221 00, Lund, Sweden
| | | | | | | |
Collapse
|
34
|
Lindqvist A, Akerström B. Isolation of plaice (Pleuronectes platessa) alpha1-microglobulin: conservation of structure and chromophore. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1430:222-33. [PMID: 10082950 DOI: 10.1016/s0167-4838(99)00003-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A cDNA coding for plaice (Pleuronectes platessa) alpha1-microglobulin (Leaver et al., 1994, Comp. Biochem. Physiol. 108B, 275-281) was expressed and purified from baculovirus-infected insect cells. Specific monoclonal antibodies were then prepared and used to isolate the protein from plaice liver and serum. Mature 28.5 kDa alpha1-microglobulin was found in both liver and serum. The protein consisted of an 184 amino acid peptide with a complex N-glycan in position Asn123, one intrachain disulfide bridge and a yellow-brown chromophore. Physicochemical characterization indicated a globular shape with a frictional ratio of 1.37, electrophoretic charge-heterogeneity and antiparallel beta-sheet structure. A smaller, incompletely glycosylated, yellow-brown alpha1-microglobulin as well as a 45 kDa precursor protein were also found in liver. The chromophore was found to be linked to alpha1-microglobulin intracellularly. Recombinant plaice alpha1-microglobulin isolated from insect cells had the same N-terminal sequence, globular shape and yellow-brown color as mature alpha1-microglobulin, but carried a smaller, fucosylated, non-sialylated N-glycan in the Asn123 position. The concentration of alpha1-microglobulin in plaice serum was 20 mg/l and it was found both as a 28.5 kDa component and as high molecular weight components. Thus, the size, shape, charge and color of plaice alpha1-microglobulin were similar to mammalian alpha1-microglobulin, indicating a high degree of structural conservation between fish and human alpha1-microglobulin. The monoclonal antibodies against plaice alpha1-microglobulin cross-reacted with human alpha1-microglobulin, emphasizing the structural similarity.
Collapse
Affiliation(s)
- A Lindqvist
- Section for Molecular Signaling, Department of Cell and Molecular Biology, Lund University, P.O. Box 94, S-221 00, Lund, Sweden
| | | |
Collapse
|
35
|
Berggård T, Enghild JJ, Badve S, Salafia CM, Lögdberg L, Akerström B. Histologic distribution and biochemical properties of alpha 1-microglobulin in human placenta. Am J Reprod Immunol 1999; 41:52-60. [PMID: 10097787 DOI: 10.1111/j.1600-0897.1999.tb00075.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PROBLEM The embryo is protected from immunologic rejection by the mother, possibly accomplished by immunosuppressive molecules located in the placenta. We investigated the distribution and biochemical properties in placenta of the immunosuppressive plasma protein alpha 1-microglobulin. METHOD OF STUDY Placental alpha 1-microglobulin was investigated by immunohistochemistry and, after extraction, by electrophoresis, immunoblotting and radioimmunoassay. RESULTS alpha 1-Microglobulin staining was observed in the intervillous fibrin and in syncytiotrophoblasts, especially at sites with syncytial injury. Strongly stained single cells in the intervillous spaces and variably stained intravillous histiocytes were noted. Solubilization of the placenta-matrix fraction and placenta membrane fraction released predominantly the free form of alpha 1-microglobulin, but, additionally, an apparently truncated form from the placenta-membrane fraction. The soluble fraction of placenta contained two novel alpha 1-microglobulin complexes. CONCLUSIONS The biochemical analysis indicates the presence in placenta of alpha 1-microglobulin forms not found in blood. The histochemical analysis supports the possibility that alpha 1-microglobulin may function as a local immunoregulator in the placenta.
Collapse
Affiliation(s)
- T Berggård
- Department of Cell and Molecular Biology, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|