1
|
Rajput BK, Ikram SF, Tripathi BN. Harnessing the potential of microalgae for the production of monoclonal antibodies and other recombinant proteins. PROTOPLASMA 2024; 261:1105-1125. [PMID: 38970700 DOI: 10.1007/s00709-024-01967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Monoclonal antibodies (mAbs) have become indispensable tools in various fields, from research to therapeutics, diagnostics, and industries. However, their production, primarily in mammalian cell culture systems, is cost-intensive and resource-demanding. Microalgae, diverse photosynthetic microorganisms, are gaining attention as a favorable option for manufacturing mAbs and various other recombinant proteins. This review explores the potential of microalgae as a robust expression system for biomanufacturing high-value proteins. It also highlights the diversity of microalgae species suitable for recombinant protein. Nuclear and chloroplast genomes of some microalgae have been engineered to express mAbs and other valuable proteins. Codon optimization, vector construction, and other genetic engineering techniques have significantly improved recombinant protein expression in microalgae. These accomplishments demonstrate the potential of microalgae for biopharmaceutical manufacturing. Microalgal biotechnology holds promise for revolutionizing the production of mAbs and other therapeutic proteins, offering a sustainable and cost-effective solution to address critical healthcare needs.
Collapse
Affiliation(s)
- Balwinder Kaur Rajput
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Sana Fatima Ikram
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India.
| |
Collapse
|
2
|
Kumar A, Baldia A, Rajput D, Kateriya S, Babu V, Dubey KK. Multiomics and optobiotechnological approaches for the development of microalgal strain for production of aviation biofuel and biorefinery. BIORESOURCE TECHNOLOGY 2023; 369:128457. [PMID: 36503094 DOI: 10.1016/j.biortech.2022.128457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Demand and consumption of fossil fuels is increasing daily, and oil reserves are depleting. Technological developments are required towards developing sustainable renewable energy sources and microalgae are emerging as a potential candidate for various application-driven research. Molecular understanding attained through omics and system biology approach empowering researchers to modify various metabolic pathways of microalgal system for efficient extraction of biofuel and important biomolecules. This review furnish insight into different "advanced approaches" like optogenetics, systems biology and multi-omics for enhanced production of FAS (Fatty Acid Synthesis) and lipids in microalgae and their associated challenges. These new approaches would be helpful in the path of developing microalgae inspired technological platforms for optobiorefinery, which could be explored as source material to produce biofuels and other valuable bio-compounds on a large scale.
Collapse
Affiliation(s)
- Akshay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Baldia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepanshi Rajput
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vikash Babu
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Kashyap Kumar Dubey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Cutolo EA, Mandalà G, Dall’Osto L, Bassi R. Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms 2022; 10:743. [PMID: 35456794 PMCID: PMC9025058 DOI: 10.3390/microorganisms10040743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Photosynthetic microbes are gaining increasing attention as heterologous hosts for the light-driven, low-cost production of high-value recombinant proteins. Recent advances in the manipulation of unicellular algal genomes offer the opportunity to establish engineered strains as safe and viable alternatives to conventional heterotrophic expression systems, including for their use in the feed, food, and biopharmaceutical industries. Due to the relatively small size of their genomes, algal chloroplasts are excellent targets for synthetic biology approaches, and are convenient subcellular sites for the compartmentalized accumulation and storage of products. Different classes of recombinant proteins, including enzymes and peptides with therapeutical applications, have been successfully expressed in the plastid of the model organism Chlamydomonas reinhardtii, and of a few other species, highlighting the emerging potential of transplastomic algal biotechnology. In this review, we provide a unified view on the state-of-the-art tools that are available to introduce protein-encoding transgenes in microalgal plastids, and discuss the main (bio)technological bottlenecks that still need to be addressed to develop robust and sustainable green cell biofactories.
Collapse
Affiliation(s)
| | | | | | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.A.C.); (G.M.); (L.D.)
| |
Collapse
|
4
|
Ferrer-Miralles N, Saccardo P, Corchero JL, Garcia-Fruitós E. Recombinant Protein Production and Purification of Insoluble Proteins. Methods Mol Biol 2022; 2406:1-31. [PMID: 35089548 DOI: 10.1007/978-1-0716-1859-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The efficient production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and its growth conditions to minimize the formation of insoluble protein aggregates should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain.
| |
Collapse
|
5
|
Shahar N, Elman T, Williams-Carrier R, Ben-Zvi O, Yacoby I, Barkan A. Use of plant chloroplast RNA-binding proteins as orthogonal activators of chloroplast transgenes in the green alga Chlamydomonas reinhardtii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Mosey M, Douchi D, Knoshaug EP, Laurens LM. Methodological review of genetic engineering approaches for non-model algae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Carrera-Pacheco SE, Hankamer B, Oey M. Light and heat-shock mediated TDA1 overexpression as a tool for controlled high-yield recombinant protein production in Chlamydomonas reinhardtii chloroplasts. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Weiner I, Feldman Y, Shahar N, Yacoby I, Tuller T. CSO – A sequence optimization software for engineering chloroplast expression in Chlamydomonas reinhardtii. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Shahar N, Landman S, Weiner I, Elman T, Dafni E, Feldman Y, Tuller T, Yacoby I. The Integration of Multiple Nuclear-Encoded Transgenes in the Green Alga Chlamydomonas reinhardtii Results in Higher Transcription Levels. FRONTIERS IN PLANT SCIENCE 2020; 10:1784. [PMID: 32117346 PMCID: PMC7033495 DOI: 10.3389/fpls.2019.01784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
The integration of genes into the nuclear genome of Chlamydomonas reinhardtii is mediated by Non-Homologous-End-Joining, thus resulting in unpredicted insertion locations. This phenomenon defines 'the position-effect', which is used to explain the variation of expression levels between different clones transformed with the same DNA fragment. Likewise, nuclear transgenes often undergo epigenetic silencing that reduces their expression; hence, nuclear transformations require high-throughput screening methods to isolate clones that express the foreign gene at a desirable level. Here, we show that the number of integration sites of heterologous genes results in higher mRNA levels. By transforming both a synthetic ferredoxin-hydrogenase fusion enzyme and a Gaussia-Luciferase reporter protein, we were able to obtain 33 positive clones that exhibit a wide range of synthetic expression. We then performed a droplet-digital polymerase-chain-reaction for these lines to measure their transgene DNA copy-number and mRNA levels. Surprisingly, most clones contain two integration sites of the synthetic gene (45.5%), whilst 33.3% contain one, 18.1% include three and 3.1% encompass four. Remarkably, we observed a positive correlation between the raw DNA copy-number values to the mRNA levels, suggesting a general effect of which transcription of transgenes is partially modulated by their number of copies in the genome. However, our data indicate that only clones harboring at least three copies of the target amplicon show a significant increment in mRNA levels of the reporter transgene. Lastly, we measured protein activity for each of the reporter genes to elucidate the effect of copy-number variation on heterologous expression.
Collapse
Affiliation(s)
- Noam Shahar
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Shira Landman
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Iddo Weiner
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Elman
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Dafni
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Yael Feldman
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Iftach Yacoby
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Tevatia R, Payne S, Allen J, White D, Clemente TE, Cerutti H, Demirel Y, Blum P. A synthetic cdo/csad taurine pathway in the green unicellular alga Chlamydomonas reinhardtii. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Kwon YM, Kim KW, Choi TY, Kim SY, Kim JYH. Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory. World J Microbiol Biotechnol 2018; 34:183. [PMID: 30478596 DOI: 10.1007/s11274-018-2567-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
The chloroplast is an essential organelle in microalgae for conducting photosynthesis, thus enabling the photoautotrophic growth of microalgae. In addition to photosynthesis, the chloroplast is capable of various biochemical processes for the synthesis of proteins, lipids, carbohydrates, and terpenoids. Due to these attractive characteristics, there has been increasing interest in the biotechnological utilization of microalgal chloroplast as a sustainable alternative to the conventional production platforms used in industrial biotechnology. Since the first demonstration of microalgal chloroplast transformation, significant development has occurred over recent decades in the manipulation of microalgal chloroplasts through genetic engineering. In the present review, we describe the advantages of the microalgal chloroplast as a production platform for various bioproducts, including recombinant proteins and high-value metabolites, features of chloroplast genetic systems, and the development of transformation methods, which represent important factors for gene expression in the chloroplast. Furthermore, we address the expression of various recombinant proteins in the microalgal chloroplast through genetic engineering, including reporters, biopharmaceutical proteins, and industrial enzymes. Finally, we present many efforts and achievements in the production of high-value metabolites in the microalgal chloroplast through metabolic engineering. Based on these efforts and advances, the microalgal chloroplast represents an economically viable and sustainable platform for biotechnological applications in the near future.
Collapse
Affiliation(s)
- Yong Min Kwon
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Kyung Woo Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Tae-Young Choi
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Sun Young Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Jaoon Young Hwan Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea.
| |
Collapse
|
12
|
Esland L, Larrea-Alvarez M, Purton S. Selectable Markers and Reporter Genes for Engineering the Chloroplast of Chlamydomonas reinhardtii. BIOLOGY 2018; 7:E46. [PMID: 30309004 PMCID: PMC6315944 DOI: 10.3390/biology7040046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023]
Abstract
Chlamydomonas reinhardtii is a model alga of increasing interest as a cell factory for the production of valuable compounds, including therapeutic proteins and bioactive metabolites. Expression of foreign genes in the chloroplast is particularly advantageous as: (i) accumulation of product in this sub-cellular compartment minimises potential toxicity to the rest of the cell; (ii) genes can integrate at specific loci of the chloroplast genome (plastome) by homologous recombination; (iii) the high ploidy of the plastome and the high-level expression of chloroplast genes can be exploited to achieve levels of recombinant protein as high as 5% total cell protein; (iv) the lack of any gene silencing mechanisms in the chloroplast ensures stable expression of transgenes. However, the generation of C. reinhardtii chloroplast transformants requires efficient methods of selection, and ideally methods for subsequent marker removal. Additionally, the use of reporter genes is critical to achieving a comprehensive understanding of gene expression, thereby informing experimental design for recombinant applications. This review discusses currently available selection and reporter systems for chloroplast engineering in C. reinhardtii, as well as those used for chloroplast engineering in higher plants and other microalgae, and looks to the future in terms of possible new markers and reporters that will further advance the C. reinhardtii chloroplast as an expression platform.
Collapse
Affiliation(s)
- Lola Esland
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Marco Larrea-Alvarez
- School of Biological Sciences and Engineering, Yachay-Tech University, Hacienda San José, Urcuquí-Imbabura 100650, Ecuador.
| | - Saul Purton
- Institute of Structural & Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
13
|
Richter LV, Yang H, Yazdani M, Hanson MR, Ahner BA. A downstream box fusion allows stable accumulation of a bacterial cellulase in Chlamydomonas reinhardtii chloroplasts. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:133. [PMID: 29760775 PMCID: PMC5944112 DOI: 10.1186/s13068-018-1127-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/23/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND We investigated strategies to improve foreign protein accumulation in the chloroplasts of the model algae Chlamydomonas reinhardtii and tested the outcome in both standard culture conditions as well as one pertinent to algal biofuel production. The downstream box (DB) of the TetC or NPTII genes, the first 15 codons following the start codon, was N-terminally fused to the coding region of cel6A, an endoglucanase from Thermobifida fusca. We also employed a chimeric regulatory element, consisting of the 16S rRNA promoter and the atpA 5'UTR, previously reported to enhance protein expression, to regulate the expression of the TetC-cel6A gene. We further investigated the accumulation of TetC-Cel6A under N-deplete growth conditions. RESULTS Both of the DB fusions improved intracellular accumulation of Cel6A in transplastomic C. reinhardtii strains though the TetC DB was much more effective than the NPTII DB. Furthermore, using the chimeric regulatory element, the TetC-Cel6A protein accumulation displayed a significant increase to 0.3% total soluble protein (TSP), whereas NPTII-Cel6A remained too low to quantify. Comparable levels of TetC- and NPTII-cel6A transcripts were observed, which suggests that factors other than transcript abundance mediate the greater TetC-Cel6A accumulation. The TetC-Cel6A accumulation was stable regardless of the growth stage, and the transplastomic strain growth rate was not altered. When transplastomic cells were suspended in N-deplete medium, cellular levels of TetC-Cel6A increased over time along with TSP, and were greater than those in cells suspended in N-replete medium. CONCLUSIONS The DB fusion holds great value as a tool to enhance foreign protein accumulation in C. reinhardtii chloroplasts and its influence is related to translation or other post-transcriptional processes. Our results also suggest that transplastomic protein production can be compatible with algal biofuel production strategies. Cells displayed a consistent accumulation of recombinant protein throughout the growth phase and nitrogen starvation, a strategy used to induce lipid production in algae, led to higher cellular heterologous protein content. The latter result is contrary to what might have been expected a priori and is an important result for the development of future algal biofuel systems, which will likely require co-products for economic sustainability.
Collapse
Affiliation(s)
- Lubna V. Richter
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY USA
| | - Huijun Yang
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY USA
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY USA
| | - Mohammad Yazdani
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY USA
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY USA
| | - Beth A. Ahner
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, NY USA
| |
Collapse
|
14
|
Specht EA, Karunanithi PS, Gimpel JA, Ansari WS, Mayfield SP. Host Organisms: Algae. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Elizabeth A. Specht
- University of California; California Center for Algae Biotechnology; Division of Biological Sciences; 9500 Gilman Drive San Diego, La Jolla CA 92093 USA
| | - Prema S. Karunanithi
- University of California; California Center for Algae Biotechnology; Division of Biological Sciences; 9500 Gilman Drive San Diego, La Jolla CA 92093 USA
| | - Javier A. Gimpel
- Centre for Biotechnology and Bioengineering; Department of Chemical Engineering and Biotechnology, Universidad de Chile; 851 Beaucheff Santiago USA
| | - William S. Ansari
- University of California; California Center for Algae Biotechnology; Division of Biological Sciences; 9500 Gilman Drive San Diego, La Jolla CA 92093 USA
| | - Stephen P. Mayfield
- University of California; California Center for Algae Biotechnology; Division of Biological Sciences; 9500 Gilman Drive San Diego, La Jolla CA 92093 USA
| |
Collapse
|
15
|
Yang B, Liu J, Jiang Y, Chen F. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective. Biotechnol J 2016; 11:1244-1261. [PMID: 27465356 DOI: 10.1002/biot.201500617] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/08/2022]
Abstract
The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression.
Collapse
Affiliation(s)
- Bo Yang
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China.,School of Light Industry and Food Sciences, South China University of Technology, Guangzhou, China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China. .,Singapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore.
| | - Yue Jiang
- Runke Bioengineering Co., Ltd., Zhangzhou, China.
| | - Feng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China.,Singapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore
| |
Collapse
|
16
|
Dejtisakdi W, Miller SM. Overexpression of Calvin cycle enzyme fructose 1,6-bisphosphatase in Chlamydomonas reinhardtii has a detrimental effect on growth. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Boehm CR, Ueda M, Nishimura Y, Shikanai T, Haseloff J. A Cyan Fluorescent Reporter Expressed from the Chloroplast Genome of Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2016; 57:291-9. [PMID: 26634291 PMCID: PMC4788411 DOI: 10.1093/pcp/pcv160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/21/2015] [Indexed: 05/10/2023]
Abstract
Recently, the liverwort Marchantia polymorpha has received increasing attention as a basal plant model for multicellular studies. Its ease of handling, well-characterized plastome and proven protocols for biolistic plastid transformation qualify M. polymorpha as an attractive platform to study the evolution of chloroplasts during the transition from water to land. In addition, chloroplasts of M. polymorpha provide a convenient test-bed for the characterization of genetic elements involved in plastid gene expression due to the absence of mechanisms for RNA editing. While reporter genes have proven valuable to the qualitative and quantitative study of gene expression in chloroplasts, expression of green fluorescent protein (GFP) in chloroplasts of M. polymorpha has proven problematic. We report the design of a codon-optimized gfp varian, mturq2cp, which allowed successful expression of a cyan fluorescent protein under control of the tobacco psbA promoter from the chloroplast genome of M. polymorpha. We demonstrate the utility of mturq2cp in (i) early screening for transplastomic events following biolistic transformation of M. polymorpha spores; (ii) visualization of stromules as elements of plastid structure in Marchantia; and (iii) quantitative microscopy for the analysis of promoter activity.
Collapse
Affiliation(s)
- Christian R Boehm
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Minoru Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan Present address: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045 Japan
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0076 Japan
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
18
|
Hempel F, Maier UG. Microalgae as Solar-Powered Protein Factories. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:241-62. [DOI: 10.1007/978-3-319-27216-0_16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Doron L, Segal N, Shapira M. Transgene Expression in Microalgae-From Tools to Applications. FRONTIERS IN PLANT SCIENCE 2016; 7:505. [PMID: 27148328 PMCID: PMC4840263 DOI: 10.3389/fpls.2016.00505] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/29/2016] [Indexed: 05/17/2023]
Abstract
Microalgae comprise a biodiverse group of photosynthetic organisms that reside in water sources and sediments. The green microalgae Chlamydomonas reinhardtii was adopted as a useful model organism for studying various physiological systems. Its ability to grow under both photosynthetic and heterotrophic conditions allows efficient growth of non-photosynthetic mutants, making Chlamydomonas a useful genetic tool to study photosynthesis. In addition, this green alga can grow as haploid or diploid cells, similar to yeast, providing a powerful genetic system. As a result, easy and efficient transformation systems have been developed for Chlamydomonas, targeting both the chloroplast and nuclear genomes. Since microalgae comprise a rich repertoire of species that offer variable advantages for biotech and biomed industries, gene transfer technologies were further developed for many microalgae to allow for the expression of foreign proteins of interest. Expressing foreign genes in the chloroplast enables the targeting of foreign DNA to specific sites by homologous recombination. Chloroplast transformation also allows for the introduction of genes encoding several enzymes from a complex pathway, possibly as an operon. Expressing foreign proteins in the chloroplast can also be achieved by introducing the target gene into the nuclear genome, with the protein product bearing a targeting signal that directs import of the transgene-product into the chloroplast, like other endogenous chloroplast proteins. Integration of foreign genes into the nuclear genome is mostly random, resulting in large variability between different clones, such that extensive screening is required. The use of different selection modalities is also described, with special emphasis on the use of herbicides and metabolic markers which are considered to be friendly to the environment, as compared to drug-resistance genes that are commonly used. Finally, despite the development of a wide range of transformation tools and approaches, expression of foreign genes in microalgae suffers from low efficiency. Thus, novel tools have appeared in recent years to deal with this problem. Finally, while C. reinhardtii was traditionally used as a model organism for the development of transformation systems and their subsequent improvement, similar technologies can be adapted for other microalgae that may have higher biotechnological value.
Collapse
|
20
|
Hlavova M, Turoczy Z, Bisova K. Improving microalgae for biotechnology — From genetics to synthetic biology. Biotechnol Adv 2015; 33:1194-203. [DOI: 10.1016/j.biotechadv.2015.01.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/11/2015] [Accepted: 01/17/2015] [Indexed: 01/01/2023]
|
21
|
Shih CH, Chen HY, Lee HC, Tsai HJ. Purple chromoprotein gene serves as a new selection marker for transgenesis of the microalga Nannochloropsis oculata. PLoS One 2015; 10:e0120780. [PMID: 25793255 PMCID: PMC4368691 DOI: 10.1371/journal.pone.0120780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022] Open
Abstract
Among the methods used to screen transgenic microalgae, antibiotics selection has raised environmental and food safety concerns, while the observation of fluorescence proteins could be influenced by the endogenous fluorescence of host chloroplasts. As an alternative, this study isolated the purple chromoprotein (CP) from Stichodacyla haddoni (shCP). A plasmid in which shCP cDNA is driven by a heat-inducible promoter was linearized and electroporated into 2.5×108 protoplasts of Nannochloropsis oculata. Following regeneration and cultivation on an f/2 medium plate for two weeks, we observed 26 colonies that displayed a slightly dark green coloration. After individually subculturing and performing five hours of heat shock at 42°C, a dark brown color was mosaically displayed in five of these colonies, indicating that both untransformed and transformed cells were mixed together in each colony. To obtain a uniform expression of shCP throughout the whole colony, we continuously isolated each transformed cell that exhibited brown coloration and subcultured it on a fresh plate, resulting in the generation of five transgenic lines of N. oculata which stably harbored the shCP gene for at least 22 months, as confirmed by PCR detection and observation by the naked eye. As shown by Western blot, exogenous shCP protein was expressed in these transgenic microalgae. Since shCP protein is biodegradable and originates from a marine organism, both environmental and food safety concerns have been eliminated, making this novel shCP reporter gene a simple, but effective and ecologically safe, marker for screening and isolating transgenic microalgae.
Collapse
Affiliation(s)
- Chen-Han Shih
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Yin Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hung-Chieh Lee
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Huai-Jen Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Bock R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:211-41. [PMID: 25494465 DOI: 10.1146/annurev-arplant-050213-040212] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The small bacterial-type genome of the plastid (chloroplast) can be engineered by genetic transformation, generating cells and plants with transgenic plastid genomes, also referred to as transplastomic plants. The transformation process relies on homologous recombination, thereby facilitating the site-specific alteration of endogenous plastid genes as well as the precisely targeted insertion of foreign genes into the plastid DNA. The technology has been used extensively to analyze chloroplast gene functions and study plastid gene expression at all levels in vivo. Over the years, a large toolbox has been assembled that is now nearly comparable to the techniques available for plant nuclear transformation and that has enabled new applications of transplastomic technology in basic and applied research. This review describes the state of the art in engineering the plastid genomes of algae and land plants (Embryophyta). It provides an overview of the existing tools for plastid genome engineering, discusses current technological limitations, and highlights selected applications that demonstrate the immense potential of chloroplast transformation in several key areas of plant biotechnology.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany;
| |
Collapse
|
23
|
Ferrer-Miralles N, Saccardo P, Corchero JL, Xu Z, García-Fruitós E. General introduction: recombinant protein production and purification of insoluble proteins. Methods Mol Biol 2015; 1258:1-24. [PMID: 25447856 DOI: 10.1007/978-1-4939-2205-5_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and the most appropriate growth conditions to minimize the formation of insoluble proteins should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Departament de Genètica i de Microbiologia, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | | | | | | | | |
Collapse
|
24
|
Lin H, Qin S. Tipping points in seaweed genetic engineering: scaling up opportunities in the next decade. Mar Drugs 2014; 12:3025-45. [PMID: 24857961 PMCID: PMC4052329 DOI: 10.3390/md12053025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/04/2014] [Accepted: 04/25/2014] [Indexed: 12/30/2022] Open
Abstract
Seaweed genetic engineering is a transgenic expression system with unique features compared with those of heterotrophic prokaryotes and higher plants. This study discusses several newly sequenced seaweed nuclear genomes and the necessity that research on vector design should consider endogenous promoters, codon optimization, and gene copy number. Seaweed viruses and artificial transposons can be applied as transformation methods after acquiring a comprehensive understanding of the mechanism of viral infections in seaweeds and transposon patterns in seaweed genomes. After cultivating transgenic algal cells and tissues in a photobioreactor, a biosafety assessment of genetically modified (GM) seaweeds must be conducted before open-sea application. We propose a set of programs for the evaluation of gene flow from GM seaweeds to local/geographical environments. The effective implementation of such programs requires fundamentally systematic and interdisciplinary studies on algal physiology and genetics, marine hydrology, reproductive biology, and ecology.
Collapse
Affiliation(s)
- Hanzhi Lin
- Environmental Biophysics and Molecular Ecology Program, Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Song Qin
- Key Lab of Coastal Biology and Bio-resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai 264003, China.
| |
Collapse
|
25
|
Specht EA, Mayfield SP. Synthetic oligonucleotide libraries reveal novel regulatory elements in Chlamydomonas chloroplast mRNAs. ACS Synth Biol 2013; 2:34-46. [PMID: 23656324 DOI: 10.1021/sb300069k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene expression in chloroplasts is highly regulated during translation by sequence and secondary-structure elements in the 5' untranslated region (UTR) of mRNAs. These chloroplast mRNA 5' UTRs interact with nuclear-encoded factors to regulate mRNA processing, stability, and translation initiation. Although several UTR elements in chloroplast mRNAs have been identified by site-directed mutagenesis, the complete set of elements required for expression of plastid mRNAs remains undefined. Here we present a synthetic biology approach using an arrayed oligonucleotide library to examine in vivo hundreds of designed variants of endogenous UTRs from Chlamydomonas reinhardtii and quantitatively identify essential regions through next-generation sequencing of thousands of mutants. We validate this strategy by characterizing the relatively well-studied 5' UTR of the psbD mRNA encoding the D2 protein in photosystem II and find that our analysis generally agrees with previous work identifying regions of importance but significantly expands and clarifies the boundaries of these regulatory regions. We then use this strategy to characterize the previously unstudied psaA 5' UTR and obtain a detailed map of regions essential for both positive and negative regulation. This analysis can be performed in a high-throughput manner relative to previous site-directed mutagenesis methods, enabling compilation of a large unbiased data set of regulatory elements of chloroplast gene expression. Finally, we create a novel synthetic UTR based on aggregate sequence analysis from the libraries and demonstrate that it significantly increases accumulation of an exogenous protein, attesting to the utility of this strategy for enhancing protein production in algal chloroplasts.
Collapse
Affiliation(s)
- Elizabeth A. Specht
- The San Diego Center for Algae Biotechnology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Stephen P. Mayfield
- The San Diego Center for Algae Biotechnology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
26
|
Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci U S A 2012; 110:E15-22. [PMID: 23236148 DOI: 10.1073/pnas.1214638110] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The idea of targeted therapy, whereby drug or protein molecules are delivered to specific cells, is a compelling approach to treating disease. Immunotoxins are one such targeted therapeutic, consisting of an antibody domain for binding target cells and molecules of a toxin that inhibits the proliferation of the targeted cell. One major hurdle preventing these therapies from reaching the market has been the lack of a suitable production platform that allows the cost-effective production of these highly complex molecules. The chloroplast of the green alga Chlamydomonas reinhardtii has been shown to contain the machinery necessary to fold and assemble complex eukaryotic proteins. However, the translational apparatus of chloroplasts resembles that of a prokaryote, allowing them to accumulate eukaryotic toxins that otherwise would kill a eukaryotic host. Here we show expression and accumulation of monomeric and dimeric immunotoxin proteins in algal chloroplasts. These fusion proteins contain an antibody domain targeting CD22, a B-cell surface epitope, and the enzymatic domain of exotoxin A from Pseudomonas aeruginosa. We demonstrated that algal-produced immunotoxins accumulate as soluble and enzymatically active proteins that bind target B cells and efficiently kill them in vitro. We also show that treatment with either the mono- or dimeric immunotoxins significantly prolongs the survival of mice with implanted human B-cell tumors.
Collapse
|
27
|
Gimpel JA, Mayfield SP. Analysis of heterologous regulatory and coding regions in algal chloroplasts. Appl Microbiol Biotechnol 2012. [PMID: 23179624 DOI: 10.1007/s00253-012-4580-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The basic photosynthetic apparatus is highly conserved across all photosynthetic organisms, and this conservation can be seen in both protein composition and amino acid sequence. Conservation of regulatory elements also seems possible in chloroplast genes, as many mRNA untranslated regions (UTRs) appear to have similar structural elements. The D1 protein of Photosystem II (psbA gene) is a highly conserved core reaction center protein that shows very similar regulation from cyanobacteria through higher plants. We engineered full and partial psbA genes from a diverse set of photosynthetic organisms into a psbA deficient strain of Chlamydomonas reinhardtii. Analysis of D1 protein accumulation and photosynthetic growth revealed that coding sequences and promoters are interchangeable even between anciently diverged species. On the other hand functional recognition of 5' UTRs is limited to closely related organisms. Furthermore transformation of heterologous promoters and 5' UTRs from the atpA, tufA and psbD genes conferred psbA mRNA accumulation but not translation. Overall, our results show that heterologous D1 proteins can be expressed and complement Photosystem II function in green algae, while RNA regulatory elements appear to be very specific and function only from closely related species. Nonetheless, there is great potential for the expression of heterologous photosynthetic coding sequences for studying and modifying photosynthesis in C. reinhardtii chloroplasts.
Collapse
Affiliation(s)
- Javier A Gimpel
- San Diego Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0368, USA
| | | |
Collapse
|
28
|
Stable plastid transformation for high-level recombinant protein expression: promises and challenges. J Biomed Biotechnol 2012; 2012:158232. [PMID: 23093835 PMCID: PMC3474547 DOI: 10.1155/2012/158232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/10/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022] Open
Abstract
Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.
Collapse
|
29
|
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S, Tutino ML, Villaverde A. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 2012; 31:140-53. [PMID: 22985698 DOI: 10.1016/j.biotechadv.2012.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.
Collapse
|
30
|
Noor-Mohammadi S, Pourmir A, Johannes TW. Method to assemble and integrate biochemical pathways into the chloroplast genome ofChlamydomonas reinhardtii. Biotechnol Bioeng 2012; 109:2896-903. [DOI: 10.1002/bit.24569] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 11/08/2022]
|
31
|
Rosales-Mendoza S, Paz-Maldonado LMT, Soria-Guerra RE. Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. PLANT CELL REPORTS 2012; 31:479-94. [PMID: 22080228 DOI: 10.1007/s00299-011-1186-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 05/03/2023]
Abstract
Chlamydomonas reinhardtii has many advantages compared with traditional systems for the molecular farming of recombinant proteins. These include low production costs, rapid scalability at pilot level, absence of human pathogens and the ability to fold and assemble complex proteins accurately. Currently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its usefulness for biotechnological applications. However, several factors affect the level of recombinant protein expression in Chlamydomonas such as enhancer elements, codon dependency, sensitivity to proteases and transformation-associated genotypic modification. The present review outlines a number of strategies to increase protein yields and summarizes recent achievements in algal protein production including biopharmaceuticals such as vaccines, antibodies, hormones and enzymes with implications on health-related approaches. The current status of bioreactor developments for algal culture and the challenges of scale-up and optimization processes are also discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, SLP, Mexico.
| | | | | |
Collapse
|
32
|
Abstract
Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, 975 North Warson Rd., St. Louis, MO 63132 USA
| | - Bradley J S C Olson
- Molecular Cellular and Developmental Biology, Ecological Genomics Institute, Division of Biology, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
33
|
Rasala BA, Mayfield SP. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioeng Bugs 2011; 2:50-4. [PMID: 21636988 DOI: 10.4161/bbug.2.1.13423] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microalgae are a diverse group of eukaryotic photosynthetic microorganisms. While microalgae play a crucial role in global carbon fixation and oxygen evolution, these organisms have recently gained much attention for their potential role in biotechnological and industrial applications, such as the production of biofuels. We investigated the potential of the microalga Chlamydomonas reinhardtii to be a platform for the production of human therapeutic proteins. C. reinhardtii is a unicellular freshwater green alga that has served as a popular model alga for physiological, molecular, biochemical and genetic studies. As such, the molecular toolkit for this microorganism is highly developed, including well-established methods for genetic transformation and recombinant gene expression. We transformed the chloroplast genome of C. reinhardtii with seven unrelated genes encoding for current or potential human therapeutic proteins and found that four of these genes supported protein accumulation to levels that are sufficient for commercial production. Furthermore, the algal-produced proteins were bioactive. Thus, the microalga C. reinhardtii has the potential to be a robust platform for human therapeutic protein production.
Collapse
Affiliation(s)
- Beth A Rasala
- Division of Biological Sciences University of California, La Jolla, CA, USA
| | | |
Collapse
|
34
|
Rasala BA, Muto M, Sullivan J, Mayfield SP. Improved heterologous protein expression in the chloroplast of Chlamydomonas reinhardtii through promoter and 5' untranslated region optimization. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:674-83. [PMID: 21535358 DOI: 10.1111/j.1467-7652.2011.00620.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microalgae have the potential to be a valuable biotechnological platform for the production of recombinant proteins. However, because of the complex regulatory network that tightly controls chloroplast gene expression, heterologous protein accumulation in a wild-type, photosynthetic-competent algal chloroplast remains low. High levels of heterologous protein accumulation have been achieved using the psbA promoter/5' untranslated region (UTR), but only in a psbA-deficient genetic background, because of psbA/D1-dependent auto-attenuation. Here, we examine the effect of fusing the strong 16S rRNA promoter to the 5' UTR of the psbA and atpA genes on transgene expression in the chloroplast of Chlamydomonas reinhardtii. We show that fusion of the 16S promoter had little impact on protein accumulation from the psbA 5' UTR in a psbA-deficient genetic background. Furthermore, the 16S/psbA promoter/UTR fusion was silenced in the presence of wild-type levels of D1 protein, confirming that the psbA 5' UTR is the primary target for D1-dependent auto-repression. However, fusion of the 16S promoter to the atpA 5' UTR significantly boosts mRNA levels and supports high levels of heterologous protein accumulation in photosynthetic-competent cells. The 16S/atpA promoter/UTR drove LUXCT protein accumulation to levels close to that of psbA in a psbA- background, and drove expression of a human therapeutic protein to levels only twofold lower than the psbA 5' UTR. The 16S/atpA promoter/UTR combination should have utility for heterologous protein production when expression from a photosynthetic-competent microalgal strain is required.
Collapse
Affiliation(s)
- Beth A Rasala
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | | | | |
Collapse
|
35
|
Coragliotti AT, Beligni MV, Franklin SE, Mayfield SP. Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast. Mol Biotechnol 2011; 48:60-75. [PMID: 21113690 PMCID: PMC3068253 DOI: 10.1007/s12033-010-9348-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an effort to develop microalgae as a robust system for the production of valuable proteins, we analyzed some of the factors affecting recombinant protein expression in the chloroplast of the green alga Chlamydomonas reinhardtii. We monitored mRNA accumulation, protein synthesis, and protein turnover for three codon-optimized transgenes including GFP, bacterial luciferase, and a large single chain antibody. GFP and luciferase proteins were quite stable, while the antibody was less so. Measurements of protein synthesis, in contrast, clearly showed that translation of the three chimeric mRNAs was greatly reduced when compared to endogenous mRNAs under control of the same atpA promoter/UTR. Only in a few conditions this could be explained by limited mRNA availability since, in most cases, recombinant mRNAs accumulated quite well when compared to the atpA mRNA. In vitro toeprint and in vivo polysome analyses suggest that reduced ribosome association might contribute to limited translational efficiency. However, when recombinant polysome levels and protein synthesis are analyzed as a whole, it becomes clear that other steps, such as inefficient protein elongation, are likely to have a considerable impact. Taken together, our results point to translation as the main step limiting the expression of heterologous proteins in the C. reinhardtii chloroplast.
Collapse
Affiliation(s)
- Anna T Coragliotti
- The Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
36
|
Michelet L, Lefebvre-Legendre L, Burr SE, Rochaix JD, Goldschmidt-Clermont M. Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:565-74. [PMID: 20809927 DOI: 10.1111/j.1467-7652.2010.00564.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chloroplast transformation in microalgae offers great promise for the production of proteins of pharmaceutical interest or for the development of novel biofuels. For many applications, high level expression of transgenes is desirable. We have transformed the chloroplast of Chlamydomonas reinhardtii with two genes, acrV and vapA, which encode antigens from the fish pathogen Aeromonas salmonicida. The promoters and 5' untranslated regions of four chloroplast genes were compared for their ability to drive expression of the bacterial genes. The highest levels of expression were obtained when they were placed under the control of the cis-acting elements from the psaA-exon1 gene. The expression of these chimeric genes was further increased when a nuclear mutation that affects a factor involved in psaA splicing was introduced in the genetic background of the chloroplast transformants. Accumulation of both the chimeric mRNAs and the recombinant proteins was dramatically increased, indicating that negative feedback loops limit the expression of chloroplast transgenes. Our results demonstrate the potential of manipulating anterograde signalling to alter negative regulatory feedback loops in the chloroplast and improve transgene expression.
Collapse
Affiliation(s)
- Laure Michelet
- Department of Plant Biology, University of Geneva, Genève, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Matsuo T, Ishiura M. Chlamydomonas reinhardtiias a new model system for studying the molecular basis of the circadian clock. FEBS Lett 2011; 585:1495-502. [DOI: 10.1016/j.febslet.2011.02.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 01/31/2011] [Accepted: 02/21/2011] [Indexed: 12/31/2022]
|
38
|
Wu S, Xu L, Huang R, Wang Q. Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2011; 102:2610-6. [PMID: 21036035 DOI: 10.1016/j.biortech.2010.09.123] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/26/2010] [Accepted: 09/28/2010] [Indexed: 05/06/2023]
Abstract
According to the codon bias in the chloroplast genome of Chlamydomonas reinhardtii, the codon-optimized coding regions of both the ferrochelatase gene, hemH, from Bradyrhizobium japonicum and the leghemoglobin gene, lba, from Glycine max were synthesized de novo and transferred into the chloroplast of C. reinhardtii. The expression level of hemH-lba protein was improved by 6.8 folds in the codon-optimized transgenic alga compared with the non-optimized one under both normal and anaerobic conditions. H(2) yield was 22% and the respiration rate was 44% higher in the codon-optimized transgenic algal cultures than those of the non-optimized ones, and was 450% and 134% higher than those of the control cultures, respectively. The transcript levels of hydA1 and hydA2 in the hemH-lba transgenic alga were also more stable and higher than those of the control alga. These results demonstrate that codon optimization increased the expression level of hemH-lba protein in the chloroplast of C. reinhardtii and improved algal H(2) yield by enhancing the respiration rate resulting in low O(2) content in the medium and up regulation of the expression of hydA1 and hydA2 in cells, thereby confirming the potential of the utilization of leghemoglobins for H(2) production in green algae.
Collapse
Affiliation(s)
- Shuangxiu Wu
- Department of Biology, College of Life and Environmental Science, Shanghai Normal University, Shanghai, PR China.
| | | | | | | |
Collapse
|
39
|
Strategies for high-level recombinant protein expression in transgenic microalgae: A review. Biotechnol Adv 2010; 28:910-8. [DOI: 10.1016/j.biotechadv.2010.08.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/03/2010] [Accepted: 08/13/2010] [Indexed: 11/22/2022]
|
40
|
Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 2010; 32:1373-83. [PMID: 20556634 PMCID: PMC2941057 DOI: 10.1007/s10529-010-0326-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/07/2010] [Indexed: 12/03/2022]
Abstract
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins.
Collapse
Affiliation(s)
- Elizabeth Specht
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| | - Shigeki Miyake-Stoner
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| | - Stephen Mayfield
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| |
Collapse
|
41
|
Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 2010; 32:1373-1383. [PMID: 20556634 DOI: 10.1007/s10529-010-0326-325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/07/2010] [Indexed: 05/28/2023]
Abstract
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins.
Collapse
Affiliation(s)
- Elizabeth Specht
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368, USA
| | | | | |
Collapse
|
42
|
Rasala BA, Muto M, Lee PA, Jager M, Cardoso RMF, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, Mayfield SP. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:719-33. [PMID: 20230484 PMCID: PMC2918638 DOI: 10.1111/j.1467-7652.2010.00503.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recombinant proteins are widely used today in many industries, including the biopharmaceutical industry, and can be expressed in bacteria, yeasts, mammalian and insect cell cultures, or in transgenic plants and animals. In addition, transgenic algae have also been shown to support recombinant protein expression, both from the nuclear and chloroplast genomes. However, to date, there are only a few reports on recombinant proteins expressed in the algal chloroplast. It is unclear whether this is because of few attempts or of limitations of the system that preclude expression of many proteins. Thus, we sought to assess the versatility of transgenic algae as a recombinant protein production platform. To do this, we tested whether the algal chloroplast could support the expression of a diverse set of current or potential human therapeutic proteins. Of the seven proteins chosen, >50% expressed at levels sufficient for commercial production. Three expressed at 2%-3% of total soluble protein, while a forth protein accumulated to similar levels when translationally fused to a well-expressed serum amyloid protein. All of the algal chloroplast-expressed proteins are soluble and showed biological activity comparable to that of the same proteins expressed using traditional production platforms. Thus, the success rate, expression levels, and bioactivity achieved demonstrate the utility of Chlamydomonas reinhardtii as a robust platform for human therapeutic protein production.
Collapse
Affiliation(s)
- Beth A Rasala
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, 10550 N. Torrey Pines Rd, La Jolla, CA92037, USA
| | - Machiko Muto
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, 10550 N. Torrey Pines Rd, La Jolla, CA92037, USA
| | - Philip A Lee
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, 10550 N. Torrey Pines Rd, La Jolla, CA92037, USA
| | - Michal Jager
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, 10550 N. Torrey Pines Rd, La Jolla, CA92037, USA
| | | | - Craig A Behnke
- Sapphire Energy, 3115 Merryfield Rd., San Diego, CA 92121
| | - Peter Kirk
- Protelica, 26118 Research Pl, Hayward, CA 94545
| | | | | | - Michael Mendez
- Sapphire Energy, 3115 Merryfield Rd., San Diego, CA 92121
| | - Stephen P Mayfield
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, 10550 N. Torrey Pines Rd, La Jolla, CA92037, USA
| |
Collapse
|
43
|
Johanningmeier U, Fischer D. Perspective for the Use of Genetic Transformants in Order to Enhance the Synthesis of the Desired Metabolites: Engineering Chloroplasts of Microalgae for the Production of Bioactive Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 698:144-51. [DOI: 10.1007/978-1-4419-7347-4_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP. Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 2009; 104:663-73. [PMID: 19562731 DOI: 10.1002/bit.22446] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monoclonal antibodies can be effective therapeutics against a variety of human diseases, but currently marketed antibody-based drugs are very expensive compared to other therapeutic options. Here, we show that the eukaryotic green algae Chlamydomonas reinhardtii is capable of synthesizing and assembling a full-length IgG1 human monoclonal antibody (mAb) in transgenic chloroplasts. This antibody, 83K7C, is derived from a human IgG1 directed against anthrax protective antigen 83 (PA83), and has been shown to block the effects of anthrax toxin in animal models. Here we show that 83K7C heavy and light chain proteins expressed in the chloroplast accumulate as soluble proteins that assemble into complexes containing two heavy and two light chain proteins. The algal-expressed 83K7C binds PA83 in vitro with similar affinity to the mammalian-expressed 83K7C antibody. In addition, a second human IgG1 and a mouse IgG1 were also expressed and shown to properly assemble in algal chloroplast. These results show that chloroplasts have the ability to fold and assemble full-length human mAbs, and suggest the potential of algae as a platform for the cost effective production of complex human therapeutic proteins.
Collapse
Affiliation(s)
- Miller Tran
- Department of Cell Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
45
|
Muto M, Henry RE, Mayfield SP. Accumulation and processing of a recombinant protein designed as a cleavable fusion to the endogenous Rubisco LSU protein in Chlamydomonas chloroplast. BMC Biotechnol 2009; 9:26. [PMID: 19323825 PMCID: PMC2671499 DOI: 10.1186/1472-6750-9-26] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 03/26/2009] [Indexed: 12/04/2022] Open
Abstract
Background Expression of recombinant proteins in green algal chloroplast holds substantial promise as a platform for the production of human therapeutic proteins. A number of proteins have been expressed in the chloroplast of Chlamydomonas reinhardtii, including complex mammalian proteins, but many of these proteins accumulate to significantly lower levels than do endogenous chloroplast proteins. We examined if recombinant protein accumulation could be enhanced by genetically fusing the recombinant reporter protein, luciferase, to the carboxy-terminal end of an abundant endogenous protein, the large subunit of ribulose bisphosphate carboxylase (Rubisco LSU). Additionally, as recombinant proteins fused to endogenous proteins are of little clinical or commercial value, we explored the possibility of engineering our recombinant protein to be cleavable from the endogenous protein in vivo. This strategy would obviate the need for further in vitro processing steps in order to produce the desired recombinant protein. To achieve this, a native protein-processing site from preferredoxin (preFd) was placed between the Rubisco LSU and luciferase coding regions in the fusion protein construct. Results The luciferase from the fusion protein accumulated to significantly higher levels than luciferase expressed alone. By eliminating the endogenous Rubisco large subunit gene (rbcL), we achieved a further increase in luciferase accumulation with respect to luciferase expression in the WT background. Importantly, near-wild type levels of functional Rubisco holoenzyme were generated following the proteolytic removal of the fused luciferase, while luciferase activity for the fusion protein was almost ~33 times greater than luciferase expressed alone. These data demonstrate the utility of using fusion proteins to enhance recombinant protein accumulation in algal chloroplasts, and also show that engineered proteolytic processing sites can be used to liberate the exogenous protein from the endogenous fusion partner, allowing for the purification of the intended mature protein. Conclusion These results demonstrate the utility of fusion proteins in algal chloroplast as a method to increase accumulation of recombinant proteins that are difficult to express. Since Rubisco is ubiquitous to land plants and green algae, this strategy may also be applied to higher plant transgenic expression systems.
Collapse
Affiliation(s)
- Machiko Muto
- The Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Pines Rd. La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
46
|
Influence of Codon Bias on the Expression of Foreign Genes in Microalgae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 616:46-53. [DOI: 10.1007/978-0-387-75532-8_5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Tools and techniques for chloroplast transformation of Chlamydomonas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 616:34-45. [PMID: 18161489 DOI: 10.1007/978-0-387-75532-8_4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chloroplast organelle of plant and algal cells contains its own genetic system with a genome of a hundred or so genes. Stable transformation of the chloroplast was first achieved in 1988, using the newly developed biolistic method of DNA delivery to introduce cloned DNA into the genome of the green unicellular alga Chlamydomonas reinhardtii. Since that time there have been significant developments in chloroplast genetic engineering using this versatile organism, and it is probable that the next few years will see increasing interest in commercial applications whereby high-value therapeutic proteins and other recombinant products are synthesized in the Chlamydomonas chloroplast. In this chapter I review the basic methodology of chloroplast transformation, the current techniques and applications, and the future possibilities for using the Chlamydomonas chloroplast as a green organelle factory.
Collapse
|
48
|
Wang X, Brandsma M, Tremblay R, Maxwell D, Jevnikar AM, Huner N, Ma S. A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol 2008; 8:87. [PMID: 19014643 PMCID: PMC2621204 DOI: 10.1186/1472-6750-8-87] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 11/17/2008] [Indexed: 11/26/2022] Open
Abstract
Background Human glutamic acid decarboxylase 65 (hGAD65) is a key autoantigen in type 1 diabetes, having much potential as an important marker for the prediction and diagnosis of type 1 diabetes, and for the development of novel antigen-specific therapies for the treatment of type 1 diabetes. However, recombinant production of hGAD65 using conventional bacterial or mammalian cell culture-based expression systems or nuclear transformed plants is limited by low yield and low efficiency. Chloroplast transformation of the unicellular eukaryotic alga Chlamydomonas reinhardtii may offer a potential solution. Results A DNA cassette encoding full-length hGAD65, under the control of the C. reinhardtii chloroplast rbcL promoter and 5'- and 3'-UTRs, was constructed and introduced into the chloroplast genome of C. reinhardtii by particle bombardment. Integration of hGAD65 DNA into the algal chloroplast genome was confirmed by PCR. Transcriptional expression of hGAD65 was demonstrated by RT-PCR. Immunoblotting verified the expression and accumulation of the recombinant protein. The antigenicity of algal-derived hGAD65 was demonstrated with its immunoreactivity to diabetic sera by ELISA and by its ability to induce proliferation of spleen cells from NOD mice. Recombinant hGAD65 accumulated in transgenic algae, accounts for approximately 0.25–0.3% of its total soluble protein. Conclusion Our results demonstrate the potential value of C. reinhardtii chloroplasts as a novel platform for rapid mass production of immunologically active hGAD65. This demonstration opens the future possibility for using algal chloroplasts as novel bioreactors for the production of many other biologically active mammalian therapeutic proteins.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | | | | | | | | | | | | |
Collapse
|
49
|
Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 2008; 280:153-62. [DOI: 10.1007/s00438-008-0352-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 05/11/2008] [Indexed: 10/22/2022]
|
50
|
Shao N, Bock R. A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii. Curr Genet 2008; 53:381-8. [PMID: 18408930 PMCID: PMC2413079 DOI: 10.1007/s00294-008-0189-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/20/2008] [Accepted: 03/29/2008] [Indexed: 11/26/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has emerged as a superb model species in plant biology. Although the alga is easily transformable, the low efficiency of transgene expression from the Chlamydomonas nuclear genome has severely hampered functional genomics research. For example, poor transgene expression is held responsible for the lack of sensitive reporter genes to monitor gene expression in vivo, analyze subcellular protein localization or study protein-protein interactions. Here, we have tested the luciferase from the marine copepod Gaussia princeps (G-Luc) for its suitability as a sensitive bioluminescent reporter of gene expression in Chlamydomonas. We show that a Gaussia luciferase gene variant, engineered to match the codon usage in the Chlamydomonas nuclear genome, serves as a highly sensitive reporter of gene expression from both constitutive and inducible algal promoters. Its bioluminescence signal intensity greatly surpasses previously developed reporters for Chlamydomonas nuclear gene expression and reaches values high enough for utilizing the reporter as a tool to monitor responses to environmental stresses in vivo and to conduct high-throughput screenings for signaling mutants in Chlamydomonas.
Collapse
Affiliation(s)
- Ning Shao
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|