1
|
Calderon-Rivera A, Gomez K, Rodríguez-Palma EJ, Khanna R. SUMOylation and DeSUMOylation: Tug of War of Pain Signaling. Mol Neurobiol 2025; 62:3305-3321. [PMID: 39276308 DOI: 10.1007/s12035-024-04478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
SUMOylation is a post-translational modification that attaches a small ubiquitin-like modifier (SUMO) group to a target protein via SUMO ligases, while deSUMOylation refers to the removal of this SUMO group by sentrin-specific proteases (SENPs). Although the functions of these processes have been well described in the nucleus, the role of SUMOylation and deSUMOylation in regulating ion channels is emerging as a novel area of study. Despite this, their contributions to pain signaling remain less clear. Therefore, this review consolidates the current evidence on the link(s) between SUMOylation, deSUMOylation, and pain, with a specific focus on ion channels expressed in the sensory system. Additionally, we explore the role of SUMOylation in the expression and function of kinases, vesicle proteins, and transcription factors, which result in the modulation of certain ion channels contributing to pain. Altogether, this review aims to highlight the relationship between SUMOylation and deSUMOylation in the modulation of ion channels, ultimately exploring the potential therapeutic role of these processes in chronic pain.
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Kimberly Gomez
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Erick J Rodríguez-Palma
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA.
- Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Kumamoto E. Anesthetic- and Analgesic-Related Drugs Modulating Both Voltage-Gated Na + and TRP Channels. Biomolecules 2024; 14:1619. [PMID: 39766326 PMCID: PMC11727300 DOI: 10.3390/biom14121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na+ channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission. There is much evidence demonstrating that chemical compounds involved in Na+ channel (or nerve AP conduction) inhibition modify TRP channel functions. Among these compounds are local anesthetics, anti-epileptics, α2-adrenoceptor agonists, antidepressants (all of which are used as analgesic adjuvants), general anesthetics, opioids, non-steroidal anti-inflammatory drugs and plant-derived compounds, many of which are involved in antinociception. This review mentions the modulation of Na+ channels and TRP channels including TRPV1, TRPA1 and TRPM8, both of which modulations are produced by pain-related compounds.
Collapse
Affiliation(s)
- Eiichi Kumamoto
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
3
|
Rahman MM, Jo YY, Kim YH, Park CK. Current insights and therapeutic strategies for targeting TRPV1 in neuropathic pain management. Life Sci 2024; 355:122954. [PMID: 39128820 DOI: 10.1016/j.lfs.2024.122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Neuropathic pain, a common symptom of several disorders, exerts a substantial socioeconomic burden worldwide. Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel predominantly ex-pressed in nociceptive neurons, plays a pivotal role in nociception, by detecting various endogenous and exogenous stimuli, including heat, pro-inflammatory mediators, and physical stressors. Dysregulation of TRPV1 signaling further contributes to the pathophysiology of neuropathic pain. Therefore, targeting TRPV1 is a promising strategy for developing novel analgesics with improved efficacy and safety profiles. Several pharmacological approaches to modulate TRPV1 activity, including agonists, antagonists, and biological TRPV1 RNA interference (RNAi, small interfering RNA [siRNA]) have been explored. Despite preclinical success, the clinical translation of TRPV1-targeted therapies has encountered challenges, including hyperthermia, hypothermia, pungency, and desensitization. Nevertheless, ongoing research efforts aim to refine TRPV1-targeted interventions through structural modifications, development of selective modulators, and discovery of natural, peptide-based drug candidates. Herein, we provide guidance for researchers and clinicians involved in the development of new interventions specifically targeting TRPV1 by reviewing the existing literature and highlighting current research activities. This study further discusses potential future research endeavors for enhancing the efficacy, safety, and tolerability of TRPV1 candidates, and thereby facilitates the translation of these discoveries into effective clinical interventions to alleviate neuropathic pain disorders.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Youn-Yi Jo
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea.
| |
Collapse
|
4
|
Musolino M, D’Agostino M, Zicarelli M, Andreucci M, Coppolino G, Bolignano D. Spice Up Your Kidney: A Review on the Effects of Capsaicin in Renal Physiology and Disease. Int J Mol Sci 2024; 25:791. [PMID: 38255865 PMCID: PMC10815060 DOI: 10.3390/ijms25020791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Capsaicin, the organic compound which attributes the spicy flavor and taste of red peppers and chili peppers, has been extensively studied for centuries as a potential natural remedy for the treatment of several illnesses. Indeed, this compound exerts well-known systemic pleiotropic effects and may thus bring important benefits against various pathological conditions like neuropathic pain, rhinitis, itching, or chronic inflammation. Yet, little is known about the possible biological activity of capsaicin at the kidney level, as this aspect has only been addressed by sparse experimental investigations. In this paper, we aimed to review the available evidence focusing specifically on the effects of capsaicin on renal physiology, as well as its potential benefits for the treatment of various kidney disorders. Capsaicin may indeed modulate various aspects of renal function and renal nervous activity. On the other hand, the observed experimental benefits in preventing acute kidney injury, slowing down the progression of diabetic and chronic kidney disease, ameliorating hypertension, and even delaying renal cancer growth may set the stage for future human trials of capsaicin administration as an adjuvant or preventive therapy for different, difficult-to-treat renal diseases.
Collapse
Affiliation(s)
- Michela Musolino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Mario D’Agostino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
| | | | - Michele Andreucci
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Giuseppe Coppolino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Davide Bolignano
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Cho JH, Jang IS. Ibuprofen modulates tetrodotoxin-resistant persistent Na + currents at acidic pH in rat trigeminal ganglion neurons. Eur J Pharmacol 2023; 961:176218. [PMID: 37992887 DOI: 10.1016/j.ejphar.2023.176218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to relieve various symptoms such as headache, arthralgia, and dental pain. While the primary mechanism of NSAID-based pain relief is the inhibition of cyclooxygenase-2, several NSAIDs also modulate other molecular targets related to nociceptive transmission such as voltage-gated Na+ channels. In the present study, we examined the effects of NSAIDs on persistent Na+ current (INaP) mediated by tetrodotoxin-resistant (TTX-R) Na+ channels in small-to medium-sized trigeminal ganglion neurons using a whole-cell patch-clamp technique. At clinically relevant concentrations, all propionic acid derivatives tested (ibuprofen, naproxen, fenoprofen, and flurbiprofen) preferentially inhibited the TTX-R INaP. The inhibition was more potent at acidic extracellular pH (pH 6.5) than at normal pH (pH 7.4). Other NSAIDs, such as ketorolac, piroxicam, and aspirin, had a negligible effect on the TTX-R INaP. Ibuprofen both accelerated the onset of inactivation and retarded the recovery from inactivation of TTX-R Na+ channels at acidic extracellular pH. However, all NSAIDs tested in this study had minor effects on voltage-gated K+ currents, as well as hyperpolarization-activated and cyclic nucleotide-gated cation currents, at both acidic and normal extracellular pH. Under current-clamp conditions, ibuprofen decreased the number of action potentials elicited by depolarizing current stimuli at acidic (pH 6.5) extracellular pH. Considering that extracellular pH falls as low as 5.5 in inflamed tissues, TTX-R INaP inhibition could be a mechanism by which ibuprofen and propionic acid derivative NSAIDs modulate inflammatory pain.
Collapse
Affiliation(s)
- Jin-Hwa Cho
- Department of Pharmacology, School of Dentistry, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea.
| |
Collapse
|
6
|
Javed H, Johnson AM, Challagandla AK, Emerald BS, Shehab S. Cutaneous Injection of Resiniferatoxin Completely Alleviates and Prevents Nerve-Injury-Induced Neuropathic Pain. Cells 2022; 11:cells11244049. [PMID: 36552812 PMCID: PMC9776507 DOI: 10.3390/cells11244049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
Fifth lumbar (L5) nerve injury in rodent produces neuropathic manifestations in the corresponding hind paw. The aim of this study was to investigate the effect of cutaneous injection of resiniferatoxin (RTX), a TRPV1 receptor agonist, in the rat's hind paw on the neuropathic pain induced by L5 nerve injury. The results showed that intraplantar injection of RTX (0.002%, 100 µL) (1) completely reversed the development of chronic thermal and mechanical hypersensitivity; (2) completely prevented the development of nerve-injury-induced thermal and mechanical hypersensitivity when applied one week earlier; (3) caused downregulation of nociceptive pain markers, including TRPV1, IB4 and CGRP, and upregulation of VIP in the ipsilateral dorsal horn of spinal cord and dorsal root ganglion (DRG) immunohistochemically and a significant reduction in the expression of TRPV1 mRNA and protein in the ipsilateral DRG using Western blot and qRT-PCR techniques; (4) caused downregulation of PGP 9.5- and CGRP-immunoreactivity in the injected skin; (5) produced significant suppression of c-fos expression, as a neuronal activity marker, in the spinal neurons in response to a second intraplantar RTX injection two weeks later. This work identifies the ability of cutaneous injection of RTX to completely alleviate and prevent the development of different types of neuropathic pain in animals and humans.
Collapse
|
7
|
Innervation of the human minor salivary glands; immunohistochemical study for neurochemical substances. Tissue Cell 2022; 79:101934. [DOI: 10.1016/j.tice.2022.101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
|
8
|
Asiedu K. Role of ocular surface neurobiology in neuronal-mediated inflammation in dry eye disease. Neuropeptides 2022; 95:102266. [PMID: 35728484 DOI: 10.1016/j.npep.2022.102266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/18/2023]
Abstract
Inflammation is the consequence of dry eye disease regardless of its etiology. Several injurious or harmless processes to the ocular surface neurons promote ocular surface neurogenic inflammation, leading to the vicious cycle of dry eye disease. These processes include the regular release of neuromediators during the conduction of ocular surface sensations, hyperosmolarity-induced ocular surface neuronal damage, neuro-regenerative activities, and neuronal-mediated dendritic cell activities. Neurogenic inflammation appears to be the main culprit, instigating the self-perpetuating inflammation observed in patients with dry eye disease.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
9
|
Yajima T, Sato T, Hosokawa H, Kondo T, Ichikawa H. Transient receptor potential melastatin-7 in the rat dorsal root ganglion. J Chem Neuroanat 2022; 125:102163. [PMID: 36122679 DOI: 10.1016/j.jchemneu.2022.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
AIMS Transient receptor potential melastatin-7 (TRPM7) is a selective cation permeable channel which plays important roles in cellular and developmental biology such as cell proliferation, survival, differentiation and migration. This channel is also known to be necessary for transmitter release in the peripheral nervous system. In this study, immunohistochemistry for TRPM7 was conducted in the rat lumbar dorsal root ganglion (DRG). METHODS Triple immunofluorescence methods were used to demonstrate distribution of TRPM7 and its relationship to other TRP channels in the DRG. Retrograde tracing and double immunofluorescence methods were also performed to know peripheral targets of DRG neurons containing TRPM7 and TRP vanilloid 1 (TRPV1). In addition, transection of the sciatic nerve was conducted to demonstrate an effect of the nerve injury on TRPM7expression in the DRG. RESULTS TRPM7-immunoreactivity was expressed by 53.9% of sensory neurons in the 4th lumbar DRG. TRPM7-immunoreactive (-IR) DRG neurons mostly had small (<600 µm²) and medium-sized (600-1200 µm²) cell bodies. By triple and double immunofluorescence methods, approximately 70% of TRPM7-IR DRG neurons contained TRPV1-immunoreactivity. Although the number of DRG neurons co-expressing TRPM7 and TRPM8 was small in the DRG, almost all of TRPM8-IR DRG neurons co-expressed TRPM7-immunoreactivity. By combination of retrograde tracing method and immunohistochemistry, TRPM7 was expressed by half of DRG neurons innervating the plantar skin (61.9%) and gastrocnemius muscle (51.2%), and 79.6% of DRG neurons innervating the periosteum. Co-expression of TRPM7 and TRPV1 among periosteum DRG neurons (75.7%) was more abundant than among cutaneous (53.2%) and muscular (40.4%) DRG neurons. DRG neurons which co-expressed these ion channels in the periosteum had smaller cell bodies compared to the skin and muscle. In addition, the sciatic nerve transection decreased the number of TRPM7-IR neurons in the DRG (approximately 60% reduction). The RT-qPCR analysis also demonstrated reduction of TRPM7 mRNA in the injured DRG. CONCLUSION The present study suggests that TRPM7 is mainly located in small nociceptors in the DRG. The content of TRPM7 in DRG neurons is probably different among their peripheral targets. TRPM7 in DRG neurons may be able to respond to noxious stimulation from their peripheral tissues. The nerve injury can decrease the level of TRPM7 mRNA and protein in DRG neurons.
Collapse
Affiliation(s)
- Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan.
| | - Hiroshi Hosokawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Teruyoshi Kondo
- Department of Animal Pharmaceutical Sciences, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka 882-8508, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
10
|
Yuan ZL, Liu XD, Zhang ZX, Li S, Tian Y, Xi K, Cai J, Yang XM, Liu M, Xing GG. Activation of GDNF-ERK-Runx1 signaling contributes to P2X3R gene transcription and bone cancer pain. iScience 2022; 25:104936. [PMID: 36072549 PMCID: PMC9441333 DOI: 10.1016/j.isci.2022.104936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.
Collapse
Affiliation(s)
- Zhu-Lin Yuan
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Dan Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Zi-Xian Zhang
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Song Li
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Ke Xi
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Min Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| |
Collapse
|
11
|
Transient Receptor Potential Channels: Important Players in Ocular Pain and Dry Eye Disease. Pharmaceutics 2022; 14:pharmaceutics14091859. [PMID: 36145607 PMCID: PMC9506338 DOI: 10.3390/pharmaceutics14091859] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder in which the eyes respond to minor stimuli with abnormal sensations, such as dryness, blurring, foreign body sensation, discomfort, irritation, and pain. Corneal pain, as one of DED’s main symptoms, has gained recognition due to its increasing prevalence, morbidity, and the resulting social burden. The cornea is the most innervated tissue in the body, and the maintenance of corneal integrity relies on a rich density of nociceptors, such as polymodal nociceptor neurons, cold thermoreceptor neurons, and mechano-nociceptor neurons. Their sensory responses to different stimulating forces are linked to the specific expression of transient receptor potential (TRP) channels. TRP channels are a group of unique ion channels that play important roles as cellular sensors for various stimuli. These channels are nonselective cation channels with variable Ca2+ selectivity. TRP homologs are a superfamily of 28 different members that are subdivided into 7 different subfamilies based on differences in sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells, where they affect various stress-induced regulatory responses essential for normal vision maintenance. This article reviews the current knowledge about the expression, function, and regulation of TRPs in ocular surface tissues. We also describe their implication in DED and ocular pain. These findings contribute to evidence suggesting that drug-targeting TRP channels may be of therapeutic benefit in the clinical setting of ocular pain.
Collapse
|
12
|
Zhang Y, Ke J, Zhou Y, Liu X, Huang T, Wang F. Sex-specific characteristics of cells expressing the cannabinoid 1 receptor in the dorsal horn of the lumbar spinal cord. J Comp Neurol 2022; 530:2451-2473. [PMID: 35580011 DOI: 10.1002/cne.25342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022]
Abstract
It is becoming increasingly clear that robust sex differences exist in the processing of acute and chronic pain in both rodents and humans. However, the underlying mechanism has not been well characterized. The dorsal horn of the lumbar spinal cord is the fundamental building block of ascending and descending pain pathways. It has been shown that numerous neurotransmitter and neuromodulator systems in the spinal cord, including the endocannabinoid system and its main receptor, the cannabinoid 1 receptor (CB1 R), play vital roles in processing nociceptive information. Our previous findings have shown that CB1 R mRNA is widely expressed in the brain in sex-dependent patterns. However, the sex-, lamina-, and cell-type-specific characteristics of CB1 R expression in the spinal cord have not been fully described. In this study, the CB1 R-iCre-EGFP mouse strain was generated to label and identify CB1 R-positive (CB1 RGFP ) cells. We reported no sex difference in CB1 R expression in the lumbar dorsal horn of the spinal cord, but a dynamic distribution within superficial laminae II and III in female mice between estrus and nonestrus phases. Furthermore, the cell-type-specific CB1 R expression pattern in the dorsal horn was similar in both sexes. Over 50% of CB1 RGFP cells were GABAergic neurons, and approximately 25% were glycinergic and 20-30% were glutamatergic neurons. The CB1 R-expressing cells also represented a subset of spinal projection neurons. Overall, our work indicates a highly consistent distribution pattern of CB1 RGFP cells in the dorsal horn of lumbar spinal cord in males and females.
Collapse
Affiliation(s)
- Yulin Zhang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Ke
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zhou
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Liu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tianwen Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
13
|
Inoue K. Overview for the study of P2 receptors: From P2 receptor history to neuropathic pain studies. J Pharmacol Sci 2022; 149:73-80. [DOI: 10.1016/j.jphs.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
|
14
|
The Role of ATP Receptors in Pain Signaling. Neurochem Res 2022; 47:2454-2468. [DOI: 10.1007/s11064-021-03516-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
|
15
|
Louwies T, Meerveld BGV. Abdominal Pain. COMPREHENSIVE PHARMACOLOGY 2022:132-163. [DOI: 10.1016/b978-0-12-820472-6.00037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Carozzi VA, Salio C, Rodriguez-Menendez V, Ciglieri E, Ferrini F. 2D <em>vs</em> 3D morphological analysis of dorsal root ganglia in health and painful neuropathy. Eur J Histochem 2021; 65. [PMID: 34664808 PMCID: PMC8547168 DOI: 10.4081/ejh.2021.3276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Dorsal root ganglia (DRGs) are clusters of sensory neurons that transmit the sensory information from the periphery to the central nervous system, and satellite glial cells (SGCs), their supporting trophic cells. Sensory neurons are pseudounipolar neurons with a heterogeneous neurochemistry reflecting their functional features. DRGs, not protected by the blood brain barrier, are vulnerable to stress and damage of different origin (i.e., toxic, mechanical, metabolic, genetic) that can involve sensory neurons, SGCs or, considering their intimate intercommunication, both cell populations. DRG damage, primary or secondary to nerve damage, produces a sensory peripheral neuropathy, characterized by neurophysiological abnormalities, numbness, paraesthesia and dysesthesia, tingling and burning sensations and neuropathic pain. DRG stress can be morphologically detected by light and electron microscope analysis with alterations in cell size (swelling/atrophy) and in different subcellular compartments (i.e., mitochondria, endoplasmic reticulum, and nucleus) of neurons and/or SGCs. In addition, neurochemical changes can be used to portray abnormalities of neurons and SGC. Conventional immunostaining, i.e., immunohistochemical detection of specific molecules in tissue slices, can be employed to detect, localize and quantify particular markers of damage in neurons (i.e., nuclear expression of ATF3) or SGCs (i.e., increased expression of GFAP), markers of apoptosis (i.e., caspases), markers of mitochondrial suffering and oxidative stress (i.e., 8-OHdG), markers of tissue inflammation (i.e., CD68 for macrophage infiltration) etc. However classical (2D) methods of immunostaining disrupt the overall organization of the DRG, thus resulting in the loss of some crucial information. Whole-mount (3D) methods have been recently developed to investigate DRG morphology and neurochemistry without tissue slicing, giving the opportunity to study the intimate relationship between SGCs and sensory neurons in health and disease. Here, we aim to compare classical (2D) vs whole-mount (3D) approaches to highlight “pros” and “cons” of the two methodologies when analysing neuropathy-induced alterations in DRGs.
Collapse
Affiliation(s)
- Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB).
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| | | | | | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| |
Collapse
|
17
|
Javed H, Rehmathulla S, Tariq S, Ali MA, Emerald BS, Shehab S. Co-localization of nociceptive markers in the lumbar dorsal root ganglion and spinal cord of dromedary camel. J Comp Neurol 2021; 529:3710-3725. [PMID: 34468017 DOI: 10.1002/cne.25240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/12/2022]
Abstract
Nociceptive markers in mice have been identified in two distinct peptidergic and nonpeptidergic neurons in the dorsal root ganglion (DRG) and distributed in different laminae of the dorsal horn of the spinal cord. Recently, however, a study in humans showed a significant overlapping in these two populations. In this study, we investigated the distribution of various nociceptive markers in the lumbar DRG and spinal cord of the dromedary camel. Immunohistochemical data showed a remarkable percentage of total neurons in the DRG expressed IB4 binding (54.5%), calcitonin gene-related peptide (CGRP; 49.5%), transient receptor potential vanilloid 1 (TRPV1; 48.2%), and nitric oxide synthase (NOS; 30.6%). The co-localization data showed that 89.6% and 74.0% of CGRP- and TRPV1-labeled neurons, respectively, were IB4 positive. In addition, 61.6% and 84.2% of TRPV1- and NOS-immunoreactive neurons, respectively, were also co-localized with CGRP. The distribution of IB4, CGRP, TRPV1, substance P, and NOS immunoreactivities in the spinal cord were observed in lamina I and outer lamina II (IIo). Quantitative data showed that 82.4% of IB4-positive nerve terminals in laminae I and IIo were co-localized with CGRP, and 86.0% of CGRP-labeled terminals were co-localized with IB4. Similarly, 85.1% of NOS-labeled nerve terminals were co-localized with CGRP. No neuropeptide Y (NPY) or cholecystokinin (CCK) immunoreactivities were detected in the DRG, and no co-localization between IB4, NPY, and CCK were observed in the spinal cord. Our results demonstrate marked convergence of nociceptive markers in the primary afferent neurons in camels, which is similar to humans rather than the mouse. The data also emphasizes the importance of interspecies differences when selecting ideal animal models for studying nociception and treating chronic pain.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Sumisha Rehmathulla
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Mahmoud A Ali
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
18
|
Zhuang J, Gao X, Wei W, Pelleg A, Xu F. Intralaryngeal application of ATP evokes apneic response mainly via acting on P2X3 (P2X2/3) receptors of the superior laryngeal nerve in postnatal rats. J Appl Physiol (1985) 2021; 131:986-996. [PMID: 34323594 DOI: 10.1152/japplphysiol.00091.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aerosolized adenosine 5'-triphosphate (ATP) induces cough and bronchoconstriction by activating vagal sensory fibers' P2X3 and P2X2/3 receptors (P2X3R and P2X2/3R). The goal of this study is to determine the effect of these receptors on the superior laryngeal nerve (SLN)-mediated cardiorespiratory responses to ATP challenge. We compared the cardiorespiratory responses to intralaryngeal perfusion of either ATP or α,β-methylene ATP in rat pups before and after 1) intralaryngeal perfusion of A-317491 (a P2X3R and P2X2/3R antagonist); 2) bilateral section of the SLN; and 3) peri-SLN treatment with capsaicin (to block conduction in superior laryngeal C-fibers, SLCFs) or A-317491. The immunoreactivity (IR) of P2X3R and P2X2R was determined in laryngeal sensory neurons of the nodose/jugular ganglia. Lastly, a whole-cell patch clamp recording was used to determine ATP- or α,β-mATP-induced currents without and with A-317491 treatment. It was found that intralaryngeal perfusion of both ATP and α,β-mATP induced immediate apnea, hypertension, and bradycardia. The apnea was eliminated and the hypertension and bradycardia were blunted by intralaryngeal perfusion of A-317491 and peri-SLN treatment with either A-317491 or capsaicin, while all of the cardiorespiratory responses were abolished by bilateral section of the SLN. P2X3R- and P2X2R-IR were observed in nodose and jugular ganglionic neurons labeled by fluoro-gold (FG). ATP- and α,β-mATP-induced currents recorded in laryngeal C-neurons were reduced by 75% and 95% respectively by application of A-317491. It is concluded that in anesthetized rat pups, the cardiorespiratory responses to intralaryngeal perfusion of either ATP or α,β-mATP are largely mediated by activation of SLCFs' P2X3R-P2X2/3R.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States
| | - Xiuping Gao
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States
| | - Wan Wei
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, United States
| | - Fadi Xu
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States
| |
Collapse
|
19
|
Jiao H, Ivanusic JJ, McMenamin PG, Chinnery HR. Distribution of Corneal TRPV1 and Its Association With Immune Cells During Homeostasis and Injury. Invest Ophthalmol Vis Sci 2021; 62:6. [PMID: 34232260 PMCID: PMC8267209 DOI: 10.1167/iovs.62.9.6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purpose Given the role of corneal sensory nerves during epithelial wound repair, we sought to examine the relationship between immune cells and polymodal nociceptors following corneal injury. Methods Young C57BL/6J mice received a 2 mm corneal epithelial injury. One week later, corneal wholemounts were immunostained using β-tubulin-488, TRPV1 (transient receptor potential ion channel subfamily V member-1, a nonselective cation channel) and immune cell (MHC-II, CD45 and CD68) antibodies. The sum length of TRPV1+ and TRPV1– nerve fibers, and their spatial association with immune cells, was quantified in intact and injured corneas. Results TRPV1+ nerves account for ∼40% of the nerve fiber length in the intact corneal epithelium and ∼80% in the stroma. In the superficial epithelial layers, TRPV1+ nerve terminal length was similar in injured and intact corneas. In intact corneas, the density (sum length) of basal epithelial TRPV1+ and TRPV1− nerve fibers was similar, however, in injured corneas, TRPV1+ nerve density was higher compared to TRPV1− nerves. The degree of physical association between TRPV1+ nerves and intraepithelial CD45+ MHC-II+ CD11c+ cells was similar in intact and injured corneas. Stromal leukocytes co-expressed TRPV1, which was partially localized to CD68+ lysosomes, and this expression pattern was lower in injured corneas. Conclusions TRPV1+ nerves accounted for a higher proportion of corneal nerves after injury, which may provide insights into the pathophysiology of neuropathic pain following corneal trauma. The close interactions of TRPV1+ nerves with intraepithelial immune cells and expression of TRPV1 by stromal macrophages provide evidence of neuroimmune interactions in the cornea.
Collapse
Affiliation(s)
- Haihan Jiao
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia.,Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Paul G McMenamin
- Department of Anatomy & Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
20
|
Middleton SJ, Barry AM, Comini M, Li Y, Ray PR, Shiers S, Themistocleous AC, Uhelski ML, Yang X, Dougherty PM, Price TJ, Bennett DL. Studying human nociceptors: from fundamentals to clinic. Brain 2021; 144:1312-1335. [PMID: 34128530 PMCID: PMC8219361 DOI: 10.1093/brain/awab048] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain affects one in five of the general population and is the third most important cause of disability-adjusted life-years globally. Unfortunately, treatment remains inadequate due to poor efficacy and tolerability. There has been a failure in translating promising preclinical drug targets into clinic use. This reflects challenges across the whole drug development pathway, from preclinical models to trial design. Nociceptors remain an attractive therapeutic target: their sensitization makes an important contribution to many chronic pain states, they are located outside the blood-brain barrier, and they are relatively specific. The past decade has seen significant advances in the techniques available to study human nociceptors, including: the use of corneal confocal microscopy and biopsy samples to observe nociceptor morphology, the culture of human nociceptors (either from surgical or post-mortem tissue or using human induced pluripotent stem cell derived nociceptors), the application of high throughput technologies such as transcriptomics, the in vitro and in vivo electrophysiological characterization through microneurography, and the correlation with pain percepts provided by quantitative sensory testing. Genome editing in human induced pluripotent stem cell-derived nociceptors enables the interrogation of the causal role of genes in the regulation of nociceptor function. Both human and rodent nociceptors are more heterogeneous at a molecular level than previously appreciated, and while we find that there are broad similarities between human and rodent nociceptors there are also important differences involving ion channel function, expression, and cellular excitability. These technological advances have emphasized the maladaptive plastic changes occurring in human nociceptors following injury that contribute to chronic pain. Studying human nociceptors has revealed new therapeutic targets for the suppression of chronic pain and enhanced repair. Cellular models of human nociceptors have enabled the screening of small molecule and gene therapy approaches on nociceptor function, and in some cases have enabled correlation with clinical outcomes. Undoubtedly, challenges remain. Many of these techniques are difficult to implement at scale, current induced pluripotent stem cell differentiation protocols do not generate the full diversity of nociceptor populations, and we still have a relatively poor understanding of inter-individual variation in nociceptors due to factors such as age, sex, or ethnicity. We hope our ability to directly investigate human nociceptors will not only aid our understanding of the fundamental neurobiology underlying acute and chronic pain but also help bridge the translational gap.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Allison M Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Maddalena Comini
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Yan Li
- Department of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pradipta R Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Andreas C Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.,Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Megan L Uhelski
- Department of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xun Yang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Patrick M Dougherty
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
21
|
Abstract
The chronification of pain can be attributed to changes in membrane receptors and channels underlying neuronal plasticity and signal transduction largely within nociceptive neurons that initiate and maintain pathological pain states. These proteins are subject to dynamic modification by posttranslational modifications, creating a code that controls protein function in time and space. Phosphorylation is an important posttranslational modification that affects ∼30% of proteins in vivo. Increased phosphorylation of various nociceptive ion channels and of their modulators underlies sensitization of different pain states. Cyclin-dependent kinases are proline-directed serine/threonine kinases that impact various biological and cellular systems. Cyclin-dependent kinase 5 (Cdk5), one member of this kinase family, and its activators p35 and p39 are expressed in spinal nerves, dorsal root ganglia, and the dorsal horn of the spinal cord. In neuropathic pain conditions, expression and/or activity of Cdk5 is increased, implicating Cdk5 in nociception. Experimental evidence suggests that Cdk5 is regulated through its own phosphorylation, through increasing p35's interaction with Cdk5, and through cleavage of p35 into p25. This narrative review discusses the molecular mechanisms of Cdk5-mediated regulation of target proteins involved in neuropathic pain. We focus on Cdk5 substrates that have been linked to nociceptive pathways, including channels (eg, transient receptor potential cation channel and voltage-gated calcium channel), proteins involved in neurotransmitter release (eg, synaptophysin and collapsin response mediator protein 2), and receptors (eg, glutamate, purinergic, and opioid). By altering the phosphoregulatory "set point" of proteins involved in pain signaling, Cdk5 thus appears to be an attractive target for treating neuropathic pain conditions.
Collapse
|
22
|
Yu J, Du J, Fang J, Liu Y, Xiang X, Liang Y, Shao X, Fang J. The interaction between P2X3 and TRPV1 in the dorsal root ganglia of adult rats with different pathological pains. Mol Pain 2021; 17:17448069211011315. [PMID: 33906494 PMCID: PMC8108079 DOI: 10.1177/17448069211011315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peripheral inflammatory and neuropathic pain are closely related to the activation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3) and transient receptor potential vanilloid 1 (TRPV1), but the interaction between P2X3 and TRPV1 in different types of pathological pain has rarely been reported. In this study, complete Freund’s adjuvant (CFA)-induced inflammatory pain and spared nerve injury (SNI)-induced neuropathic pain models were established in adult rats. The interactions between P2X3 and TRPV1 in the dorsal root ganglion were observed by pharmacological, co-immunoprecipitation, immunofluorescence and whole-cell patch-clamp recording assays. TRPV1 was shown to promote the induction of spontaneous pain caused by P2X3 in the SNI model, but the induction of spontaneous pain behaviour by TRPV1 was not completely dependent on P2X3 in vivo. In both the CFA and SNI models, the activation of peripheral P2X3 enhanced the effect of TRPV1 on spontaneous pain, while the inhibition of peripheral TRPV1 reduced the induction of spontaneous pain by P2X3 in the CFA model. TRPV1 and P2X3 had inhibitory effects on each other in the inflammatory pain model. During neuropathic pain, P2X3 facilitated the function of TRPV1, while TRPV1 had an inhibitory effect on P2X3. These results suggest that the mutual effects of P2X3 and TRPV1 differ in cases of inflammatory and neuropathic pain in rats.
Collapse
Affiliation(s)
- Jie Yu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Acupuncture and Massage, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingjun Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuaner Xiang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
23
|
Salio C, Aimar P, Malapert P, Moqrich A, Merighi A. Neurochemical and Ultrastructural Characterization of Unmyelinated Non-peptidergic C-Nociceptors and C-Low Threshold Mechanoreceptors Projecting to Lamina II of the Mouse Spinal Cord. Cell Mol Neurobiol 2021; 41:247-262. [PMID: 32306148 PMCID: PMC11448667 DOI: 10.1007/s10571-020-00847-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
C-nociceptors (C-Ncs) and non-nociceptive C-low threshold mechanoreceptors (C-LTMRs) are two subpopulations of small unmyelinated non-peptidergic C-type neurons of the dorsal root ganglia (DRGs) with central projections displaying a specific pattern of termination in the spinal cord dorsal horn. Although these two subpopulations exist in several animals, remarkable neurochemical differences occur between mammals, particularly rat/humans from one side and mouse from the other. Mouse is widely investigated by transcriptomics. Therefore, we here studied the immunocytochemistry of murine C-type DRG neurons and their central terminals in spinal lamina II at light and electron microscopic levels. We used a panel of markers for peptidergic (CGRP), non-peptidergic (IB4), nociceptive (TRPV1), non-nociceptive (VGLUT3) C-type neurons and two strains of transgenic mice: the TAFA4Venus knock-in mouse to localize the TAFA4+ C-LTMRs, and a genetically engineered ginip mouse that allows an inducible and tissue-specific ablation of the DRG neurons expressing GINIP, a key modulator of GABABR-mediated analgesia. We confirmed that IB4 and TAFA4 did not coexist in small non-peptidergic C-type DRG neurons and separately tagged the C-Ncs and the C-LTMRs. We then showed that TRPV1 was expressed in only about 7% of the IB4+ non-peptidergic C-Ncs and their type Ia glomerular terminals within lamina II. Notably, the selective ablation of GINIP did not affect these neurons, whereas it reduced IB4 labeling in the medial part of lamina II and the density of C-LTMRs glomerular terminals to about one half throughout the entire lamina. We discuss the significance of these findings for interspecies differences and functional relevance.
Collapse
Affiliation(s)
- Chiara Salio
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Patrizia Aimar
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288, Marseille Cedex 09, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288, Marseille Cedex 09, France
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy.
| |
Collapse
|
24
|
Shiers SI, Sankaranarayanan I, Jeevakumar V, Cervantes A, Reese JC, Price TJ. Convergence of peptidergic and non-peptidergic protein markers in the human dorsal root ganglion and spinal dorsal horn. J Comp Neurol 2021; 529:2771-2788. [PMID: 33550628 DOI: 10.1002/cne.25122] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Peripheral sensory neurons are characterized by their size, molecular profiles, and physiological responses to specific stimuli. In mouse, the peptidergic and non-peptidergic subsets of nociceptors are distinct and innervate different lamina of the spinal dorsal horn. The unique molecular signature and neuroanatomical organization of these neurons supports a labeled line theory for certain types of nociceptive stimuli. However, long-standing evidence supports the polymodal nature of nociceptors in many species. We have recently shown that the peptidergic marker, CGRP, and the non-peptidergic marker, P2X3R, show largely overlapping expression at the mRNA level in human dorsal root ganglion (DRG). Herein, our aim was to assess the protein distribution of nociceptor markers, including their central projections, in the human DRG and spinal cord. Using DRGs obtained from organ donors, we observed that CGRP and P2X3R were co-expressed by approximately 33% of human DRG neurons and TrpV1 was expressed in ~60% of human DRG neurons. In the dorsal spinal cord, CGRP, P2X3R, TrpV1, and Nav1.7 proteins stained the entirety of lamina 1-2, with only P2XR3 showing a gradient of expression. This was confirmed by measuring the size of the substantia gelatinosa using Hematoxylin and Eosin staining of adjacent sections. Our findings are consistent with the known polymodal nature of most primate nociceptors and indicate that the central projection patterns of nociceptors are different between mice and humans. Elucidating how human nociceptors connect to subsets of dorsal horn neurons will be important for understanding the physiological consequences of these species differences.
Collapse
Affiliation(s)
- Stephanie I Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Ishwarya Sankaranarayanan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Vivek Jeevakumar
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | | | | | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
25
|
Kawashima M, Yajima T, Tachiya D, Kokubun S, Ichikawa H, Sato T. Parasympathetic neurons in the human submandibular ganglion. Tissue Cell 2021; 70:101496. [PMID: 33517097 DOI: 10.1016/j.tice.2021.101496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
The submandibular ganglion (SMG) contains parasympathetic neurons which innervate the submandibular gland. In this study, immunohistochemistry for vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), choline acetyltransferase (ChAT), dopamine β-hydroxylase (DBH), tyrosine hydroxylase (TH), and the transient receptor potential cation channel subfamily V members 1 (TRPV1) and 2 (TRPV2) was performed on the human SMG. In the SMG, 17.5 % and 8.9 % of parasympathetic neurons were immunoreactive for VIP and TRPV2, respectively. SMG neurons mostly contained ChAT- and DBH-immunoreactivity. In addition, subpopulations of SMG neurons were surrounded by VIP (69.6 %)-, TRPV2 (54.4 %)- and DBH (9.5 %)-immunoreactive (-ir) nerve fibers. SMG neurons with pericellular VIP- and TRPV2-ir nerve fibers were significantly larger than VIP- and TRPV2-ir SMG neurons, respectively. Other neurochemical substances were rare in the SMG. In the human submandibular gland, TRPV1- and TRPV2-ir nerve fiber profiles were seen around blood vessels. Double fluorescence method also demonstrated that TRPV2-ir nerve fiber profiles were located around myoepithelial and acinar cells in the submandibular gland. VIP and TRPV2 are probably expressed by both pre- and post-ganglionic neurons innervating the submandibular and sublingual glands. VIP, DBH and TRPV2 may have functions about regulation of salivary components in the salivary glands and neuronal activity in the SMG.
Collapse
Affiliation(s)
- Mutsuko Kawashima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Daisuke Tachiya
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Souichi Kokubun
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
26
|
Toschi A, Galiazzo G, Piva A, Tagliavia C, Mazzuoli-Weber G, Chiocchetti R, Grilli E. Cannabinoid and Cannabinoid-Related Receptors in the Myenteric Plexus of the Porcine Ileum. Animals (Basel) 2021; 11:263. [PMID: 33494452 PMCID: PMC7912003 DOI: 10.3390/ani11020263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
An important piece of evidence has shown that molecules acting on cannabinoid receptors influence gastrointestinal motility and induce beneficial effects on gastrointestinal inflammation and visceral pain. The aim of this investigation was to immunohistochemically localize the distribution of canonical cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) and the cannabinoid-related receptors transient potential vanilloid receptor 1 (TRPV1), transient potential ankyrin receptor 1 (TRPA1), and serotonin receptor 5-HT1a (5-HT1aR) in the myenteric plexus (MP) of pig ileum. CB1R, TRPV1, TRPA1, and 5-HT1aR were expressed, with different intensities in the cytoplasm of MP neurons. For each receptor, the proportions of the immunoreactive neurons were evaluated using the anti-HuC/HuD antibody. These receptors were also localized on nerve fibers (CB1R, TRPA1), smooth muscle cells of tunica muscularis (CB1R, 5-HT1aR), and endothelial cells of blood vessels (TRPV1, TRPA1, 5-HT1aR). The nerve varicosities were also found to be immunoreactive for both TRPV1 and 5-HT1aR. No immunoreactivity was documented for CB2R. Cannabinoid and cannabinoid-related receptors herein investigated showed a wide distribution in the enteric neurons and nerve fibers of the pig MP. These results could provide an anatomical basis for additional research, supporting the therapeutic use of cannabinoid receptor agonists in relieving motility disorders in porcine enteropathies.
Collapse
Affiliation(s)
- Andrea Toschi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
| | - Andrea Piva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
- R&D Division, Vetagro S.p.A., via Porro 2, 42124 Reggio Emilia, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
| | - Ester Grilli
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (A.T.); (G.G.); (A.P.); (C.T.); (E.G.)
- R&D Division, Vetagro, Inc., 116 W. Jackson Blvd., Suite #320, Chicago, IL 60604, USA
| |
Collapse
|
27
|
Hasni MS, Chaudhary M, Mushtaq MH, Durrani AZ, Rashid HB, Ali M, Ahmed M, Sattar H, Aqib AI, Zhang H. Active Surveillance and Risk Assessment of Avian Influenza Virus Subtype H9 from Non-Vaccinated Commercial Broilers of Pakistan. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- MS Hasni
- University of Veterinary and Animal Sciences, Pakistan
| | - M Chaudhary
- University of Veterinary and Animal Sciences, Pakistan
| | - MH Mushtaq
- University of Veterinary and Animal Sciences, Pakistan
| | - AZ Durrani
- University of Veterinary and Animal Sciences, Pakistan
| | - HB Rashid
- University of Veterinary and Animal Sciences, Pakistan
| | - M Ali
- Livestock and Dairy Development Department, Pakistan
| | - M Ahmed
- Livestock and Dairy Development Department, Pakistan
| | - H Sattar
- University of Veterinary and Animal Sciences, Pakistan
| | - AI Aqib
- Cholistan University of Veterinary and Animal Sciences, Pakistan
| | - H Zhang
- Agriculture University, China
| |
Collapse
|
28
|
Ragozzino FJ, Arnold RA, Kowalski CW, Savenkova MI, Karatsoreos IN, Peters JH. Corticosterone inhibits vagal afferent glutamate release in the nucleus of the solitary tract via retrograde endocannabinoid signaling. Am J Physiol Cell Physiol 2020; 319:C1097-C1106. [PMID: 32966126 DOI: 10.1152/ajpcell.00190.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circulating blood glucocorticoid levels are dynamic and responsive to stimuli that impact autonomic function. In the brain stem, vagal afferent terminals release the excitatory neurotransmitter glutamate to neurons in the nucleus of the solitary tract (NTS). Vagal afferents integrate direct visceral signals and circulating hormones with ongoing NTS activity to control autonomic function and behavior. Here, we investigated the effects of corticosterone (CORT) on glutamate signaling in the NTS using patch-clamp electrophysiology on brain stem slices containing the NTS and central afferent terminals from male C57BL/6 mice. We found that CORT rapidly decreased both action potential-evoked and spontaneous glutamate signaling. The effects of CORT were phenocopied by dexamethasone and blocked by mifepristone, consistent with glucocorticoid receptor (GR)-mediated signaling. While mRNA for GR was present in both the NTS and vagal afferent neurons, selective intracellular quenching of G protein signaling in postsynaptic NTS neurons eliminated the effects of CORT. We then investigated the contribution of retrograde endocannabinoid signaling, which has been reported to transduce nongenomic GR effects. Pharmacological or genetic elimination of the cannabinoid type 1 receptor signaling blocked CORT suppression of glutamate release. Together, our results detail a mechanism, whereby the NTS integrates endocrine CORT signals with fast neurotransmission to control autonomic reflex pathways.
Collapse
Affiliation(s)
- Forrest J Ragozzino
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Rachel A Arnold
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Cody W Kowalski
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Marina I Savenkova
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington.,Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - James H Peters
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
29
|
Juárez-Contreras R, Méndez-Reséndiz KA, Rosenbaum T, González-Ramírez R, Morales-Lázaro SL. TRPV1 Channel: A Noxious Signal Transducer That Affects Mitochondrial Function. Int J Mol Sci 2020; 21:ijms21238882. [PMID: 33255148 PMCID: PMC7734572 DOI: 10.3390/ijms21238882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022] Open
Abstract
The Transient Receptor Vanilloid 1 (TRPV1) or capsaicin receptor is a nonselective cation channel, which is abundantly expressed in nociceptors. This channel is an important transducer of several noxious stimuli, having a pivotal role in pain development. Several TRPV1 studies have focused on understanding its structure and function, as well as on the identification of compounds that regulate its activity. The intracellular roles of these channels have also been explored, highlighting TRPV1′s actions in the homeostasis of Ca2+ in organelles such as the mitochondria. These studies have evidenced how the activation of TRPV1 affects mitochondrial functions and how this organelle can regulate TRPV1-mediated nociception. The close relationship between this channel and mitochondria has been determined in neuronal and non-neuronal cells, demonstrating that TRPV1 activation strongly impacts on cell physiology. This review focuses on describing experimental evidence showing that TRPV1 influences mitochondrial function.
Collapse
Affiliation(s)
- Rebeca Juárez-Contreras
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Karina Angélica Méndez-Reséndiz
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Tamara Rosenbaum
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, “Dr. Manuel Gea González” General Hospital, Mexico City 14080, Mexico;
| | - Sara Luz Morales-Lázaro
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
- Correspondence:
| |
Collapse
|
30
|
Hu S, Huang Y, Chen Y, Zhou R, Yang X, Zou Y, Gao D, Huang H, Yu D. Diosmetin reduces bone loss and osteoclastogenesis by regulating the expression of TRPV1 in osteoporosis rats. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1312. [PMID: 33209892 PMCID: PMC7661890 DOI: 10.21037/atm-20-6309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Osteoporosis is a systemic skeletal disorder and occurs frequently in postmenopausal women and older men. This study aimed to examine whether diosmetin (DIO) can relieve estrogen deficiency—induced osteoporosis and to explore the underlying mechanisms of this potential effect. Methods Forty-nine Sprague-Dawley (SD) rats were divided into seven groups. Six groups underwent bilateral ovariectomy (OVX), while the sham group underwent ovarian exposure surgery. DIO and evodiamine were administered 3 days before surgery, and then subcutaneously every 3 days for 3 months in the following fashion: group I, DIO (100 mg/kg); group II, OVX; group III, OVX + DIO (50 mg/kg); group IV, OVX + DIO (100 mg/kg); group V, OVX + evodiamine (10 mg/kg) group; group VI, OVX + DIO (100 mg/kg) + evodiamine (10 mg/kg) group. Bone histopathological damage, bone loss, osteoclast production, and the expression level of transient receptor potential vanilloid 1 (TRPV1) were detected. Results Compared with the sham group, the expression of bone resorption–related genes, osteoclast-associated receptor (OSCAR) (1.00%±0.16% versus 4.5%±0.28%, **, P<0.01) and tartrate-resistant acid phosphatase (TRAP) (2.0%±0.6% versus 18.00±1.2%, ***, P<0.001), was increased significantly. The protein level of osteogenic marker proteins, osterix (Osx) (1.0%±0.1% versus 0.03%±0.01%, **, P<0.01) and type 1 collagen (COL1A1) (1.0%±0.13% versus 0.13%±0.05%, **, P<0.01) was decreased significantly with the increase of TRPV1 (1.0%±0.15% versus 2.89%±0.28%, **, P<0.01) protein level. Notably, DIO can alleviate some abnormal symptoms related to osteoporosis. Conclusions DIO can relieve typical osteoporosis symptoms in an OVX osteoporosis rat model. The underlying mechanism may be associated with the downregulation of TRPV1.
Collapse
Affiliation(s)
- Song Hu
- Department of Orthopedics, West China-Guang'an Hospital, Sichuan University, Guang'an, China
| | - Youyi Huang
- Medical Department of Nanchang University, Nanchang, China
| | - Yong Chen
- Department of Orthopedics, West China-Guang'an Hospital, Sichuan University, Guang'an, China
| | - Renyi Zhou
- Department of Orthopedics, First hospital of China Medical University, Shenyang, China
| | - Xiaozhong Yang
- Department of Orthopedics, West China-Guang'an Hospital, Sichuan University, Guang'an, China
| | - Yi Zou
- Department of Orthopedics, West China-Guang'an Hospital, Sichuan University, Guang'an, China
| | - Daxin Gao
- Department of Orthopedics, West China-Guang'an Hospital, Sichuan University, Guang'an, China
| | - Hua Huang
- Department of Orthopedics, West China-Guang'an Hospital, Sichuan University, Guang'an, China
| | - Dongming Yu
- Department of Orthopedics, West China-Guang'an Hospital, Sichuan University, Guang'an, China
| |
Collapse
|
31
|
Inoue K, Tsuda M. Nociceptive signaling mediated by P2X3, P2X4 and P2X7 receptors. Biochem Pharmacol 2020; 187:114309. [PMID: 33130129 DOI: 10.1016/j.bcp.2020.114309] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Chronic pain is a debilitating condition that often occurs following peripheral tissue inflammation and nerve injury. This pain, especially neuropathic pain, is a significant clinical problem because of the ineffectiveness of clinically available drugs. Since Burnstock proposed new roles of nucleotides as neurotransmitters, the roles of extracellular ATP and P2 receptors (P2Rs) in pain signaling have been extensively studied, and ATP-P2R signaling has subsequently received much attention as it can provide clues toward elucidating the mechanisms underlying chronic pain and serve as a potential therapeutic target. This review summarizes the literature regarding the role of ATP signaling via P2X3Rs (as well as P2X2/3Rs) in primary afferent neurons and via P2X4Rs and P2X7Rs in spinal cord microglia in chronic pain, and discusses their respective therapeutic potentials.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan; Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan
| |
Collapse
|
32
|
Herpes Simplex Virus 2 Counteracts Neurite Outgrowth Repulsion during Infection in a Nerve Growth Factor-Dependent Manner. J Virol 2020; 94:JVI.01370-20. [PMID: 32669337 PMCID: PMC7527038 DOI: 10.1128/jvi.01370-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration. During primary infection, herpes simplex virus 2 (HSV-2) replicates in epithelial cells and enters neurites to infect neurons of the peripheral nervous system. Growth factors and attractive and repulsive directional cues influence neurite outgrowth and neuronal survival. We hypothesized that HSV-2 modulates the activity of such cues to increase neurite outgrowth. To test this hypothesis, we exposed sensory neurons to nerve growth factor (NGF) and mock- or HSV-2-infected HEK-293T cells, since they express repellents of neurite outgrowth. We show that HEK-293T cells secrete factors that inhibit neurite outgrowth, while infection with HSV-2 strains MS and 333 reduces this repelling phenotype, increasing neurite numbers. The HSV-2-mediated restoration of neurite outgrowth required the activity of NGF. In the absence of infection, however, NGF did not overcome the repulsion mediated by HEK-293T cells. We previously showed that recombinant, soluble glycoprotein G of HSV-2 (rSgG2) binds and enhances NGF activity, increasing neurite outgrowth. However, the effect of gG2 during infection has not been investigated. Therefore, we addressed whether gG2 contributes to overcoming neurite outgrowth repulsion. To do so, we generated viruses lacking gG2 expression and complemented them by exogenous expression of gG2. Overall, our results suggest that HSV-2 infection of nonneuronal cells reduces their repelling effect on neurite outgrowth in an NGF-dependent manner. gG2 contributed to this phenotype, but it was not the only factor. The enhanced neurite outgrowth may facilitate HSV-2 spread from epithelial cells into neurons expressing NGF receptors and increase HSV-2-mediated pathogenesis. IMPORTANCE Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration.
Collapse
|
33
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Chemosensory Ion Channels in Peripheral Swallowing-Related Regions for the Management of Oropharyngeal Dysphagia. Int J Mol Sci 2020; 21:E6214. [PMID: 32867366 PMCID: PMC7503421 DOI: 10.3390/ijms21176214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Oropharyngeal dysphagia, or difficulty in swallowing, is a major health problem that can lead to serious complications, such as pulmonary aspiration, malnutrition, dehydration, and pneumonia. The current clinical management of oropharyngeal dysphagia mainly focuses on compensatory strategies and swallowing exercises/maneuvers; however, studies have suggested their limited effectiveness for recovering swallowing physiology and for promoting neuroplasticity in swallowing-related neuronal networks. Several new and innovative strategies based on neurostimulation in peripheral and cortical swallowing-related regions have been investigated, and appear promising for the management of oropharyngeal dysphagia. The peripheral chemical neurostimulation strategy is one of the innovative strategies, and targets chemosensory ion channels expressed in peripheral swallowing-related regions. A considerable number of animal and human studies, including randomized clinical trials in patients with oropharyngeal dysphagia, have reported improvements in the efficacy, safety, and physiology of swallowing using this strategy. There is also evidence that neuroplasticity is promoted in swallowing-related neuronal networks with this strategy. The targeting of chemosensory ion channels in peripheral swallowing-related regions may therefore be a promising pharmacological treatment strategy for the management of oropharyngeal dysphagia. In this review, we focus on this strategy, including its possible neurophysiological and molecular mechanisms.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| |
Collapse
|
34
|
Differential expression of Na +/K +/Cl - cotransporter 1 in neurons and glial cells within the superficial spinal dorsal horn of rodents. Sci Rep 2020; 10:11715. [PMID: 32678166 PMCID: PMC7367302 DOI: 10.1038/s41598-020-68638-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
Although convincing experimental evidence indicates that Na+/K+/Cl- cotransporter 1 (NKCC1) is involved in spinal nociceptive information processing and in the generation of hyperalgesia and allodynia in chronic pain states, the cellular distribution of NKCC1 in the superficial spinal dorsal horn is still poorly understood. Because this important piece of knowledge is missing, the effect of NKCC1 on pain processing is still open to conflicting interpretations. In this study, to provide the missing experimental data, we investigated the cellular distribution of NKCC1 in the superficial spinal dorsal horn by immunohistochemical methods. We demonstrated for the first time that almost all spinal axon terminals of peptidergic nociceptive primary afferents express NKCC1. In contrast, virtually all spinal axon terminals of nonpeptidergic nociceptive primary afferents were negative for NKCC1. Data on the colocalization of NKCC1 with axonal and glial markers indicated that it is almost exclusively expressed by axon terminals and glial cells in laminae I-IIo. In lamina IIi, however, we observed a strong immunostaining for NKCC1 also in the dendrites and cell bodies of PV-containing inhibitory neurons and a weak staining in PKCγ-containing excitatory neurons. Our results facilitate further thinking about the role of NKCC1 in spinal pain processing.
Collapse
|
35
|
Beck J, Kressel M. FERM domain-containing protein 6 identifies a subpopulation of varicose nerve fibers in different vertebrate species. Cell Tissue Res 2020; 381:13-24. [PMID: 32200438 PMCID: PMC7306050 DOI: 10.1007/s00441-020-03189-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/16/2020] [Indexed: 12/29/2022]
Abstract
FERM domain-containing protein 6 (FRMD6) is a member of the FERM protein superfamily, which is evolutionary highly conserved and has recently been identified as an upstream regulator of the conserved growth-promoting Hippo signaling pathway. In clinical studies, the FRMD6 gene is correlated with high significance to Alzheimer's disease and cognitive impairment implicating a wider role of this protein in the nervous system. Scare data are available on the localization of endogenous FRMD6 in neural tissues. Using a FRMD6-directed antiserum, we detected specific immunoreactivity in varicose nerve fibers in the rat central and peripheral nervous system. FRMD6-immunoreactive (-ir) neurons were found in the sensory ganglia of cranial nerves, which were marked by a pool of labeled cytoplasmic granules. Cross-species comparative studies detected a morphologically identical fiber population and a comparable fiber distribution in tissues from xenopus and human cranial nerves and ganglia. In the spinal cord, FRMD6-ir was detectable in the terminal endings of primary afferent neurons containing substance P (SP). In the rat diencephalon, FRMD6-ir was co-localized with either SP- or arginine vasopressin-positive fibers in Broca's diagonal band and the lateral septum. Dense fiber terminals containing both FRMD6-ir and growth hormone-releasing hormone were found in the median eminence. The intimate association of FRMD6 with secretory vesicles was investigated in vitro. Induction of exocytotic vesicles in cultured cells by ectopic expression of the SP precursor molecule preprotachykinin A led to a redistribution and co-localization of endogenous FRMD6 with secretory granules closely mimicking the observations in tissues.
Collapse
Affiliation(s)
- Josefa Beck
- Institute of Anatomy and Cell Biology, University of Erlangen, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - Michael Kressel
- Institute of Anatomy and Cell Biology, University of Erlangen, Krankenhausstr. 9, 91054, Erlangen, Germany.
| |
Collapse
|
36
|
Krajewski JL. P2X3-Containing Receptors as Targets for the Treatment of Chronic Pain. Neurotherapeutics 2020; 17:826-838. [PMID: 33009633 PMCID: PMC7609758 DOI: 10.1007/s13311-020-00934-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Current therapies for the treatment of chronic pain provide inadequate relief for millions of suffering patients, demonstrating the need for better therapies that will treat pain effectively and improve the quality of patient's lives. Better understanding of the mechanisms that mediate chronic pain is critical for developing drugs with improved clinical outcomes. Adenosine triphosphate (ATP) is a key modulator in nociceptive pathways. Release of ATP from injured tissue or sympathetic efferents has sensitizing effects on sensory neurons in the periphery, and presynaptic vesicular release of ATP from the central terminals can increase glutamate release thereby potentiating downstream central sensitization mechanisms, a condition thought to underlie many chronic pain conditions. The purinergic receptors on sensory nerves primarily responsible for ATP signaling are P2X3 and P2X2/3. Selective knockdown experiments, or inhibition with small molecules, demonstrate P2X3-containing receptors are key targets to modulate nociceptive signals. Preclinical studies have identified that P2X3-containing receptors are critical for sensory transduction for bladder function, and clinical studies have shown promise in treatment for bladder pain and pain associated with osteoarthritis. Further clinical characterization of antagonists to P2X3-containing receptors may lead to improved therapies in the treatment of chronic pain.
Collapse
|
37
|
Paclitaxel Induces Upregulation of Transient Receptor Potential Vanilloid 1 Expression in the Rat Spinal Cord. Int J Mol Sci 2020; 21:ijms21124341. [PMID: 32570786 PMCID: PMC7352737 DOI: 10.3390/ijms21124341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Painful peripheral neuropathy is a common adverse effect of paclitaxel (PTX) treatment. To analyze the contribution of transient receptor potential vanilloid 1 (TRPV1) in the development of PTX-induced mechanical allodynia/hyperalgesia and thermal hyperalgesia, TRPV1 expression in the rat spinal cord was analyzed after intraperitoneal administration of 2 and 4 mg/kg PTX. PTX treatment increased the expression of TRPV1 protein in the spinal cord. Immunohistochemistry showed that PTX (4 mg/kg) treatment increased TRPV1 protein expression in the superficial layers of the spinal dorsal horn 14 days after treatment. Behavioral assessment using the paw withdrawal response showed that PTX-induced mechanical allodynia/hyperalgesia and thermal hyperalgesia after 14 days was significantly inhibited by oral or intrathecal administration of the TRPV1 antagonist AMG9810. We found that intrathecal administration of small interfering RNA (siRNA) to knock down TRPV1 protein expression in the spinal cord significantly decreased PTX-induced mechanical allodynia/hyperalgesia and thermal hyperalgesia. Together, these results demonstrate that TRPV1 receptor expression in spinal cord contributes, at least in part, to the development of PTX-induced painful peripheral neuropathy. TRPV1 receptor antagonists may be useful in the prevention and treatment of PTX-induced peripheral neuropathic pain.
Collapse
|
38
|
Adelman PC, Baumbauer KM, Friedman R, Shah M, Wright M, Young E, Jankowski MP, Albers KM, Koerber HR. Single-cell q-PCR derived expression profiles of identified sensory neurons. Mol Pain 2020; 15:1744806919884496. [PMID: 31588843 PMCID: PMC6820183 DOI: 10.1177/1744806919884496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sensory neurons are chemically and functionally heterogeneous, and this heterogeneity has been examined extensively over the last several decades. These studies have employed a variety of different methodologies, including anatomical, electrophysiological, and molecular approaches. Recent studies using next-generation sequencing techniques have examined the transcriptome of single sensory neurons. Although these reports have provided a wealth of exciting new information on the heterogeneity of sensory neurons, correlation with functional types is lacking. Here, we employed retrograde tracing of cutaneous and muscle afferents to examine the variety of mRNA expression profiles of individual, target-specific sensory neurons. In addition, we used an ex vivo skin/nerve/dorsal root ganglion/spinal cord preparation to record and characterize the functional response properties of individual cutaneous sensory neurons that were then intracellularly labeled with fluorescent dyes, recovered from dissociated cultures, and analyzed for gene expression. We found that by using single-cell quantitative polymerase chain reaction techniques and a set of 28 genes, we can identify transcriptionally distinct groups. We have also used calcium imaging and single-cell quantitative polymerase chain reaction to determine the correlation between levels of mRNA expression and functional protein expression and how functional properties correlated with the different transcriptional groups. These studies show that although transcriptomics does map to functional types, within any one functional subgroup, there are highly variable patterns of gene expression. Thus, studies that rely on the expression pattern of one or a few genes as a stand in for physiological experiments, runs a high risk of data misinterpretation with respect to function.
Collapse
Affiliation(s)
- Peter C Adelman
- Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, USA
| | - Kyle M Baumbauer
- Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, USA
| | - Robert Friedman
- Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, USA
| | - Mansi Shah
- Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, USA
| | - Margaret Wright
- Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, USA
| | - Erin Young
- Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, USA
| | - Michael P Jankowski
- Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, USA
| | - Kathryn M Albers
- Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, USA
| | - H Richard Koerber
- Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, USA
| |
Collapse
|
39
|
Zhong B, Ma S, Wang DH. Ablation of TRPV1 Elevates Nocturnal Blood Pressure in Western Diet-fed Mice. Curr Hypertens Rev 2020; 15:144-153. [PMID: 30381083 PMCID: PMC6635649 DOI: 10.2174/1573402114666181031141840] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/28/2022]
Abstract
Background: This study tested the hypothesis that genetically ablation of transient receptor potential vanilloid type 1 (TRPV1) exacerbates impairment of baroreflex in mice fed a western diet (WD) and leads to distinct diurnal and nocturnal blood pressure patterns. Methods: TRPV1 gene knockout (TRPV1-/-) and wild-type (WT) mice were given a WD or normal diet (CON) for 4 months. Results: Capsaicin, a selective TRPV1 agonist, increased ipsilateral afferent renal nerve activity in WT but not TRPV1-/- mice. The sensitivity of renal sympathetic nerve activity and heart rate responses to baroreflex were reduced in TRPV1-/--CON and WT-WD and further decreased in TRPV1-/--WD compared to the WT-CON group. Urinary norepinephrine and serum insulin and leptin at day and night were increased in WT-WD and TRPV1-/--WD, with further elevation at night in TRPV1-/--WD. WD intake increased leptin, IL-6, and TNF-α in adipose tissue, and TNF-α antagonist III, R-7050, decreased leptin in TRPV1-/--WD. The urinary albumin level was higher in TRPV1-/--WD than WT-WD. Blood pressure was not dif-ferent during daytime among all groups, but increased at night in the TRPV1-/--WD group compared with other groups. Conclusions: TRPV1 ablation leads to elevated nocturnal but not diurnal blood pressure, which is probably attributed to fur-ther enhancement of sympathetic drives at night.
Collapse
Affiliation(s)
- Beihua Zhong
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan MI 48824, United States
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan MI 48824, United States
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan MI 48824, United States.,Neuroscience Program, Michigan State University, East Lansing, Michigan MI 48824, United States.,Cell & Molecular Biology Program, Michigan State University, East Lansing, Michigan MI 48824, United States
| |
Collapse
|
40
|
Unger MD, Pleticha J, Steinauer J, Kanwar R, Diehn F, LaVallee KT, Banck MS, Jones B, Yaksh TL, Maus TP, Beutler AS. Unilateral Epidural Targeting of Resiniferatoxin Induces Bilateral Neurolysis of Spinal Nociceptive Afferents. PAIN MEDICINE 2020; 20:897-906. [PMID: 30590777 DOI: 10.1093/pm/pny276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE This study modeled image-guided epidural drug delivery to test whether intraprocedural distribution of pre-injected contrast reliably predicts the neuroanatomical reach of resiniferatoxin-mediated nociceptive neurolysis. METHODS Swine (N = 12) received unilateral L4-S2 computed tomography fluoroscopy injections by a blinded neuroradiologist; 0.25 mL of contrast was pre-injected to confirm dorsal periganglionic targeting, followed by a 0.5-mL injection of 5 µg of resiniferatoxin/Tween80 or vehicle control. Epidural contrast distribution was graded according to maximum medial excursion. Spinal cord substance P immunostaining quantified the magnitude and anatomical range of resiniferatoxin activity. RESULTS Periganglionic injection was well tolerated by all animals without development of neurological deficits or other complications. Swine were a suitable model of human clinical spinal intervention. The transforaminal approach was used at all L4 and 50% of L5 segments; the remaining segments were approached by the interlaminar route. All injections were successful with unilateral contrast distribution for all resiniferatoxin injections (N = 28). Immunohistochemistry showed bilateral ablation of substance P+ fibers entering the spinal cord of all resiniferatoxin-treated segments. The intensity of substance P immunostaining in treated segments fell below the lower 99% confidence interval of controls, defining the knockout phenotype. Substance P knockout occurred over a narrow range and was uncorrelated to the anatomical distribution of pre-injected contrast. CONCLUSIONS Periganglionic resiniferatoxin/Tween80 induced bilateral ablation of spinal cord substance P despite exclusively unilateral targeting. These data suggest that the location of pre-injected contrast is an imperfect surrogate for the neuroanatomical range of drugs delivered to the dorsal epidural compartment that may fail to predict contralateral drug effects.
Collapse
Affiliation(s)
- Mark D Unger
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Josef Pleticha
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joanne Steinauer
- Department of Anesthesiology, University of California, San Diego, California, USA
| | - Rahul Kanwar
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Felix Diehn
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katherine T LaVallee
- Department of Comparative Medicine, Mayo Clinic, Comparative Medicine, Rochester, Minnesota, USA
| | - Michaela S Banck
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bryan Jones
- Sorrento Therapeutics, Sorrento Pharmaceuticals, San Diego, California, USA.,Present affiliation: Sollis Therapeutics, Columbus, Ohio, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, California, USA
| | - Timothy P Maus
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andreas S Beutler
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
41
|
Kuai CP, Ju LJ, Hu PP, Huang F. Corydalis saxicola Alkaloids Attenuate Cisplatin-Induced Neuropathic Pain by Reducing Loss of IENF and Blocking TRPV1 Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:407-428. [PMID: 32138533 DOI: 10.1142/s0192415x20500214] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication of cisplatin, which is characterized by intolerable paresthesia, burning, and hyperalgesia, and severely impacts the life quality of patients. However, no clearly potent drug has been found for clinical medication due to its undefined mechanism. Corydalis Saxicola Bunting, a traditional Chinese medicine, has been proven to work well in anti-inflammation, blood circulations improvement, hemostasis, and analgesia. This study was designed to observe the effects of Corydalis saxicola Bunting total alkaloids (CSBTA) on cisplatin-induced neuropathic pain and to explore its potential mechanisms. In this study, the rats received intraperitoneal injection of 2mg/kg cisplatin twice a week for five weeks. Meanwhile, oral administration of low (30mg/kg)-, medium (60mg/kg)- and high (120mg/kg)-dose CSBTA were given daily for five weeks. By using Von-frey hair, heat radiant and -80∘C cold acetone, we found that CSBTA could obviously relieve cisplatin-induced mechanical, heat, and cold hyperalgesia. It has been verified that cisplatin-induced peripheral neuropathy is related to intraepidermal nerve fibers loss and activation of inflammation downstream. Our research found that Tumor necrosis factor-alpha (TNF-α), Interleukin-1beta (IL-1β), and Prostaglandin E2 (PGE2) were significantly increased by 10 intraperitoneal injections of cisplatin, and such pro-inflammation cytokines could be reduced via CSBTA administration. Besides, in the cisplatin model group, the neuronal structures of dorsal root ganglia (DRG) were severely damaged and the loss of intraepidermal nerve fibers occurred; but in the CSBTA administration groups, all above pathological changes were improved. Moreover, CSBTA could normalize the overexpression levels of p-p38 and Transient receptor potential vanilloid receptor (TRPV1) induced by cisplatin in DRG, trigeminal ganglion (TG), spinal cord, and foot of rats. In summary, we considered that CSBTA exerted its therapeutic effects by ameliorating neuronal damages, improving intraepidermal nerve fiber (IENF) loss, and inhibiting inflammation-induced p38 phosphorylation to block TRPV1 activation. These findings were the first to confirm the analgesic effect of CSBTA on CIPN and suggested a novel strategy for treating CIPN in clinic.
Collapse
Affiliation(s)
- Cui-Ping Kuai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China
| | - Lin-Jie Ju
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China
| | - Pei-Pei Hu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China
| | - Fang Huang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
42
|
Goodwin G, Bove GM, Dayment B, Dilley A. Characterizing the Mechanical Properties of Ectopic Axonal Receptive Fields in Inflamed Nerves and Following Axonal Transport Disruption. Neuroscience 2020; 429:10-22. [PMID: 31874241 DOI: 10.1016/j.neuroscience.2019.11.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/11/2019] [Accepted: 11/26/2019] [Indexed: 11/29/2022]
Abstract
Radiating pain is a significant feature of chronic musculoskeletal pain conditions such as radiculopathies, repetitive motion disorders and whiplash associated disorders. It is reported to be caused by the development of mechanically-sensitive ectopic receptive fields along intact nociceptor axons at sites of peripheral neuroinflammation (neuritis). Since inflammation disrupts axonal transport, we have hypothesised that anterogradely-transported mechanically sensitive ion channels accumulate at the site of disruption, which leads to axonal mechanical sensitivity (AMS). In this study, we have characterised the mechanical properties of the ectopic axonal receptive fields in the rat and have examined the contribution of mechanically sensitive ion channels to the development of AMS following neuritis and vinblastine-induced axonal transport disruption. In both models, there was a positive force-discharge relationship and mechanical thresholds were low (∼9 mN/mm2). All responses were attenuated by Ruthenium Red and FM1-43, which block mechanically sensitive ion channels. In both models, the transport of TRPV1 and TRPA1 was disrupted, and intraneural injection of agonists of these channels caused responses in neurons with AMS following neuritis but not vinblastine treatment. In summary, these data support a role for mechanically sensitive ion channels in the development of AMS.
Collapse
Affiliation(s)
- George Goodwin
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | | | - Bryony Dayment
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Andrew Dilley
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK.
| |
Collapse
|
43
|
PKCγ interneurons, a gateway to pathological pain in the dorsal horn. J Neural Transm (Vienna) 2020; 127:527-540. [PMID: 32108249 DOI: 10.1007/s00702-020-02162-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022]
Abstract
Chronic pain is a frequent and disabling condition that is significantly maintained by central sensitization, which results in pathological amplification of responses to noxious and innocuous stimuli. As such, mechanical allodynia, or pain in response to a tactile stimulus that does not normally provoke pain, is a cardinal feature of chronic pain. Recent evidence suggests that the dorsal horn excitatory interneurons that express the γ isoform of protein kinase C (PKCγ) play a critical role in the mechanism of mechanical allodynia during chronic pain. Here, we review this evidence as well as the main aspects of the development, anatomy, electrophysiology, inputs, outputs, and pathophysiology of dorsal horn PKCγ neurons. Primary afferent high-threshold neurons transmit the nociceptive message to the dorsal horn of the spinal cord and trigeminal system where it activates second-order nociceptive neurons relaying the information to the brain. In physiological conditions, low-threshold mechanoreceptor inputs activate inhibitory interneurons in the dorsal horn, which may control activation of second-order nociceptive neurons. During chronic pain, low-threshold mechanoreceptor inputs now activate PKCγ neurons that forward the message to second-order nociceptive neurons, turning thus tactile inputs into pain. Several mechanisms may contribute to opening this gate, including disinhibition, activation of local astrocytes, release of diffusible factors such as reactive oxygen species, and alteration of the descending serotoninergic control on PKCγ neurons through 5-HT2A serotonin receptors. Dorsal horn PKCγ neurons, therefore, appear as a relevant therapeutic target to alleviate mechanical allodynia during chronic pain.
Collapse
|
44
|
Atsumi K, Yajima T, Tachiya D, Kokubun S, Shoji N, Sasano T, Ichikawa H, Sato T. Sensory neurons in the human jugular ganglion. Tissue Cell 2020; 64:101344. [PMID: 32473709 DOI: 10.1016/j.tice.2020.101344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
The jugular ganglion (JG) contains sensory neurons of the vagus nerve which innervate somatic and visceral structures in cranial and cervical regions. In this study, the number of sensory neurons in the human JG was investigated. And, the morphology of sensory neurons in the human JG and nodose ganglion (NG) was compared. The estimated number of JG neurons was 2721.8-9301.1 (average number of sensory neurons ± S.D. = 7975.1 ± 3312.8). There was no significant difference in sizes of the neuronal cell body and nucleus within the JG (cell body, 1128.8 ± 99.7 μ m2; nucleus, 127.7 ± 20.8 μ m2) and NG (cell body, 963.8 ± 225.7 μ m2; nucleus, 123.2 ± 32.3 μ m2). These findings indicate that most of sensory neurons show the similar morphology in the JG and NG. Our immunohistochemical method also demonstrated the distribution of ion channels, neurotransmitter agents and calcium-binding proteins in the human JG. Numerous JG neurons were immunoreactive for transient receptor potential cation channel subfamily V member 1 (TRPV1, mean ± SD = 19.9 ± 11.5 %) and calcitonin gene-related peptide (CGRP, 28.4 ± 6.7 %). A moderate number of JG neurons contained TRPV2 (12.0 ± 4.7 %), substance P (SP, 15.7 ± 6.9 %) and secreted protein, acidic and rich in cysteine-like 1 (SPARCL1, 14.6 ± 7.4 %). A few JG neurons had vesicular glutamate transporter 2 (VGLUT2, 5.6 ± 2.9 %) and parvalbumin (PV, 2.3 ± 1.4 %). SP- and TRPV2-containing JG neurons had mainly small and medium-sized cell bodies, respectively. TRPV1- and VGLUT2- containing JG neurons were small to medium-sized. CGRP- and SPARCL1-containing JG neurons were of various cell body sizes. Sensory neurons in the human JG were mostly free of vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH) and neuropeptide Y (NPY). In the external auditory canal skin, subepithelial nerve fibers contained TRPV1, TRPV2, SP, CGRP and VGLUT2. Perivascular nerve fibers also had TRPV1, TRPV2, SP, CGRP, VIP, NPY and TH. However, PV- and SPARCL1-containing nerve endings could not be seen in the external auditory canal. It is likely that sensory neurons in the human JG can transduce nociceptive and mechanoreceptive information from the external auditory canal. Theses neurons may be also associated with neurogenic inflammation in the external auditory canal and ear-cough reflex through the vagus nerve.
Collapse
Affiliation(s)
- Keiichiro Atsumi
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Takehiro Yajima
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Daisuke Tachiya
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Souichi Kokubun
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Noriaki Shoji
- Division of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Takashi Sasano
- Division of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
45
|
Lee BM, Jang Y, Park G, Kim K, Oh SH, Shin TJ, Chung G. Dexmedetomidine modulates transient receptor potential vanilloid subtype 1. Biochem Biophys Res Commun 2020; 522:832-837. [DOI: 10.1016/j.bbrc.2019.11.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022]
|
46
|
Trevisan AJ, Bauer MB, Brindley RL, Currie KPM, Carter BD. Jedi-1 deficiency increases sensory neuron excitability through a non-cell autonomous mechanism. Sci Rep 2020; 10:1300. [PMID: 31992767 PMCID: PMC6987110 DOI: 10.1038/s41598-020-57971-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
The dorsal root ganglia (DRG) house the primary afferent neurons responsible for somatosensation, including pain. We previously identified Jedi-1 (PEAR1/MEGF12) as a phagocytic receptor expressed by satellite glia in the DRG involved in clearing apoptotic neurons during development. Here, we further investigated the function of this receptor in vivo using Jedi-1 null mice. In addition to satellite glia, we found Jedi-1 expression in perineurial glia and endothelial cells, but not in sensory neurons. We did not detect any morphological or functional changes in the glial cells or vasculature of Jedi-1 knockout mice. Surprisingly, we did observe changes in DRG neuron activity. In neurons from Jedi-1 knockout (KO) mice, there was an increase in the fraction of capsaicin-sensitive cells relative to wild type (WT) controls. Patch-clamp electrophysiology revealed an increase in excitability, with a shift from phasic to tonic action potential firing patterns in KO neurons. We also found alterations in the properties of voltage-gated sodium channel currents in Jedi-1 null neurons. These results provide new insight into the expression pattern of Jedi-1 in the peripheral nervous system and indicate that loss of Jedi-1 alters DRG neuron activity indirectly through an intercellular interaction between non-neuronal cells and sensory neurons.
Collapse
Affiliation(s)
- Alexandra J Trevisan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mary Beth Bauer
- Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rebecca L Brindley
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Kevin P M Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| | - Bruce D Carter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
47
|
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is densely expressed in spinal sensory neurons as well as in cranial sensory neurons, including their central terminal endings. Recent work in the less familiar cranial sensory neurons, despite their many similarities with spinal sensory neurons, suggest that TRPV1 acts as a calcium channel to release a discrete population of synaptic vesicles. The modular and independent regulation of release offers new questions about nanodomain organization of release and selective actions of G protein–coupled receptors.
Collapse
Affiliation(s)
- Michael C. Andresen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
48
|
Fu W, Nelson TS, Santos DF, Doolen S, Gutierrez JJ, Ye N, Zhou J, Taylor B. An NPY Y1 receptor antagonist unmasks latent sensitization and reveals the contribution of protein kinase A and Epac to chronic inflammatory pain. Pain 2019; 160:1754-1765. [PMID: 31335645 PMCID: PMC6903783 DOI: 10.1097/j.pain.0000000000001557] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peripheral inflammation produces a long-lasting latent sensitization of spinal nociceptive neurons, that is, masked by tonic inhibitory controls. We explored mechanisms of latent sensitization with an established four-step approach: (1) induction of inflammation; (2) allow pain hypersensitivity to resolve; (3) interrogate latent sensitization with a channel blocker, mutant mouse, or receptor antagonist; and (4) disrupt compensatory inhibition with a receptor antagonist so as to reinstate pain hypersensitivity. We found that the neuropeptide Y Y1 receptor antagonist BIBO3304 reinstated pain hypersensitivity, indicative of an unmasking of latent sensitization. BIBO3304-evoked reinstatement was not observed in AC1 knockout mice and was prevented with intrathecal co-administration of a pharmacological blocker to the N-methyl-D-aspartate receptor (NMDAR), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), transient receptor potential cation channel A1 (TRPA1), channel V1 (TRPV1), or exchange protein activated by cAMP (Epac1 or Epac2). A PKA activator evoked both pain reinstatement and touch-evoked pERK expression in dorsal horn; the former was prevented with intrathecal co-administration of a TRPA1 or TRPV1 blocker. An Epac activator also evoked pain reinstatement and pERK expression. We conclude that PKA and Epac are sufficient to maintain long-lasting latent sensitization of dorsal horn neurons that is kept in remission by the NPY-Y1 receptor system. Furthermore, we have identified and characterized 2 novel molecular signaling pathways in the dorsal horn that drive latent sensitization in the setting of chronic inflammatory pain: NMDAR→AC1→PKA→TRPA1/V1 and NMDAR→AC1→Epac1/2. New treatments for chronic inflammatory pain might either increase endogenous NPY analgesia or inhibit AC1, PKA, or Epac.
Collapse
Affiliation(s)
- Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
| | - Tyler S. Nelson
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
| | - Diogo F. Santos
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Suzanne Doolen
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Javier J.P. Gutierrez
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Na Ye
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bradley Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
49
|
PGE2/EP4 receptor and TRPV1 channel are involved in repeated restraint stress-induced prolongation of sensitization pain evoked by subsequent PGE2 challenge. Brain Res 2019; 1721:146335. [PMID: 31302096 DOI: 10.1016/j.brainres.2019.146335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 01/09/2023]
Abstract
Prevalence of prior stressful experience is linked to high incidence of chronic pain. Stress, particularly repeated stress, is known to induce maladaptive neuroplasticity along peripheral and central pain transmission pathways. These maladaptive neuroplastic events facilitate sensitization of nociceptive neurons and transition from acute to chronic pain. Pro-inflammatory and pain mediators are involved in inducing neuroplasticity. Pain mediators such as prostaglandin E2 (PGE2), EP4 receptor and transient receptor potential vanilloid-1 (TRPV1) contribute to the genesis of chronic pain. In this study, we examined the role of PGE2/EP4 signaling and TRPV1 signaling in repeated restraint stress-induced prolongation of sensitization pain, a model for transition from acute to chronic pain, in both in vivo and in vitro models. We found that pre-exposure to single restraint stress induced analgesia that masked sensitization pain evoked by subsequent PGE2 challenge. However, pre-exposure to 3d consecutive restraint stress not only prolonged sensitization pain, but also increased stress hormone corticosterone (CORT) in serum, COX2 levels in paw skin, and EP4 and TRPV1 levels in dorsal root ganglion (DRG) and paw skin. Pre-exposure to CORT for 3d, not 1d, also prolonged sensitization pain evoked by PGE2. Co-injection of glucocorticoid receptor (GR) antagonist RU486, COX2 inhibitor NS-398, EP4 receptor antagonist L161,982 or TRPV1 antagonist capsazepine prevented 3d restraint stress prolonged sensitization pain evoked by PGE2. In DRG cultures, CORT increased EP4 and TRPV1 protein levels through GR activation. These data suggest that PGE2/EP4 signaling and TRPV1 signaling in peripheral pain pathway contribute to repeated stress-predisposed transition from acute to chronic pain.
Collapse
|
50
|
Tsibulnikov SY, Maslov LN, Gorbunov AS, Voronkov NS, Boshchenko AA, Popov SV, Prokudina ES, Singh N, Downey JM. A Review of Humoral Factors in Remote Preconditioning of the Heart. J Cardiovasc Pharmacol Ther 2019; 24:403-421. [PMID: 31035796 DOI: 10.1177/1074248419841632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase β, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.
Collapse
Affiliation(s)
- Sergey Y Tsibulnikov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Leonid N Maslov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alexander S Gorbunov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nikita S Voronkov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alla A Boshchenko
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Sergey V Popov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Ekaterina S Prokudina
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nirmal Singh
- 2 Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - James M Downey
- 3 Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|