1
|
Chancharoenthana W, Kamolratanakul S, Rotcheewaphan S, Leelahavanichkul A, Schultz MJ. Recent advances in immunopathogenesis and clinical practice: mastering the challenge-managing of non-tuberculous mycobacteria. Front Immunol 2025; 16:1554544. [PMID: 40176807 PMCID: PMC11961655 DOI: 10.3389/fimmu.2025.1554544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
Non-tuberculous mycobacteria (NTM) are widespread environmental pathogens that can lead to significant disease burden, particularly in immunocompromised individuals, but also in those with a normal immune system. The global incidence of NTM is increasing rapidly, with Mycobacterium avium complex (MAC) being one of the most common types. The immunopathogenesis of the MAC involves a complex interaction between the bacteria and the host immune system. MAC survives and replicates within macrophages by preventing the fusion of phagosomes and lysosomes. The mycobacteria can neutralize reactive oxygen and nitrogen species produced by the macrophages through their own enzymes. Additionally, MAC modulates cytokine production, allowing it to suppress or regulate the immune response. Diagnosing MAC infections can be challenging, and the effectiveness of available treatments may be limited due to MAC's unpredictable resistance to various antimycobacterial drugs in different regions. Treating MAC infection requires a collaborative approach involving different healthcare professionals and ensuring patient compliance. This review aims to shed light on the complexities of MAC infection treatment, discussing the challenges of MAC infection diagnosis, pharmacological considerations, such as drug regimens, drug monitoring, drug interactions, and the crucial role of a multidisciplinary healthcare team in achieving the best possible treatment outcomes for patients.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Marcus J. Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Zhou H, Peng Y, Huo X, Li B, Liu H, Wang J, Zhang G. Integrating Bulk and Single-Cell Transcriptomic Data to Identify Ferroptosis-Associated Inflammatory Gene in Alzheimer's Disease. J Inflamm Res 2025; 18:2105-2122. [PMID: 39959647 PMCID: PMC11828659 DOI: 10.2147/jir.s497418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025] Open
Abstract
Background Ferroptosis is a form of programmed cell death triggered by iron-dependent lipid peroxidation, characterized by iron accumulation and elevated reactive oxygen species (ROS), leading to cell membrane damage. It is associated with a variety of diseases. However, the cellular and molecular links between ferroptosis, immune inflammation, and the brain-peripheral blood axis in Alzheimer's disease (AD) remain unclear. Methods We integrated bulk RNA-seq data from AD brain tissue and peripheral blood and refined the screening of AD candidate genes through differential gene expression analysis, weighted gene co-expression network analysis (WGCNA), and other approaches. Additionally, we analyzed single-cell RNA-seq (scRNA-seq) data from AD patients' brain tissue and peripheral blood, combined with scRNA-seq data from experimental autoimmune encephalomyelitis (EAE) mouse brain tissue. This enabled us to explore AD-related molecular mechanisms from a cell-type-specific perspective. Finally, candidate genes were validated in ferroptosis models using reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence methods. Results Bulk RNA-seq analysis identified SLC11A1, an inflammatory gene associated with AD. Single-cell RNA-seq analysis further revealed that SLC11A1 expression was significantly elevated in the pro-inflammatory (M1-type) microglia and peripheral blood monocytes in AD. Moreover, we identified a microglial subpopulation in AD M1-type microglia that was highly associated with ferroptosis. This subpopulation simultaneously expressed characteristic markers of peripheral blood monocytes, suggesting that these cells may originate from peripheral blood monocytes, thereby triggering neuroinflammation through the ferroptosis pathway. Cell experiments confirmed that SLC11A1 was significantly upregulated in inflammatory microglia induced by ferroptosis. Conclusion This study reveals the key role of SLC11A1 in AD, particularly in the context of ferroptosis and immune inflammation. It provides a novel molecular mechanistic perspective and offers potential targets for future therapeutic strategies.
Collapse
Affiliation(s)
- Huiqin Zhou
- College of Life Sciences, Hunan Normal University, Changsha, People’s Republic of China
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, People’s Republic of China
- National Engineering Center of Human Stem Cell, Changsha, People’s Republic of China
| | - Yunjia Peng
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, People’s Republic of China
- National Engineering Center of Human Stem Cell, Changsha, People’s Republic of China
| | - Xinhua Huo
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, People’s Republic of China
- National Engineering Center of Human Stem Cell, Changsha, People’s Republic of China
| | - Bingqing Li
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, People’s Republic of China
- National Engineering Center of Human Stem Cell, Changsha, People’s Republic of China
| | - Huasheng Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jian Wang
- National Engineering Center of Human Stem Cell, Changsha, People’s Republic of China
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, People’s Republic of China
| | - Gaihua Zhang
- College of Life Sciences, Hunan Normal University, Changsha, People’s Republic of China
| |
Collapse
|
3
|
Martínez-García G, Estrada K, Lira-Amaya JJ, Santamaria-Epinosa RM, Lopez-Arellano ME, Sciutto-Conde EL, Rojas-Martinez C, Alvarez-Martínez JA, Sánchez-Flores A, Figueroa-Millán JV. Comparative Analysis of Immune Response Genes Induced by a Virulent or Attenuated Strain of Babesia bigemina. Int J Mol Sci 2025; 26:487. [PMID: 39859202 PMCID: PMC11764604 DOI: 10.3390/ijms26020487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
RNA-seq technology has been widely used for the characterization of the transcriptome profile induced by several diseases in both humans and animals. In the present study, RNA-seq was used to identify the differential expression of genes associated with the immune response in cattle infected with two different strains of Babesia bigemina, both derived from the same Mexican field isolate, which exhibit distinct phenotypic characteristics: the virulent strain, capable of producing acute clinical signs, and the attenuated strain, capable of stimulating a protective immune response when used as an immunogen with an efficacy greater than 80%. The differential gene expression analysis performed revealed a total of 620 differentially expressed genes (DEGs). However, the intersection of the edgeR and DESeq2 programs used in the bioinformatics analysis only identified 247 DEGs, of which 108 genes were enriched to be closely correlated with the bovine immune response based on gene ontology terms; most of the DEGs obtained encode proteins associated with the major histocompatibility complex, immunoglobulins, and T-cell surface receptors. The infection caused by the attenuated strain induced higher transcription of immune response genes compared to the infection caused by the virulent strain; nonetheless, in both infections, a greater down-regulation than up-regulation was observed. Different immunoglobulin-associated genes were found to be up-regulated in the group inoculated with the attenuated strain, whereas these were down-regulated in the virulent strain-inoculated group. In addition, an up-regulation of the HSPA6, CD163, and SLC11a1 genes was observed in the group inoculated with the virulent strain, previously reported in other Apicomplexan infections. The findings provide relevant information that could contribute to clarifying the immune response associated with an acute bovine babesiosis infection by B. bigemina.
Collapse
Affiliation(s)
- Grecia Martínez-García
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Karel Estrada
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico; (K.E.); (A.S.-F.)
| | - José J. Lira-Amaya
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
| | - Rebeca M. Santamaria-Epinosa
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
| | - María E. Lopez-Arellano
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
| | - Edda L. Sciutto-Conde
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Carmen Rojas-Martinez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
| | - Jesus A. Alvarez-Martínez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
| | - Alejandro Sánchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico; (K.E.); (A.S.-F.)
| | - Julio V. Figueroa-Millán
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
| |
Collapse
|
4
|
Tang Y, Tan Y, Palaniyappan L, Yao Y, Luo Q, Li Y. Epigenetic profile of the immune system associated with symptom severity and treatment response in schizophrenia. J Psychiatry Neurosci 2024; 49:E45-E58. [PMID: 38359932 PMCID: PMC10890792 DOI: 10.1503/jpn.230099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Environmental modification of genetic information (epigenetics) is often invoked to explain interindividual differences in the phenotype of schizophrenia. In clinical practice, such variability is most prominent in the symptom profile and the treatment response. Epigenetic regulation of immune function is of particular interest, given the therapeutic relevance of this mechanism in schizophrenia. METHODS We analyzed the DNA methylation data of immune-relevant genes in patients with schizophrenia whose disease duration was less than 3 years, with previous lifetime antipsychotic treatment of no more than 2 weeks total. RESULTS A total of 441 patients met the inclusion criteria. Core symptoms were consistently associated with 206 methylation positions, many of which had previously been implicated in inflammatory responses. Of these, 24 methylation positions were located either in regulatory regions or near the CpG islands of 20 genes, including the SRC gene, which is a key player in glutamatergic signalling. These symptom-associated immune genes were enriched in neuronal development functions, such as neuronal migration and glutamatergic synapse. Compared with using only clinical information (including scores on the Positive and Negative Syndrome Scale), integrating methylation data into the model significantly improved the predictive ability (as indicated by area under the curve) for response to 8 weeks of antipsychotic treatment. LIMITATIONS We focused on a small number of methylation probes (immune-centred search) and lacked nutritional data and direct brain-based measures. CONCLUSION Epigenetic modifications of the immune system are associated with symptom severity at onset and subsequent treatment response in schizophrenia.
Collapse
Affiliation(s)
- Yuanhao Tang
- From the National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China (Tang, Yao); the Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China (Tan, Li); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Palaniyappan); Robarts Research Institute and Department of Medical Biophysics, Western University, London, Ont. (Palaniyappan); the Lawson Health Research Institute, London, Ont. (Palaniyappan); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Luo)
| | - Yunlong Tan
- From the National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China (Tang, Yao); the Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China (Tan, Li); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Palaniyappan); Robarts Research Institute and Department of Medical Biophysics, Western University, London, Ont. (Palaniyappan); the Lawson Health Research Institute, London, Ont. (Palaniyappan); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Luo)
| | - Lena Palaniyappan
- From the National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China (Tang, Yao); the Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China (Tan, Li); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Palaniyappan); Robarts Research Institute and Department of Medical Biophysics, Western University, London, Ont. (Palaniyappan); the Lawson Health Research Institute, London, Ont. (Palaniyappan); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Luo)
| | - Yin Yao
- From the National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China (Tang, Yao); the Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China (Tan, Li); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Palaniyappan); Robarts Research Institute and Department of Medical Biophysics, Western University, London, Ont. (Palaniyappan); the Lawson Health Research Institute, London, Ont. (Palaniyappan); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Luo)
| | - Qiang Luo
- From the National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China (Tang, Yao); the Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China (Tan, Li); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Palaniyappan); Robarts Research Institute and Department of Medical Biophysics, Western University, London, Ont. (Palaniyappan); the Lawson Health Research Institute, London, Ont. (Palaniyappan); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Luo)
| | - Yanli Li
- From the National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China (Tang, Yao); the Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China (Tan, Li); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que. (Palaniyappan); Robarts Research Institute and Department of Medical Biophysics, Western University, London, Ont. (Palaniyappan); the Lawson Health Research Institute, London, Ont. (Palaniyappan); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Luo)
| |
Collapse
|
5
|
Kavian Z, Sargazi S, Majidpour M, Sarhadi M, Saravani R, Shahraki M, Mirinejad S, Heidari Nia M, Piri M. Association of SLC11A1 polymorphisms with anthropometric and biochemical parameters describing Type 2 Diabetes Mellitus. Sci Rep 2023; 13:6195. [PMID: 37062790 PMCID: PMC10106459 DOI: 10.1038/s41598-023-33239-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Diabetes, a leading cause of death globally, has different types, with Type 2 Diabetes Mellitus (T2DM) being the most prevalent one. It has been established that variations in the SLC11A1 gene impact risk of developing infectious, inflammatory, and endocrine disorders. This study is aimed to investigate the association between the SLC11A1 gene polymorphisms (rs3731864 G/A, rs3731865 C/G, and rs17235416 + TGTG/- TGTG) and anthropometric and biochemical parameters describing T2DM. Eight hundred participants (400 in each case and control group) were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification-refractory mutation system-PCR (ARMS-PCR) methods. Lipid profile, fasting blood sugar (FBS), hemoglobin A1c level, and anthropometric indices were also recorded for each subject. Findings revealed that SLC11A1-rs3731864 G/A, -rs17235416 (+ TGTG/- TGTG) were associated with T2DM susceptibility, providing protection against the disease. In contrast, SLC11A1-rs3731865 G/C conferred an increased risk of T2DM. We also noticed a significant association between SLC11A1-rs3731864 G/A and triglyceride levels in patients with T2DM. In silico evaluations demonstrated that the SLC11A2 and ATP7A proteins also interact directly with the SLC11A1 protein in Homo sapiens. In addition, allelic substitutions for both intronic variants disrupt or create binding sites for splicing factors and serve a functional effect. Overall, our findings highlighted the role of SLC11A1 gene variations might have positive (rs3731865 G/C) or negative (rs3731864 G/A and rs17235416 + TGTG/- TGTG) associations with a predisposition to T2DM.
Collapse
Affiliation(s)
- Zahra Kavian
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansour Shahraki
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Adolescent Health Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Piri
- Diabetes Center, Bu-Ali Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
6
|
Collins MM, Race B, Messer RJ, Baune C, Kobayashi SD, Long D, Williams K, Hasenkrug AM, Hasenkrug K, Malachowa N. Practical Mouse Model to Investigate Therapeutics for Staphylococcusaureus Contaminated Surgical Mesh Implants. J Surg Res 2023; 283:428-437. [PMID: 36434839 PMCID: PMC9877163 DOI: 10.1016/j.jss.2022.10.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/09/2022] [Accepted: 10/16/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The use of prosthetic mesh in hernia repair provides a powerful tool to increase repair longevity, decrease recurrence rates, and facilitate complex abdominal wall reconstruction. Overall infection rates with mesh are low, but for those affected there is high morbidity and economic cost. The availability of a practicable small animal model would be advantageous for the preclinical testing of prophylactics, therapeutics, and new biomaterials. To this end, we have developed a novel mouse model for implantation of methicillin-resistant Staphylococcus aureus-infected surgical mesh and provide results from antibiotic and immunotherapeutic testing. MATERIALS AND METHODS Implantation of surgical mesh between fascial planes of the mouse hind limb was used to approximate hernia repair in humans. Surgical mesh was inoculated with methicillin-resistant Staphylococcus aureus to test the efficacy of antibiotic therapy with daptomycin and/or immunotherapy to induce macrophage phagocytosis using antibody blockade of the CD47 "don't eat me" molecule. Clinical outcomes were assessed by daily ambulation scores of the animals and by enumeration of mesh-associated bacteria at predetermined end points. RESULTS A single prophylactic treatment with daptomycin at the time of surgery led to improved ambulation scores and undetectable levels of bacteria in seven of eight mice by 21 days postinfection. Anti-CD47, an activator of macrophage phagocytosis, was ineffective when administered alone or in combination with daptomycin treatment. Ten days of daily antibiotic therapy begun 3 days after infection was ineffective at clearing infection. CONCLUSIONS This fast and simple model allows rapid in vivo testing of novel antimicrobials and immunomodulators to treat surgical implant infections.
Collapse
Affiliation(s)
- Madison M Collins
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Ronald J Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Chase Baune
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Dan Long
- Veterinary Pathology Section, Rocky Mountain Veterinary Branch, NIAID, NIH, Hamilton, Montana
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | | | - Kim Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana.
| | - Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana.
| |
Collapse
|
7
|
de Andrade STQ, Guidugli TI, Borrego A, Rodrigues BLC, Fernandes NCCDA, Guerra JM, de Sousa JG, Starobinas N, Jensen JR, Cabrera WHK, De Franco M, Ibañez OM, Massa S, Ribeiro OG. Slc11a1 gene polymorphism influences dextran sulfate sodium (DSS)-induced colitis in a murine model of acute inflammation. Genes Immun 2023; 24:71-80. [PMID: 36792680 PMCID: PMC10110460 DOI: 10.1038/s41435-023-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Ulcerative Colitis (UC) is an inflammatory disease characterized by colonic mucosal lesions associated with an increased risk of carcinogenesis. UC pathogenesis involves environmental and genetic factors. Genetic studies have indicated the association of gene variants coding for the divalent metal ion transporter SLC11A1 protein (formerly NRAMP1) with UC susceptibility in several animal species. Two mouse lines were genetically selected for high (AIRmax) or low (AIRmin) acute inflammatory responses (AIR). AIRmax is susceptible, and AIRmin is resistant to DSS-induced colitis and colon carcinogenesis. Furthermore, AIRmin mice present polymorphism of the Slc11a1 gene. Here we investigated the possible modulating effect of the Slc11a1 R and S variants in DSS-induced colitis by using AIRmin mice homozygous for Slc11a1 R (AIRminRR) or S (AIRminSS) alleles. We evaluated UC by the disease activity index (DAI), considering weight loss, diarrhea, blood in the anus or feces, cytokines, histopathology, and cell populations in the distal colon epithelium. AIRminSS mice have become susceptible to DSS effects, with higher DAI, IL6, G-CSF, and MCP-1 production and morphological and colon histopathological alterations than AIRminRR mice. The results point to a role of the Slc11a1 S allele in DSS colitis induction in the genetic background of AIRmin mice.
Collapse
Affiliation(s)
| | | | - Andrea Borrego
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | - Nancy Starobinas
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | - Solange Massa
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
8
|
Single nucleotide polymorphisms in genes involved in immune responses and outcome of tegumentary leishmaniasis. Acta Trop 2022; 235:106660. [PMID: 35988820 DOI: 10.1016/j.actatropica.2022.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
Leishmaniases are neglected tropical diseases with a broad clinical spectrum. Tegumentary leishmaniasis (TL) is a disease caused by different Leishmania species, transmitted by phlebotomine sand flies and distributed worldwide. TL can present a cutaneous (CL) or mucocutaneous (MCL) clinical form depending on factors inherent to the parasite, the host and the vector. Polymorphisms in the immune response genes are host genetic factors that influence the pathogenesis or control of leishmaniasis. Single nucleotide polymorphisms (SNPs) in immune genes have been evaluated in several countries where leishmaniasis is endemic. In this review, we report studies on SNPs in several immune genes that might be associated with susceptibility or resistance to TL. We summarize studies from around the world and in Brazil, highlight the difficulties of these studies and future analyses needed to enhance our knowledge regarding host genetic factors in TL. Understanding the genetic characteristics of the host that facilitate resistance or susceptibility to leishmaniasis can contribute to the development of immunotherapy schedules for this disease. The current treatment methods are toxic, and no human vaccine is available.
Collapse
|
9
|
Ansari I, Basak R, Mukhopadhyay A. Hemoglobin Endocytosis and Intracellular Trafficking: A Novel Way of Heme Acquisition by Leishmania. Pathogens 2022; 11:585. [PMID: 35631106 PMCID: PMC9143042 DOI: 10.3390/pathogens11050585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Leishmania species are causative agents of human leishmaniasis, affecting 12 million people annually. Drugs available for leishmaniasis are toxic, and no vaccine is available. Thus, the major thrust is to identify new therapeutic targets. Leishmania is an auxotroph for heme and must acquire heme from the host for its survival. Thus, the major focus has been to understand the heme acquisition process by the parasites in the last few decades. It is conceivable that the parasite is possibly obtaining heme from host hemoprotein, as free heme is not available in the host. Current understanding indicates that Leishmania internalizes hemoglobin (Hb) through a specific receptor by a clathrin-mediated endocytic process and targets it to the parasite lysosomes via the Rab5 and Rab7 regulated endocytic pathway, where it is degraded to generate intracellular heme that is used by the parasite. Subsequently, intra-lysosomal heme is initially transported to the cytosol and is finally delivered to the mitochondria via different heme transporters. Studies using different null mutant parasites showed that these receptors and transporters are essential for the survival of the parasite. Thus, the heme acquisition process in Leishmania may be exploited for the development of novel therapeutics.
Collapse
Affiliation(s)
| | | | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India; (I.A.); (R.B.)
| |
Collapse
|
10
|
Grzymajlo K. The Game for Three: Salmonella–Host–Microbiota Interaction Models. Front Microbiol 2022; 13:854112. [PMID: 35516427 PMCID: PMC9062650 DOI: 10.3389/fmicb.2022.854112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colonization of the gastrointestinal (GI) tract by enteric pathogens occurs in a context strongly determined by host-specific gut microbiota, which can significantly affect the outcome of infection. The complex gameplay between the trillions of microbes that inhabit the GI tract, the host, and the infecting pathogen defines a specific triangle of interaction; therefore, a complete model of infection should consider all of these elements. Many different infection models have been developed to explain the complexity of these interactions. This review sheds light on current knowledge, along with the strengths and limitations of in vitro and in vivo models utilized in the study of Salmonella–host–microbiome interactions. These models range from the simplest experiment simulating environmental conditions using dedicated growth media through in vitro interaction with cell lines and 3-D organoid structure, and sophisticated “gut on a chip” systems, ending in various animal models. Finally, the challenges facing this field of research and the important future directions are outlined.
Collapse
|
11
|
Chu C, Huang R, Liu L, Tang G, Xiao J, Yoo H, Yuan M. The rice heavy-metal transporter OsNRAMP1 regulates disease resistance by modulating ROS homoeostasis. PLANT, CELL & ENVIRONMENT 2022; 45:1109-1126. [PMID: 35040151 DOI: 10.1111/pce.14263] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Crop diseases threaten food security and sustainable agriculture. Consumption of crops containing nonessential toxic metals leads to health risks for humans. Therefore, cultivation of disease-resistant and toxic metal-safe crops is a double-gain strategy that can contribute to food security. Here, we show that rice heavy-metal transporter OsNRAMP1 plays an important role in plant immunity by modulating metal ion and reactive oxygen species (ROS) homoeostasis. OsNRAMP1 expression was induced after pathogenic bacteria and fungi infections. The osnramp1 mutants had an increased content of H2 O2 and activity of superoxide dismutase, but decreased activity of catalase, showing enhanced broad-spectrum resistance against bacterial and fungal pathogens. RNA-seq analysis identified a number of differentially expressed genes that were involved in metal ion and ROS homoeostasis. Altered expression of metal ion-dependent ROS-scavenging enzymes genes and lower accumulation of cations such as Mn together induced compromised metal ion-dependent enzyme-catalysing activity and modulated ROS homoeostasis, which together contributed towards disease resistance in osnramp1 mutants. Furthermore, the osnramp1 mutants contained lower levels of toxic heavy metals Cd and Pb and micronutrients Ni and Mn in leaves and grains. Taken together, a proof of concept was achieved that broad-spectrum disease-resistant and toxic heavy-metal-safe rice was engineered by removal of the OsNRAMP1 gene.
Collapse
Affiliation(s)
- Chuanliang Chu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Renyan Huang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Liping Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guilin Tang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Heejin Yoo
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Abstract
Leishmaniasis is a zoonotic and vector-borne infectious disease that is caused by the genus Leishmania belonging to the trypanosomatid family. The protozoan parasite has a digenetic life cycle involving a mammalian host and an insect vector. Leishmaniasisis is a worldwide public health problem falling under the neglected tropical disease category, with over 90 endemic countries, and approximately 1 million new cases and 20,000 deaths annually. Leishmania infection can progress toward the development of species–specific pathologic disorders, ranging in severity from self-healing cutaneous lesions to disseminating muco-cutaneous and fatal visceral manifestations. The severity and the outcome of leishmaniasis is determined by the parasite’s antigenic epitope characteristics, the vector physiology, and most importantly, the immune response and immune status of the host. This review examines the nature of host–pathogen interaction in leishmaniasis, innate and adaptive immune responses, and various strategies that have been employed for vaccine development.
Collapse
|
13
|
Zhu F, Zuo L, Hu R, Wang J, Yang Z, Qi X, Feng L. A ten-genes-based diagnostic signature for atherosclerosis. BMC Cardiovasc Disord 2021; 21:513. [PMID: 34688276 PMCID: PMC8540101 DOI: 10.1186/s12872-021-02323-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/12/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Atherosclerosis is the leading cause of cardiovascular disease with a high mortality worldwide. Understanding the atherosclerosis pathogenesis and identification of efficient diagnostic signatures remain major problems of modern medicine. This study aims to screen the potential diagnostic genes for atherosclerosis. METHODS We downloaded the gene chip data of 135 peripheral blood samples, including 57 samples with atherosclerosis and 78 healthy subjects from GEO database (Accession Number: GSE20129). The weighted gene co-expression network analysis was applied to identify atherosclerosis-related genes. Functional enrichment analysis was conducted by using the clusterProfiler R package. The interaction pairs of proteins encoded by atherosclerosis-related genes were screened using STRING database, and the interaction network was further optimized with the cytoHubba plug-in of Cytoscape software. RESULTS The logistic regression diagnostic model was constructed to predict normal and atherosclerosis samples. A gene module which included 532 genes related to the occurrence of atherosclerosis were screened. Functional enrichment analysis basing on the 532 genes identified 235 significantly enriched GO terms and 44 significantly enriched KEGG pathways. The top 50 hub genes of the protein-protein interaction network were identified. The final logistic regression diagnostic model was established by the optimal 10 key genes, which could distinguish atherosclerosis samples from normal samples. CONCLUSIONS A predictive model based on 10 potential atherosclerosis-related genes was obtained, which should shed light on the diagnostic research of atherosclerosis.
Collapse
Affiliation(s)
- Feng Zhu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Traditional Chinese Medicine, Hebei North University, Zhangjiakou City, Hebei Province, China.,Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Lili Zuo
- Department of Neonatal, ZiBo Maternal and Child Health Hospital, Zibo City, Shandong Province, China
| | - Rui Hu
- Center for Drug Monitoring and Evaluation Department, Center for Drug Monitoring and Evaluation in Zhangjiakou, Zhangjiakou City, Hebei Province, China
| | - Jin Wang
- Department of Cardiovascular Disease, ZiBo Hospital of Traditional Chinese Medicine, Zibo City, Shandong Province, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Limin Feng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
14
|
Johnson AA, Shokhirev MN. Pan-Tissue Aging Clock Genes That Have Intimate Connections with the Immune System and Age-Related Disease. Rejuvenation Res 2021; 24:377-389. [PMID: 34486398 DOI: 10.1089/rej.2021.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In our recent transcriptomic meta-analysis, we used random forest machine learning to accurately predict age in human blood, bone, brain, heart, and retina tissues given gene inputs. Although each tissue-specific model utilized a unique number of genes for age prediction, we found that the following six genes were prioritized in all five tissues: CHI3L2, CIDEC, FCGR3A, RPS4Y1, SLC11A1, and VTCN1. Since being selected for age prediction in multiple tissues is unique, we decided to explore these pan-tissue clock genes in greater detail. In the present study, we began by performing over-representation and network topology-based enrichment analyses in the Gene Ontology Biological Process database. These analyses revealed that the immunological terms "response to protozoan," "immune response," and "positive regulation of immune system process" were significantly enriched by these clock inputs. Expression analyses in mouse and human tissues identified that these inputs are frequently upregulated or downregulated with age. A detailed literature search showed that all six genes had noteworthy connections to age-related disease. For example, mice deficient in Cidec are protected against various metabolic defects, while suppressing VTCN1 inhibits age-related cancers in mouse models. Using a large multitissue transcriptomic dataset, we additionally generate a novel, minimalistic aging clock that can predict human age using just these six genes as inputs. Taken all together, these six genes are connected to diverse aspects of aging.
Collapse
Affiliation(s)
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
15
|
Melo MBG, Cunha LCS, Barreto CSP, de Oliveira Mendonça FA, Santos MLB, Sacramento D, de Jesus AR, Almeida RP, Dos Santos PL. Leishmania infantum (syn. L. chagasi) parasites affect the release of soluble CD14 by infected macrophages. Parasitol Res 2021; 120:3325-3330. [PMID: 34351491 DOI: 10.1007/s00436-021-07258-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
Functionally, cluster of differentiation 14 (CD14) is a co-receptor of the complex formed by lipopolysaccharide (LPS) and LPS-binding protein expressed on the membrane of a variety of cells. However, CD14 can be shed from the cell membrane into the circulation as soluble CD14 (sCD14) upon cell activation. Previously, our group reported that elevated sCD14 serum levels were associated with the clinical and laboratory findings in the context of visceral leishmaniasis (VL), but not in the context of LPS stimulation or bacterial infection. In the present study, we investigated the secretion dynamics of sCD14 in the context of Leishmania infantum (syn. L. chagasi) in vitro infection. Macrophages from treated VL patients and delayed-type hypersensitivity positive (DTH+) subjects were infected with L. infantum (syn. L. chagasi) promastigotes, and the infection index was evaluated (number of amastigotes per 100 infected macrophages). Additionally, the levels of sCD14, Inteleukin (IL)10, IL-6 and tumour necrosis factor alpha (TNF-α) were measured in the culture supernatants using the Luminex assay. Interestingly, the release of sCD14 was inversely correlated with the L. infantum (syn. L. chagasi) infection index. Of note, the release of sCD14 was upregulated and downregulated in the context of infected macrophages from DTH+ subjects and treated VL patients, respectively. Additionally, we also observed that the levels of sCD14 in the culture supernatants were positively correlated with the levels of TNF-α, IL-6 and IL-10. Therefore, our data suggest that macrophages from treated VL patients and DTH+ subjects respond differently to L. infantum (syn. L. chagasi) infection in the context of the release of sCD14; therefore, the release of sCD14 may be associated with the outcome of VL.
Collapse
Affiliation(s)
- Michelle Barreto Gomes Melo
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Sergipe, 49060-100, Aracaju, Sergipe, Brasil
| | - Luana Celina Seraphim Cunha
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Sergipe, 49060-100, Aracaju, Sergipe, Brasil
| | - Cárcia Santana Passos Barreto
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Sergipe, 49060-100, Aracaju, Sergipe, Brasil
| | | | - Micheli Luize Barbosa Santos
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Sergipe, 49060-100, Aracaju, Sergipe, Brasil
| | - Danielle Sacramento
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Sergipe, 49060-100, Aracaju, Sergipe, Brasil
| | - Amélia Ribeiro de Jesus
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Sergipe, 49060-100, Aracaju, Sergipe, Brasil.,Instituto de Investigação Em Imunologia, 05403-900, São Paulo, São Paulo, Brasil
| | - Roque Pacheco Almeida
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Sergipe, 49060-100, Aracaju, Sergipe, Brasil.,Instituto de Investigação Em Imunologia, 05403-900, São Paulo, São Paulo, Brasil
| | - Priscila Lima Dos Santos
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Sergipe, 49060-100, Aracaju, Sergipe, Brasil.
| |
Collapse
|
16
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
17
|
Wang L, Wen Z, Ma H, Wu L, Chen H, Zhu Y, Niu L, Wu Q, Li H, Shi L, Li L, Wan L, Wang J, Wong KW, Song Y. Long non-coding RNAs ENST00000429730.1 and MSTRG.93125.4 are associated with metabolic activity in tuberculosis lesions of sputum-negative tuberculosis patients. Aging (Albany NY) 2021; 13:8228-8247. [PMID: 33686954 PMCID: PMC8034958 DOI: 10.18632/aging.202634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
Accurate diagnosis of complete inactivation of tuberculosis lesions is still a challenge with respect to sputum-negative tuberculosis. RNA-sequencing was conducted to uncover potential lncRNA indicators of metabolic activity in tuberculosis lesions. Lung tissues with high metabolic activity and low metabolic activity demonstrated by fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography were collected from five sputum-negative tuberculosis patients for RNA-sequencing. Differentially-expressed mRNAs and lncRNAs were identified. Their correlations were evaluated to construct lncRNA-mRNA co-expression network, in which lncRNAs and mRNAs with high degrees were confirmed by quantitative real-time PCR using samples collected from 11 patients. Prediction efficiencies of lncRNA indicators were assessed by receiver operating characteristic curve analysis. Bioinformatics analysis was performed for potential lncRNAs. 386 mRNAs and 44 lncRNAs were identified to be differentially expressed. Differentially-expressed mRNAs in lncRNA-mRNA co-expression network were significantly associated with fibrillar collagen, platelet-derived growth factor binding, and leukocyte migration involved in inflammatory response. Seven mRNAs (C1QB, CD68, CCL5, CCL19, MMP7, HLA-DMB, and CYBB) and two lncRNAs (ENST00000429730.1 and MSTRG.93125.4) were validated to be significantly up-regulated. The area under the curve of ENST00000429730.1 and MSTRG.93125.4 was 0.750 and 0.813, respectively. Two lncRNAs ENST00000429730.1 and MSTRG.93125.4 might be considered as potential indicators of metabolic activity in tuberculosis lesions for sputum-negative tuberculosis.
Collapse
Affiliation(s)
- Lin Wang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zilu Wen
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hui Ma
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liwei Wu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hui Chen
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yijun Zhu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liangfei Niu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qihang Wu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongwei Li
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lei Shi
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Leilei Li
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Leiyi Wan
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Wang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ka-Wing Wong
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanzheng Song
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Wang L, Xi D, Xiong H, Memon S, Li G, Gu Z, Nadir S, Deng W. Microsatellite markers reveal polymorphisms at the 3′ untranslated region of the SLC11A1 gene in Zhongdian Yellow cattle ( Bos taurus). CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2018-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Solute carrier family 11-member A1 (SLC11A1) gene encodes natural macrophage resistance-associated protein which regulates activity of macrophages against intracellular pathogens. The objective of this study was to study the polymorphism in the microsatellites present at 3′ untranslated region (UTR) of the SLC11A1 gene in 113 Zhongdian Yellow cattle (Bos taurus). Using DNA bi-directional sequencing, we detected seven alleles (GT10–16) for the first microsatellite (MS1), five alleles (GT12–16) for MS2, and four alleles (GT4–7) for MS3. MS3 is studied for the first time and revealed four novel variants (alleles GT4–7). Alleles GT12 (45.1%), GT13 (59.3%), and GT5 (85.4%) were the most frequent alleles at MS1, MS2, and MS3, respectively, Genotypes G12/12, G13/13, and G5/5 had the highest frequency 0.239, 0.540, and 0.743 at MS1, MS2, and MS3, respectively. Haplotypic data revealed that GT12/GT13 was the most frequent haplotype observed followed by GT12/14 haplotype. Three nucleotide variations were observed in MS1 and MS2. Comparative analysis of GT12/GT12 and GT13/GT13 genotype with other bovine genotypes showed significant difference (P > 0.05). Our results suggest that the homozygous genotypes GT12/GT12 and GT13/GT13 in Zhongdian Yellow cattle might be related to disease resistance. The findings reported in this study would be helpful in cattle breeding programs.
Collapse
Affiliation(s)
- L. Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People’s Republic of China
- Department of Life Science and Technology, Xinxiang University, Xinxiang 453003, People’s Republic of China
| | - D. Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People’s Republic of China
| | - H. Xiong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People’s Republic of China
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, People’s Republic of China
| | - S. Memon
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People’s Republic of China
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, People’s Republic of China
| | - G. Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People’s Republic of China
| | - Z. Gu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People’s Republic of China
| | - S. Nadir
- University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - W. Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People’s Republic of China
| |
Collapse
|
19
|
Samant M, Sahu U, Pandey SC, Khare P. Role of Cytokines in Experimental and Human Visceral Leishmaniasis. Front Cell Infect Microbiol 2021; 11:624009. [PMID: 33680991 PMCID: PMC7930837 DOI: 10.3389/fcimb.2021.624009] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Visceral Leishmaniasis (VL) is the most fatal form of disease leishmaniasis. To date, there are no effective prophylactic measures and therapeutics available against VL. Recently, new immunotherapy-based approaches have been established for the management of VL. Cytokines, which are predominantly produced by helper T cells (Th) and macrophages, have received great attention that could be an effective immunotherapeutic approach for the treatment of human VL. Cytokines play a key role in forming the host immune response and in managing the formation of protective and non-protective immunities during infection. Furthermore, immune response mediated through different cytokines varies from different host or animal models. Various cytokines viz. IFN-γ, IL-2, IL-12, and TNF-α play an important role during protection, while some other cytokines viz. IL-10, IL-6, IL-17, TGF-β, and others are associated with disease progression. Therefore, comprehensive knowledge of cytokine response and their interaction with various immune cells is very crucial to determine appropriate immunotherapies for VL. Here, we have discussed the role of cytokines involved in VL disease progression or host protection in different animal models and humans that will determine the clinical outcome of VL and open the path for the development of rapid and accurate diagnostic tools as well as therapeutic interventions against VL.
Collapse
Affiliation(s)
- Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, Almora, India
| | - Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, Almora, India
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
20
|
Failure of CD4 T Cell-Deficient Hosts To Control Chronic Nontyphoidal Salmonella Infection Leads to Exacerbated Inflammation, Chronic Anemia, and Altered Myelopoiesis. Infect Immun 2020; 89:IAI.00417-20. [PMID: 33046510 DOI: 10.1128/iai.00417-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Immunocompromised patients are more susceptible to recurrent nontyphoidal Salmonella (NTS) bacteremia. A key manifestation of HIV infection is the loss of CD4 T cells, which are crucial for immunity to Salmonella infection. We characterized the consequences of CD4 T cell depletion in mice where virulent Salmonella establish chronic infection, similar to chronic NTS disease in humans. Salmonella-infected, CD4-depleted 129X1/SvJ mice remained chronically colonized for at least 5 weeks, displaying increased splenomegaly and more severe splenitis than infected mice with CD4 T cells. Mature erythrocytes, immature erythroid cells, and phagocytes accounted for the largest increase in splenic cellularity. Anemia, which is associated with increased mortality in Salmonella-infected humans, was exacerbated by CD4 depletion in infected mice and was accompanied by increased splenic sequestration of erythrocytes and fewer erythropoietic elements in the bone marrow, despite significantly elevated levels of circulating erythropoietin. Splenic sequestration of red blood cells, the appearance of circulating poikilocytes, and elevated proinflammatory cytokines suggest inflammation-induced damage to erythrocytes contributes to anemia and splenic retention of damaged cells in infected animals. Depleting CD4 T cells led to increased myeloid cells in peripheral blood, spleen, and bone marrow, as well as expansion of CD8 T cells, which has been observed in CD4-depleted humans. This work describes a mouse model of Salmonella infection that recapitulates several aspects of human disease and will allow us to investigate the interplay of innate and adaptive immune functions with chronic inflammation, anemia, and susceptibility to Salmonella infection.
Collapse
|
21
|
Shannon CP, Blimkie TM, Ben-Othman R, Gladish N, Amenyogbe N, Drissler S, Edgar RD, Chan Q, Krajden M, Foster LJ, Kobor MS, Mohn WW, Brinkman RR, Le Cao KA, Scheuermann RH, Tebbutt SJ, Hancock RE, Koff WC, Kollmann TR, Sadarangani M, Lee AHY. Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort. Front Immunol 2020; 11:578801. [PMID: 33329547 PMCID: PMC7734088 DOI: 10.3389/fimmu.2020.578801] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Vaccination remains one of the most effective means of reducing the burden of infectious diseases globally. Improving our understanding of the molecular basis for effective vaccine response is of paramount importance if we are to ensure the success of future vaccine development efforts. Methods We applied cutting edge multi-omics approaches to extensively characterize temporal molecular responses following vaccination with hepatitis B virus (HBV) vaccine. Data were integrated across cellular, epigenomic, transcriptomic, proteomic, and fecal microbiome profiles, and correlated to final HBV antibody titres. Results Using both an unsupervised molecular-interaction network integration method (NetworkAnalyst) and a data-driven integration approach (DIABLO), we uncovered baseline molecular patterns and pathways associated with more effective vaccine responses to HBV. Biological associations were unravelled, with signalling pathways such as JAK-STAT and interleukin signalling, Toll-like receptor cascades, interferon signalling, and Th17 cell differentiation emerging as important pre-vaccination modulators of response. Conclusion This study provides further evidence that baseline cellular and molecular characteristics of an individual's immune system influence vaccine responses, and highlights the utility of integrating information across many parallel molecular datasets.
Collapse
Affiliation(s)
- Casey P. Shannon
- Prevention of Organ Failure (PROOF) Centre of Excellence and Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Travis M. Blimkie
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Telethon Kids Institute, Perth Children’s Hospital, University of Western Australia, Nedlands, WA, Australia
| | - Nicole Gladish
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Nelly Amenyogbe
- Telethon Kids Institute, Perth Children’s Hospital, University of Western Australia, Nedlands, WA, Australia
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sibyl Drissler
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Rachel D. Edgar
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Queenie Chan
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - William W. Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ryan R. Brinkman
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Kim-Anh Le Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Richard H. Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, United States
- Department of Pathology, University of California, San Diego, CA, United States
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Scott J. Tebbutt
- Prevention of Organ Failure (PROOF) Centre of Excellence and Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert E.W. Hancock
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | - Tobias R. Kollmann
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Telethon Kids Institute, Perth Children’s Hospital, University of Western Australia, Nedlands, WA, Australia
| | - Manish Sadarangani
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Amy Huei-Yi Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
22
|
Blanc-Potard AB, Groisman EA. How Pathogens Feel and Overcome Magnesium Limitation When in Host Tissues. Trends Microbiol 2020; 29:98-106. [PMID: 32807623 DOI: 10.1016/j.tim.2020.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
Host organisms utilize nutritional immunity to limit the availability of nutrients essential to an invading pathogen. Nutrients may include amino acids, nucleotide bases, and transition metals, the essentiality of which varies among pathogens. The mammalian macrophage protein Slc11a1 (previously Nramp1) mediates resistance to several intracellular pathogens. Slc11a1 is proposed to restrict growth of Salmonella enterica serovar Typhimurium in host tissues by causing magnesium deprivation. This is intriguing because magnesium is the most abundant divalent cation in all living cells. A pathogen's response to factors such as Slc11a1 that promote nutritional immunity may therefore reflect what the pathogen 'feels' in its cytoplasm, rather than the nutrient concentration in host cell compartments.
Collapse
Affiliation(s)
- Anne-Béatrice Blanc-Potard
- Laboratory of Pathogen Host Interactions, Université Montpellier, case 107, Place Eugène Bataillon, 34095, Montpellier cedex 5, France; CNRS, UMR5235, 34095, Montpellier Cedex 05, France.
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA; Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA.
| |
Collapse
|
23
|
Honeycutt JD, Wenner N, Li Y, Brewer SM, Massis LM, Brubaker SW, Chairatana P, Owen SV, Canals R, Hinton JCD, Monack DM. Genetic variation in the MacAB-TolC efflux pump influences pathogenesis of invasive Salmonella isolates from Africa. PLoS Pathog 2020; 16:e1008763. [PMID: 32834002 PMCID: PMC7446830 DOI: 10.1371/journal.ppat.1008763] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023] Open
Abstract
The various sub-species of Salmonella enterica cause a range of disease in human hosts. The human-adapted Salmonella enterica serovar Typhi enters the gastrointestinal tract and invades systemic sites to cause enteric (typhoid) fever. In contrast, most non-typhoidal serovars of Salmonella are primarily restricted to gut tissues. Across Africa, invasive non-typhoidal Salmonella (iNTS) have emerged with an ability to spread beyond the gastrointestinal tract and cause systemic bloodstream infections with increased morbidity and mortality. To investigate this evolution in pathogenesis, we compared the genomes of African iNTS isolates with other Salmonella enterica serovar Typhimurium and identified several macA and macB gene variants unique to African iNTS. MacAB forms a tripartite efflux pump with TolC and is implicated in Salmonella pathogenesis. We show that macAB transcription is upregulated during macrophage infection and after antimicrobial peptide exposure, with macAB transcription being supported by the PhoP/Q two-component system. Constitutive expression of macAB improves survival of Salmonella in the presence of the antimicrobial peptide C18G. Furthermore, these macAB variants affect replication in macrophages and influence fitness during colonization of the murine gastrointestinal tract. Importantly, the infection outcome resulting from these macAB variants depends upon both the Salmonella Typhimurium genetic background and the host gene Nramp1, an important determinant of innate resistance to intracellular bacterial infection. The variations we have identified in the MacAB-TolC efflux pump in African iNTS may reflect evolution within human host populations that are compromised in their ability to clear intracellular Salmonella infections.
Collapse
Affiliation(s)
- Jared D. Honeycutt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicolas Wenner
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yan Li
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Susan M. Brewer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Liliana M. Massis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sky W. Brubaker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Phoom Chairatana
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siân V. Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
24
|
McHenry ML, Williams SM, Stein CM. Genetics and evolution of tuberculosis pathogenesis: New perspectives and approaches. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104204. [PMID: 31981609 PMCID: PMC7192760 DOI: 10.1016/j.meegid.2020.104204] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Tuberculosis is the most lethal infectious disease globally, but the vast majority of people who are exposed to the primary causative pathogen, Mycobacterium tuberculosis (MTB), do not develop active disease. Most people do, however, show signs of infection that remain throughout their lifetimes. In this review, we develop a framework that describes several possible transitions from pathogen exposure to TB disease and reflect on the genetics studies to address many of these. The evidence strongly supports a human genetic component for both infection and active disease, but many of the existing studies, including some of our own, do not clearly delineate what transition(s) is being explicitly examined. This can make interpretation difficult in terms of why only some people develop active disease. Nonetheless, both linkage peaks and associations with either active disease or latent infection have been identified. For transition to active disease, pathways defined as active TB altered T and B cell signaling in rheumatoid arthritis and T helper cell differentiation are significantly associated. Pathways that affect transition from exposure to infection are less clear-cut, as studies of this phenotype are less common, and a primary response, if it exists, is not yet well defined. Lastly, we discuss the role that interaction between the MTB lineage and human genetics can play in TB disease, especially severity. Severity of TB is at present the only way to study putative co-evolution between MTB and humans as it is impossible in the absence of disease to know the MTB lineage(s) to which an individual has been exposed. In addition, even though severity has been defined in multiple heterogeneous ways, it appears that MTB-human co-evolution may shape pathogenicity. Further analysis of co-evolution, requiring careful analysis of paired samples, may be the best way to completely assess the genetic basis of TB.
Collapse
Affiliation(s)
- Michael L McHenry
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
25
|
Kim S, Lee YH. Impact of small RNA RaoN on nitrosative-oxidative stress resistance and virulence of Salmonella enterica serovar Typhimurium. J Microbiol 2020; 58:499-506. [PMID: 32279276 DOI: 10.1007/s12275-020-0027-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 03/05/2020] [Indexed: 12/26/2022]
Abstract
RaoN is a Salmonella-specific small RNA that is encoded in the cspH-envE intergenic region on Salmonella pathogenicity island-11. We previously reported that RaoN is induced under conditions of acid and oxidative stress combined with nutrient limitation, contributing to the intramacrophage growth of Salmonella enterica serovar Typhimurium. However, the role of RaoN in nitrosative stress response and virulence has not yet been elucidated. Here we show that the raoN mutant strain has increased susceptibility to nitrosative stress by using a nitric oxide generating acidified nitrite. Extending previous research on the role of RaoN in oxidative stress resistance, we found that NADPH oxidase inhibition restores the growth of the raoN mutant in LPS-treated J774A.1 macrophages. Flow cytometry analysis further revealed that the inactivation of raoN leads to an increase in the intracellular level of reactive oxygen species (ROS) in Salmonella-infected macrophages, suggesting that RaoN is involved in the inhibition of NADPH oxidase-mediated ROS production by mechanisms not yet resolved. Moreover, we evaluated the effect of raoN mutation on the virulence in murine systemic infection and determined that the raoN mutant is less virulent than the wild-type strain following oral inoculation. In conclusion, small regulatory RNA RaoN controls nitrosative-oxidative stress resistance and is required for virulence of Salmonella in mice.
Collapse
Affiliation(s)
- Sinyeon Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yong Heon Lee
- Department of Biomedical Laboratory Science, Dongseo University, Busan, 47011, Republic of Korea.
| |
Collapse
|
26
|
McHenry ML, Bartlett J, Igo RP, Wampande EM, Benchek P, Mayanja-Kizza H, Fluegge K, Hall NB, Gagneux S, Tishkoff SA, Wejse C, Sirugo G, Boom WH, Joloba M, Williams SM, Stein CM. Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: Evidence for coevolution? PLoS Genet 2020; 16:e1008728. [PMID: 32352966 PMCID: PMC7217476 DOI: 10.1371/journal.pgen.1008728] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/12/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Genetic studies of both the human host and Mycobacterium tuberculosis (MTB) demonstrate independent association with tuberculosis (TB) risk. However, neither explains a large portion of disease risk or severity. Based on studies in other infectious diseases and animal models of TB, we hypothesized that the genomes of the two interact to modulate risk of developing active TB or increasing the severity of disease, when present. We examined this hypothesis in our TB household contact study in Kampala, Uganda, in which there were 3 MTB lineages of which L4-Ugandan (L4.6) is the most recent. TB severity, measured using the Bandim TBscore, was modeled as a function of host SNP genotype, MTB lineage, and their interaction, within two independent cohorts of TB cases, N = 113 and 121. No association was found between lineage and severity, but association between multiple polymorphisms in IL12B and TBscore was replicated in two independent cohorts (most significant rs3212227, combined p = 0.0006), supporting previous associations of IL12B with TB susceptibility. We also observed significant interaction between a single nucleotide polymorphism (SNP) in SLC11A1 and the L4-Ugandan lineage in both cohorts (rs17235409, meta p = 0.0002). Interestingly, the presence of the L4-Uganda lineage in the presence of the ancestral human allele associated with more severe disease. These findings demonstrate that IL12B is associated with severity of TB in addition to susceptibility, and that the association between TB severity and human genetics can be due to an interaction between genes in the two species, consistent with host-pathogen coevolution in TB.
Collapse
Affiliation(s)
- Michael L. McHenry
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jacquelaine Bartlett
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Robert P. Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Eddie M. Wampande
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Penelope Benchek
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Harriet Mayanja-Kizza
- Department of Medicine and Mulago Hospital, School of Medicine, Makerere University, Kampala, Uganda
| | - Kyle Fluegge
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Noemi B. Hall
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sarah A. Tishkoff
- Departments of Genetics and Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christian Wejse
- Department of Infectious Diseases and Center for Global Health, Aarhus University, Aarhus, Denmark
- Bandim Health Project, INDEPTH Network, Bissau, Guinea Bissau
| | - Giorgio Sirugo
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, Unites States of America
| | - W. Henry Boom
- Tuberculosis Research Unit, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Moses Joloba
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Scott M. Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Catherine M. Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Tuberculosis Research Unit, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
27
|
Quéméré E, Rossi S, Petit E, Marchand P, Merlet J, Game Y, Galan M, Gilot-Fromont E. Genetic epidemiology of the Alpine ibex reservoir of persistent and virulent brucellosis outbreak. Sci Rep 2020; 10:4400. [PMID: 32157133 PMCID: PMC7064506 DOI: 10.1038/s41598-020-61299-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 02/25/2020] [Indexed: 01/23/2023] Open
Abstract
While it is now broadly accepted that inter-individual variation in the outcomes of host-pathogen interactions is at least partially genetically controlled, host immunogenetic characteristics are rarely investigated in wildlife epidemiological studies. Furthermore, most immunogenetic studies in the wild focused solely on the major histocompatibility complex (MHC) diversity despite it accounts for only a fraction of the genetic variation in pathogen resistance. Here, we investigated immunogenetic diversity of the Alpine ibex (Capra ibex) population of the Bargy massif, reservoir of a virulent outbreak of brucellosis. We analysed the polymorphism and associations with disease resistance of the MHC Class II Drb gene and several non-MHC genes (Toll-like receptor genes, Slc11A1) involved in the innate immune response to Brucella in domestic ungulates. We found a very low neutral genetic diversity and a unique MHC Drb haplotype in this population founded few decades ago from a small number of individuals. By contrast, other immunity-related genes have maintained polymorphism and some showed significant associations with the brucellosis infection status hence suggesting a predominant role of pathogen-mediated selection in their recent evolutionary trajectory. Our results highlight the need to monitor immunogenetic variation in wildlife epidemiological studies and to look beyond the MHC.
Collapse
Affiliation(s)
- Erwan Quéméré
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France.
- ESE, Ecology and Ecosystems Health, Agrocampus Ouest, INRAE, 35042 Rennes, France.
| | - Sophie Rossi
- Office Français de la Biodiversité, Unité Sanitaire de la Faune, Gap, France
| | - Elodie Petit
- Office Français de la Biodiversité, Unité Ongulés sauvages, Gières, France
| | - Pascal Marchand
- Office Français de la Biodiversité, Unité Ongulés sauvages, Gières, France
| | - Joël Merlet
- CEFS, INRAE, Université de Toulouse, Castanet-Tolosan, France
| | - Yvette Game
- Laboratoire Départemental d'Analyses Vétérinaires de Savoie, Chambéry, France
| | - Maxime Galan
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, VetAgro Sup - Campus vétérinaire de Lyon, Marcy l'Étoile, France
- Université de Lyon 1, UMR CNRS 5558 Laboratoire de Biométrie et Biologie Evolutive (LBBE), Villeurbanne, France
| |
Collapse
|
28
|
Gandhi K, Patel M. Collocating Novel Targets for Tuberculosis (TB) Drug Discovery. Curr Drug Discov Technol 2020; 18:307-316. [PMID: 31987022 DOI: 10.2174/1570163817666200121143036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/23/2019] [Accepted: 01/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis, being a resistive species is an incessant threat to the world population for the treatment of Tuberculosis (TB). An advanced genetic or a molecular level approach is mandatory for both diagnosis and therapy as the prevalence of multi drug-resistant (MDR) and extensively drug- resistant (XDR) TB. METHODS A literature review was conducted, focusing essentially on the development of biomarkers and targets to extrapolate the Tuberculosis Drug Discovery process. RESULTS AND DISCUSSION In this article, we have discussed several substantial targets and genetic mutations occurring in a diseased or treatment condition of TB patients. It includes expressions in Bhlhe40, natural resistance associated macrophage protein 1 (NRAMP1) and vitamin D receptor (VDR) with its mechanistic actions that have made a significant impact on TB. Moreover, recently identified compounds; imidazopyridine amine derivative (Q203), biphenyl amide derivative (DG70), azetidine, thioquinazole, tetrahydroindazole and 2- mercapto- quinazoline scaffolds for several targets such as adenosine triphosphate (ATP), amino acid and fatty acid have been briefed for their confirmed hits and therapeutic activity.
Collapse
Affiliation(s)
- Karan Gandhi
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Charusat campus, Changa, Gujarat, India
| | - Mehul Patel
- Department of Pharmaceutical Chemistry, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Charusat Campus, Changa, Gujarat, India
| |
Collapse
|
29
|
Khaliullin TO, Yanamala N, Newman MS, Kisin ER, Fatkhutdinova LM, Shvedova AA. Comparative analysis of lung and blood transcriptomes in mice exposed to multi-walled carbon nanotubes. Toxicol Appl Pharmacol 2020; 390:114898. [PMID: 31978390 DOI: 10.1016/j.taap.2020.114898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Pulmonary exposure to multi-walled carbon nanotubes (MWCNT) causes inflammation, fibroproliferation, immunotoxicity, and systemic responses in rodents. However, the search for representative biomarkers of exposure is an ongoing endeavor. Whole blood gene expression profiling is a promising new approach for the identification of novel disease biomarkers. We asked if the whole blood transcriptome reflects pathology-specific changes in lung gene expression caused by MWCNT. To answer this question, we performed mRNA sequencing analysis of the whole blood and lung in mice administered MWCNT or vehicle solution via pharyngeal aspiration and sacrificed 56 days later. The pattern of lung mRNA expression as determined using Ingenuity Pathway Analysis (IPA) was indicative of continued inflammation, immune cell trafficking, phagocytosis, and adaptive immune responses. Simultaneously, innate immunity-related transcripts (Plunc, Bpifb1, Reg3g) and cancer-related pathways were downregulated. IPA analysis of the differentially expressed genes in the whole blood suggested increased hematopoiesis, predicted activation of cancer/tumor development pathways, and atopy. There were several common upregulated genes between whole blood and lungs, important for adaptive immune responses: Cxcr1, Cd72, Sharpin, and Slc11a1. Trim24, important for TH2 cell effector function, was downregulated in both datasets. Hla-dqa1 mRNA was upregulated in the lungs and downregulated in the blood, as was Lilrb4, which controls the reactivity of immune response. "Cancer" disease category had opposing activation status in the two datasets, while the only commonality was "Hypersensitivity". Transcriptome changes occurring in the lungs did not produce a completely replicable pattern in whole blood; however, specific systemic responses may be shared between transcriptomic profiles.
Collapse
Affiliation(s)
- Timur O Khaliullin
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA; Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| | - Naveena Yanamala
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| | - Mackenzie S Newman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.
| | - Elena R Kisin
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| | - Liliya M Fatkhutdinova
- Department of Hygiene and Occupational Medicine, Kazan State Medical University, Kazan, Russia
| | - Anna A Shvedova
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA; Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA.
| |
Collapse
|
30
|
Differential immune response modulation in early Leishmania amazonensis infection of BALB/c and C57BL/6 macrophages based on transcriptome profiles. Sci Rep 2019; 9:19841. [PMID: 31882833 PMCID: PMC6934472 DOI: 10.1038/s41598-019-56305-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
The fate of Leishmania infection can be strongly influenced by the host genetic background. In this work, we describe gene expression modulation of the immune system based on dual global transcriptome profiles of bone marrow-derived macrophages (BMDMs) from BALB/c and C57BL/6 mice infected with Leishmania amazonensis. A total of 12,641 host transcripts were identified according to the alignment to the Mus musculus genome. Differentially expressed genes (DEGs) profiling revealed a differential modulation of the basal genetic background between the two hosts independent of L. amazonensis infection. In addition, in response to early L. amazonensis infection, 10 genes were modulated in infected BALB/c vs. non-infected BALB/c macrophages; and 127 genes were modulated in infected C57BL/6 vs. non-infected C57BL/6 macrophages. These modulated genes appeared to be related to the main immune response processes, such as recognition, antigen presentation, costimulation and proliferation. The distinct gene expression was correlated with the susceptibility and resistance to infection of each host. Furthermore, upon comparing the DEGs in BMDMs vs. peritoneal macrophages, we observed no differences in the gene expression patterns of Jun, Fcgr1 and Il1b, suggesting a similar activation trends of transcription factor binding, recognition and phagocytosis, as well as the proinflammatory cytokine production in response to early L. amazonensis infection. Analysis of the DEG profile of the parasite revealed only one DEG among the 8,282 transcripts, indicating that parasite gene expression in early infection does not depend on the host genetic background.
Collapse
|
31
|
Scariot DB, Volpato H, Fernandes NS, Lazarin-Bidóia D, Borges O, Sousa MDC, Rosa FA, Jacomini AP, Silva SO, Ueda-Nakamura T, Rubira AF, Nakamura CV. Oral treatment with T6-loaded yeast cell wall particles reduces the parasitemia in murine visceral leishmaniasis model. Sci Rep 2019; 9:20080. [PMID: 31882925 PMCID: PMC6934808 DOI: 10.1038/s41598-019-56647-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/16/2019] [Indexed: 01/28/2023] Open
Abstract
Yeast cell wall particles isolated from Saccharomyces cerevisiae (scYCWPs) have a rich constitution of β-glucan derived from the cell wall. After removing intracellular contents, β-glucan molecules are readily recognized by dectin-1 receptors, present on the cytoplasmic membrane surface of the mononuclear phagocytic cells and internalized. Leishmania spp. are obligate intracellular parasites; macrophages are its primary host cells. An experimental murine model of visceral leishmaniasis caused by L. infantum was used to evaluate the antileishmanial activity of oral administration of these particles. A low-water soluble thiophene previously studied in vitro against L. infantum was entrapped into scYCWPs to direct it into the host cell, in order to circumvent the typical pharmacokinetic problems of water-insoluble compounds. We found that scYCWPs + T6 reduced the parasitic burden in the liver and spleen. There was an increase in IFN-γ levels related to nitric oxide production, explaining the reduction of the L. infantum burden in the tissue. Histological analysis did not show signals of tissue inflammation and biochemical analysis from plasma did not indicate signals of cytotoxicity after scYCWPs + T6 treatment. These findings suggested that scYCWPs + T6 administered through oral route reduced the parasitic burden without causing toxic effects, satisfying requirements for development of new strategies to treat leishmaniasis.
Collapse
Affiliation(s)
- Débora B Scariot
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, State University of Maringá, Maringa, 87020-900, Brazil
| | - Hélito Volpato
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, State University of Maringá, Maringa, 87020-900, Brazil
| | - Nilma S Fernandes
- Cellular Biology Graduate Program, State University of Maringá, Maringa, 87020-900, Brazil
| | - Danielle Lazarin-Bidóia
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, State University of Maringá, Maringa, 87020-900, Brazil
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Maria do Céu Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Fernanda A Rosa
- Chemistry Department, State University of Maringá, Maringa, 87020-900, Brazil
| | - Andrey P Jacomini
- Chemistry Department, State University of Maringá, Maringa, 87020-900, Brazil
| | - Sueli O Silva
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, State University of Maringá, Maringa, 87020-900, Brazil
| | - Tânia Ueda-Nakamura
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, State University of Maringá, Maringa, 87020-900, Brazil
| | - Adley F Rubira
- Chemistry Department, State University of Maringá, Maringa, 87020-900, Brazil
| | - Celso V Nakamura
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, State University of Maringá, Maringa, 87020-900, Brazil.
| |
Collapse
|
32
|
Plasmodium-Salmonella Coinfection Induces Intense Inflammatory Response, Oxidative Stress, and Liver Damage: A Mice Model Study for Therapeutic Strategy. Shock 2019; 50:741-749. [PMID: 29394238 DOI: 10.1097/shk.0000000000001111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Impairment of host immune response in malaria favors bacteremia caused by typhoidal or nontyphoidal serovars of Salmonella enterica. Ofloxacin and Artesunate are the drugs that are clinically proven for treating typhoid and malaria, respectively. The study evaluates the host responses upon treatment with antibiotic (Ofloxacin) and antimalarial (Artesunate) in a standardized mice model harboring coinfection. BALB/c mice (18-22 g) were simultaneously coinfected with Plasmodium yoelii nigeriensis (Pyn) and S. enterica serovar Typhimurium (STm) and then treated with Ofloxacin or/and Artesunate from day 4 to day 7. The bacterial burden, liver function enzymes, oxidative stress, m-RNA expression of Toll-like receptors (TLR-2 and TLR-4), Th1/Th2 cytokines, hemeoxygenase-1, and NFкB were assessed. Ofloxacin treatment failed to counter the bacterial proliferation in Pyn-STm coinfected mice. However, upon controlling parasitemia with antimalarial, the efficacy of Ofloxacin could be regained. Elevated bacterial burden with malaria induces the expression of TLR-2 and TLR-4 triggering intense inflammatory response (NFκB, Th1/Th2 cytokines) in coinfected mice. This results in critical liver damage (ALT, AST, and ALP), oxidative stress (lipid peroxidation, total GSH, catalase, and super oxide dismutase), and hemeoxygenase-1 (HO-1). The study concludes that malaria infection aggravates the secondary infection of Salmonella serovars and the control of septicemia is critical in recovery of the coinfected subject.
Collapse
|
33
|
Nilsson OR, Kari L, Steele-Mortimer O. Foodborne infection of mice with Salmonella Typhimurium. PLoS One 2019; 14:e0215190. [PMID: 31393874 PMCID: PMC6687127 DOI: 10.1371/journal.pone.0215190] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/28/2019] [Indexed: 01/08/2023] Open
Abstract
The bacterial pathogen Salmonella enterica serovar Typhimurium is one of the most common causes of foodborne disease in humans and is also an important model system for bacterial pathogenesis. Oral inoculation of C57Bl/6 mice, which are genetically susceptible to Salmonella, results in systemic infection but the murine intestine is not efficiently colonized unless the intestinal microbiota is disrupted. Pretreatment of C57Bl/6 mice with streptomycin, followed by oral inoculation with Salmonella Typhimurium results in colitis resembling human intestinal Salmonellosis. The predominant method of delivery of bacteria is oral gavage, during which organisms are deposited directly into the stomach via a feeding needle. Although convenient, this method can be stressful for mice, and may lead to unwanted tracheal or systemic introduction of bacteria. Here, we developed a method for oral infection of mice by voluntary consumption of regular mouse chow inoculated with bacteria. Mice readily ate chow fragments containing up to 108 CFU Salmonella, allowing for a wide range of infectious doses. In mice pretreated with streptomycin, infection with inoculated chow resulted in reproducible infections with doses as low as 103 CFU. Mice not treated with streptomycin, as well as resistant Nramp1 reconstituted C57Bl/6J mice, were also readily infected using this method. In summary, voluntary consumption of chow inoculated with Salmonella represents a natural route of infection for foodborne salmonellosis and a viable alternative to oral gavage.
Collapse
Affiliation(s)
- Olof R. Nilsson
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Laszlo Kari
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
34
|
Ni WW, E GX, Basang WD, Zhu YB, Huang YF. Molecular Variant Estimation of SLC11A1 Related Microsatellites in Chinese Indigenous Goats. RUSS J GENET+ 2019. [DOI: 10.1134/s102279541908009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Lacharme-Lora L, Owen SV, Blundell R, Canals R, Wenner N, Perez-Sepulveda B, Fong WY, Gilroy R, Wigley P, Hinton JCD. The use of chicken and insect infection models to assess the virulence of African Salmonella Typhimurium ST313. PLoS Negl Trop Dis 2019; 13:e0007540. [PMID: 31348776 PMCID: PMC6685681 DOI: 10.1371/journal.pntd.0007540] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/07/2019] [Accepted: 06/11/2019] [Indexed: 11/18/2022] Open
Abstract
Over recent decades, Salmonella infection research has predominantly relied on murine infection models. However, in many cases the infection phenotypes of Salmonella pathovars in mice do not recapitulate human disease. For example, Salmonella Typhimurium ST313 is associated with enhanced invasive infection of immunocompromised people in Africa, but infection of mice and other animal models with ST313 have not consistently reproduced this invasive phenotype. The introduction of alternative infection models could help to improve the quality and reproducibility of pathogenesis research by facilitating larger-scale experiments. To investigate the virulence of S. Typhimurium ST313 in comparison with ST19, a combination of avian and insect disease models were used. We performed experimental infections in five lines of inbred and one line of outbred chickens, as well as in the alternative chick embryo and Galleria mellonella wax moth larvae models. This extensive set of experiments identified broadly similar patterns of disease caused by the African and global pathovariants of Salmonella Typhimurium in the chicken, the chicken embryo and insect models. A comprehensive analysis of all the chicken infection experiments revealed that the African ST313 isolate D23580 had a subtle phenotype of reduced levels of organ colonisation in inbred chickens, relative to ST19 strain 4/74. ST313 isolate D23580 also caused reduced mortality in chicken embryos and insect larvae, when compared with ST19 4/74. We conclude that these three infection models do not reproduce the characteristics of the systemic disease caused by S. Typhimurium ST313 in humans. Salmonella Typhimurium ST313 is associated with systemic infection in human populations in sub-Saharan Africa, and contrasts with the related pathovariant ST19 which causes gastrointestinal disease worldwide. Although the systemic pathology associated with ST313 infection in humans has been comprehensively documented in clinical and epidemiological studies, such pathology has been inconsistently reproduced in animal models of infection. Animal models that reliably recapitulate ST313 infection in humans are needed to study the biological mechanisms underpinning the systemic disease caused by ST313. In this study we performed extensive infection experiments, using several defined and alternative animal infection models to look for robust phenotypes that differentiate infection by S. Typhimurium ST313 from ST19. Large sample sizes and multivariate statistical analysis of infection data for inbred chicken lines allowed us to detect small but consistent differences between the strains. Overall, S. Typhimurium ST313 was associated with a reduced infection burden and pathology relative to ST19. This subtle phenotype may reflect the limitation of animal models to accurately represent infection by pathogens that have adapted to specific host phenotypes, for example, immunodeficiency in humans. Our study demonstrates the challenge of using animal models to differentiate closely-related bacterial pathovariants, and shows that inter-pathovar differences detected in animal models of infection often do not reflect clinical differences in humans at the level of disease mechanism.
Collapse
Affiliation(s)
- Lizeth Lacharme-Lora
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Siân V. Owen
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Blundell
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, United Kingdom
| | - Rocío Canals
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nicolas Wenner
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Blanca Perez-Sepulveda
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Wai Yee Fong
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Rachel Gilroy
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Paul Wigley
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Braliou GG, Kontou PI, Boleti H, Bagos PG. Susceptibility to leishmaniasis is affected by host SLC11A1 gene polymorphisms: a systematic review and meta-analysis. Parasitol Res 2019; 118:2329-2342. [PMID: 31230160 DOI: 10.1007/s00436-019-06374-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
Leishmaniases are cutaneous, mucocutaneous, and visceral diseases affecting humans and domesticated animals mostly in the tropical and subtropical areas of the planet. Host genetics have been widely investigated for their role in developing various infectious diseases. The SLC11A1 gene has been reported to play a role in neutrophil function and is associated with susceptibility to infectious and inflammatory diseases such as tuberculosis or rheumatoid arthritis. In the present meta-analysis, we investigate the genetic association of SLC11A1 polymorphisms with susceptibility to leishmaniasis. Genotypes and other risk-related data were collected from 13 case-control and family-based studies (after literature search). Conventional random-effects meta-analysis was performed using STATA 13. To pool case-control and family-based data, the weighted Stouffer's method was also applied. Eight polymorphisms were investigated: rs2276631, rs3731865, rs3731864, rs17221959, rs201565523, rs2279015, rs17235409, and rs17235416. We found that rs17235409 (D543N) and rs17235416 (1729 + 55del4) are significantly associated with a risk for cutaneous leishmaniasis (CL), whereas rs17221959, rs2279015, and rs17235409 are associated with visceral leishmaniasis (VL). Our results suggest that polymorphisms in SLC11A1 affect susceptibility to CL and VL. These findings open new pathways in understanding macrophage response to Leishmania infection and the genetic factors predisposing to symptomatic CL or VL that can lead to the usage of predictive biomarkers in populations at risk.
Collapse
Affiliation(s)
- Georgia G Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 2-4, Papasiopoulou str., 35131, Lamia, Greece.
| | - Panagiota I Kontou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 2-4, Papasiopoulou str., 35131, Lamia, Greece
| | - Haralabia Boleti
- Intracellular Parasitism Group, Department of Microbiology, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 2-4, Papasiopoulou str., 35131, Lamia, Greece.
| |
Collapse
|
37
|
Gaudino SJ, Kumar P. Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front Immunol 2019; 10:360. [PMID: 30894857 PMCID: PMC6414782 DOI: 10.3389/fimmu.2019.00360] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/12/2019] [Indexed: 11/21/2022] Open
Abstract
Innate immunity is maintained in part by antigen presenting cells (APCs) including dendritic cells, macrophages, and B cells. APCs interact with T cells to link innate and adaptive immune responses. By displaying bacterial and tumorigenic antigens on their surface via major histocompatibility complexes, APCs can directly influence the differentiation of T cells. Likewise, T cell activation, differentiation, and effector functions are modulated by APCs utilizing multiple mechanisms. The objective of this review is to describe how APCs interact with and influence the activation of T cells to maintain innate immunity during exposure to microbial infection and malignant cells. How bacteria and cancer cells take advantage of some of these interactions for their own benefit will also be discussed. While this review will cover a broad range of topics, a general focus will be held around pathogens, cancers, and interactions that typically occur within the gastrointestinal tract.
Collapse
Affiliation(s)
- Stephen J Gaudino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - Pawan Kumar
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
38
|
Ulas Cinar M, Hizlisoy H, Akyüz BI, Arslan K, Aksel EG, Gümü Şsoy KS. Polymorphisms in toll-like receptor ( TLR) 1, 4, 9 and SLC11A1 genes and their association with paratuberculosis susceptibility in Holstein and indigenous crossbred cattle in Turkey. J Genet 2018; 97:1147-1154. [PMID: 30555064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes major problem in a wide range of animal species. In ruminant livestock including cattle, it causes a chronic disease called Johne's disease, or paratuberculosis (pTB) which is currently considered as potential zoonosis, causing Crohn's disease in humans. MAP infection susceptibility is suspected to be controlled by host genetics. Thus, selecting individuals according to their genetic structure could help to obtain bovine populations that are increasingly resistant to MAP infection. The aim of the present work was to investigate the association between toll-like receptor (TLR) 1 (+1380 G/A), TLR1 (+1446 C/A), TLR4 (+10 C/T), TLR9 (+1310 G/A) and solute carrier family 11 member 1 (SLC11A1) (+1066 C/G) mutations and MAP infection status in 813 cattle comprising East Anatolian Red crossbred, Anatolian Black crossbred and Holstein breed. TLR1 (+1380 G/A) mutation showed an association with bovineMAP (P<0.05). For the TLR1 (+1380 G/A) locus, the odds ratio for AG and AA genotypes versus GG genotypes were 2.31 (1.24-4.30; 95% confidence interval (CI)) and 0<0.001 (<0.001 to >999.999; 95% CI) which indicated that a proportion of AG homozygote was significantly higher in pTB-affected animals as compared with the control. General linear model analysis demonstrated higher MAP antibody response in TLR1 (+1380 AG) genotype as compared with TLR1 (+1380 GG) (P<0.0001). Present findings suggest that selection against TLR1 (+1380 G/A) may reduce the risk of pTB in bovine herds.
Collapse
Affiliation(s)
- Mehmet Ulas Cinar
- Faculty of Agriculture, Department of Animal Science, Erciyes University, Kayseri, Turkey.
| | | | | | | | | | | |
Collapse
|
39
|
Perry ID, Krishnan L, Murphy SP. SLC11A1 is expressed in the human placenta across multiple gestational ages. Placenta 2018; 75:23-26. [PMID: 30712662 DOI: 10.1016/j.placenta.2018.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/11/2018] [Accepted: 11/22/2018] [Indexed: 01/17/2023]
Abstract
The human placenta functions as an innate immune barrier to prevent fetal infection. However, the molecular mechanisms accounting for placental resistance to pathogens are currently poorly understood. The solute carrier family 11 member 1 (SLC11A1) is a divalent cation transporter expressed primarily by macrophages and neutrophils that is essential for controlling infections by intracellular pathogens such as Salmonella, Leishmania and Mycobacteria. This report demonstrates that SLC11A1 is expressed in the syncytiotrophoblast of the human placenta at multiple gestational ages. These results suggest that SLC11A1 may play a role in blocking productive placental infections by certain intracellular pathogens.
Collapse
Affiliation(s)
- Ian D Perry
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lakshmi Krishnan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada; Human Health Therapeutics, Division of Life Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Shawn P Murphy
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
40
|
Polymorphisms in toll-like receptor (TLR) 1, 4, 9 and SLC11A1 genes and their association with paratuberculosis susceptibility in Holstein and indigenous crossbred cattle in Turkey. J Genet 2018. [DOI: 10.1007/s12041-018-1008-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Frönicke L, Bronner DN, Byndloss MX, McLaughlin B, Bäumler AJ, Westermann AJ. Toward Cell Type-Specific In Vivo Dual RNA-Seq. Methods Enzymol 2018; 612:505-522. [PMID: 30502956 DOI: 10.1016/bs.mie.2018.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dual RNA-seq has emerged as a genome-wide expression profiling technique, simultaneously measuring RNA transcript levels in a given host and its pathogen during an infection. Recently, the method was transferred from cell culture to in vivo models of bacterial infections; however, specific host cell-type resolution has not yet been achieved. Here we present a detailed protocol that describes the application of Dual RNA-seq to murine colonocytes isolated from mice infected with the enteric pathogen Salmonella Typhimurium. At day 5 after oral infection, the mice were humanely euthanized, their colons extracted, and colonocytes isolated and fixed. Upon antibody staining of cell type-specific surface markers, the fraction of Salmonella-invaded colonocytes was collected by fluorescence-activated cell sorting based on a fluorescent signal emitted by the internalized bacteria. Total RNA was extracted from cells enriched by this method, and ribosomal transcripts from host and microbial cells were removed prior to cDNA synthesis and library generation. We compared different protocols for library preparation and discuss their respective advantages and caveats when applied to minute RNA amounts that constitute an inherent challenge for in vivo transcriptomics. Our results introduce an ultralow input protocol that holds promise for cell type-specific in vivo Dual RNA-seq for charting gene expression of a bacterial pathogen within its respective in vivo niche, along with the consequent host response.
Collapse
Affiliation(s)
- Lutz Frönicke
- University of California Davis Genome Center, Davis, CA, United States
| | - Denise N Bronner
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Bridget McLaughlin
- Comprehensive Cancer Center Flow Cytometry Shared Resource, University of California Davis, Davis, CA, United States
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, United States
| | - Alexander J Westermann
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany.
| |
Collapse
|
42
|
Petrucelli MF, Peronni K, Sanches PR, Komoto TT, Matsuda JB, Silva Junior WAD, Beleboni RO, Martinez-Rossi NM, Marins M, Fachin AL. Dual RNA-Seq Analysis of Trichophyton rubrum and HaCat Keratinocyte Co-Culture Highlights Important Genes for Fungal-Host Interaction. Genes (Basel) 2018; 9:genes9070362. [PMID: 30029541 PMCID: PMC6070946 DOI: 10.3390/genes9070362] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
The dermatophyte Trichophyton rubrum is the major fungal pathogen of skin, hair, and nails that uses keratinized substrates as the primary nutrients during infection. Few strategies are available that permit a better understanding of the molecular mechanisms involved in the interaction of T. rubrum with the host because of the limitations of models mimicking this interaction. Dual RNA-seq is a powerful tool to unravel this complex interaction since it enables simultaneous evaluation of the transcriptome of two organisms. Using this technology in an in vitro model of co-culture, this study evaluated the transcriptional profile of genes involved in fungus-host interactions in 24 h. Our data demonstrated the induction of glyoxylate cycle genes, ERG6 and TERG_00916, which encodes a carboxylic acid transporter that may improve the assimilation of nutrients and fungal survival in the host. Furthermore, genes encoding keratinolytic proteases were also induced. In human keratinocytes (HaCat) cells, the SLC11A1, RNASE7, and CSF2 genes were induced and the products of these genes are known to have antimicrobial activity. In addition, the FLG and KRT1 genes involved in the epithelial barrier integrity were inhibited. This analysis showed the modulation of important genes involved in T. rubrum–host interaction, which could represent potential antifungal targets for the treatment of dermatophytoses.
Collapse
Affiliation(s)
| | - Kamila Peronni
- Laboratory of Molecular Genetics and Bioinformatics, Regional Hemotherapy Center of Ribeirão Preto, Ribeirão Preto 2501, Brazil.
| | - Pablo Rodrigo Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil.
| | | | - Josie Budag Matsuda
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, São Paulo 2201, Brazil.
| | - Wilson Araújo da Silva Junior
- Laboratory of Molecular Genetics and Bioinformatics, Regional Hemotherapy Center of Ribeirão Preto, Ribeirão Preto 2501, Brazil.
| | | | - Nilce Maria Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil.
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, São Paulo 2201, Brazil.
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, São Paulo 2201, Brazil.
| |
Collapse
|
43
|
Dar MA, Ahmed R, Urwat U, Ahmad SM, Dar PA, Kushoo ZA, Dar TA, Mumtaz PT, Bhat SA, Amin U, Shabir N, Bhat HF, Shah RA, Ganai NA, Heidari M. Expression kinetics of natural resistance associated macrophage protein (NRAMP) genes in Salmonella Typhimurium-infected chicken. BMC Vet Res 2018; 14:180. [PMID: 29884179 PMCID: PMC5994117 DOI: 10.1186/s12917-018-1510-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/31/2018] [Indexed: 11/24/2022] Open
Abstract
Background Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) is a zoonotic pathogen responsible for severe intestinal pathology in young chickens. Natural resistance-associated macrophage protein (NRAMP) family has been shown to be associated with resistance to intracellular pathogens, including Salmonella Typhimurium. The role of NRAMP proteins in macrophage defence against microbial infection has been ascribed to changes in the metal-ion concentrations inside the bacteria-containing phagosomes. The present study was conducted to investigate tissue-specific (liver, spleen and caecum) expression kinetics of NRAMP gene family (NRAMP1 and NRAMP2) in broilers from day 0 to day 15 after Salmonella Typhimurium challenge concomitant to clinical, blood biochemical and immunological parameters survey. Results Clinical symptoms appeared 4 days post-infection (dpi) in infected birds. Symptoms like progressive weakness, anorexia, diarrhoea and lowering of the head were seen in infected birds one-week post-infection. On postmortem examination, liver showed congestion, haemorrhage and necrotic foci on the surface, while as the spleen, lungs and intestines revealed congestion and haemorrhages. Histopathological alterations were principally found in liver comprising of necrosis, reticular endothelial hyperplasia along with mononuclear cell and heterophilic infiltration. Red Blood Cell (RBC) count, Haemoglobin (Hb) and Packed Cell Volume (PCV) decreased significantly (P < 0.05) in blood while heterophil counts increased up to 7 days post-infection. Serum glucose, aspartate transaminase (AST) and alanine transaminase (ALT) enzymes concentrations increased significantly throughout the study. A gradual increase of specific humoral IgG response confirmed Salmonella infection. Meanwhile, expression of NRAMP1 and NRAMP2 genes was differentially regulated after infection in tissues such as liver, spleen and caecum known to be the target of Salmonella Typhimurium replication in the chicken. Conclusion Thus the specific roles of NRAMP1 and NRAMP2 genes in Salmonella Typhimurium induced disease may be supposed from their differential expression according to tissues and timing after per os infection. However, these roles remain to be analyzed related to the severity of the disease which can be estimated by blood biochemistry and immunological parameters.
Collapse
Affiliation(s)
- Mashooq Ahmad Dar
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Srinagar, India.,Depatment of Biochemistry, University of Kashmir, Srinagar, India
| | - Raashid Ahmed
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Srinagar, India
| | - Uneeb Urwat
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Srinagar, India
| | - Syed Mudasir Ahmad
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Srinagar, India.
| | - Pervaiz Ahmad Dar
- Division of Veterinary Microbiology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, Srinagar, India
| | - Zahid Amin Kushoo
- Division of Veterinary Microbiology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, Srinagar, India
| | - Tanveer Ali Dar
- Depatment of Biochemistry, University of Kashmir, Srinagar, India
| | - Peerzada Tajamul Mumtaz
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Srinagar, India
| | - Shakil Ahmad Bhat
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Srinagar, India
| | - Umar Amin
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, Srinagar, India
| | - Nadeem Shabir
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Srinagar, India
| | - Hina Fayaz Bhat
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Srinagar, India
| | - Riaz Ahmad Shah
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Srinagar, India
| | - Nazir Ahmad Ganai
- Division of Animal Breeding and Genetics, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, Srinagar, India
| | - Mohammad Heidari
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, 4279 E. Mount Hope Rd., East Lansing, MI, 48823, USA
| |
Collapse
|
44
|
Thompson A, Fulde M, Tedin K. The metabolic pathways utilized by Salmonella Typhimurium during infection of host cells. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:140-154. [PMID: 29411544 DOI: 10.1111/1758-2229.12628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Only relatively recently has research on the metabolism of intracellular bacterial pathogens within their host cells begun to appear in the published literature. This reflects in part the experimental difficulties encountered in separating host metabolic processes from those of the resident pathogen. One of the most genetically tractable and thoroughly studied intracellular bacterial pathogens, Salmonella enterica serovar Typhimurium (S. Typhimurium), has been at the forefront of metabolic studies within eukaryotic host cells. In this review, we offer a synthesis of what has been discovered to date regarding the metabolic adaptation of S. Typhimurium to survival and growth within the infected host. We discuss many studies in the context of techniques used, types of host cells, how host metabolites contribute to intracellular survival and proliferation of the pathogen and how bacterial metabolism affects the virulence and persistence of the pathogen.
Collapse
Affiliation(s)
- Arthur Thompson
- Institute for Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Marcus Fulde
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
| | - Karsten Tedin
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
45
|
Sarkar A, Khan YA, Laranjeira-Silva MF, Andrews NW, Mittra B. Quantification of Intracellular Growth Inside Macrophages is a Fast and Reliable Method for Assessing the Virulence of Leishmania Parasites. J Vis Exp 2018. [PMID: 29608175 DOI: 10.3791/57486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The lifecycle of Leishmania, the causative agent of leishmaniasis, alternates between promastigote and amastigote stages inside the insect and vertebrate hosts, respectively. While pathogenic symptoms of leishmaniasis can vary widely, from benign cutaneous lesions to highly fatal visceral disease forms depending on the infective species, all Leishmania species reside inside host macrophages during the vertebrate stage of their lifecycle. Leishmania infectivity is therefore directly related to its ability to invade, survive and replicate within parasitophorous vacuoles (PVs) inside macrophages. Thus, assessing the parasite's ability to replicate intracellularly serves as a dependable method for determining virulence. Studying leishmaniasis development using animal models is time-consuming, tedious and often difficult, particularly with the pathogenically important visceral forms. We describe here a methodology to follow the intracellular development of Leishmania in bone marrow-derived macrophages (BMMs). Intracellular parasite numbers are determined at 24 h intervals for 72 - 96 h following infection. This method allows for a reliable determination of the effects of various genetic factors on Leishmania virulence. As an example, we show how a single allele deletion of the Leishmania Mitochondrial Iron Transporter gene (LMIT1) impairs the ability of the Leishmania amazonensis mutant strain LMIT1/ΔLmit1 to grow inside BMMs, reflecting a drastic reduction in virulence compared to wild-type. This assay also allows precise control of experimental conditions, which can be individually manipulated to analyze the influence of various factors (nutrients, reactive oxygen species, etc.) on the host-pathogen interaction. Therefore, the appropriate execution and quantification of BMM infection studies provide a non-invasive, rapid, economical, safe and reliable alternative to conventional animal model studies.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Cell Biology and Molecular Genetics, University of Maryland
| | - Yousuf A Khan
- Department of Cell Biology and Molecular Genetics, University of Maryland
| | | | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland
| | - Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland;
| |
Collapse
|
46
|
Salguero FJ, Garcia-Jimenez WL, Lima I, Seifert K. Histopathological and immunohistochemical characterisation of hepatic granulomas in Leishmania donovani-infected BALB/c mice: a time-course study. Parasit Vectors 2018; 11:73. [PMID: 29386047 PMCID: PMC5793367 DOI: 10.1186/s13071-018-2624-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is a neglected tropical disease (NTD), caused by the intracellular protozoan parasites Leishmania donovani and Leishmania infantum. Symptomatic VL is considered fatal when left untreated. At present, there is no effective vaccine licensed for human use and available chemotherapies have limitations. Understanding the local immune mechanisms required for the control of infection is a key factor for developing effective vaccines and therapeutics. METHODS We have investigated the development of the typical granulomatous lesions in the liver in experimental VL over time, together with the local immune responses. BALB/c mice were infected intravenously with a dose of 2 × 107 L. donovani amastigotes (MHOM/ET/67/HU3) and sacrificed at 15, 35 and 63 days post-infection (dpi). Histopathology and immunohistochemical techniques were used for the detection of Leishmania antigen, selected cell types including B and T lymphocytes, macrophages and neutrophils (CD45R-B220+, CD3+, F4/80+ and Ly-6G+) and iNOS. RESULTS Granulomatous lesions were identified as early as 15 dpi in the livers of all infected animals. Three categories were used to classify liver granulomas (immature, mature and clear). Clear granulomas were exclusively detected from 35 dpi onwards. Kupffer cells (F4/80+) were predominant in immature granulomas, regardless of the dpi. Nonetheless, the highest expression was found 63 dpi. Positive staining for iNOS was mainly observed in the cytoplasm of fused Kupffer cells and the highest expression observed at 35 dpi. T cells (CD3+) and B cells (CD45R-B220+) were predominant in more advanced granuloma stages, probably related to the establishment of acquired immunity. Neutrophils (Ly-6G+) were predominantly observed in mature granulomas with the highest expression at 15 dpi. Neutrophils were lower in numbers compared to other cell types, particularly at later time points. CONCLUSIONS Our results reflect the role of macrophages during the early stage of infection and the establishment of a lymphocytic response to control the infection in more advanced stages.
Collapse
Affiliation(s)
- Francisco J Salguero
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Waldo L Garcia-Jimenez
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Isadora Lima
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK.,Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz, Salvador, Bahia, Brazil
| | - Karin Seifert
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
47
|
Xu L, Haasl RJ, Sun J, Zhou Y, Bickhart DM, Li J, Song J, Sonstegard TS, Van Tassell CP, Lewin HA, Liu GE. Systematic Profiling of Short Tandem Repeats in the Cattle Genome. Genome Biol Evol 2018; 9:20-31. [PMID: 28172841 PMCID: PMC5381564 DOI: 10.1093/gbe/evw256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2016] [Indexed: 12/13/2022] Open
Abstract
Short tandem repeats (STRs), or microsatellites, are genetic variants with repetitive 2–6 base pair motifs in many mammalian genomes. Using high-throughput sequencing and experimental validations, we systematically profiled STRs in five Holsteins. We identified a total of 60,106 microsatellites and generated the first high-resolution STR map, representing a substantial pool of polymorphism in dairy cattle. We observed significant STRs overlap with functional genes and quantitative trait loci (QTL). We performed evolutionary and population genetic analyses using over 20,000 common dinucleotide STRs. Besides corroborating the well-established positive correlation between allele size and variance in allele size, these analyses also identified dozens of outlier STRs based on two anomalous relationships that counter expected characteristics of neutral evolution. And one STR locus overlaps with a significant region of a summary statistic designed to detect STR-related selection. Additionally, our results showed that only 57.1% of STRs located within SNP-based linkage disequilibrium (LD) blocks whereas the other 42.9% were out of blocks. Therefore, a substantial number of STRs are not tagged by SNPs in the cattle genome, likely due to STR's distinct mutation mechanism and elevated polymorphism. This study provides the foundation for future STR-based studies of cattle genome evolution and selection.
Collapse
Affiliation(s)
- Lingyang Xu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD.,Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Ryan J Haasl
- Department of Biology, University of Wisconsin - Platteville, WI
| | - Jiajie Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang Zhou
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD.,College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shannxi, China
| | - Derek M Bickhart
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Tad S Sonstegard
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD
| | - Harris A Lewin
- Department of Evolution and Ecology, University of California, Davis, CA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD
| |
Collapse
|
48
|
Pyle CJ, Azad AK, Papp AC, Sadee W, Knoell DL, Schlesinger LS. Elemental Ingredients in the Macrophage Cocktail: Role of ZIP8 in Host Response to Mycobacterium tuberculosis. Int J Mol Sci 2017; 18:2375. [PMID: 29120360 PMCID: PMC5713344 DOI: 10.3390/ijms18112375] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) is a global epidemic caused by the infection of human macrophages with the world's most deadly single bacterial pathogen, Mycobacterium tuberculosis (M.tb). M.tb resides in a phagosomal niche within macrophages, where trace element concentrations impact the immune response, bacterial metal metabolism, and bacterial survival. The manipulation of micronutrients is a critical mechanism of host defense against infection. In particular, the human zinc transporter Zrt-/Irt-like protein 8 (ZIP8), one of 14 ZIP family members, is important in the flux of divalent cations, including zinc, into the cytoplasm of macrophages. It also has been observed to exist on the membrane of cellular organelles, where it can serve as an efflux pump that transports zinc into the cytosol. ZIP8 is highly inducible in response to M.tb infection of macrophages, and we have observed its localization to the M.tb phagosome. The expression, localization, and function of ZIP8 and other divalent cation transporters within macrophages have important implications for TB prevention and dissemination and warrant further study. In particular, given the importance of zinc as an essential nutrient required for humans and M.tb, it is not yet clear whether ZIP-guided zinc transport serves as a host protective factor or, rather, is targeted by M.tb to enable its phagosomal survival.
Collapse
Affiliation(s)
- Charlie J Pyle
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA.
| | - Abul K Azad
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Audrey C Papp
- Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43085, USA.
| | - Wolfgang Sadee
- Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43085, USA.
| | - Daren L Knoell
- College of Pharmacy, The University of Nebraska Medical Center, Omaha, NE 68198-6120, USA.
| | | |
Collapse
|
49
|
de Vasconcelos TCB, Furtado MC, Belo VS, Morgado FN, Figueiredo FB. Canine susceptibility to visceral leishmaniasis: A systematic review upon genetic aspects, considering breed factors and immunological concepts. INFECTION GENETICS AND EVOLUTION 2017; 74:103293. [PMID: 28987807 DOI: 10.1016/j.meegid.2017.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023]
Abstract
Dogs have different susceptibility degrees to leishmaniasis; however, genetic research on this theme is scarce, manly on visceral form. The aims of this systematic review were to describe and discuss the existing scientific findings on genetic susceptibility to canine leishmaniasis, as well as to show the gaps of the existing knowledge. Twelve articles were selected, including breed immunological studies, genome wide associations or other gene polymorphism or gene sequencing studies, and transcription approaches. As main results of literature, there was a suggestion of genetic clinical resistance background for Ibizan Hound dogs, and alleles associated with protection or susceptibility to visceral leishmaniasis in Boxer dogs. Genetic markers can explain phenotypic variance in both pro- and anti-inflammatory cytokines and in cellular immune responses, including antigen presentation. Many gene segments are involved in canine visceral leishmaniasis phenotype, with Natural Resistance Associated Macrophage Protein 1 (NRAMP1) as the most studied. This was related to both protection and susceptibility. In comparison with murine and human genetic approaches, lack of knowledge in dogs is notorious, with many possibilities for new studies, revealing a wide field to be assessed on canine leishmaniasis susceptibility research.
Collapse
Affiliation(s)
- Tassia Cristina Bello de Vasconcelos
- Centro de Controle de Zoonoses, Vigilância em Saúde, Secretaria Municipal de Saúde, Prefeitura Municipal de Resende, Rua Euridices Paulina de Almeida, 300, Vicentina II, Resende, RJ 27500-000, Brazil.
| | - Marina Carvalho Furtado
- Fiocruz Mata Atlântica, Fundação Oswaldo Cruz, Estrada Rodrigues Caldas, 3400, Taquara, Rio de Janeiro, RJ 22713-375, Brazil
| | - Vinícius Silva Belo
- Universidade Federal de São João del-Rei, campus Centro Oeste Dona Lindu, Rua Sebastião Gonçalves Coelho, 400, Chanadour, Divinópolis, MG 35.501-296, Brazil
| | - Fernanda Nazaré Morgado
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Fabiano Borges Figueiredo
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Rua Professor Algacyr Munhoz Mader, 3.775, CIC, campus do Tecpar, bloco C, Curitiba, PR 81.350-010 Brazil
| |
Collapse
|
50
|
Stejskalova K, Bayerova Z, Futas J, Hrazdilova K, Klumplerova M, Oppelt J, Splichalova P, Di Guardo G, Mazzariol S, Di Francesco CE, Di Francesco G, Terracciano G, Paiu RM, Ursache TD, Modry D, Horin P. Candidate gene molecular markers as tools for analyzing genetic susceptibility to morbillivirus infection in stranded Cetaceans. HLA 2017; 90:343-353. [DOI: 10.1111/tan.13146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/25/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022]
Affiliation(s)
- K. Stejskalova
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
| | - Z. Bayerova
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
| | - J. Futas
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
- Ceitec VFU, RG Animal Immunogenomics; Brno Czech Republic
| | - K. Hrazdilova
- Ceitec VFU, RG Molecular Microbiology; Brno Czech Republic
| | - M. Klumplerova
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
| | - J. Oppelt
- Ceitec MU, Masaryk University; Brno Czech Republic
- Faculty of Science, National Centre for Biomolecular Research; Masaryk University; Brno Czech Republic
| | - P. Splichalova
- Ceitec VFU, RG Animal Immunogenomics; Brno Czech Republic
| | - G. Di Guardo
- Faculty of Veterinary Medicine; University of Teramo; Teramo Italy
| | - S. Mazzariol
- Department of Comparative Biomedicine and Food Science, Viale dell'Università; University of Padua; Padua Italy
| | | | - G. Di Francesco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”; Teramo Italy
| | - G. Terracciano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”; Pisa Italy
| | | | - T. D. Ursache
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca; Cluj-Napoca Romania
| | - D. Modry
- Ceitec VFU, RG Molecular Microbiology; Brno Czech Republic
- Department of Pathology and Parasitology; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
- Biology Center, Czech Academy of Sciences; České Budějovice Czech Republic
| | - P. Horin
- Department of Animal Genetics; University of Veterinary and Pharmaceutical Sciences; Brno Czech Republic
- Ceitec VFU, RG Animal Immunogenomics; Brno Czech Republic
| |
Collapse
|