1
|
Shafie A, Ashour AA, Anjum F, Shamsi A, Hassan MI. Elucidating the Impact of Deleterious Mutations on IGHG1 and Their Association with Huntington's Disease. J Pers Med 2024; 14:380. [PMID: 38673007 PMCID: PMC11050829 DOI: 10.3390/jpm14040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Huntington's disease (HD) is a chronic, inherited neurodegenerative condition marked by chorea, dementia, and changes in personality. The primary cause of HD is a mutation characterized by the expansion of a triplet repeat (CAG) within the huntingtin gene located on chromosome 4. Despite substantial progress in elucidating the molecular and cellular mechanisms of HD, an effective treatment for this disorder is not available so far. In recent years, researchers have been interested in studying cerebrospinal fluid (CSF) as a source of biomarkers that could aid in the diagnosis and therapeutic development of this disorder. Immunoglobulin heavy constant gamma 1 (IGHG1) is one of the CSF proteins found to increase significantly in HD. Considering this, it is reasonable to study the potential involvement of deleterious mutations in IGHG1 in the pathogenesis of this disorder. In this study, we explored the potential impact of deleterious mutations on IGHG1 and their subsequent association with HD. We evaluated 126 single-point amino acid substitutions for their impact on the structure and functionality of the IGHG1 protein while exploiting multiple computational resources such as SIFT, PolyPhen-2, FATHMM, SNPs&Go mCSM, DynaMut2, MAESTROweb, PremPS, MutPred2, and PhD-SNP. The sequence- and structure-based tools highlighted 10 amino acid substitutions that were deleterious and destabilizing. Subsequently, out of these 10 mutations, eight variants (Y32C, Y32D, P34S, V39E, C83R, C83Y, V85M, and H87Q) were identified as pathogenic by disease phenotype predictors. Finally, two pathogenic variants (Y32C and P34S) were found to reduce the solubility of the protein, suggesting their propensity to form protein aggregates. These variants also exhibited higher residual frustration within the protein structure. Considering these findings, the study hypothesized that the identified variants of IGHG1 may compromise its function and potentially contribute to HD pathogenesis.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.S.); (F.A.)
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.S.); (F.A.)
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
2
|
Applications of Phyto-Nanotechnology for the Treatment of Neurodegenerative Disorders. MATERIALS 2022; 15:ma15030804. [PMID: 35160749 PMCID: PMC8837051 DOI: 10.3390/ma15030804] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
The strategies involved in the development of therapeutics for neurodegenerative disorders are very complex and challenging due to the existence of the blood-brain barrier (BBB), a closely spaced network of blood vessels and endothelial cells that functions to prevent the entry of unwanted substances in the brain. The emergence and advancement of nanotechnology shows favourable prospects to overcome this phenomenon. Engineered nanoparticles conjugated with drug moieties and imaging agents that have dimensions between 1 and 100 nm could potentially be used to ensure enhanced efficacy, cellular uptake, specific transport, and delivery of specific molecules to the brain, owing to their modified physico-chemical features. The conjugates of nanoparticles and medicinal plants, or their components known as nano phytomedicine, have been gaining significance lately in the development of novel neuro-therapeutics owing to their natural abundance, promising targeted delivery to the brain, and lesser potential to show adverse effects. In the present review, the promising application, and recent trends of combined nanotechnology and phytomedicine for the treatment of neurological disorders (ND) as compared to conventional therapies, have been addressed. Nanotechnology-based efforts performed in bioinformatics for early diagnosis as well as futuristic precision medicine in ND have also been discussed in the context of computational approach.
Collapse
|
3
|
Soares GABE, Bhattacharya T, Chakrabarti T, Tagde P, Cavalu S. Exploring Pharmacological Mechanisms of Essential Oils on the Central Nervous System. PLANTS (BASEL, SWITZERLAND) 2021; 11:21. [PMID: 35009027 PMCID: PMC8747111 DOI: 10.3390/plants11010021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/01/2023]
Abstract
Essential oils (EOs) have been traditionally used as ancient remedies to treat many health disorders due to their enormous biological activities. As mainstream allopathic medication currently used for CNS disorders is associated with adverse effects, the search to obtain safer alternatives as compared to the currently marketed therapies is of tremendous significance. Research conducted suggests that concurrent utilization of allopathic medicines and EOs is synergistically beneficial. Due to their inability to show untoward effects, various scientists have tried to elucidate the pharmacological mechanisms by which these oils exert beneficial effects on the CNS. In this regard, our review aims to improve the understanding of EOs' biological activity on the CNS and to highlight the significance of the utilization of EOs in neuronal disorders, thereby improving patient acceptability of EOs as therapeutic agents. Through data compilation from library searches and electronic databases such as PubMed, Google Scholar, etc., recent preclinical and clinical data, routes of administration, and the required or maximal dosage for the observation of beneficial effects are addressed. We have also highlighted the challenges that require attention for further improving patient compliance, research gaps, and the development of EO-based nanomedicine for targeted therapy and pharmacotherapy.
Collapse
Affiliation(s)
- Giselle A. Borges e Soares
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA;
| | - Tanima Bhattacharya
- Innovation, Incubation & Industry (I-Cube) Laboratory, Techno India NJR Institute of Technology, Udaipur 313003, Rajasthan, India
- Department of Science & Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Tulika Chakrabarti
- Department of Chemistry, Sir Padampat Singhania University, Udaipur 313601, Rajasthan, India;
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University Bhopal, Bhopal 462026, Madhya Pradesh, India;
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopal 462042, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
4
|
Ebstein F, Küry S, Papendorf JJ, Krüger E. Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci 2021; 14:733012. [PMID: 34566579 PMCID: PMC8455891 DOI: 10.3389/fnmol.2021.733012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,l'Institut du Thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| | - Jonas Johannes Papendorf
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
One-year follow-up of transgene expression by integrase-defective lentiviral vectors and their therapeutic potential in spinocerebellar ataxia model mice. Gene Ther 2014; 21:820-7. [PMID: 24989813 DOI: 10.1038/gt.2014.60] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/12/2014] [Accepted: 05/27/2014] [Indexed: 01/07/2023]
Abstract
We examined integrase-defective lentiviral vectors (IDLVs) with a mutant (D64V) integrase in terms of their residual integration capability, the levels and duration of transgene expression and their therapeutic potential in comparison to wild-type lentiviral vectors (WTLVs) with a wild-type integrase gene. Compared with WTLVs, the IDLV-mediated proviral integration into host-cell chromosomes was approximately 1/3850 in HeLa cells and approximately 1/111 in mouse cerebellar neurons in vivo. At 2 months, transgene expression by IDLVs in the mouse cerebellum was comparable to that by WTLVs, but then significantly decreased. The mRNA levels at 6 and 12 months after injection in IDLV-infected cerebella were approximately 26% and 5%, respectively, of the mRNA levels in WTLV-injected cerebella. To examine the therapeutic potential, IDLVs or WTLVs expressing a molecule that enhances the ubiquitin-proteasome pathway were injected into the cerebella of spinocerebellar ataxia type 3 model mice (SCA3 mice). IDLV-injected SCA3 mice showed a significantly improved rotarod performance even at 1 year after-injection. Immunohistochemistry at 1 year after injection showed a drastic reduction of mutant aggregates in Purkinje cellsfrom IDLV-injected, as well as WTLV-injected, SCA3 mice. Our results suggest that because of the substantially reduced risk of insertional mutagenesis, IDLVs are safer and potentially effective as gene therapy vectors.
Collapse
|
6
|
Evaluation of traditional medicines for neurodegenerative diseases using Drosophila models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:967462. [PMID: 24790636 PMCID: PMC3984789 DOI: 10.1155/2014/967462] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/19/2022]
Abstract
Drosophila is one of the oldest and most powerful genetic models and has led to novel insights into a variety of biological processes. Recently, Drosophila has emerged as a model system to study human diseases, including several important neurodegenerative diseases. Because of the genomic similarity between Drosophila and humans, Drosophila neurodegenerative disease models exhibit a variety of human-disease-like phenotypes, facilitating fast and cost-effective in vivo genetic modifier screening and drug evaluation. Using these models, many disease-associated genetic factors have been identified, leading to the identification of compelling drug candidates. Recently, the safety and efficacy of traditional medicines for human diseases have been evaluated in various animal disease models. Despite the advantages of the Drosophila model, its usage in the evaluation of traditional medicines is only nascent. Here, we introduce the Drosophila model for neurodegenerative diseases and some examples demonstrating the successful application of Drosophila models in the evaluation of traditional medicines.
Collapse
|
7
|
Linazasoro GJ. Neuroprotection in Parkinson’s disease: love story or mission impossible? Expert Rev Neurother 2014; 2:403-16. [DOI: 10.1586/14737175.2.3.403] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Annesley SJ, Chen S, Francione LM, Sanislav O, Chavan AJ, Farah C, De Piazza SW, Storey CL, Ilievska J, Fernando SG, Smith PK, Lay ST, Fisher PR. Dictyostelium, a microbial model for brain disease. Biochim Biophys Acta Gen Subj 2013; 1840:1413-32. [PMID: 24161926 DOI: 10.1016/j.bbagen.2013.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/05/2013] [Accepted: 10/10/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Most neurodegenerative diseases are associated with mitochondrial dysfunction. In humans, mutations in mitochondrial genes result in a range of phenotypic outcomes which do not correlate well with the underlying genetic cause. Other neurodegenerative diseases are caused by mutations that affect the function and trafficking of lysosomes, endosomes and autophagosomes. Many of the complexities of these human diseases can be avoided by studying them in the simple eukaryotic model Dictyostelium discoideum. SCOPE OF REVIEW This review describes research using Dictyostelium to study cytopathological pathways underlying a variety of neurodegenerative diseases including mitochondrial, lysosomal and vesicle trafficking disorders. MAJOR CONCLUSIONS Generalised mitochondrial respiratory deficiencies in Dictyostelium produce a consistent pattern of defective phenotypes that are caused by chronic activation of a cellular energy sensor AMPK (AMP-activated protein kinase) and not ATP deficiency per se. Surprisingly, when individual subunits of Complex I are knocked out, both AMPK-dependent and AMPK-independent, subunit-specific phenotypes are observed. Many nonmitochondrial proteins associated with neurological disorders have homologues in Dictyostelium and are associated with the function and trafficking of lysosomes and endosomes. Conversely, some genes associated with neurodegenerative disorders do not have homologues in Dictyostelium and this provides a unique avenue for studying these mutated proteins in the absence of endogeneous protein. GENERAL SIGNIFICANCE Using the Dictyostelium model we have gained insights into the sublethal cytopathological pathways whose dysregulation contributes to phenotypic outcomes in neurodegenerative disease. This work is beginning to distinguish correlation, cause and effect in the complex network of cross talk between the various organelles involved. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- S J Annesley
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S Chen
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - L M Francione
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - O Sanislav
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - A J Chavan
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - C Farah
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S W De Piazza
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - C L Storey
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - J Ilievska
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S G Fernando
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - P K Smith
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S T Lay
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - P R Fisher
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086.
| |
Collapse
|
9
|
Pahnke J, Fröhlich C, Krohn M, Schumacher T, Paarmann K. Impaired mitochondrial energy production and ABC transporter function-A crucial interconnection in dementing proteopathies of the brain. Mech Ageing Dev 2013; 134:506-15. [PMID: 24012632 DOI: 10.1016/j.mad.2013.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 06/21/2013] [Accepted: 08/24/2013] [Indexed: 01/07/2023]
Abstract
Ageing is the main risk factor for the development of dementing neurodegenerative diseases (NDs) and it is accompanied by the accumulation of variations in mitochondrial DNA. The resulting tissue-specific alterations in ATP production and availability cause deteriorations of cerebral clearance mechanisms that are important for the removal of toxic peptides and its aggregates. ABC transporters were shown to be the most important exporter superfamily for toxic peptides, e.g. β-amyloid and α-synuclein. Their activity is highly dependent on the availability of ATP and forms a directed energy-exporter network, linking decreased mitochondrial function with highly impaired ABC transporter activity and disease progression. In this paper, we describe a network based on interactions between ageing, energy metabolism, regeneration, accumulation of toxic peptides and the development of proteopathies of the brain with a focus on Alzheimer's disease (AD). Additionally, we provide new experimental evidence for interactions within this network in regenerative processes in AD.
Collapse
Affiliation(s)
- Jens Pahnke
- Neurodegeneration Research Lab (NRL), Department of Neurology, University of Magdeburg, Leipziger Str. 44, H64, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44, H64, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
10
|
α -Synuclein Modification in an ALS Animal Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:259381. [PMID: 23762114 PMCID: PMC3666397 DOI: 10.1155/2013/259381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/11/2013] [Accepted: 02/28/2013] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressively paralytic neurodegenerative disease that can be caused by mutations in Cu/Zn-superoxide dismutase 1 (SOD1). Transgenic mice that overexpress mutant SOD1 develop paralysis and accumulate aggregates of mutant protein in the brainstem and spinal cord. Bee venom (BV), which is also known as apitoxin, is extracted from honeybees and is commonly used in oriental medicine for the treatment of chronic rheumatoid arthritis and osteoarthritis. The purpose of the present study was to determine whether BV affects misfolded protein aggregates such as alpha-synuclein, which is a known pathological marker in Parkinson disease, and ubiquitin-proteasomal activity in hSOD1G93A mutant mice. BV was bilaterally administered into a 98-day-old hSOD1G93A animal model. We found that BV-treated hSOD1G93A transgenic mice showed reduced detergent-insoluble polymerization and phosphorylation of α-synuclein. Furthermore, phosphorylated or nitrated α-synuclein was significantly reduced in the spinal cords and brainstems of BV-treated hSOD1G93A mice and reduced proteasomal activity was revealed in the brainstems of BV-treated symptomatic hSOD1G93A. From these findings, we suggest that BV treatment attenuates the dysfunction of the ubiquitin-proteasomal system in a symptomatic hSOD1G93A ALS model and may help to slow motor neuron loss caused by misfolded protein aggregates in ALS models.
Collapse
|
11
|
Piacentini M, D'Eletto M, Falasca L, Farrace MG, Rodolfo C. Transglutaminase 2 at the crossroads between cell death and survival. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:197-246. [PMID: 22220475 DOI: 10.1002/9781118105771.ch5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | | |
Collapse
|
12
|
Bruce-Keller AJ, Gupta S, Knight AG, Beckett TL, McMullen JM, Davis PR, Murphy MP, Van Eldik LJ, St Clair D, Keller JN. Cognitive impairment in humanized APP×PS1 mice is linked to Aβ(1-42) and NOX activation. Neurobiol Dis 2011; 44:317-26. [PMID: 21798347 DOI: 10.1016/j.nbd.2011.07.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/11/2011] [Accepted: 07/11/2011] [Indexed: 02/08/2023] Open
Abstract
Cognitive impairment in Alzheimer's disease (AD) is strongly associated with both extensive deposition of amyloid β peptides and oxidative stress, but the exact role of these indices in the development of dementia is not clear. This study was designed to determine the relationship between cognitive impairment, activation of the free radical producing enzyme NADPH oxidase (NOX), and progressive changes in Aβ deposition and solubility in humanized APP×PS1 knock-in mice of increasing age. Data show that cognitive performance and expression of key synaptic proteins were progressively decreased in aging APP×PS1 mice. Likewise, NOX activity and expression of the specific NOX subunit NOX4 were significantly increased in APP×PS1 mice in an age-dependent manner, and NOX activity and cognitive impairment shared a significant linear relationship. Data further show that age-dependent increases in Aβ(1-42) had a significant linear relationship with both NOX activity and cognitive performance in APP×PS1 knock-in mice. Collectively, these data show that NOX expression and activity are significantly upregulated with age in this humanized model of Aβ pathogenesis, and suggest that NOX-associated redox pathways are intimately linked to both the loss of cognitive function and the deposition of Aβ(1-42).
Collapse
Affiliation(s)
- Annadora J Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Frimpong AK, Abzalimov RR, Uversky VN, Kaltashov IA. Characterization of intrinsically disordered proteins with electrospray ionization mass spectrometry: conformational heterogeneity of alpha-synuclein. Proteins 2010; 78:714-22. [PMID: 19847913 DOI: 10.1002/prot.22604] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Conformational heterogeneity of alpha-synuclein was studied with electrospray ionization mass spectrometry by analyzing protein ion charge state distributions, where the extent of multiple charging reflects compactness of the protein conformations in solution. Although alpha-synuclein lacks a single well-defined structure under physiological conditions, it was found to sample four distinct conformational states, ranging from a highly structured one to a random coil. The compact highly structured state of alpha-synuclein is present across the entire range of conditions tested (pH ranging from 2.5 to 10, alcohol content from 0% to 60%), but is particularly abundant in acidic solutions. The only other protein state populated in acidic solutions is a partially folded intermediate state lacking stable tertiary structure. Another, more compact intermediate state is induced by significant amounts of ethanol used as a co-solvent and appears to represent a partially folded conformation with high beta-sheet content. Protein dimerization is observed throughout the entire range of conditions tested, although only acidic solutions favor formation of highly structured dimers of alpha-synuclein. These dimers are likely to present the earliest stages in protein aggregation leading to globular oligomers and, subsequently, protofibrils.
Collapse
Affiliation(s)
- Agya K Frimpong
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
14
|
Droghetti E, Sumithran S, Sono M, Antalík M, Fedurco M, Dawson JH, Smulevich G. Effects of urea and acetic acid on the heme axial ligation structure of ferric myoglobin at very acidic pH. Arch Biochem Biophys 2009; 489:68-75. [PMID: 19622342 PMCID: PMC2785506 DOI: 10.1016/j.abb.2009.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 12/15/2022]
Abstract
The heme iron coordination of ferric myoglobin (Mb) in the presence of 9.0M urea and 8.0M acetic acid at acidic pH values has been probed by electronic absorption, magnetic circular dichroism and resonance Raman spectroscopic techniques. Unlike Mb at pH 2.0, where heme is not released from the protein despite the acid denaturation and the loss of the axial ligand, upon increasing the concentration of either urea or acetic acid, a spin state change is observed, and a novel, non-native six-coordinated high-spin species prevails, where heme is released from the protein.
Collapse
Affiliation(s)
- Enrica Droghetti
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Suganya Sumithran
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Masanori Sono
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Marián Antalík
- Antalik, Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kos ce, Slovakia
| | - Milan Fedurco
- MICHELIN Recherche & Technique SA, Route André-Piller 30, CH-1762 Givisiez, Switzerland
| | - John H. Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Giulietta Smulevich
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
15
|
Pahnke J, Walker LC, Scheffler K, Krohn M. Alzheimer's disease and blood-brain barrier function-Why have anti-beta-amyloid therapies failed to prevent dementia progression? Neurosci Biobehav Rev 2009; 33:1099-108. [PMID: 19481107 PMCID: PMC2706927 DOI: 10.1016/j.neubiorev.2009.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 01/02/2023]
Abstract
Proteopathies of the brain are defined by abnormal, disease-inducing protein deposition that leads to functional abrogation and death of neurons. Immunization trials targeting the removal of amyloid-beta plaques in Alzheimer's disease have so far failed to stop the progression of dementia, despite autopsy findings of reduced plaque load. Here, we summarize current knowledge of the relationship between AD pathology and blood-brain barrier function, and propose that the activation of the excretion function of the blood-brain barrier might help to achieve better results in trials targeting the dissolution of cerebral amyloid-beta aggregates. We further discuss a possible role of oligomers in limiting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jens Pahnke
- University of Rostock, Department of Neurology, Germany.
| | | | | | | |
Collapse
|
16
|
Modi G, Pillay V, Choonara YE, Ndesendo VMK, du Toit LC, Naidoo D. Nanotechnological applications for the treatment of neurodegenerative disorders. Prog Neurobiol 2009; 88:272-85. [PMID: 19486920 DOI: 10.1016/j.pneurobio.2009.05.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/26/2009] [Accepted: 05/22/2009] [Indexed: 01/26/2023]
Abstract
Nanotechnology employs engineered materials or devices that interact with biological systems at a molecular level and could revolutionize the treatment of neurodegenerative disorders (NDs) by stimulating, responding to and interacting with target sites to induce physiological responses while minimizing side-effects. Conventional drug delivery systems do not provide adequate cyto-architecture restoration and connection patterns that are essential for functional recovery in NDs, due to limitations posed by the restrictive blood-brain barrier. This review article provides a concise incursion into the current and future applications of nano-enabled drug delivery systems for the treatment of NDs, in particular Alzheimer's and Parkinson's diseases, and explores the application of nanotechnology in clinical neuroscience to develop innovative therapeutic modalities for the treatment of NDs.
Collapse
Affiliation(s)
- Girish Modi
- University of the Witwatersrand, School of Neurosciences, Department of Neurology, Parktown, 2193, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Wislet-Gendebien S, Visanji NP, Whitehead SN, Marsilio D, Hou W, Figeys D, Fraser PE, Bennett SAL, Tandon A. Differential regulation of wild-type and mutant alpha-synuclein binding to synaptic membranes by cytosolic factors. BMC Neurosci 2008; 9:92. [PMID: 18808659 PMCID: PMC2562387 DOI: 10.1186/1471-2202-9-92] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 09/22/2008] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Alpha-Synuclein (alpha-syn), a 140 amino acid protein associated with presynaptic membranes in brain, is a major constituent of Lewy bodies in Parkinson's disease (PD). Three missense mutations (A30P, A53T and E46K) in the alpha-syn gene are associated with rare autosomal dominant forms of familial PD. However, the regulation of alpha-syn's cellular localization in neurons and the effects of the PD-linked mutations are poorly understood. RESULTS In the present study, we analysed the ability of cytosolic factors to regulate alpha-syn binding to synaptic membranes. We show that co-incubation with brain cytosol significantly increases the membrane binding of normal and PD-linked mutant alpha-syn. To characterize cytosolic factor(s) that modulate alpha-syn binding properties, we investigated the ability of proteins, lipids, ATP and calcium to modulate alpha-syn membrane interactions. We report that lipids and ATP are two of the principal cytosolic components that modulate Wt and A53T alpha-syn binding to the synaptic membrane. We further show that 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16:0 PAF) is one of the principal lipids found in complex with cytosolic proteins and is required to enhance alpha-syn interaction with synaptic membrane. In addition, the impaired membrane binding observed for A30P alpha-syn was significantly mitigated by the presence of protease-sensitive factors in brain cytosol. CONCLUSION These findings suggest that endogenous brain cytosolic factors regulate Wt and mutant alpha-syn membrane binding, and could represent potential targets to influence alpha-syn solubility in brain.
Collapse
Affiliation(s)
- Sabine Wislet-Gendebien
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, M5S 3H2 Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chromogranin peptides in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2008; 152:13-21. [PMID: 18721831 DOI: 10.1016/j.regpep.2008.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/03/2008] [Accepted: 07/21/2008] [Indexed: 01/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder which primarily affects motor neurons. Eight cases of ALS and seven control cases were studied with semiquantitative immunocytochemistry for chromogranin A, chromogranin B and secretogranin II that are soluble constituents of large dense core vesicles, synaptophysin as a membrane protein of small synaptic vesicles and superoxide dismutase 1. Among the chromogranin peptides, the number and staining intensity of motor neurons was highest for chromogranin A. In ALS, the staining intensity for chromogranin peptides and synaptophysin was significantly lower in the ventral horn of ALS patients due to a loss in immunoreactive motor neurons, varicose fibers and varicosities. For all chromogranins, the remaining motor neurons displayed a characteristic staining pattern consisting of an intracellular accumulation of immunoreactivity with a high staining intensity. Confocal microscopy of motor neurons revealed that superoxide dismutase 1-immunopositive intracellular aggregates also contained chromogranin A, chromogranin B and secretogranin II. These findings indicate that there is a loss of small and large dense core vesicles in presynaptic terminals. The intracellular co-occurrence of superoxide dismutase 1 and chromogranins may suggest a functional interaction between these proteins. This study should prompt further experiments to elucidate the role of chromogranins in ALS patients.
Collapse
|
20
|
Bartels AL, Willemsen ATM, Kortekaas R, de Jong BM, de Vries R, de Klerk O, van Oostrom JCH, Portman A, Leenders KL. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson's disease, PSP and MSA. J Neural Transm (Vienna) 2008; 115:1001-9. [PMID: 18265929 PMCID: PMC2468317 DOI: 10.1007/s00702-008-0030-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 01/25/2008] [Indexed: 11/16/2022]
Abstract
Decreased blood-brain barrier (BBB) efflux function of the P-glycoprotein (P-gp) transport system could facilitate the accumulation of toxic compounds in the brain, increasing the risk of neurodegenerative pathology such as Parkinson's disease (PD). This study investigated in vivo BBB P-gp function in patients with parkinsonian neurodegenerative syndromes, using [11C]-verapamil PET in PD, PSP and MSA patients. Regional differences in distribution volume were studied using SPM with higher uptake interpreted as reduced P-gp function. Advanced PD patients and PSP patients had increased [11C]-verapamil uptake in frontal white matter regions compared to controls; while de novo PD patients showed lower uptake in midbrain and frontal regions. PSP and MSA patients had increased uptake in the basal ganglia. Decreased BBB P-gp function seems a late event in neurodegenerative disorders, and could enhance continuous neurodegeneration. Lower [11C]-verapamil uptake in midbrain and frontal regions of de novo PD patients could indicate a regional up-regulation of P-gp function.
Collapse
Affiliation(s)
- A L Bartels
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
A protocol for immunoaffinity separation of the accumulated ubiquitin-protein conjugates solubilized with sodium dodecyl sulfate. Anal Biochem 2008; 377:77-82. [PMID: 18358228 DOI: 10.1016/j.ab.2008.02.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 11/21/2022]
Abstract
Certain proteins insoluble in aqueous salt solutions are difficult to separate from impurities by immunoaffinity techniques, even when the proteins are solubilized with denaturants due to interference of the antigen-antibody reaction. Representative examples of such proteins are the ubiquitin-protein conjugates that accumulate in neuronal tissues of neurodegenerative diseases, the hallmark of such disorders. In this study, we developed a novel sample preparation method comprising two successive steps: Sodium dodecyl sulfate (SDS) removal from the SDS-containing extracts and renaturation of the denatured proteins. The application of this method was tested on ubiquitin-protein conjugates in the brains of Niemann-Pick type C disease mouse and in heat-shocked K562 erythroleukemia cells. The ubiquitin-protein conjugates in both cases are insoluble in Tris-buffered saline but soluble in 2% SDS. The SDS-solubilized fractions prepared from each of the samples were further pretreated by the method mentioned above, and the ubiquitin-protein conjugates were efficiently immunoprecipitated with the anti-ubiquitin antibody from them. This method was also applied successfully to the immunoprecipitation of flotillin-1, a lipid raft protein, from mouse brain extract prepared with 2% SDS. These results indicate that this simple protocol has potential applications for excellent immunoaffinity separation of the less-soluble proteins in diverse cells and tissues.
Collapse
|
22
|
Abstract
In this article, we support the case that the neurotoxic agent in Alzheimer's disease is a soluble aggregated form of the amyloid beta peptide (Abeta), probably complexed with divalent copper. The structure and chemical properties of the monomeric peptide and its Cu(ii) complex are discussed, as well as what little is known about the oligomeric species. Abeta oligomers are neurotoxic by a variety of mechanisms. They adhere to plasma and intracellular membranes and cause lesions by a combination of radical-initiated lipid peroxidation and formation of ion-permeable pores. In endothelial cells this damage leads to loss of integrity of the blood-brain barrier and loss of blood flow to the brain. At synapses, the oligomers close neuronal insulin receptors, mirroring the effects of Type II diabetes. In intracellular membranes, the most damaging effect is loss of calcium homeostasis. The oligomers also bind to a variety of substances, mostly with deleterious effects. Binding to cholesterol is accompanied by its oxidation to products that are themselves neurotoxic. Possibly most damaging is the binding to tau, and to several kinases, that results in the hyperphosphorylation of the tau and abrogation of its microtubule-supporting role in maintaining axon structure, leading to diseased synapses and ultimately the death of neurons. Several strategies are presented and discussed for the development of compounds that prevent the oligomerization of Abeta into the neurotoxic species.
Collapse
Affiliation(s)
- Arvi Rauk
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
23
|
Murphy MP, Beckett TL, Ding Q, Patel E, Markesbery WR, St Clair DK, LeVine H, Keller JN. Abeta solubility and deposition during AD progression and in APPxPS-1 knock-in mice. Neurobiol Dis 2007; 27:301-11. [PMID: 17651976 DOI: 10.1016/j.nbd.2007.06.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/14/2007] [Accepted: 06/04/2007] [Indexed: 01/02/2023] Open
Abstract
Amnestic mild cognitive impairment (MCI) appears to be a very early stage of Alzheimer's disease (AD). The amyloid-beta peptide (Abeta) is believed to be a possible substrate for AD, but little is currently known about Abeta alterations in MCI and how these changes compare to later stages of disease. In the present study Abeta was differentially extracted from the brains of age-matched control, MCI, and AD cases and compared with plaque counts. For comparison, APPxPS-1 knock-in mice were processed in parallel. We observed that Abeta42 was significantly elevated in MCI subjects, even though there was no significant alteration in the total amount of Abeta. Relative Abeta solubility within the different extractable pools was identical between AD and MCI subjects, with both significantly altered relative to controls. Temporal analysis of Abeta levels and solubility in a knock-in mouse model of Abeta pathogenesis recapitulated many of the salient features observed in AD. Characterization of the SDS fraction showed some similarities between aged knock-in mice and AD subjects. These data suggest that distinct changes in Abeta occur throughout the progression of AD, and that elevations in Abeta42 occur at an early, clinically defined stage.
Collapse
Affiliation(s)
- M Paul Murphy
- Department of Molecular and Cellular Biochemistry, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40536-0230, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mochizuki H, Seki T, Adachi N, Saito N, Mishima HK, Sakai N. R659S mutation of gammaPKC is susceptible to cell death: implication of this mutation/polymorphism in the pathogenesis of retinitis pigmentosa. Neurochem Int 2006; 49:669-75. [PMID: 16828200 DOI: 10.1016/j.neuint.2006.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 04/27/2006] [Accepted: 05/18/2006] [Indexed: 12/01/2022]
Abstract
It has been reported that mutations of gammaPKC cause hereditary spinocerebellar atrophy type 14 (SCA14). Our recent study has revealed that the SCA14 mutant gammaPKC is susceptible to aggregation and causes cell death. Among mutations/polymorphisms of gammaPKC, the R659S mutation was firstly segregated from families with hereditary retinitis pigmentosa type 11 (RP11). Although more reliable etiological mutations of RP11 were subsequently discovered in a human homologue of yeast pre-mRNA splicing gene (PRP31), the role of this R659S missense change in the pathogenicity of RP11 is still controversial. In this study, we overexpressed R659S gammaPKC in CHO cells and characterized the properties of this mutant protein. We found that R659S gammaPKC more prominently induced cell death than did wild-type. This mutant gammaPKC had higher basal activity than wild-type, however, no difference was found in the extent of aggregation and insolubility to detergent between R659S mutant and wild-type. These results suggest that the R659S mutation is susceptible to neuronal death and is involved in the pathogenesis of neurodegenerative diseases, including RP11.
Collapse
Affiliation(s)
- Hideki Mochizuki
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Furukawa Y, Fu R, Deng HX, Siddique T, O'Halloran TV. Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice. Proc Natl Acad Sci U S A 2006; 103:7148-53. [PMID: 16636274 PMCID: PMC1447524 DOI: 10.1073/pnas.0602048103] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Indexed: 11/18/2022] Open
Abstract
Point mutations in Cu, Zn-superoxide dismutase (SOD1) cause a familial form of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Aggregates of mutant SOD1 proteins are observed in histopathology and are invoked in several proposed mechanisms for motor neuronal death; however, the significant stability and activity of the mature mutant proteins are not readily explained in such models. Recent biochemical studies suggest that it is the immature disulfide-reduced forms of the familial ALS mutant SOD1 proteins that play a critical role; these forms tend to misfold, oligomerize, and readily undergo incorrect disulfide formation upon mild oxidative stress in vitro. Here we provide physiological support for this mechanism of aggregate formation and show that a significant fraction of the insoluble SOD1 aggregates in spinal cord of the ALS-model transgenic mice contain multimers cross-linked via intermolecular disulfide bonds. These insoluble disulfide-linked SOD1 multimers are found only in the spinal cord of symptomatic transgenic animals, are not observed in unafflicted tissue such as brain cortex and liver, and can incorporate WT SOD1 protein. The findings provide a biochemical basis for a pathological hallmark of this disease; namely, incorrect disulfide cross-linking of the immature, misfolded mutant proteins leads to insoluble aggregates.
Collapse
Affiliation(s)
| | - Ronggen Fu
- Davee Department of Neurology and Clinical Neuroscience, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611
| | - Han-Xiang Deng
- Davee Department of Neurology and Clinical Neuroscience, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611
| | - Teepu Siddique
- Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208; and
| | - Thomas V. O'Halloran
- Departments of *Chemistry and
- Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208; and
| |
Collapse
|
26
|
Developmental Mechanisms in Aging and Age-Related Diseases of the Nervous System. Dev Neurobiol 2006. [DOI: 10.1007/0-387-28117-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Mor F, Izak M, Cohen IR. Identification of Aldolase as a Target Antigen in Alzheimer’s Disease. THE JOURNAL OF IMMUNOLOGY 2005; 175:3439-45. [PMID: 16116239 DOI: 10.4049/jimmunol.175.5.3439] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is the most common human neurodegenerative disease, leading to progressive cognitive decline and eventually death. The prevailing paradigm on the pathogenesis of AD is that abnormally folded proteins accumulate in specific brain areas and lead to neuronal loss via apoptosis. In recent years it has become evident that an inflammatory and possibly autoimmune component exists in AD. Moreover, recent data demonstrate that immunization with amyloid-beta peptide is therapeutically effective in AD. The nature of CNS Ags that are the target of immune attack in AD is unknown. To identify potential autoantigens in AD, we tested sera IgG Abs of AD patients in immunoblots against brain and other tissue lysates. We identified a 42-kDa band in brain lysates that was detected with >50% of 45 AD sera. The band was identified by mass spectrometry to be aldolase A. Western blotting with aldolase using patient sera demonstrated a band of identical size. The Ab reactivity was verified with ELISAs using aldolase. One of 25 elderly control patients and 3 of 30 multiple sclerosis patients showed similar reactivity (p < 0.002). In enzymatic assays, anti-aldolase positive sera were found to inhibit the enzyme's activity, and the presence of the substrate (fructose 1,6-diphosphate) enhanced Ab binding. Immunization of rats and mice with aldolase in complete Freund's adjuvant was not pathogenic. These findings reveal an autoimmune component in AD, point at aldolase as a common autoantigen in this disease, and suggest a new target for potential immune modulation.
Collapse
Affiliation(s)
- Felix Mor
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
28
|
Kahle PJ, Haass C. The emerging utility of animal models of chronic neurodegenerative diseases. Expert Opin Ther Targets 2005; 5:125-32. [PMID: 15992171 DOI: 10.1517/14728222.5.1.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The two most common neurodegenerative diseases are Alzheimer's disease (AD) and Parkinson's disease (PD). The symptoms are caused by the initially selective degeneration of neuronal subpopulations involved in memory (AD) or movement control (PD). The cause of both diseases is unknown, but ageing is an inevitable risk factor. The identification of disease-associated genes was a breakthrough for the understanding of molecular mechanisms of neurodegeneration and has provided the basis for the establishment of cell culture and animal model systems, instrumental for target validation and drug screening. Familial AD is caused by mutations in the beta-amyloid precursor protein (betaAPP) and in the gene products responsible for its proteolytic processing, namely the presenilins. Transgenic mice expressing these mutant genes develop characteristic AD plaques in an age-dependent manner. A reduction of plaque burden and amelioration of cognitive decline in these animals was recently achieved by vaccination with amyloid beta-protein fibrils. The other hallmark lesion of AD, the neurofibrillary tangle, has been modelled recently in transgenic mice expressing mutant tau protein linked to frontotemporal dementia. PD is characterised by intraneuronal cytoplasmic deposits (Lewy bodies) of the PD-associated gene product alpha-synuclein. Transgenic expression of alpha-synuclein recreated hallmark features of PD in mice and fruit flies, establishing alpha-synuclein as PD-causing drug target. Moreover, environmental risk factors such as the pesticide rotenone have been used successfully to generate rodent models of PD. Lesion models of PD are being exploited for the development of experimental gene therapy and transplantation approaches.
Collapse
Affiliation(s)
- P J Kahle
- Laboratory for Alzheimer's and Parkinson's Disease Research, Department of Biochemistry, Ludwig Maximilians University, Schillerstrasse 44, D-80336 Munich, Germany.
| | | |
Collapse
|
29
|
Seki T, Adachi N, Ono Y, Mochizuki H, Hiramoto K, Amano T, Matsubayashi H, Matsumoto M, Kawakami H, Saito N, Sakai N. Mutant protein kinase Cgamma found in spinocerebellar ataxia type 14 is susceptible to aggregation and causes cell death. J Biol Chem 2005; 280:29096-106. [PMID: 15964845 DOI: 10.1074/jbc.m501716200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinocerebellar ataxia type 14 (SCA14) is an autosomal dominant neurodegenerative disease characterized by various symptoms including cerebellar ataxia. Recently, several missense mutations in the protein kinase Cgamma (gammaPKC) gene have been found in different SCA14 families. To elucidate how the mutant gammaPKC causes SCA14, we examined the molecular properties of seven mutant (H101Y, G118D, S119P, S119F, Q127R, G128D, and F643L) gammaPKCs fused with green fluorescent protein (gammaPKC-GFP). Wild-type gammaPKC-GFP was expressed ubiquitously in the cytoplasm of CHO cells, whereas mutant gammaPKC-GFP tended to aggregate in the cytoplasm. The insolubility of mutant gammaPKC-GFP to Triton X-100 was increased and correlated with the extent of aggregation. gammaPKC-GFP in the Triton-insoluble fraction was rarely phosphorylated at Thr(514), whereas gammaPKC-GFP in the Triton-soluble fraction was phosphorylated. Furthermore, the stimulation of the P2Y receptor triggered the rapid aggregation of mutant gammaPKC-GFP within 10 min after transient translocation to the plasma membrane. Overexpression of the mutant gammaPKC-GFP caused cell death that was more prominent than wild type. The cytotoxicity was exacerbated in parallel with the expression level of the mutant. These results indicate that SCA14 mutations make gammaPKC form cytoplasmic aggregates, suggesting the involvement of this property in the etiology of SCA14.
Collapse
Affiliation(s)
- Takahiro Seki
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
von Rotz RC, Kins S, Hipfel R, von der Kammer H, Nitsch RM. The novel cytosolic RING finger protein dactylidin is up-regulated in brains of patients with Alzheimer's disease. Eur J Neurosci 2005; 21:1289-98. [PMID: 15813938 DOI: 10.1111/j.1460-9568.2005.03977.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is characterized by a progressive degeneration of neurons along with deposition of amyloid plaques and the formation of neurofibrillary tangles. Neurodegeneration in AD follows both a spatial pattern of selective vulnerability and temporal staging of affected neurons. In order to address transcriptional changes associated with this selective vulnerability, we used subtractive hybridization of transcripts derived from human frontal cortex, which degenerates in late stages of AD, against transcripts of the inferior temporal cortex, which is affected both heavily and early in the course of AD. Moreover, we compared these to brain sections obtained from age-matched control subjects. We isolated a differentially expressed novel gene encoding a polypeptide that contained an amino-terminal C3HC4 RING finger domain, called dactylidin. It is ubiquitously expressed in all tissues examined and in situ hybridization of mouse brain sections revealed specific expression in neurons. Further, heterologous expression studies revealed a cytoplasmic localization of dactylidin and as all known cytoplasmic RING finger proteins function as ubiquitin protein ligases, an E3-like ligase function of dactylidin is probable. However, the up-regulation of dactylidin in highly vulnerable brain tissues of AD patients was confirmed by a quantitative PCR approach, suggesting that dactylidin may function early in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruth C von Rotz
- Division of Psychiatry Research, University of Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
31
|
Golab J, Bauer TM, Daniel V, Naujokat C. Role of the ubiquitin-proteasome pathway in the diagnosis of human diseases. Clin Chim Acta 2004; 340:27-40. [PMID: 14734194 DOI: 10.1016/j.cccn.2003.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ubiquitin-proteasome pathway constitutes the major system for nuclear and extralysosomal cytosolic protein degradation in eukaryotic cells. A plethora of cell proteins implicated in the maintenance and regulation of essential cellular processes undergoes processing and functional modification by proteolytic degradation via the ubiquitin-proteasome pathway. Deregulations of the pathway have been shown to contribute to the pathogenesis of several human diseases, such as cancer, neurodegenerative, autoimmune, genetic and metabolic disorders, most of them exhibiting abnormal accumulation and altered composition of components of the pathway that is suitable for diagnostic proceedings. While the ubiquitin-proteasome pathway is currently exploited to develop novel therapeutic strategies, it is less regarded as a diagnostic area. Future research should lead to an improved understanding of the pathophysiology of the ubiquitin-proteasome pathway with the aim of allowing the development of subtle diagnostic strategies.
Collapse
Affiliation(s)
- Jakub Golab
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
32
|
Zimenkov YV, Salminen A, Efimova IS, Lahti R, Baykov AA. Cd2+-induced aggregation of Escherichia coli pyrophosphatase. ACTA ACUST UNITED AC 2004; 271:3064-7. [PMID: 15233803 DOI: 10.1111/j.1432-1033.2004.04239.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here that Escherichia coli pyrophosphatase aggregates in the presence of millimolar Cd(2+). This highly cooperative process was specific to both the metal ion and the protein and could be reversed fully by decreasing the Cd(2+) concentration. Aggregation was enhanced by Mg(2+), the natural cofactor of pyrophosphatase, and Mn(2+). Mutations at the intersubunit metal-binding site had no effect, whereas mutation at Glu139, which is part of the peripheral metal-binding site found in pyrophosphatase crystals near the contact region between two enzyme molecules, suppressed aggregation. These findings indicate that aggregation is affected by Cd(2+) binding to the peripheral metal-binding site, probably by strengthening intermolecular Trp149-Trp149' stacking interactions.
Collapse
Affiliation(s)
- Yury V Zimenkov
- A. N. Belozersky Institute of Physico-Chemical Biology and School of Chemistry, Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
33
|
Turner BJ, Lopes EC, Cheema SS. Inducible superoxide dismutase 1 aggregation in transgenic amyotrophic lateral sclerosis mouse fibroblasts. J Cell Biochem 2004; 91:1074-84. [PMID: 15034941 DOI: 10.1002/jcb.10782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
High molecular weight detergent-insoluble complexes of superoxide dismutase 1 (SOD1) enzyme are a biochemical abnormality associated with mutant SOD1-linked familial amyotrophic lateral sclerosis (FALS). In the present study, SOD1 protein from spinal cords of transgenic FALS mice was fractionated according to solubility in saline, zwitterionic, non-ionic or anionic detergents. Both endogenous mouse SOD1 and mutant human SOD1 were least soluble in SDS, followed by NP-40 and CHAPS, with an eight-fold greater detergent resistance of mutant protein overall. Importantly, high molecular weight mutant SOD1 complexes were isolated with SDS-extraction only. To reproduce SOD1 aggregate pathology in vitro, primary fibroblasts were isolated and cultured from neonatal transgenic FALS mice. Fibroblasts expressed abundant mutant SOD1 without spontaneous aggregation over time with passage. Proteasomal inhibition of cultures using lactacystin induced dose-dependent aggregation and increased the SDS-insoluble fraction of mutant SOD1, but not endogenous SOD1. In contrast, paraquat-mediated superoxide stress in fibroblasts promoted aggregation of endogenous SOD1, but not mutant SOD1. Treatment of cultures with peroxynitrite or the copper chelator diethyldithiocarbamate (DDC) alone did not modulate aggregation. However, DDC inhibited lactacystin-induced mutant SOD1 aggregation in transgenic fibroblasts, while exogenous copper slightly augmented aggregation. These data suggest that SOD1 aggregates may derive from proteasomal or oxidation-mediated oligomerisation pathways from mutant and endogenous subunits respectively. Furthermore, these pathways may be affected by copper availability. We propose that non-neural cultures such as these transgenic fibroblasts with inducible SOD1 aggregation may be useful for rapid screening of compounds with anti-aggregation potential in FALS.
Collapse
Affiliation(s)
- Bradley J Turner
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
34
|
Abstract
Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal populations of the central nervous system, often associated with cytoskeletal protein aggregates forming intracytoplasmic and/or intranuclear inclusions in neurons and/or glial cells. Most neurodegenerative disorders are now classified either according to the hitherto known genetic mechanisms or to the major components of their cellular protein inclusions. The major basic processes inducing neurodegeneration are considered multifactorial ones caused by genetic, environmental, and endogenous factors. They include abnormal protein dynamics with defective protein degradation and aggregation, many of them related to the ubiquitin-proteasomal system, oxidative stress and free radical formation, impaired bioenergetics and mitochondrial dysfunctions, and "neuroinflammatory" processes. These mechanisms that are usually interrelated in complex vitious circles finally leading to programmed cell death cascades are briefly discussed with reference to their pathogenetic role in many, albeit diverse neurodegenerative diseases, like Alzheimer disease, synucleinopathies, tauopathies, and polyglutamine disorders. The impact of protein inclusions on cell dysfunction, activation or prevention of cell death cascades are discussed, but the molecular basis for the underlying disease mechanisms remains to be elucidated.
Collapse
Affiliation(s)
- K A Jellinger
- Institute of Clinical Neurobiology, Vienna, Austria.
| |
Collapse
|
35
|
Yan YB, Wang Q, He HW, Hu XY, Zhang RQ, Zhou HM. Two-dimensional infrared correlation spectroscopy study of sequential events in the heat-induced unfolding and aggregation process of myoglobin. Biophys J 2003; 85:1959-67. [PMID: 12944308 PMCID: PMC1303367 DOI: 10.1016/s0006-3495(03)74623-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Unfolding and aggregation are basic problems in protein science with serious biotechnological and medical implications. Probing the sequential events occurring during the unfolding and aggregation process and the relationship between unfolding and aggregation is of particular interest. In this study, two-dimensional infrared (2D IR) correlation spectroscopy was used to study the sequential events and starting temperature dependence of Myoglobin (Mb) thermal transitions. Though a two-state model could be obtained from traditional 1D IR spectra, subtle noncooperative conformational changes were observed at low temperatures. Formation of aggregation was observed at a temperature (50-58 degrees C) that protein was dominated by native structures and accompanied with unfolding of native helical structures when a traditional thermal denaturation condition was used. The time course NMR study of Mb incubated at 55 degrees C for 45 h confirmed that an irreversible aggregation process existed. Aggregation was also observed before fully unfolding of the Mb native structure when a relative high starting temperature was used. These findings demonstrated that 2D IR correlation spectroscopy is a powerful tool to study protein aggregation and the protein aggregation process observed depends on the different environmental conditions used.
Collapse
Affiliation(s)
- Yong-Bin Yan
- NMR Laboratory, Department of Biological Sciences and Biotechnology, and State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | |
Collapse
|
36
|
Hishikawa N, Niwa JI, Doyu M, Ito T, Ishigaki S, Hashizume Y, Sobue G. Dorfin localizes to the ubiquitylated inclusions in Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and amyotrophic lateral sclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:609-19. [PMID: 12875980 PMCID: PMC1868225 DOI: 10.1016/s0002-9440(10)63688-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In many neurodegenerative diseases, the cytopathological hallmark is the presence of ubiquitylated inclusions consisting of insoluble protein aggregates. Lewy bodies in Parkinson's disease and dementia with Lewy bodies disease, glial cell inclusions in multiple system atrophy, and hyaline inclusions in amyotrophic lateral sclerosis (ALS) are representative of these inclusions. The elucidation of the components of these inclusions and the mechanisms underlying inclusion formation is important in uncovering the pathogenesis of these disorders. We hypothesized that Dorfin, a perinuclearly located E3 ubiquitin ligase, participates in the formation of ubiquitylated inclusions in a wide range of neurodegenerative diseases. Here, we report that affinity-purified anti-Dorfin antibody labeled ubiquitylated inclusions of Parkinson's disease, dementia with Lewy bodies disease, multiple system atrophy, and sporadic and familial ALS. A double-immunofluorescence study revealed that Dorfin shows a distribution pattern parallel to that of ubiquitin. Furthermore, by a filter trap assay, we detected that Dorfin is present in the ubiquitylated high-molecular weight structures derived from these diseases. These results suggest that Dorfin plays a crucial role in the formation of ubiquitylated inclusions of alpha-synucleinopathy and ALS. However, because we failed to show the direct binding of alpha-synuclein with Dorfin, future investigations into the binding partner(s) of Dorfin will be needed to deepen our understanding of the pathophysiology of alpha-synucleinopathy and ALS.
Collapse
Affiliation(s)
- Nozomi Hishikawa
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Goers J, Manning-Bog AB, McCormack AL, Millett IS, Doniach S, Di Monte DA, Uversky VN, Fink AL. Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry 2003; 42:8465-71. [PMID: 12859192 DOI: 10.1021/bi0341152] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aggregation of alpha-synuclein is believed to play an important role in the pathogenesis of Parkinson's disease as well as other neurodegenerative disorders ("synucleinopathies"). However, the function of alpha-synuclein under physiologic and pathological conditions is unknown, and the mechanism of alpha-synuclein aggregation is not well understood. Here we show that alpha-synuclein forms a tight 2:1 complex with histones and that the fibrillation rate of alpha-synuclein is dramatically accelerated in the presence of histones in vitro. We also describe the presence of alpha-synuclein and its co-localization with histones in the nuclei of nigral neurons from mice exposed to a toxic insult (i.e., injections of the herbicide paraquat). These observations indicate that translocation into the nucleus and binding with histones represent potential mechanisms underlying alpha-synuclein pathophysiology.
Collapse
Affiliation(s)
- John Goers
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hyun DH, Lee M, Halliwell B, Jenner P. Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem 2003; 86:363-73. [PMID: 12871577 DOI: 10.1046/j.1471-4159.2003.01841.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mutations in Cu,Zn-superoxide dismutase (SOD-1) are associated with some familial cases of amyotrophic lateral sclerosis (ALS), but it is not known how they result in cell death. We examined effects of overexpression of wild-type SOD-1 or the G37R or G85R mutations on the accumulation of ubiquitinated and nitrated proteins, and on loss of cell viability induced by the proteasome inhibitor, lactacystin. Wild-type SOD-1 had no effect on proteasomal activity, but the mutants decreased it somewhat. Treatment with lactacystin (1 micro m) caused only limited cell viability loss, even though it induced a marked inhibition of proteasomal activities. However, viability loss due to apoptosis was substantial in response to lactacystin when cells were overexpressing a mutant SOD-1. The frequency of cells showing immunoreactivity against ubiquitinated- or nitrated-proteins was enhanced when wild-type and mutant SOD-1 s were overexpressed. Ubiquitinated or nitrated alpha-tubulin, SOD-1, alpha-synuclein and 68K neurofilaments were observed in the aggregates. Similar aggregates were observed in cells overexpressing mutant parkin (Del3-5, T240R and Q311'X). The nitric oxide synthase inhibitor, l-NAME, decreased viability loss and aggregation, suggesting that nitration of proteins may play an important role in aggregation and in the cell death accompanying it.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Wolfson Centre for Age-Related Diseases, GKT School of Biomedical Sciences, King's College, London, UK
| | | | | | | |
Collapse
|
39
|
Guégan C, Przedborski S. Programmed cell death in amyotrophic lateral sclerosis. J Clin Invest 2003; 111:153-61. [PMID: 12531867 PMCID: PMC151885 DOI: 10.1172/jci17610] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Christelle Guégan
- Department of Neurology, Columbia University, New York, New York, USA
| | | |
Collapse
|
40
|
|
41
|
Przedborski S, Mitsumoto H, Rowland LP. Recent advances in amyotrophic lateral sclerosis research. Curr Neurol Neurosci Rep 2003; 3:70-7. [PMID: 12507415 DOI: 10.1007/s11910-003-0041-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults. Despite several genetic breakthroughs, the actual cause and mechanism of neurodegeneration in ALS remains a mystery. Nevertheless, recent scientific and clinical advances have led to the development of new therapeutic strategies for this progressive, fatal disorder. We review the progress of the most recent clinical trials in ALS, taking into account some of the hurdles encountered by these studies. We also discuss the potential role of retroviral infection as a cause or contributor to ALS, which is one of the most recent hypotheses for the pathogenesis of the disease. The genetic background of ALS is summarized and special attention is given to the newly identified ALS gene ALS2, and to those that are currently being investigated. The last part of this review is dedicated to the mutation in superoxide dismutase-1 (SOD1). The hypothesized deleterious mechanisms of mutant SOD1 are discussed, as well as the possibilities that the mutant protein activates the apoptotic cell death process and that these molecular alterations can be exploited to devise experimental neuroprotective therapies.
Collapse
Affiliation(s)
- Serge Przedborski
- Department of Neurology, Columbia University College of Physicians and Surgeons, 650 West 168th Street, BB 307, New York, NY 10032, USA.
| | | | | |
Collapse
|
42
|
Mor F, Quintana F, Mimran A, Cohen IR. Autoimmune encephalomyelitis and uveitis induced by T cell immunity to self beta-synuclein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:628-34. [PMID: 12496452 DOI: 10.4049/jimmunol.170.1.628] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Beta-synuclein is a neuronal protein that accumulates in the plaques that characterize neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. It has been proposed that immunization to peptides of plaque-forming proteins might be used therapeutically to help dissociate pathogenic plaques in the brain. We now report that immunization of Lewis rats with a peptide from beta-synuclein resulted in acute paralytic encephalomyelitis and uveitis. T cell lines and clones reactive to the peptide adoptively transferred the disease to naive rats. Immunoblotting revealed the presence of beta-synuclein in heavy myelin, indicating that the expression of beta-synuclein is not confined to neurons. These results add beta-synuclein to the roster of encephalitogenic self Ags, point out the potential danger of therapeutic autoimmunization to beta-synuclein, and alert us to the unsuspected possibility that autoimmunity to beta-synuclein might play an inflammatory role in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Felix Mor
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
43
|
Abstract
Over the past 15 years, molecular genetic advances have led to new approaches for evaluation of neurogenetic disease. New diagnostic tests are available, and in some cases new diseases have been defined. However, effective use of these new tests still relies on solid clinical assessment to prioritize testing and interpret results. This review presents applications of genetic advances to a series of neurogenetic disorders, emphasizing the specific uses of genetic testing and the clinical questions that may arise. The rapid expansion in molecular diagnostics and genomics has fundamentally changed the approach to neurogenetic illnesses. Use of molecular biologic techniques has elucidated new disease mechanisms and allowed the application of genetic concepts to classically nongenetic illnesses. This has led to a wealth of new clinical information and created new dilemmas in patient care. In addition, it has brought into common usage a series of clinical genetic terms, such as variable expressivity (the range of phenotypic features in which the same disease can manifest) and anticipation (the progressively earlier age of onset of a specific disease in a family). This review provides a practical approach for neurogenetic evaluation of individuals who are likely to present in neuro-ophthalmologic practices with inherited ataxias, myotonic dystrophy, oculopharyngeal dystrophy, and Parkinson disease.
Collapse
Affiliation(s)
- David R Lynch
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, USA.
| | | |
Collapse
|
44
|
Wright R, Boggs J. Learning cell biology as a team: a project-based approach to upper-division cell biology. CELL BIOLOGY EDUCATION 2002; 1:145-53. [PMID: 12669105 PMCID: PMC149487 DOI: 10.1187/cbe.02-03-0006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2002] [Revised: 07/22/2002] [Accepted: 07/29/2002] [Indexed: 12/17/2022]
Abstract
To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular and molecular biology of the disease, and recent research focused on understanding the cellular mechanisms of the disease process. To support effective teamwork and to help students develop collaboration skills useful for their future careers, we provide training in working in small groups. A final poster presentation, held in a public forum, summarizes what students have learned throughout the quarter. Although student satisfaction with the course is similar to that of standard lecture-based classes, a project-based class offers unique benefits to both the student and the instructor.
Collapse
Affiliation(s)
- Robin Wright
- Department of Zoology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
45
|
Andersen JK, Kumar J, Srinivas B, Kaur D, Hsu M, Rajagopalan S. The hunt for a cure for Parkinson's disease. ACTA ACUST UNITED AC 2001; 2001:re1. [PMID: 14602952 DOI: 10.1126/sageke.2001.1.re1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Several exciting new scientific advances have been made in the past decade toward both understanding the causes of and finding a cure for Parkinson's disease. Heartened by an acceleration in research findings in the past several years, the government has recently called for an infusion of funds from both the National Institutes of Health and private foundations into this burgeoning area of biomedical research. Most currently available conventional treatments for the disease only temporarily delay symptom presentation while doing nothing to halt disease progression. However, the rapidly accelerating pace of research in this field has left researchers hopeful that Parkinson's will be the first major age-related neurodegenerative disease for which we have a viable cure. In this article, advances in various areas of Parkinson's disease research are reviewed.
Collapse
Affiliation(s)
- J K Andersen
- Buck Institute for Age Research, Novato, CA 94945, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Rajagopalan S, Andersen JK. Alpha synuclein aggregation: is it the toxic gain of function responsible for neurodegeneration in Parkinson's disease? Mech Ageing Dev 2001; 122:1499-510. [PMID: 11511392 DOI: 10.1016/s0047-6374(01)00283-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein aggregation appears to be the common denominator in a series of distinct neurodegenerative diseases yet its role in the associated neuronal pathology in these various conditions remains elusive. In Parkinson's disease, localization of alpha synuclein aggregates within intracellular Lewy body occlusions represent a major hallmark of this disorder and suggest that such aggregation may play a causative role in the resulting dopaminergic cell loss. In this Viewpoint article, recent data is reviewed related to how alpha synuclein aggregation may occur, what cellular events might be responsible, and how this may interfere with normal cellular function(s). It appears likely that while aggregation of alpha synuclein may interfere with its normal function in the cell, this is not the primary cause of the related neurodegeneration.
Collapse
Affiliation(s)
- S Rajagopalan
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945, USA.
| | | |
Collapse
|
47
|
Carrotta R, Bauer R, Waninge R, Rischel C. Conformational characterization of oligomeric intermediates and aggregates in beta-lactoglobulin heat aggregation. Protein Sci 2001; 10:1312-8. [PMID: 11420433 PMCID: PMC2374118 DOI: 10.1110/ps.42501] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
In one of the first studies of isolated intermediates in protein aggregation, we have used circular dichroism and fluorescence spectroscopy to characterize metastable oligomers that are formed in the early steps of beta-lactoglobulin heat aggregation. The intermediates show typical molten globule characteristics (secondary structure content similar to the native and less tight packing of the side chains), in agreement with the belief that partly folded states play a key role in protein aggregation. The far-UV CD signal bears strong resemblance to that of a known folding intermediate. Cryo-transmission electron microscopy of the aggregates reveals spherical particles with a diameter of about 50 nm and an internal threadlike structure. Isolated oligomers as well as larger aggregates bind the dye thioflavin T, usually a signature of the amyloid superstructures found in many protein aggregates. This result suggests that the structural motif recognized by thioflavin T can be formed in small oligomers.
Collapse
Affiliation(s)
- R Carrotta
- Department of Mathematics and Physics, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1861 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
48
|
Abstract
Diverse human disorders, including several neurodegenerative diseases and systemic amyloidosis, are thought to arise from the misfolding and aggregation of an underlying protein. Recent findings strongly support this hypothesis and have increased our understanding of the molecular mechanism of protein conformational disorders. Many questions are still pending, but the data overall suggest that correction of protein misfolding constitutes a viable therapeutic strategy for conformational diseases.
Collapse
Affiliation(s)
- C Soto
- Serono Pharmaceutical Research Institute, 14 Chemin des Aulx, 1228 Plan les Ouates, Geneva, Switzerland.
| |
Collapse
|
49
|
El-Agnaf OM, Sheridan JM, Sidera C, Siligardi G, Hussain R, Haris PI, Austen BM. Effect of the disulfide bridge and the C-terminal extension on the oligomerization of the amyloid peptide ABri implicated in familial British dementia. Biochemistry 2001; 40:3449-57. [PMID: 11297410 DOI: 10.1021/bi002287i] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Familial British dementia (FBD) is a rare neurodegenerative disorder and shares features with Alzheimer's disease, including amyloid plaque deposits, neurofibrillary tangles, neuronal loss, and progressive dementia. Immunohistochemical and biochemical analysis of plaques and vascular amyloid of FBD brains revealed that a 4 kDa peptide named ABri is the main component of the highly insoluble amyloid deposits. In FBD patients, the ABri peptide is produced as a result of a point mutation in the usual stop codon of the BRI gene. This mutation produces a BRI precursor protein 11 amino acids longer than the wild-type protein. Mutant and wild-type precursor proteins both undergo furin cleavage between residues 243 and 244, producing a peptide of 34 amino acids in the case of ABri and 23 amino acids in the case of the wild-type (WT) peptide. Here we demonstrate that the intramolecular disulfide bond in ABri and the C-terminal extension are required to elongate initially formed dimers to oligomers and fibrils. In contrast, the shorter WT peptide did not aggregate under the same conditions. Conformational analyses indicate that the disulfide bond and the C-terminal extension of ABri are required for the formation of beta-sheet structure. Soluble nonfibrillar ABri oligomers were observed prior to the appearance of mature fibrils. A molecular model of ABri containing three beta-strands, and two beta-hairpins annealed by a disulfide bond, has been constructed, and predicts a hydrophobic surface which is instrumental in promoting oligomerization.
Collapse
Affiliation(s)
- O M El-Agnaf
- Neurodegeneration Unit, Department of Surgery, St. George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 0RE, UK.
| | | | | | | | | | | | | |
Collapse
|