1
|
Uauy C, Nelissen H, Chan RL, Napier JA, Seung D, Liu L, McKim SM. Challenges of translating Arabidopsis insights into crops. THE PLANT CELL 2025; 37:koaf059. [PMID: 40178150 PMCID: PMC12079398 DOI: 10.1093/plcell/koaf059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
The significance of research conducted on Arabidopsis thaliana cannot be overstated. This focus issue showcases how insights from Arabidopsis have opened new areas of biology and directly advanced our understanding of crops. Here, experts intimately involved in bridging between Arabidopsis and crops share their perspectives on the challenges and opportunities for translation. First, we examine the translatability of genetic modules from Arabidopsis into maize, emphasizing the need to publish well-executed translational experiments, regardless of outcome. Second, we highlight the landmark success of HB4, the first GM wheat cultivar on the market, whose abiotic tolerance is borne from direct translation and based on strategies first outlined in Arabidopsis. Third, we discuss the decades-long journey to engineer oilseed crops capable of producing omega-3 fish oils, with Arabidopsis serving as a critical intermediary. Fourth, we explore how direct translation of starch synthesizing proteins characterized in Arabidopsis helped uncover novel mechanisms and functions in crops, with potential valuable applications. Finally, we illustrate how shared molecular factors between Arabidopsis and barley exhibit distinct molecular wiring as exemplified in cuticular and stomatal development. Together, these vignettes underscore the pivotal role of Arabidopsis as a foundational model plant while highlighting the challenges of translating discoveries into field-ready, commercial cultivars with enhanced knowledge-based traits.
Collapse
Affiliation(s)
- Cristóbal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral—CONICET, Facultad de Bioquímica y Ciencias Biológicas, 3000 Santa Fe, Argentina
| | | | - David Seung
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Linsan Liu
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, UK
| | - Sarah M McKim
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, UK
| |
Collapse
|
2
|
Li Y, Zhang J, Xu L, Li R, Zhang R, Li M, Ran C, Rao Z, Wei X, Chen M, Wang L, Li Z, Xue Y, Peng C, Liu C, Sun H, Xing B, Wang L. Leaf absorption contributes to accumulation of microplastics in plants. Nature 2025; 641:666-673. [PMID: 40205041 DOI: 10.1038/s41586-025-08831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025]
Abstract
Plant absorption is important for the entry of many pollutants into food chains. Although terrestrial microplastics (MPs) can be absorbed by the roots1,2, their upward translocation is slow1. Meanwhile, atmospheric MPs are widely present3,4, but strong evidence on their direct absorption by plants is still lacking. Here, analyses using mass spectrometry detection show the widespread occurrence of polyethylene terephthalate (PET) and polystyrene (PS) polymers and oligomers in plant leaves, and identify that their levels increase with atmospheric concentrations and the leaf growth duration. The concentrations of PET and PS polymers can reach up to 104 ng per g dry weight in leaves at the high-pollution areas studied, such as the Dacron factory and a landfill site, and 102-103 ng per g dry weight of PET and PS can be detected in the open-air-grown leafy vegetables. Nano-sized PET and PS particles in the leaves were visually detected by hyperspectral imaging and atomic force microscopy-infrared spectroscopy. Absorption of the proactively exposed non-labelled, fluorescently labelled or europium-labelled plastic particles by maize (Zea mays L.) leaves through stomatal pathways, as well as their translocation to the vascular tissue through the apoplastic pathway, and accumulation in trichomes was identified using hyperspectral imaging, confocal microscopy and laser-ablation inductively coupled plasma mass spectrometry. Our results demonstrate that the absorption and accumulation of atmospheric MPs by plant leaves occur widely in the environment, and this should not be neglected when assessing the exposure of humans and other organisms to environmental MPs.
Collapse
Affiliation(s)
- Ye Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Junjie Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
| | - Ruoqi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Rui Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Mengxi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Chunmei Ran
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Lu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Zhiwanxin Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Yining Xue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Chunguang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
3
|
Lu M, Liang F, Liu L, Yin Y, Xu D, Zou H, Liu Y, Yang C. Functional characterization of cutinase genes NsCut1-NsCut4 in Neostagonosporella sichuanensis and their effects on fishscale bamboo. FRONTIERS IN PLANT SCIENCE 2025; 16:1564651. [PMID: 40265120 PMCID: PMC12011716 DOI: 10.3389/fpls.2025.1564651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025]
Abstract
Fishscale bamboo rhombic-spot, caused by Neostagonosporella sichuanensis, poses a significant threat to Phyllostachys heteroclada in Sichuan province. Based on genomic analysis, four cutinase genes, NsCut1-NsCut4, were identified, cloned, and functionally validated. Bioinformatics analyses revealed that the proteins encoded by these genes possess secretory functions, lack transmembrane domains, and contain conserved cutinase domains highly homologous to those in other fungi. Recombinant proteins expressed via a prokaryotic system exhibited strong hydrolytic activity against glycerol tributyrate and bamboo white cream at 40°C and pH 8.0, while signal peptide and subcellular localization analyses confirmed their secretory function and localization to the cell wall. Gene knockout experiments were performed to construct deletion strains ΔNsCut and corresponding complemented strains ΔNsCut+. Notably, ΔNsCut1 and ΔNsCut3 resulted in reduced pigmentation, decreased spore production, and increased sensitivity to NaCl, H2O2, and Congo red, along with reduced pathogenicity-indicating that these genes play key roles in metabolic and reproductive processes, oxidative stress responses, and the maintenance of cell wall integrity. In contrast, ΔNsCut2 and ΔNsCut4 did not exhibit significant differences compared to the wild type. This work advances our understanding of the role of cutinases in the pathogenic interaction between N. sichuanensis and P. heteroclada, providing a theoretical basis for further exploration of the pathogen's underlying mechanisms.
Collapse
Affiliation(s)
- Mengyao Lu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Fang Liang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Lijuan Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yanji Yin
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Dongxin Xu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Huan Zou
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yinggao Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Jamil A, Ahmad A, Moeen-Ud-Din M, Zhang Y, Zhao Y, Chen X, Cui X, Tong Y, Liu X. Unveiling the mechanism of micro-and-nano plastic phytotoxicity on terrestrial plants: A comprehensive review of omics approaches. ENVIRONMENT INTERNATIONAL 2025; 195:109257. [PMID: 39818003 DOI: 10.1016/j.envint.2025.109257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
Micro-and-nano plastics (MNPs) are pervasive in terrestrial ecosystems and represent an increasing threat to plant health; however, the mechanisms underlying their phytotoxicity remain inadequately understood. MNPs can infiltrate plants through roots or leaves, causing a range of toxic effects, including inhibiting water and nutrient uptake, reducing seed germination rates, and impeding photosynthesis, resulting in oxidative damage within the plant system. The effects of MNPs are complex and influenced by various factors including size, shape, functional groups, and concentration. Recent advancements in omics technologies such as proteomics, metabolomics, transcriptomics, and microbiomics, coupled with emerging technologies like 4D omics, phenomics, spatial transcriptomics, and single-cell omics, offer unprecedented insight into the physiological, molecular, and cellular responses of terrestrial plants to MNPs exposure. This literature review synthesizes current findings regarding MNPs-induced phytotoxicity, emphasizing alterations in gene expression, protein synthesis, metabolic pathways, and physiological disruptions as revealed through omics analyses. We summarize how MNPs interact with plant cellular structures, disrupt metabolic processes, and induce oxidative stress, ultimately affecting plant growth and productivity. Furthermore, we have identified critical knowledge gaps and proposed future research directions, highlighting the necessity for integrative omics studies to elucidate the complex pathways of MNPs toxicity in terrestrial plants. In conclusion, this review underscores the potential of omics approaches to elucidate the mechanisms of MNPs-phytotoxicity and to develop strategies for mitigating the environmental impact of MNPs on plant health.
Collapse
Affiliation(s)
- Asad Jamil
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Ambreen Ahmad
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Muhammad Moeen-Ud-Din
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yihao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yuxuan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaochen Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
5
|
Zang Y, Pei Y, Cong X, Ran F, Liu L, Wang C, Wang D, Min Y. Single-cell RNA-sequencing profiles reveal the developmental landscape of the Manihot esculenta Crantz leaves. PLANT PHYSIOLOGY 2023; 194:456-474. [PMID: 37706525 PMCID: PMC10756766 DOI: 10.1093/plphys/kiad500] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 09/15/2023]
Abstract
Cassava (Manihot esculenta Crantz) is an important crop with a high photosynthetic rate and high yield. It is classified as a C3-C4 plant based on its photosynthetic and structural characteristics. To investigate the structural and photosynthetic characteristics of cassava leaves at the cellular level, we created a single-cell transcriptome atlas of cassava leaves. A total of 11,177 high-quality leaf cells were divided into 15 cell clusters. Based on leaf cell marker genes, we identified 3 major tissues of cassava leaves, which were mesophyll, epidermis, and vascular tissue, and analyzed their distinctive properties and metabolic activity. To supplement the genes for identifying the types of leaf cells, we screened 120 candidate marker genes. We constructed a leaf cell development trajectory map and discovered 6 genes related to cell differentiation fate. The structural and photosynthetic properties of cassava leaves analyzed at the single cellular level provide a theoretical foundation for further enhancing cassava yield and nutrition.
Collapse
Affiliation(s)
- Yuwei Zang
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yechun Pei
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Xinli Cong
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Fangfang Ran
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Liangwang Liu
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Changyi Wang
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yi Min
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
6
|
Kubásek J, Kalistová T, Janová J, Askanbayeva B, Bednář J, Šantrůček J. 13 CO 2 labelling as a tool for elucidating the mechanism of cuticle development: a case of Clusia rosea. THE NEW PHYTOLOGIST 2023; 238:202-215. [PMID: 36604855 DOI: 10.1111/nph.18716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The plant cuticle is an important plant-atmosphere boundary, the synthesis and maintenance of which represents a significant metabolic cost. Only limited information regarding cuticle dynamics is available. We determined the composition and dynamics of Clusia rosea cuticular waxes and matrix using 13 CO2 labelling, compound-specific and bulk isotope ratio mass spectrometry. Collodion was used for wax collection; gas exchange techniques to test for any collodion effects on living leaves. Cutin matrix (MX) area density did not vary between young and mature leaves and between leaf sides. Only young leaves incorporated new carbon into their MX. Collodion-based sampling discriminated between epicuticular (EW) and intracuticular wax (IW) effectively. Epicuticular differed in composition from IW. The newly synthetised wax was deposited in IW first and later in EW. Both young and mature leaves synthetised IW and EW. The faster dynamics in young leaves were due to lower wax coverage, not a faster synthesis rate. Longer-chain alkanes were deposited preferentially on the abaxial, stomatous leaf side, producing differences between leaf sides in wax composition. We introduce a new, sensitive isotope labelling method and demonstrate that cuticular wax is renewed during leaf ontogeny of C. rosea. We discuss the ecophysiological significance of the new insights.
Collapse
Affiliation(s)
- Jiří Kubásek
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 1760/31, České Budějovice, Czech Republic
| | - Tereza Kalistová
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 1760/31, České Budějovice, Czech Republic
| | - Jitka Janová
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 1760/31, České Budějovice, Czech Republic
| | - Balzhan Askanbayeva
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 1760/31, České Budějovice, Czech Republic
| | - Jan Bednář
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760/31, České Budějovice, Czech Republic
| | - Jiří Šantrůček
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 1760/31, České Budějovice, Czech Republic
| |
Collapse
|
7
|
Hamilton K, Rahman T, Sadowski J, Karunakaran C, Tanino K. Identification of ultrastructural and biochemical cuticular markers influencing temperature of ice nucleation in selected genotypes of corn. PHYSIOLOGIA PLANTARUM 2023; 175:e13902. [PMID: 36999192 DOI: 10.1111/ppl.13902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/02/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Corn is an economically important yet frost-sensitive crop, injured at the moment of ice nucleation. However, the influence of autumn temperatures on subsequent ice nucleation temperature is unknown. A 10-day chilling treatment under phytotron conditions ("mild", 18/6°C) or ("extreme", 10/5°C) generated no-visible damage but induced changes in the cuticle of the four genotypes in this study. The putatively more cold hardy Genotypes 884 and 959 leaves nucleated at colder temperatures compared to the more sensitive Genotypes 675 and 275. After chilling treatment, all four genotypes displayed warmer ice nucleation temperatures, with Genotype 884 expressing the largest shift to warmer nucleation temperatures. Cuticular hydrophobicity reduced while cuticular thickness remained unchanged under the chilling treatment. By contrast, under five-week field conditions, cuticle thickness increased in all genotypes, with Genotype 256 expressing a significantly thinner cuticle. FTIR spectroscopy revealed increases in the spectral regions of cuticular lipids in all genotypes after phytotron chilling treatment, while those spectral regions decreased under field conditions. A total of 142 molecular compounds were detected, with 28 compounds significantly induced under either phytotron or field conditions. Of these, seven compounds were induced under both conditions (Alkanes C31-C33, Ester C44, C46, β-amyrin, and triterpene). While clear differential responses were observed, chilling conditions preceding a frost modified physical and biochemical properties of the leaf cuticle under both phytotron and field conditions indicating this response is dynamic and could be a factor in selecting corn genotypes better adapted to avoiding frost with lower ice nucleation temperature.
Collapse
Affiliation(s)
- Kaila Hamilton
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A8
| | - Tawhidur Rahman
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A8
| | - Jason Sadowski
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A8
| | | | - Karen Tanino
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A8
| |
Collapse
|
8
|
Li JJ, Zhang CL, Zhang YL, Gao HN, Wang HB, Jiang H, Li YY. An apple long-chain acyl-CoA synthase, MdLACS1, enhances biotic and abiotic stress resistance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:115-125. [PMID: 36084527 DOI: 10.1016/j.plaphy.2022.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Epidermal waxes are part of the outermost hydrophobic structures of apples and play a significant role in enhancing apple resistance and improving fruit quality. The biosynthetic precursors of epidermal waxes are very long-chain fatty acids (VLCFAs), which are made into different wax components through various wax synthesis pathways. In Arabidopsis thaliana, the AtLACS1 protein can activate the alkane synthesis pathway to produce very long-chain acyl CoAs (VLC-acyl-CoAs), which provide substrates for wax synthesis, from VLCFAs. The apple protein MdLACS1, encoded by the MdLACS1 gene, belongs to the AMP-binding superfamily and has long-chain acyl coenzyme A synthase activity, but its function in apple remains unclear. Here, we identified MdLACS1 in apple (Malus × domestica) and analyzed its function. Our results suggest that MdLACS1 promotes wax synthesis and improves biotic and abiotic stress tolerance, which were directly or indirectly dependent on wax. Our study further refines the molecular mechanism of wax biosynthesis in apples and elucidates the physiological function of wax in resistance to external stresses. These findings provide candidate genes for the synergistic enhancement of apple fruit quality and stress tolerance.
Collapse
Affiliation(s)
- Jiao-Jiao Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Ling Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Li Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - He-Bing Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, National Research, Center for Apple Engineering and Technology, College of Horticulture Science, and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
9
|
Yu J, Lei B, Zhao H, Wang B, Kakar KU, Guo Y, Zhang X, Jia M, Yang H, Zhao D. Cloning, characterization and functional analysis of NtMYB306a gene reveals its role in wax alkane biosynthesis of tobacco trichomes and stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1005811. [PMID: 36275561 PMCID: PMC9583951 DOI: 10.3389/fpls.2022.1005811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Trichomes are specialized hair-like organs found on epidermal cells of many terrestrial plants, which protect plant from excessive transpiration and numerous abiotic and biotic stresses. However, the genetic basis and underlying mechanisms are largely unknown in Nicotiana tabacum (common tobacco), an established model system for genetic engineering and plant breeding. In present study, we identified, cloned and characterized an unknown function transcription factor NtMYB306a from tobacco cultivar K326 trichomes. Results obtained from sequence phylogenetic tree analysis showed that NtMYB306a-encoded protein belonged to S1 subgroup of the plants' R2R3-MYB transcription factors (TFs). Observation of the green fluorescent signals from NtMYB306a-GFP fusion protein construct exhibited that NtMYB306a was localized in nucleus. In yeast transactivation assays, the transformed yeast containing pGBKT7-NtMYB306a construct was able to grow on SD/-Trp-Ade+X-α-gal selection media, signifying that NtMYB306a exhibits transcriptional activation activity. Results from qRT-PCR, in-situ hybridization and GUS staining of transgenic tobacco plants revealed that NtMYB306a is primarily expressed in tobacco trichomes, especially tall glandular trichomes (TGTs) and short glandular trichomes (SGTs). RNA sequencing (RNA-seq) and qRT-PCR analysis of the NtMYB306a-overexpressing transgenic tobacco line revealed that NtMYB306a activated the expression of a set of key target genes which were associated with wax alkane biosynthesis. Gas Chromatography-Mass Spectrometry (GC-MS) exhibited that the total alkane contents and the contents of n-C28, n-C29, n-C31, and ai-C31 alkanes in leaf exudates of NtMYB306a-OE lines (OE-3, OE-13, and OE-20) were significantly greater when compared to WT. Besides, the promoter region of NtMYB306a contained numerous stress-responsive cis-acting elements, and their differential expression towards salicylic acid and cold stress treatments reflected their roles in signal transduction and cold-stress tolerance. Together, these results suggest that NtMYB306a is necessarily a positive regulator of alkane metabolism in tobacco trichomes that does not affect the number and morphology of tobacco trichomes, and that it can be used as a candidate gene for improving stress resistance and the quality of tobacco.
Collapse
Affiliation(s)
- Jing Yu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang, China
| | - Bo Lei
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang, China
| | - Huina Zhao
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang, China
| | - Bing Wang
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang, China
| | - Kaleem U. Kakar
- Department of Microbiology, Baluchistan University of Information Technology and Managemnet Sciences, Quetta, Pakistan
| | - Yushuang Guo
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang, China
| | - Xiaolian Zhang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang, China
| | - Mengao Jia
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang, China
| | - Hui Yang
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang, China
| | - Degang Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
10
|
Berhin A, Nawrath C, Hachez C. Subtle interplay between trichome development and cuticle formation in plants. THE NEW PHYTOLOGIST 2022; 233:2036-2046. [PMID: 34704619 DOI: 10.1111/nph.17827] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Trichomes and cuticles are key protective epidermal specializations. This review highlights the genetic interplay existing between trichome and cuticle formation in a variety of species. Controlling trichome development, the biosynthesis of trichome-derived specialized metabolites as well as cuticle biosynthesis and deposition can be viewed as different aspects of a common defensive strategy adopted by plants to protect themselves from environmental stresses. Existence of such interplay is based on the mining of published transcriptomic data as well as on phenotypic observations in trichome or cuticle mutants where the morphology of both structures often appear to be concomitantly altered. Given the existence of several trichome developmental pathways depending on the plant species and the types of trichomes, genetic interactions between cuticle formation and trichome development are complex to decipher and not easy to generalize. Based on our review of the literature, a schematic overview of the gene network mediating this transcriptional interplay is presented for two model plant species: Arabidopsis thaliana and Solanum lycopersicum. In addition to fundamental new insights on the regulation of these processes, identifying key transcriptional switches controlling both processes could also facilitate more applied investigations aiming at improving much desired agronomical traits in plants.
Collapse
Affiliation(s)
- Alice Berhin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - Christiane Nawrath
- Department of Molecular Plant Biology, University of Lausanne, Unil-Sorge, 1015, Lausanne, Switzerland
| | - Charles Hachez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
Zuch DT, Doyle SM, Majda M, Smith RS, Robert S, Torii KU. Cell biology of the leaf epidermis: Fate specification, morphogenesis, and coordination. THE PLANT CELL 2022; 34:209-227. [PMID: 34623438 PMCID: PMC8774078 DOI: 10.1093/plcell/koab250] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/18/2021] [Indexed: 05/02/2023]
Abstract
As the outermost layer of plants, the epidermis serves as a critical interface between plants and the environment. During leaf development, the differentiation of specialized epidermal cell types, including stomatal guard cells, pavement cells, and trichomes, occurs simultaneously, each providing unique and pivotal functions for plant growth and survival. Decades of molecular-genetic and physiological studies have unraveled key players and hormone signaling specifying epidermal differentiation. However, most studies focus on only one cell type at a time, and how these distinct cell types coordinate as a unit is far from well-comprehended. Here we provide a review on the current knowledge of regulatory mechanisms underpinning the fate specification, differentiation, morphogenesis, and positioning of these specialized cell types. Emphasis is given to their shared developmental origins, fate flexibility, as well as cell cycle and hormonal controls. Furthermore, we discuss computational modeling approaches to integrate how mechanical properties of individual epidermal cell types and entire tissue/organ properties mutually influence each other. We hope to illuminate the underlying mechanisms coordinating the cell differentiation that ultimately generate a functional leaf epidermis.
Collapse
Affiliation(s)
- Daniel T Zuch
- Department of Molecular Biosciences, Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Siamsa M Doyle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Mateusz Majda
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Stéphanie Robert
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Keiko U Torii
- Department of Molecular Biosciences, Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
12
|
Yang SL, Tran N, Tsai MY, Ho CMK. Misregulation of MYB16 expression causes stomatal cluster formation by disrupting polarity during asymmetric cell divisions. THE PLANT CELL 2022; 34:455-476. [PMID: 34718767 PMCID: PMC8774054 DOI: 10.1093/plcell/koab260] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/19/2021] [Indexed: 05/02/2023]
Abstract
Stomatal pores and the leaf cuticle regulate evaporation from the plant body and balance the tradeoff between photosynthesis and water loss. MYB16, encoding a transcription factor involved in cutin biosynthesis, is expressed in stomatal lineage ground cells, suggesting a link between cutin biosynthesis and stomatal development. Here, we show that the downregulation of MYB16 in meristemoids is directly mediated by the stomatal master transcription factor SPEECHLESS (SPCH) in Arabidopsis thaliana. The suppression of MYB16 before an asymmetric division is crucial for stomatal patterning, as its overexpression or ectopic expression in meristemoids increased stomatal density and resulted in the formation of stomatal clusters, as well as affecting the outer cell wall structure. Expressing a cutinase gene in plants ectopically expressing MYB16 reduced stomatal clustering, suggesting that cutin affects stomatal signaling or the polarity setup in asymmetrically dividing cells. The clustered stomatal phenotype was rescued by overexpressing EPIDERMAL PATTERNING FACTOR2, suggesting that stomatal signaling was still functional in these plants. Growing seedlings ectopically expressing MYB16 on high-percentage agar plates to modulate tensile strength rescued the polarity and stomatal cluster defects of these seedlings. Therefore, the inhibition of MYB16 expression by SPCH in the early stomatal lineage is required to correctly place the polarity protein needed for stomatal patterning during leaf morphogenesis.
Collapse
Affiliation(s)
- Shao-Li Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | - Ngan Tran
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | - Meng-Ying Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | | |
Collapse
|
13
|
Hõrak H. MYB16 expression in the stomatal lineage: Wrong place at the wrong time leads to stomata side-by-side. THE PLANT CELL 2022; 34:8-9. [PMID: 35226743 PMCID: PMC8774097 DOI: 10.1093/plcell/koab268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
|
14
|
Avellan A, Yun J, Morais BP, Clement ET, Rodrigues SM, Lowry GV. Critical Review: Role of Inorganic Nanoparticle Properties on Their Foliar Uptake and in Planta Translocation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13417-13431. [PMID: 33988374 DOI: 10.1021/acs.est.1c00178] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
There is increasing pressure on global agricultural systems due to higher food demand, climate change, and environmental concerns. The design of nanostructures is proposed as one of the economically viable technological solutions that can make agrochemical use (fertilizers and pesticides) more efficient through reduced runoff, increased foliar uptake and bioavailability, and decreased environmental impacts. However, gaps in knowledge about the transport of nanoparticles across the leaf surface and their behavior in planta limit the rational design of nanoparticles for foliar delivery with controlled fate and limited risk. Here, the current literature on nano-objects deposited on leaves is reviewed. The different possible foliar routes of uptake (stomata, cuticle, trichomes, hydathodes, necrotic spots) are discussed, along with the paths of translocation, via the phloem, from the leaf to the end sinks (mature and developing tissues, roots, rhizosphere). This review details the interplays between morphological constraints, environmental stimuli, and physical-chemical properties of nanoparticles influencing their fate, transformation, and transport after foliar deposition. A metadata analysis from the existing literature highlighted that plant used for testing nanoparticle fate are most often dicotyledon plants (75%), while monocotyledons (as cereals) are less considered. Correlations on parameters calculated from the literature indicated that nanoparticle dose, size, zeta potential, and affinity to organic phases correlated with leaf-to-sink translocation, demonstrating that targeting nanoparticles to specific plant compartments by design should be achievable. Correlations also showed that time and plant growth seemed to be drivers for in planta mobility, parameters that are largely overlooked in the literature. This review thus highlights the material design opportunities and the knowledge gaps for targeted, stimuli driven deliveries of safe nanomaterials for agriculture.
Collapse
Affiliation(s)
- Astrid Avellan
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Biogeochemical Processes and Pollutants, Center for Environmental and Marine Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Jie Yun
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge 02139, United States
| | - Bruno P Morais
- Biogeochemical Processes and Pollutants, Center for Environmental and Marine Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Emma T Clement
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sonia M Rodrigues
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Biogeochemical Processes and Pollutants, Center for Environmental and Marine Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
15
|
Li H, Chang C. Evolutionary insight of plant cuticle biosynthesis in bryophytes. PLANT SIGNALING & BEHAVIOR 2021; 16:1943921. [PMID: 34159883 PMCID: PMC8331034 DOI: 10.1080/15592324.2021.1943921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
As an adaptive innovation in plant terrestrialization, cuticle covers the plant surface and greatly contributes to the development and stress tolerance in land plants. Although past decades have seen great progress in understanding the molecular mechanism of cuticle biosynthesis in flowering plants with the contribution of cuticle biosynthesis mutants and advanced cuticle composition profiling techniques, origins and evolution of cuticle biosynthesis are poorly understood. Recent chemical, phylogenomic, and molecular genetic studies on cuticle biosynthesis in early-diverging extant land plant lineages, the bryophytes, shed novel light on the origins and evolution of plant cuticle biosynthesis. In this mini-review, we highlighted these recent advances in the molecular biology of cuticle biosynthesis in bryophytes, and provided evolutionary insights into plant cuticle biosynthesis.
Collapse
Affiliation(s)
- Haoyu Li
- College of Life Sciences, Qingdao University, Qingdao, Shandong, P.R. China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
16
|
Batsale M, Bahammou D, Fouillen L, Mongrand S, Joubès J, Domergue F. Biosynthesis and Functions of Very-Long-Chain Fatty Acids in the Responses of Plants to Abiotic and Biotic Stresses. Cells 2021; 10:1284. [PMID: 34064239 PMCID: PMC8224384 DOI: 10.3390/cells10061284] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Very-long-chain fatty acids (i.e., fatty acids with more than 18 carbon atoms; VLCFA) are important molecules that play crucial physiological and structural roles in plants. VLCFA are specifically present in several membrane lipids and essential for membrane homeostasis. Their specific accumulation in the sphingolipids of the plasma membrane outer leaflet is of primordial importance for its correct functioning in intercellular communication. VLCFA are found in phospholipids, notably in phosphatidylserine and phosphatidylethanolamine, where they could play a role in membrane domain organization and interleaflet coupling. In epidermal cells, VLCFA are precursors of the cuticular waxes of the plant cuticle, which are of primary importance for many interactions of the plant with its surrounding environment. VLCFA are also major components of the root suberin barrier, which has been shown to be fundamental for nutrient homeostasis and plant adaptation to adverse conditions. Finally, some plants store VLCFA in the triacylglycerols of their seeds so that they later play a pivotal role in seed germination. In this review, taking advantage of the many studies conducted using Arabidopsis thaliana as a model, we present our current knowledge on the biosynthesis and regulation of VLCFA in plants, and on the various functions that VLCFA and their derivatives play in the interactions of plants with their abiotic and biotic environment.
Collapse
Affiliation(s)
| | | | | | | | | | - Frédéric Domergue
- University of Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d’Ornon, France; (M.B.); (D.B.); (L.F.); (S.M.); (J.J.)
| |
Collapse
|
17
|
Simon NML, Sugisaka J, Honjo MN, Tunstad SA, Tunna G, Kudoh H, Dodd AN. Altered stomatal patterning accompanies a trichome dimorphism in a natural population of Arabidopsis. PLANT DIRECT 2020; 4:e00262. [PMID: 32995701 PMCID: PMC7507053 DOI: 10.1002/pld3.262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 07/09/2020] [Accepted: 08/07/2020] [Indexed: 05/27/2023]
Abstract
Trichomes are large epidermal cells on the surface of leaves that are thought to deter herbivores, yet the presence of trichomes can also negatively impact plant growth and reproduction. Stomatal guard cells and trichomes have shared developmental origins, and experimental manipulation of trichome formation can lead to changes in stomatal density. The influence of trichome formation upon stomatal development in natural populations of plants is currently unknown. Here, we show that a natural population of Arabidopsis halleri that includes hairy (trichome-bearing) and glabrous (no trichomes) morphs has differences in stomatal density that are associated with this trichome dimorphism. We found that glabrous morphs had significantly greater stomatal density and stomatal index than hairy morphs. One interpretation is that this arises from a trade-off between the proportions of cells that have trichome and guard cell fates during leaf development. The differences in stomatal density between the two morphs might have impacts upon environmental adaptation, in addition to herbivory deterrence caused by trichome development.
Collapse
Affiliation(s)
| | - Jiro Sugisaka
- Center for Ecological Research Kyoto University Otsu Shiga Japan
| | - Mie N Honjo
- Center for Ecological Research Kyoto University Otsu Shiga Japan
| | | | - George Tunna
- School of Biological Sciences University of Bristol Bristol UK
| | - Hiroshi Kudoh
- Center for Ecological Research Kyoto University Otsu Shiga Japan
| | | |
Collapse
|
18
|
Spielman-Sun E, Avellan A, Bland GD, Clement ET, Tappero RV, Acerbo AS, Lowry GV. Protein coating composition targets nanoparticles to leaf stomata and trichomes. NANOSCALE 2020; 12:3630-3636. [PMID: 31998910 DOI: 10.1039/c9nr08100c] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant nanobiotechnology has the potential to revolutionize agriculture. However, the lack of effective methods to deliver nanoparticles (NPs) to the precise locations in plants where they are needed impedes these technological innovations. Here, model gold nanoparticles (AuNP) were coated with citrate, bovine serum albumin (BSA) as a protein control, or LM6-M, an antibody with an affinity for functional groups unique to stomata on leaf surfaces to deliver the AuNPs to stomata. One-month-old Vicia faba leaves were exposed via drop deposition to aqueous suspensions of LM6-M-coated AuNPs and allowed to air dry. After rinsing, Au distribution on the leaf surface was investigated by enhanced dark-field microscopy and X-ray fluorescence mapping. While citrate-coated AuNPs randomly covered the plant leaves, LM6M-AuNPs strongly adhered to the stomata and remained on the leaf surface after rinsing, and BSA-AuNPs specifically targeted trichome hairs. To the authors' knowledge, this is the first report of active targeting of live leaf structures using NPs coated with molecular recognition molecules. This proof-of-concept study provides a strategy for future targeted nanopesticide delivery research.
Collapse
Affiliation(s)
- Eleanor Spielman-Sun
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Astrid Avellan
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Garret D Bland
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Emma T Clement
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Ryan V Tappero
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Alvin S Acerbo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA and Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
19
|
Jaroensuk J, Intasian P, Wattanasuepsin W, Akeratchatapan N, Kesornpun C, Kittipanukul N, Chaiyen P. Enzymatic reactions and pathway engineering for the production of renewable hydrocarbons. J Biotechnol 2020; 309:1-19. [DOI: 10.1016/j.jbiotec.2019.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/23/2023]
|
20
|
Brennan M, Paterson L, Baharudin AAA, Stanisz-Migal M, Hoebe PN. The quality of barley husk-caryopsis adhesion is not correlated with caryopsis cuticle permeability. JOURNAL OF PLANT PHYSIOLOGY 2019; 243:153054. [PMID: 31648109 DOI: 10.1016/j.jplph.2019.153054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/24/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Adhesion of the barley husk to the underlying caryopsis requires the development of a cuticular cementing layer on the caryopsis surface. Differences in adhesion quality among genotypes have previously been correlated with cementing layer composition, which is thought to influence caryopsis cuticle permeability, the hypothesised mechanism of adhesion mediation. It is not yet known whether differences in adhesion quality among genotypes are determined by changes in caryopsis cuticle permeability. We examined changes in candidate cementing layer biosynthetic and regulatory genes to investigate the genetic mechanisms behind husk adhesion quality. We used both commercially relevant UK malting cultivars and older European lines to ensure phenotypic diversity in adhesion quality. An ethylene responsive transcription factor (NUD) is required for the development of the cementing layer. To examine correlations between gene expression, cementing layer permeability and husk adhesion quality we also treated cultivars with ethephon (2-chloroethylphosphonic acid) which breaks down to ethylene, and silver thiosulphate which inhibits ethylene reception, and measured caryopsis cuticle permeability. Differential adhesion qualities among genotypes are not determined by NUD expression during development of the cementing material alone, but could result from differences in biosynthetic gene expression during cementing layer development in response to longer-term NUD expression patterns. Altered caryopsis cuticle permeability does result in altered adhesion quality, but the correlation is not consistently positive or negative. Cuticle permeability is therefore not the mechanism that determines husk adhesion quality, but is likely a consequence of the required cuticular compositional changes that determine adhesion.
Collapse
Affiliation(s)
- Maree Brennan
- Scotland's Rural College, King's Buildings, West Mains Road, EH9 3JG Edinburgh, United Kingdom.
| | - Linda Paterson
- Scotland's Rural College, King's Buildings, West Mains Road, EH9 3JG Edinburgh, United Kingdom
| | - Anis Amalin Assaadah Baharudin
- Scotland's Rural College, King's Buildings, West Mains Road, EH9 3JG Edinburgh, United Kingdom; Green World Genetics Sdn. Bhd., 40, Jalan KIP 10, Taman Perindustrian KIP, Kepong, 52200 Kuala Lumpur, Malaysia
| | - Maria Stanisz-Migal
- Scotland's Rural College, King's Buildings, West Mains Road, EH9 3JG Edinburgh, United Kingdom
| | - Peter N Hoebe
- Scotland's Rural College, King's Buildings, West Mains Road, EH9 3JG Edinburgh, United Kingdom
| |
Collapse
|
21
|
Xu X, Xue K, Tang S, He J, Song B, Zhou M, Zou Y, Zhou Y, Jenks MA. The relationship between cuticular lipids and associated gene expression in above ground organs of Thellungiella salsugineum (Pall.) Al-Shehbaz & Warwick. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110200. [PMID: 31481227 DOI: 10.1016/j.plantsci.2019.110200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/23/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The cuticle plays a critical role as barrier between plant and environment. Here, cuticular wax morphology, cuticular wax and cutin monomer composition, and expression of associated genes in five above ground organs were examined in model extremophyte Thellungiella salsugineum. Alkanes, ketones, and 2-alcohols were the predominant wax constitutes in rosette leaves, inflorescence stem leaves, stems, and siliques, whereas alkanes and acids were the predominant cuticular lipids in whole flowers. Unsubstituted acids were the most abundant cutin monomers in vegetative organs, especially C18:2 dioic acids, which reached the highest levels in stems. Hydroxy fatty acids were the predominant cutin monomers in flowers, especially 16-OH C16:0 and diOH C16:0. High-throughput RNA-Seq analysis using the Hiseq4000 platform was performed on these five above organs of T. salsugineum, and the differentially expressed lipid-associated genes and their associated metabolic pathways were identified. Expression of genes associated in previous reports to cuticle production, including those having roles in cuticle lipid biosynthesis, transport, and regulation were examined. The association of cuticle lipid composition and gene expression within different organs of T. salsugineum, and potential relationships between T. salsugineum's extreme cuticle and its adaptation to extreme environments is discussed.
Collapse
Affiliation(s)
- Xiaojing Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Kun Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Shuai Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Junqing He
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Buerbatu Song
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Minqi Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yanli Zou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Matthew A Jenks
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
22
|
Meng S, Cao Y, Li H, Bian Z, Wang D, Lian C, Yin W, Xia X. PeSHN1 regulates water-use efficiency and drought tolerance by modulating wax biosynthesis in poplar. TREE PHYSIOLOGY 2019; 39:1371-1386. [PMID: 30938421 DOI: 10.1093/treephys/tpz033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/06/2018] [Accepted: 03/11/2019] [Indexed: 05/20/2023]
Abstract
Wax, a hydrophobic structure that provides an effective waterproof barrier to the leaves, is an important drought adaptation trait for preventing water loss. However, limited knowledge exists regarding the molecular mechanisms underlying wax biosynthesis in trees. Here, PeSHN1, an AP2/ethylene response factor transcription factor, was isolated from a fast-growing poplar Populus × euramericana cv. 'Neva' clone. To study the potential biological functions of PeSHN1, transgenic 84K poplar (Populus alba × Populus glandulosa) plants overexpressing PeSHN1 were generated. PeSHN1 overexpression resulted in decreased transpiration, increased water-use efficiency (WUE) and increased drought tolerance. The transgenic poplar plants exhibited increased wax accumulation and altered wax composition, mainly because of a substantial increase in long-chain (>C30) fatty acids, aldehydes and alkanes. Gene expression analyses revealed that many genes involved in wax biosynthesis were induced in the PeSHN1 overexpression plants. In addition, chromatin immunoprecipitation-PCR assays and dual luciferase assays revealed that at least one of those genes, LACS2, is likely targeted by PeSHN1. Moreover, the PeSHN1 overexpression plants maintained higher photosynthetic activity and accumulated more biomass under drought stress conditions. Taken together, these results suggest that PeSHN1 regulates both WUE and drought tolerance in poplar by modulating wax biosynthesis and that altered PeSHN1 expression could represent a novel approach (altering the wax trait on leaf surfaces to increase WUE) for breeding drought-tolerant plants.
Collapse
Affiliation(s)
- Sen Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangdong, China
| | - Yang Cao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Huiguang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhan Bian
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Dongli Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Conglong Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
23
|
Haus MJ, Li M, Chitwood DH, Jacobs TW. Long-Distance and Trans-Generational Stomatal Patterning by CO 2 Across Arabidopsis Organs. FRONTIERS IN PLANT SCIENCE 2018; 9:1714. [PMID: 30559750 PMCID: PMC6287203 DOI: 10.3389/fpls.2018.01714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/05/2018] [Indexed: 05/20/2023]
Abstract
Stomata control water loss and carbon dioxide uptake by both altering pore aperture and developmental patterning. Stomatal patterning is regulated by environmental factors including atmospheric carbon dioxide (p[CO2]), which is increasing globally at an unprecedented rate. Mature leaves are known to convey developmental cues to immature leaves in response to p[CO2], but the developmental mechanisms are unknown. To characterize changes in stomatal patterning resulting from signals moving from mature to developing leaves, we constructed a dual-chamber growth system in which rosette and cauline leaves of Arabidopsis thaliana were subjected to differing p[CO2]. Young rosette tissue was found to adjust stomatal index (SI, the proportion of stomata to total cell number) in response to both the current environment and the environment experienced by mature rosette tissue, whereas cauline leaves appear to be insensitive to p[CO2] treatment. It is likely that cauline leaves and cotyledons deploy mechanisms for controlling stomatal development that share common but also deploy distinctive mechanisms to that operating in rosette leaves. The effect of p[CO2] on stomatal development is retained in cotyledons of the next generation, however, this effect does not occur in pre-germination stomatal lineage cells but only after germination. Finally, these data suggest that p[CO2] affects regulation of stomatal development specifically through the development of satellite stomata (stomata induced by signals from a neighboring stomate) during spacing divisions and not the basal pathway. To our knowledge, this is the first report identifying developmental steps responsible for altered stomatal patterning to p[CO2] and its trans-generational inheritance.
Collapse
Affiliation(s)
- Miranda J. Haus
- Department of Plant Biology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Mao Li
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Daniel H. Chitwood
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Thomas W. Jacobs
- Department of Plant Biology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
24
|
Hegebarth D, Jetter R. Cuticular Waxes of Arabidopsis thaliana Shoots: Cell-Type-Specific Composition and Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2017; 6:E27. [PMID: 28686187 PMCID: PMC5620583 DOI: 10.3390/plants6030027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/02/2017] [Accepted: 07/02/2017] [Indexed: 02/03/2023]
Abstract
It is generally assumed that all plant epidermis cells are covered with cuticles, and the distinct surface geometries of pavement cells, guard cells, and trichomes imply functional differences and possibly different wax compositions. However, experiments probing cell-type-specific wax compositions and biosynthesis have been lacking until recently. This review summarizes new evidence showing that Arabidopsis trichomes have fewer wax compound classes than pavement cells, and higher amounts of especially long-chain hydrocarbons. The biosynthesis machinery generating this characteristic surface coating is discussed. Interestingly, wax compounds with similar, long hydrocarbon chains had been identified previously in some unrelated species, not all of them bearing trichomes.
Collapse
Affiliation(s)
- Daniela Hegebarth
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
25
|
Fogelman E, Stern RA, Ginzberg I. Benzyladenine and gibberellin treatment of developing "Pink Lady" apples results in mature fruits with a thicker cuticle comprising clusters of epidermal cells. PROTOPLASMA 2015; 252:1009-1017. [PMID: 25433445 DOI: 10.1007/s00709-014-0736-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
A mixture of 6-benzyladenine (BA) and gibberellins GA4 plus GA7 applied to "Pink Lady" apple at early phenological stages was previously shown to result in an immediate increase in epidermal cell density and associated reduction in calyx-end cracking disorder in the mature fruit, implying a long-term effect of the BA + GA4+7 mixture. Here, we analyzed the anatomical changes in the mature peel at the calyx end 210 days after full bloom (DAFB), following application of the plant growth regulators (PGRs) at the cell-division phase of fruit development, 21-50 DAFB. Experiments were conducted in northern Israel, and the PGRs were applied as the commercial formulation Superlon™ (Fine Agrochemicals Ltd.), composed of 19 g l(-1) BA and 19 g l(-1) GA4+7. Trees were sprayed with 0.025, 0.1, or 0.2 % (v/v) Superlon™. The most obvious phenomenon was the presence of epidermal cell clusters within the cuticular matrix that were detached from the native epidermal layer located at the bottom of the cuticle and which could not be detected in the untreated control fruits. Treatment with 20 mg l(-1) BA + GA4+7 (0.1 % Superlon™) resulted in a markedly thicker cuticle, a higher percentage of detached epidermal cells within the cuticular membrane and a significant reduction in calyx-end cracking at harvest. The presence of cuticle-embedded epidermal cell clusters may have contributed to strengthening the peel by adding more cell-wall components, thickening the cuticle layer and possibly enhancing crack repair.
Collapse
Affiliation(s)
- Edna Fogelman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 6, 50250, Bet Dagan, Israel
| | | | | |
Collapse
|
26
|
Sicard P, Dalstein-Richier L. Health and vitality assessment of two common pine species in the context of climate change in southern Europe. ENVIRONMENTAL RESEARCH 2015; 137:235-245. [PMID: 25577188 DOI: 10.1016/j.envres.2014.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/27/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
The Mediterranean Basin is expected to be more strongly affected by ongoing climate change than most other regions of the earth. The South-eastern France can be considered as case study for assessing global change impacts on forests. Based on non-parametric statistical tests, the climatic parameters (temperature, relative humidity, rainfall, global radiation) and forest-response indicators (crown defoliation, discoloration and visible foliar ozone injury) of two pine species (Pinus halepensis and Pinus cembra) were analyzed. In the last 20 years, the trend analyses reveal a clear hotter and drier climate along the coastline and slightly rainier inland. In the current climate change context, a reduction in ground-level ozone (O3) was found at remote sites and the visible foliar O3 injury decreased while deterioration of the crown conditions was observed likely due to a drier and warmer climate. Clearly, if such climatic and ecological changes are now being detected when the climate, in South-eastern France, has warmed in the last 20 years (+0.46-1.08°C), it can be expected that many more impacts on tree species will occur in response to predicted temperature changes by 2100 (+1.95-4.59°C). Climate change is projected to reduce the benefits of O3 precursor emissions controls leading to a higher O3 uptake. However, the drier and warmer climate should induce a soil drought leading to a lower O3 uptake. These two effects, acting together in an opposite way, could mitigate the harmful impacts of O3 on forests. The development of coordinated emission abatement strategies is useful to reduce both climate change and O3 pollution. Climate change will create additional challenges for forest management with substantial socio-economic and biological diversity impacts. However, the development of future sustainable and adaptive forest management strategies has the potential to reduce the vulnerability of forest species to climate change.
Collapse
Affiliation(s)
- Pierre Sicard
- ACRI-ST, 260 route du Pin Montard, BP 234, 06904 Sophia Antipolis cedex, France.
| | - Laurence Dalstein-Richier
- GIEFS (Groupe International d'Etudes des Forêts Sud-européennes) - 60, Avenue des Hespérides, 06300 Nice, France
| |
Collapse
|
27
|
Chater CCC, Oliver J, Casson S, Gray JE. Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. THE NEW PHYTOLOGIST 2014; 202:376-391. [PMID: 24611444 DOI: 10.1111/nph.12713] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/13/2013] [Indexed: 05/07/2023]
Abstract
Stomata are produced by a controlled series of epidermal cell divisions. The molecular underpinnings of this process are becoming well understood, but mechanisms that determine plasticity of stomatal patterning to many exogenous and environmental cues remain less clear. Light quantity and quality, vapour pressure deficit, soil water content, and CO2 concentration are detected by the plant, and new leaves adapt their stomatal densities accordingly. Mature leaves detect these environmental signals and relay messages to immature leaves to tell them how to adapt and grow. Stomata on mature leaves may act as stress signal-sensing and transduction centres, locally by aperture adjustment, and at long distance by optimizing stomatal density to maximize future carbon gain while minimizing water loss. Although mechanisms of stomatal aperture responses are well characterized, the pathways by which mature stomata integrate environmental signals to control immature epidermal cell fate, and ultimately stomatal density, are not. Here we evaluate current understanding of the latter through the influence of the former. We argue that mature stomata, as key portals by which plants coordinate their carbon and water relations, are controlled by abscisic acid (ABA), both metabolically and hydraulically, and that ABA is also a core regulator of environmentally determined stomatal development.
Collapse
Affiliation(s)
- Caspar C C Chater
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - James Oliver
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stuart Casson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
28
|
Luo X, Bai X, Sun X, Zhu D, Liu B, Ji W, Cai H, Cao L, Wu J, Hu M, Liu X, Tang L, Zhu Y. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2155-69. [PMID: 23606412 DOI: 10.1093/jxb/ert073] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The WRKY-type transcription factors are involved in plant development and stress responses, but how the regulation of stress tolerance is related to plant development is largely unknown. GsWRKY20 was initially identified as a stress response gene using large-scale Glycine soja microarrays. Quantitative reverse transcription-PCR (qRT-PCR) showed that the expression of this gene was induced by abscisic acid (ABA), salt, cold, and drought. Overexpression of GsWRKY20 in Arabidopsis resulted in a decreased sensitivity to ABA during seed germination and early seedling growth. However, compared with the wild type, GsWRKY20 overexpression lines were more sensitive to ABA in stomatal closure, and exhibited a greater tolerance to drought stress, a decreased water loss rate, and a decreased stomatal density. Moreover, microarray and qRT-PCR assays showed that GsWRKY20 mediated ABA signalling by promoting the expression of negative regulators of ABA signalling, such as AtWRKY40, ABI1, and ABI2, while repressing the expression of the positive regulators of ABA, for example ABI5, ABI4, and ABF4. Interestingly, GsWRKY20 also positively regulates the expression of a group of wax biosynthetic genes. Further, evidence is provided to support that GsWRKY20 overexpression lines have more epicuticular wax crystals and a much thicker cuticle, which contribute to less chlorophyll leaching compared with the wild type. Taken together, the findings reveal an important role for GsWRKY20 in enhancing drought tolerance and regulating ABA signalling.
Collapse
Affiliation(s)
- Xiao Luo
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shi JX, Adato A, Alkan N, He Y, Lashbrooke J, Matas AJ, Meir S, Malitsky S, Isaacson T, Prusky D, Leshkowitz D, Schreiber L, Granell AR, Widemann E, Grausem B, Pinot F, Rose JKC, Rogachev I, Rothan C, Aharoni A. The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning. THE NEW PHYTOLOGIST 2013; 197:468-480. [PMID: 23205954 DOI: 10.1111/nph.12032] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/04/2012] [Indexed: 05/20/2023]
Abstract
Fleshy tomato fruit typically lacks stomata; therefore, a proper cuticle is particularly vital for fruit development and interaction with the surroundings. Here, we characterized the tomato SlSHINE3 (SlSHN3) transcription factor to extend our limited knowledge regarding the regulation of cuticle formation in fleshy fruits. We created SlSHN3 overexpressing and silenced plants, and used them for detailed analysis of cuticular lipid compositions, phenotypic characterization, and the study on the mode of SlSHN3 action. Heterologous expression of SlSHN3 in Arabidopsis phenocopied overexpression of the Arabidopsis SHNs. Silencing of SlSHN3 results in profound morphological alterations of the fruit epidermis and significant reduction in cuticular lipids. We demonstrated that SlSHN3 activity is mediated by control of genes associated with cutin metabolism and epidermal cell patterning. As with SlSHN3 RNAi lines, mutation in the SlSHN3 target gene, SlCYP86A69, resulted in severe cutin deficiency and altered fruit surface architecture. In vitro activity assays demonstrated that SlCYP86A69 possesses NADPH-dependent ω-hydroxylation activity, particularly of C18:1 fatty acid to the 18-hydroxyoleic acid cutin monomer. This study provided insights into transcriptional mechanisms mediating fleshy fruit cuticle formation and highlighted the link between cutin metabolism and the process of fruit epidermal cell patterning.
Collapse
Affiliation(s)
- Jian Xin Shi
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Avital Adato
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, PO Box 6, Bet-Dagan, 50250, Israel
| | - Yonghua He
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Justin Lashbrooke
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Antonio J Matas
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Sagit Meir
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Sergey Malitsky
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Tal Isaacson
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, PO Box 6, Bet-Dagan, 50250, Israel
| | - Dena Leshkowitz
- Department of Biological Services, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Lukas Schreiber
- Department of Ecophysiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Antonio R Granell
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357-, Université de Strasbourg, 67083, Strasbourg Cedex, France
| | - Bernard Grausem
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357-, Université de Strasbourg, 67083, Strasbourg Cedex, France
| | - Franck Pinot
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357-, Université de Strasbourg, 67083, Strasbourg Cedex, France
| | - Jocelyn K C Rose
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ilana Rogachev
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Christophe Rothan
- UMR 619 Fruit Biology, INRA Bordeaux, 71 Av. Edouard Bourleaux, 33 883, Villenave d'Ornon, France
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| |
Collapse
|
30
|
Lisso J, Schröder F, Schippers JH, Müssig C. NFXL2 modifies cuticle properties in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:551-5. [PMID: 22516817 PMCID: PMC3419017 DOI: 10.4161/psb.19838] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Loss of the Arabidopsis NFX1-LIKE2 (NFXL2) gene (At5g05660) results in elevated ABA levels, elevated hydrogen peroxide levels, reduced stomatal aperture, and enhanced drought stress tolerance. Introduction of the NFXL2-78 isoform into the nfxl2-1 mutant is largely sufficient for complementation of the phenotype. We show here that cuticular properties are altered in the nfxl2-1 mutant. The NFXL2-78 protein binds to the SHINE1 (SHN1), SHN2, SHN3, and BODYGUARD1 (BDG1) promoters and mediates weaker expression of these genes. The SHN AP2 domain transcription factors influence cuticle properties. Stronger SHN1, SHN2, and SHN3 expression in the nfxl2-1 mutant may cause altered cuticle properties including reduced stomatal density, and partly explain the enhanced drought stress tolerance. The BDG1 protein also controls cuticle development and is essential for osmotic stress regulation of ABA biosynthesis. Stronger BDG1 expression in nfxl2-1 plants may allow elevated ABA accumulation under drought stress. We conclude that the NFXL2-78 protein is part of a regulatory network that integrates the biosynthesis and action of ABA, ROS, and cuticle components.
Collapse
Affiliation(s)
- Janina Lisso
- Lothar Willmitzer Department; Max Planck Institute of Molecular Plant Physiology; Universität Potsdam; Golm, Germany
| | - Florian Schröder
- Lothar Willmitzer Department; Max Planck Institute of Molecular Plant Physiology; Universität Potsdam; Golm, Germany
| | | | - Carsten Müssig
- Lothar Willmitzer Department; Max Planck Institute of Molecular Plant Physiology; Universität Potsdam; Golm, Germany
| |
Collapse
|
31
|
Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos Trans R Soc Lond B Biol Sci 2012; 367:547-55. [PMID: 22232766 PMCID: PMC3248714 DOI: 10.1098/rstb.2011.0272] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To investigate the impact of manipulating stomatal density, a collection of Arabidopsis epidermal patterning factor (EPF) mutants with an approximately 16-fold range of stomatal densities (approx. 20-325% of that of control plants) were grown at three atmospheric carbon dioxide (CO(2)) concentrations (200, 450 and 1000 ppm), and 30 per cent or 70 per cent soil water content. A strong negative correlation between stomatal size (S) and stomatal density (D) was observed, suggesting that factors that control D also affect S. Under some but not all conditions, mutant plants exhibited abnormal stomatal density responses to CO(2) concentration, suggesting that the EPF signalling pathway may play a role in the environmental adjustment of D. In response to reduced water availability, maximal stomatal conductance was adjusted through reductions in S, rather than D. Plant size negatively correlated with D. For example, at 450 ppm CO(2) EPF2-overexpressing plants, with reduced D, had larger leaves and increased dry weight in comparison with controls. The growth of these plants was also less adversely affected by reduced water availability than plants with higher D, indicating that plants with low D may be well suited to growth under predicted future atmospheric CO(2) environments and/or water-scarce environments.
Collapse
Affiliation(s)
- Timothy Doheny-Adams
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Lee Hunt
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Peter J. Franks
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
- Faculty of Agriculture, Food and Natural Resources, University of Sydney, New South Wales 2006, Australia
| | - David J. Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Julie E. Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
32
|
Dobrowolska I, Majchrzak O, Baldwin TC, Kurczynska EU. Differences in protodermal cell wall structure in zygotic and somatic embryos of Daucus carota (L.) cultured on solid and in liquid media. PROTOPLASMA 2012; 249:117-29. [PMID: 21424614 PMCID: PMC3249540 DOI: 10.1007/s00709-011-0268-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/28/2011] [Indexed: 05/18/2023]
Abstract
The ultrastructure, cuticle, and distribution of pectic epitopes in outer periclinal walls of protodermal cells of Daucus carota zygotic and somatic embryos from solid and suspension culture were investigated. Lipid substances were present as a continuous layer in zygotic and somatic embryos cultured on solid medium. Somatic embryos from suspension cultures were devoid of cuticle. The ultrastructure of the outer walls of protodermis of embryos was similar in zygotic and somatic embryos from solid culture. Fibrillar material was observed on the surface of somatic embryos. In zygotic embryos, in cotyledons and root pectic epitopes recognised by the antibody JIM5 were observed in all cell walls. In hypocotyls of these embryos, these pectic epitopes were not present in the outer periclinal and anticlinal walls of the protodermis. In somatic embryos from solid media, distribution of pectic epitopes recognised by JIM5 was similar to that described for their zygotic counterparts. In somatic embryos from suspension culture, pectic epitopes recognised by JIM5 were detected in all cell walls. In the cotyledons and hypocotyls, a punctate signal was observed on the outside of the protodermis. Pectic epitopes recognised by JIM7 were present in all cell walls independent of embryo organs. In zygotic embryos, this signal was punctate; in somatic embryos from both cultures, this signal was uniformly distributed. In embryos from suspension cultures, a punctate signal was detected outside the surface of cotyledon and hypocotyl. These data are discussed in light of current models for embryogenesis and the influence of culture conditions on cell wall structure.
Collapse
Affiliation(s)
- Izabela Dobrowolska
- Laboratory of Cell Biology, Faculty of Biology and Environment Protection, Silesian University, Katowice, Poland.
| | | | | | | |
Collapse
|
33
|
Yang J, Isabel Ordiz M, Jaworski JG, Beachy RN. Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1448-55. [PMID: 22078383 DOI: 10.1016/j.plaphy.2011.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 09/07/2011] [Indexed: 05/19/2023]
Abstract
Cuticular waxes are involved in the regulation of the exchange of gases and water in plants and can impact tolerance to drought. However, the molecular mechanisms of the relationship between wax accumulation and drought tolerance are largely unknown. We applied the methoxyfenozide gene switching system to regulate expression of the WIN1/SHN1 gene (WAX INDUCER 1/SHINE1; At1G15360), a transcriptional activator, to regulate production of cuticular waxes and cutin and followed changes of gene expression, metabolites, and drought tolerance. Treatment with the inducer resulted in expression of the target gene and specific downstream genes, and gradually increased cuticular waxes. Induction of cuticular wax conferred tolerance to drought and recovery from drought, and was correlated with reduced numbers of stomata. Quantitative RT-PCR assays using RNAs from transgenic plants revealed that when expression of the WIN1/SHN1 gene was induced there was increased expression of genes involved in wax development, and reduced expression of selected genes, including SPCH (At5g53210); MUTE (At3g06120); and FAMA (At3g241400); and YODA (At1g63700), each of which is involved in stomatal development. These studies suggest that drought tolerance caused by the induction of WIN1/SHIN gene may be due to reduced numbers of stomata as well as to cuticular wax accumulation.
Collapse
Affiliation(s)
- Jaemo Yang
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | | | | | | |
Collapse
|
34
|
Wu R, Li S, He S, Waßmann F, Yu C, Qin G, Schreiber L, Qu LJ, Gu H. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. THE PLANT CELL 2011; 23:3392-411. [PMID: 21954461 PMCID: PMC3203440 DOI: 10.1105/tpc.111.088625] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 08/18/2011] [Accepted: 09/05/2011] [Indexed: 05/19/2023]
Abstract
Plants have a chemically heterogeneous lipophilic layer, the cuticle, which protects them from biotic and abiotic stresses. The mechanisms that regulate cuticle development are poorly understood. We identified a rice (Oryza sativa) dominant curly leaf mutant, curly flag leaf1 (cfl1), and cloned CFL1, which encodes a WW domain protein. We overexpressed both rice and Arabidopsis CFL1 in Arabidopsis thaliana; these transgenic plants showed severely impaired cuticle development, similar to that in cfl1 rice. Reduced expression of At CFL1 resulted in reinforcement of cuticle structure. At CFL1 was predominantly expressed in specialized epidermal cells and in regions where dehiscence and abscission occur. Biochemical evidence showed that At CFL1 interacts with HDG1, a class IV homeodomain-leucine zipper transcription factor. Suppression of HDG1 function resulted in similar defective cuticle phenotypes in wild-type Arabidopsis but much alleviated phenotypes in At cfl1-1 mutants. The expression of two cuticle development-associated genes, BDG and FDH, was downregulated in At CFL1 overexpressor and HDG1 suppression plants. HDG1 binds to the cis-element L1 box, which exists in the regulatory regions of BDG and FDH. Our results suggest that rice and Arabidopsis CFL1 negatively regulate cuticle development by affecting the function of HDG1, which regulates the downstream genes BDG and FDH.
Collapse
Affiliation(s)
- Renhong Wu
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Shibai Li
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Shan He
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Friedrich Waßmann
- Institut für Zelluläre and Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Caihong Yu
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Genji Qin
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Lukas Schreiber
- Institut für Zelluläre and Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- The National Plant Gene Research Center (Beijing), Beijing 100101, People’s Republic of China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- The National Plant Gene Research Center (Beijing), Beijing 100101, People’s Republic of China
| |
Collapse
|
35
|
Chen X, Truksa M, Snyder CL, El-Mezawy A, Shah S, Weselake RJ. Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus. PLANT PHYSIOLOGY 2011; 155:851-65. [PMID: 21173024 PMCID: PMC3032471 DOI: 10.1104/pp.110.169482] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/14/2010] [Indexed: 05/18/2023]
Abstract
Brassica napus is an allotetraploid (AACC) formed from the fusion of two diploid progenitors, Brassica rapa (AA) and Brassica oleracea (CC). Polyploidy and genome-wide rearrangement during the evolution process have resulted in genes that are present as multiple homologs in the B. napus genome. In this study, three B. napus homologous genes encoding endoplasmic reticulum-bound sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) were identified and characterized. Although the three GPAT4 homologs share a high sequence similarity, they exhibit different expression patterns and altered epigenetic features. Heterologous expression in yeast further revealed that the three BnGPAT4 homologs encoded functional GPAT enzymes but with different levels of polypeptide accumulation. Complementation of the Arabidopsis (Arabidopsis thaliana) gpat4 gpat8 double mutant line with individual BnGPAT4 homologs suggested their physiological roles in cuticle formation. Analysis of gpat4 RNA interference lines of B. napus revealed that the BnGPAT4 deficiency resulted in reduced cutin content and altered stomatal structures in leaves. Our results revealed that the BnGPAT4 homologs have evolved into functionally divergent forms and play important roles in cutin synthesis and stomatal development.
Collapse
Affiliation(s)
| | | | | | | | | | - Randall J. Weselake
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6H 2P5 (X.C., M.T., C.L.S., R.J.W.); Plant Biotechnology, Alberta Innovates-Technology Futures, Vegreville, Alberta, Canada T9C 1T4 (A.E.-M., S.S.)
| |
Collapse
|
36
|
Curvers K, Seifi H, Mouille G, de Rycke R, Asselbergh B, Van Hecke A, Vanderschaeghe D, Höfte H, Callewaert N, Van Breusegem F, Höfte M. Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. PLANT PHYSIOLOGY 2010; 154:847-60. [PMID: 20709830 PMCID: PMC2949027 DOI: 10.1104/pp.110.158972] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 08/08/2010] [Indexed: 05/19/2023]
Abstract
A mutant of tomato (Solanum lycopersicum) with reduced abscisic acid (ABA) production (sitiens) exhibits increased resistance to the necrotrophic fungus Botrytis cinerea. This resistance is correlated with a rapid and strong hydrogen peroxide-driven cell wall fortification response in epidermis cells that is absent in tomato with normal ABA production. Moreover, basal expression of defense genes is higher in the mutant compared with the wild-type tomato. Given the importance of this fast response in sitiens resistance, we investigated cell wall and cuticle properties of the mutant at the chemical, histological, and ultrastructural levels. We demonstrate that ABA deficiency in the mutant leads to increased cuticle permeability, which is positively correlated with disease resistance. Furthermore, perturbation of ABA levels affects pectin composition. sitiens plants have a relatively higher degree of pectin methylesterification and release different oligosaccharides upon inoculation with B. cinerea. These results show that endogenous plant ABA levels affect the composition of the tomato cuticle and cell wall and demonstrate the importance of cuticle and cell wall chemistry in shaping the outcome of this plant-fungus interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Monica Höfte
- Laboratory of Phytopathology (K.C., H.S., B.A., M.H.) and Department of Plant Biotechnology and Genetics (K.C., R.d.R., F.V.B.), Ghent University, B–9000 Ghent, Belgium; Department of Plant Systems Biology (K.C., R.d.R., F.V.B.) and Department for Molecular Biomedical Research (A.V.H., D.V., N.C.), VIB, B–9052 Ghent, Belgium; Plate-forme de Chimie du Végétal, Institut Jean-Pierre Bourgin, UMR1318, Institut National de la Recherche Agronomique, 78026 Versailles cedex, France (G.M., H.H.); Department of Molecular Genetics, Flanders Institute for Biotechnology, B–2660 Wilrijk, Belgium (B.A.)
| |
Collapse
|
37
|
Steets JA, Takebayashi N, Byrnes JM, Wolf DE. Heterogeneous selection on trichome production in Alaskan Arabidopsis kamchatica (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2010; 97:1098-108. [PMID: 21616862 DOI: 10.3732/ajb.0900362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PREMISE OF THE STUDY Environmental heterogeneity is thought to be one of the primary factors in the evolutionary maintenance of morphological variation. Here, we explore the role of environmental heterogeneity in the maintenance of variation in leaf hair (trichome) production in Arabidopsis kamchatica. • METHODS We investigate abiotic correlates of trichome production in A. kamchatica via surveys of both herbarium specimens and wild populations. In addition, we examine patterns of phenotypic selection on trichome production among populations that differ in environmental characteristics. • KEY RESULTS Trichome-producing herbarium specimens were more likely to occur at lower latitudes and in locations with lower mean annual precipitation and less annual variation in temperature than glabrous specimens. In surveys of wild populations, frequencies of trichome-producing plants were higher in drier habitats than in wetter environments. Using phenotypic selection analysis, we found divergent selection through female fitness (fruit production) on trichome number in populations that differ in environmental characteristics; there was selection for reduced trichome number in one population and selection for increased trichome number in another population. In a population containing both glabrous and trichome-producing plants, glabrous plants produced significantly more fruits than trichome-producing individuals, which indicates selection against the trichome morph. • CONCLUSIONS Our results demonstrate that there is heterogeneity in selection among populations, which could be responsible for the maintenance of trichome variation in Alaskan populations of A. kamchatica.
Collapse
Affiliation(s)
- Janette A Steets
- Department of Botany, 104 LSE, Oklahoma State University, Stillwater, Oklahoma 74078 USA
| | | | | | | |
Collapse
|
38
|
Xia Y, Gao QM, Yu K, Lapchyk L, Navarre D, Hildebrand D, Kachroo A, Kachroo P. An Intact Cuticle in Distal Tissues Is Essential for the Induction of Systemic Acquired Resistance in Plants. Cell Host Microbe 2009; 5:151-65. [DOI: 10.1016/j.chom.2009.01.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 10/14/2008] [Accepted: 01/14/2009] [Indexed: 11/26/2022]
|
39
|
Warpeha KM, Gibbons J, Carol A, Slusser J, Tree R, Durham W, Kaufman LS. Adequate phenylalanine synthesis mediated by G protein is critical for protection from UV radiation damage in young etiolated Arabidopsis thaliana seedlings. PLANT, CELL & ENVIRONMENT 2008; 31:1756-1770. [PMID: 18761702 DOI: 10.1111/j.1365-3040.2008.01878.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Etiolated Arabidopsis thaliana seedlings, lacking a functional prephenate dehydratase1 gene (PD1), also lack the ability to synthesize phenylalanine (Phe) and, as a consequence, phenylpropanoid pigments. We find that low doses of ultraviolet (UV)-C (254 nm) are lethal and low doses of UV-B cause severe damage to etiolated pd1 mutants, but not to wild-type (wt) seedlings. Furthermore, exposure to UV-C is lethal to etiolated gcr1 (encoding a putative G protein-coupled receptor in Arabidopsis) mutants and gpa1 (encoding the sole G protein alpha subunit in Arabidopsis) mutants. Addition of Phe to growth media restores wt levels of UV resistance to pd1 mutants. The data indicate that the Arabidopsis G protein-signalling pathway is critical to providing protection from UV, and does so via the activation of PD1, resulting in the synthesis of Phe. Cotyledons of etiolated pd1 mutants have proplastids (compared with etioplasts in wt), less cuticular wax and fewer long-chain fatty acids. Phe-derived pigments do not collect in the epidermal cells of pd1 mutants when seedlings are treated with UV, particularly at the cotyledon tip. Addition of Phe to the growth media restores a wt phenotype to pd1 mutants.
Collapse
Affiliation(s)
- Katherine M Warpeha
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Karbulková J, Schreiber L, Macek P, Santrucek J. Differences between water permeability of astomatous and stomatous cuticular membranes: effects of air humidity in two species of contrasting drought-resistance strategy. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3987-95. [PMID: 18836141 PMCID: PMC2576641 DOI: 10.1093/jxb/ern238] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/26/2008] [Accepted: 09/01/2008] [Indexed: 05/07/2023]
Abstract
Cuticular water permeabilities of adaxial and abaxial leaf surfaces and their dependence on relative air humidity (RH) applied in long-term and short-term regimes have been analysed for Hedera helix, native in a temperate climate, and Zamioculcas zamiifolia, native in subtropical regions. The water permeability of cuticular membranes (CM) isolated from the adaxial (astomatous) and abaxial (stomatous) leaf sides was measured using a method which allowed the separation of water diffusion through the remnants of the original stomatal pores from water diffusion through the solid cuticle. The long-term effects of low (20-40%) or high (60-80%) RH applied during plant growth and leaf ontogeny ('growth RH') and the short-term effects of applying 2% or 100% RH while measuring permeability ('measurement RH') were investigated. With both species, water permeability of the solid stomatous CM was significantly higher than the permeability of the astomatous CM. Adaxial cuticles of plants grown in humid air were more permeable to water than those from dry air. The adaxial CM of the drought-tolerant H. helix was more permeable and more sensitive to growth RH than the adaxial CM of Z. zamiifolia, a species avoiding water stress. However, permeability of the solid abaxial CM was similar in both species and independent of growth RH. The lack of a humidity response in the abaxial CM is attributed to a higher degree of cuticular hydration resulting from stomatal transpiration. The ecophysiological significance of higher permeability of the solid stomatous CM compared to the astomatous CM is discussed.
Collapse
Affiliation(s)
- Jana Karbulková
- Faculty of Science, University of South Bohemia, Branisovská 31, 37005, Ceské Budejovice, Czech Republic.
| | | | | | | |
Collapse
|
41
|
Voschula IV, Zhumar AY, Tsaryuk OV. Elliptical polarization of laser light reflected from plant leaves and characteristics of the leaf cuticle. Biophysics (Nagoya-shi) 2007. [DOI: 10.1134/s0006350907040112] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Paoletti E, Seufert G, Della Rocca G, Thomsen H. Photosynthetic responses to elevated CO(2) and O(3) in Quercus ilex leaves at a natural CO(2) spring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 147:516-24. [PMID: 17045714 DOI: 10.1016/j.envpol.2006.08.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 08/20/2006] [Indexed: 05/12/2023]
Abstract
Photosynthetic stimulation and stomatal conductance (Gs) depression in Quercus ilex leaves at a CO(2) spring suggested no down-regulation. The insensitivity of Gs to a CO(2) increase (from ambient 1500 to 2000 micromol mol(-1)) suggested stomatal acclimation. Both responses are likely adaptations to the special environment of CO(2) springs. At the CO(2)-enriched site, not at the control site, photosynthesis decreased 9% in leaves exposed to 2x ambient O(3) concentrations in branch enclosures, compared to controls in charcoal-filtered air. The stomatal density reduction at high CO(2) was one-third lower than the concomitant Gs reduction, so that the O(3) uptake per single stoma was lower than at ambient CO(2). No significant variation in monoterpene emission was measured. Higher trichome and mesophyll density were recorded at the CO(2)-enriched site, accounting for lower O(3) sensitivity. A long-term exposure to H(2)S, reflected by higher foliar S-content, and CO(2) might depress the antioxidant capacity of leaves close to the vent and increase their O(3) sensitivity.
Collapse
Affiliation(s)
- E Paoletti
- Istituto Protezione Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, Florence, Italy.
| | | | | | | |
Collapse
|
43
|
Bargel H, Koch K, Cerman Z, Neinhuis C. Structure-function relationships of the plant cuticle and cuticular waxes - a smart material? FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:893-910. [PMID: 32689300 DOI: 10.1071/fp06139] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 08/18/2006] [Indexed: 05/21/2023]
Abstract
The cuticle is the main interface between plants and their environment. It covers the epidermis of all aerial primary parts of plant organs as a continuous extracellular matrix. This hydrophobic natural composite consists mainly of the biopolymer, cutin, and cuticular lipids collectively called waxes, with a high degree of variability in composition and structure. The cuticle and cuticular waxes exhibit a multitude of functions that enable plant life in many different terrestrial habitats and play important roles in interfacial interactions. This review highlights structure-function relationships that are the subjects of current research activities. The surface waxes often form complex crystalline microstructures that originate from self-assembly processes. The concepts and results of the analysis of model structures and the influence of template effects are critically discussed. Recent investigations of surface waxes by electron and X-ray diffraction revealed that these could be assigned to three crystal symmetry classes, while the background layer is not amorphous, but has an orthorhombic order. In addition, advantages of the characterisation of formation of model wax types on a molecular scale are presented. Epicuticular wax crystals may cause extreme water repellency and, in addition, a striking self-cleaning property. The principles of wetting and up-to-date concepts of the transfer of plant surface properties to biomimetic technical applications are reviewed. Finally, biomechanical studies have demonstrated that the cuticle is a mechanically important structure, whose properties are dynamically modified by the plant in response to internal and external stimuli. Thus, the cuticle combines many aspects attributed to smart materials.
Collapse
Affiliation(s)
- Hendrik Bargel
- Institut für Botanik, Technische Universität Dresen, Zellescher Weg 22, 01062 Dresden, Germany
| | - Kerstin Koch
- Nees-Institut für Biodiversität der Pflanzen, Universität Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany
| | - Zdenek Cerman
- Nees-Institut für Biodiversität der Pflanzen, Universität Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany
| | - Christoph Neinhuis
- Institut für Botanik, Technische Universität Dresen, Zellescher Weg 22, 01062 Dresden, Germany
| |
Collapse
|
44
|
Nawrath C. Unraveling the complex network of cuticular structure and function. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:281-7. [PMID: 16580871 DOI: 10.1016/j.pbi.2006.03.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 03/20/2006] [Indexed: 05/08/2023]
Abstract
A hydrophobic cuticle is deposited at the outermost extracellular matrix of the epidermis in primary tissues of terrestrial plants. Besides forming a protective shield against the environment, the cuticle is potentially involved in several developmental processes during plant growth. A high degree of variation in cuticle composition and structure exists between different plant species and tissues. Lots of progress has been made recently in understanding the different steps of biosynthesis, transport, and deposition of cuticular components. However, the molecular mechanisms that underlie cuticular function remain largely elusive.
Collapse
Affiliation(s)
- Christiane Nawrath
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, UNIL-Sorge, CH-1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Richardson A, Franke R, Kerstiens G, Jarvis M, Schreiber L, Fricke W. Cuticular wax deposition in growing barley (Hordeum vulgare) leaves commences in relation to the point of emergence of epidermal cells from the sheaths of older leaves. PLANTA 2005; 222:472-83. [PMID: 15940461 DOI: 10.1007/s00425-005-1552-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 03/15/2005] [Indexed: 05/02/2023]
Abstract
In grasses, leaf cells divide and expand within the sheaths of older leaves, where the micro-environment differs from the open atmosphere. By the time epidermal cells are displaced into the atmosphere, they must have a functional cuticle to minimize uncontrolled water loss. In the present study, gas chromatography and scanning electron microscopy were used to follow cuticular wax deposition along the growing leaf three of barley (Hordeum vulgare L.). 1-Hexacosanol (C(26) alcohol) comprised more than 75% of extractable cuticular wax and was used as a marker for wax deposition. There was no detectable wax along the first 20 mm from the point of leaf insertion. Deposition started within the distal portion of the elongation zone (23-45 mm) and continued beyond the point of leaf emergence from the sheath of leaf two. The region where wax deposition commenced shifted towards more proximal (basal) positions when the point of leaf emergence was lowered by stripping back part of the sheath. When relative humidity in the shoot environment was elevated from 70% (standard growth conditions) to 92-96% for up to 4 days prior to analysis, wax deposition did not change significantly. The results show that cuticular waxes are deposited along the growing grass leaf independent of cell age or developmental stage. Instead, the reference point for wax deposition appears to be the point of emergence of cells into the atmosphere. The possibility of changes in relative humidity between enclosed and emerged leaf regions triggering wax deposition is discussed.
Collapse
Affiliation(s)
- Andrew Richardson
- Division of Biological Sciences, University of Paisley, Paisley, PA1 2BE, UK.
| | | | | | | | | | | |
Collapse
|
46
|
Chen X, Goodwin SM, Liu X, Chen X, Bressan RA, Jenks MA. Mutation of the RESURRECTION1 locus of Arabidopsis reveals an association of cuticular wax with embryo development. PLANT PHYSIOLOGY 2005; 139:909-19. [PMID: 16183838 PMCID: PMC1256005 DOI: 10.1104/pp.105.066753] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/11/2005] [Accepted: 08/14/2005] [Indexed: 05/04/2023]
Abstract
Insertional mutagenesis of Arabidopsis (Arabidopsis thaliana) was used to identify a novel recessive mutant, designated resurrection1 (rst1), which possesses a dramatic alteration in its cuticular waxes and produces shrunken nonviable seeds due to arrested embryo development. The RST1 gene sequence associated with these phenotypes was verified by three independent, allelic, insertion mutants, designated rst1-1, rst1-2, and rst1-3, with inserts in the first exon, 12th intron, and fourth exon, respectively. These three rst1 allelic mutants have nearly identical alterations in their wax profiles and embryo development. Compared to wild type, the wax on rst1 inflorescence stems is reduced nearly 60% in total amount, has a proportional reduction in aldehydes and aldehyde metabolites, and has a proportional increase in acids, primary alcohols, and esters. Compared to wild type, the C(29) alkanes on rst1 are nearly 6-fold lower, and the C(30) primary alcohols are 4-fold higher. These results indicate that rst1 causes shunting of most wax precursors away from alkane synthesis and into the primary-alcohol-producing branch of the pathway. In contrast to stems, the wax on rst1 mutant leaves increased roughly 43% in amount relative to the wild type, with the major increase occurring in the C(31) and C(33) alkanes. Unique among known wax mutants, approximately 70% of rst1 seeds are shrunken and nonviable, with these being randomly distributed within both inflorescence and silique. Viable seeds of rst1 are slightly larger than those of wild type, and although the viable rst1 seeds contain more total triacylglycerol-derived fatty acids, the proportions of these fatty acids are not significantly different from wild type. Shrunken seeds contain 34% of the fatty acids of wild-type seeds, with proportionally more palmitic, stearic, and oleic acids, and less of the longer and more desaturated homologs. Histological analysis of aborted rst1 seeds revealed that embryo development terminates at the approximate heart-shaped stage, whereas viable rst1 and wild-type embryos develop similarly. The RST1 gene encodes a predicted 1,841-amino acid novel protein with a molecular mass of 203.6 kD and a theoretical pI of 6.21. The RST1 transcript was found in all tissues examined including leaves, flowers, roots, stems, and siliques, but accumulation levels were not correlated with the degree to which different organs appeared affected by the mutation. The new RST1 gene reveals a novel genetic connection between lipid synthesis and embryo development; however, RST1's exact role is still quite unknown. The degree to which RST1 is associated with lipid signaling in development is an important focus of ongoing studies.
Collapse
Affiliation(s)
- Xinbo Chen
- Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha, China
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Bidart-Bouzat MG, Mithen R, Berenbaum MR. Elevated CO(2) influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia 2005; 145:415-24. [PMID: 16010536 DOI: 10.1007/s00442-005-0158-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 05/03/2005] [Indexed: 11/29/2022]
Abstract
We experimentally demonstrate that elevated CO(2) can modify herbivory-induced plant chemical responses in terms of both total and individual glucosinolate concentrations. Overall, herbivory by larvae of diamondback moths (Plutella xylostella) resulted in no change in glucosinolate levels of the annual plant Arabidopsis thaliana under ambient CO(2) conditions. However, herbivory induced a significant 28-62% increase in glucosinolate contents at elevated CO(2). These inducible chemical responses were both genotype-specific and dependent on the individual glucosinolate considered. Elevated CO(2) can also affect structural defenses such as trichomes and insect-glucosinolate interactions. Insect performance was significantly influenced by specific glucosinolates, although only under CO(2) enrichment. This study can have implications for the evolution of inducible defenses and coevolutionary adaptations between plants and their associated herbivores in future changing environments.
Collapse
Affiliation(s)
- M Gabriela Bidart-Bouzat
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 1801, USA.
| | | | | |
Collapse
|
49
|
Chaerle L, Saibo N, Van Der Straeten D. Tuning the pores: towards engineering plants for improved water use efficiency. Trends Biotechnol 2005; 23:308-15. [PMID: 15922083 DOI: 10.1016/j.tibtech.2005.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Revised: 03/15/2005] [Accepted: 04/05/2005] [Indexed: 11/19/2022]
Abstract
The management of limited fresh water resources is a major challenge facing society in the 21st century. The agricultural sector accounts for more than two-thirds of human water withdrawal and is therefore a prime area to implement a more rational water use. Environmental stresses are a major factor limiting stable food production. Given the growing shortage of available water for crops this will be an emerging factor in international agricultural economy. The most environmentally friendly and durable solution to the problem of water shortage is to complement more efficient irrigation approaches with crops with optimal water use efficiency, achieved either through genetic engineering or conventional breeding, combined with high yields.
Collapse
Affiliation(s)
- L Chaerle
- Unit Plant Hormone Signaling and Bio-imaging, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
50
|
Tricker PJ, Trewin H, Kull O, Clarkson GJJ, Eensalu E, Tallis MJ, Colella A, Doncaster CP, Sabatti M, Taylor G. Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Oecologia 2005; 143:652-60. [PMID: 15909132 DOI: 10.1007/s00442-005-0025-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
Using a free-air CO2 enrichment (FACE) experiment, poplar trees (Populus x euramericana clone I214) were exposed to either ambient or elevated [CO2] from planting, for a 5-year period during canopy development, closure, coppice and re-growth. In each year, measurements were taken of stomatal density (SD, number mm(-2)) and stomatal index (SI, the proportion of epidermal cells forming stomata). In year 5, measurements were also taken of leaf stomatal conductance (gs, micromol m(-2) s(-1)), photosynthetic CO2 fixation (A, mmol m(-2) s(-1)), instantaneous water-use efficiency (A/E) and the ratio of intercellular to atmospheric CO2 (Ci:Ca). Elevated [CO2] caused reductions in SI in the first year, and in SD in the first 2 years, when the canopy was largely open. In following years, when the canopy had closed, elevated [CO2] had no detectable effects on stomatal numbers or index. In contrast, even after 5 years of exposure to elevated [CO2], gs was reduced, A/E was stimulated, and Ci:Ca was reduced relative to ambient [CO2]. These outcomes from the long-term realistic field conditions of this forest FACE experiment suggest that stomatal numbers (SD and SI) had no role in determining the improved instantaneous leaf-level efficiency of water use under elevated [CO2]. We propose that altered cuticular development during canopy closure may partially explain the changing response of stomata to elevated [CO2], although the mechanism for this remains obscure.
Collapse
Affiliation(s)
- Penny J Tricker
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, SO16 7PX, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|