1
|
Li H, Wu M, Ma Z, Wang X, Fan J, Hu K, Wei Y, Yao C, Liu J, Kang S, Kang X, Yuan J. Porcine plasma protein cold-set hydrogel crosslinked by genipin and the immunomodulatory, proliferation promoting and scar-remodeling in wound healing. BIOMATERIALS ADVANCES 2025; 170:214216. [PMID: 39923602 DOI: 10.1016/j.bioadv.2025.214216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Addressing the critical need for biocompatible and multifunctional wound dressings for chronic and non-healing wounds, cold-set hydrogel using natural biomacromolecules are potential candidates. This study developed a novel cold-set hydrogel of porcine plasma protein (PPP) through genipin (GP) as crosslinker and glucono delta-lactone (GDL) as acidifier. GP promoted hardness, springiness, water holding capacity (WHC) and modulus in a dose-dependent manner in the presence of GDL, and significantly enhanced microstructural density, integrity and anti-degradation, critical as wound dressing, achieving the optimal performance at 0.15 % GP and 0.2 % GDL. Subsequently, biocompatibility assessments revealed that the optimum PPP gel was low cytotoxicity and could support cell migration and proliferation, reduce apoptosis with dose-effect relationship of the filler PPP. Meanwhile, in vivo skin wound healing model indicated the efficacy in accelerating wound healing, reducing inflammation, and promoting tissue remodeling without excessive scar formation. These effects are attributed to the ability of PPP in the hydrogel to modulate local inflammatory responses, enhance angiogenesis, and balance extracellular matrix remodeling processes. In conclusion, this pioneering work establishes PPP cold-set hydrogels as promising candidates for advanced wound care solutions, combining the benefits of natural protein-based biomaterials with innovative crosslinking strategies to meet urgent clinical needs in regenerative medicine.
Collapse
Affiliation(s)
- Hanluo Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Meiling Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Zhuanzhuan Ma
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xue Wang
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Shihezi University, Xinjiang 832008, China
| | - Junwei Fan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Kanghong Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yanhong Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Chenguang Yao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Jinbiao Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Sini Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xu Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| | - Jianglan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
2
|
Zhou T, Liu Z, Xu L, Mao X, Jin H, Xiong Y, Chen G, Lv Y, Cen L, Wang C, Zhang Y, Ye K, Shen Q, Zhou J, Lv B, Dai J, Yu C, Shen Z. Konjac glucomannan/sodium alginate/ε-poly-l-lysine hydrogel promotes esophageal and colonic wound healing. Int J Biol Macromol 2025; 306:141146. [PMID: 39986528 DOI: 10.1016/j.ijbiomac.2025.141146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Endoscopic submucosal dissection (ESD) is widely used to treat gastrointestinal mucosal and submucosal lesions. However, it may cause bleeding, perforation, and stricture. Although these complications can be avoided by introducing materials such as polyglycolic acid and carboxymethyl cellulose sheets, such approaches are expensive and time-consuming. Herein, we report a hydrogel prepared by combining a colloidal solution composed of konjac glucomannan (KGM) and sodium alginate (SA) and a fixative solution containing ε-poly-l-lysine (ε-PLL) and calcium chloride. The two solutions were mixed on the wound surface to form the KGM/SA/ε-PLL hydrogel through hydrogen bonds, coordination bonds, and electrostatic attraction. The effectiveness and convenience of applying the KGM/SA/ε-PLL hydrogel to promote wound healing in the esophagus and colon were assessed in vitro and in vivo. We found that the hydrogel stimulated epithelial proliferation, reduced inflammation, promoted recapillarization, and inhibited fibrosis in the esophagus and colon. Therefore, the KGM/SA/ε-PLL hydrogel is an effective and convenient agent that can promote post-ESD wound healing and is recommended for ulcer bed protection in daily clinical practice.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Zhaoxue Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Lei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Taizhou 318000, Zhejiang, China
| | - Haifeng Jin
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Yangyang Xiong
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Guangwu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Yong Lv
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350000, Fujian, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Chunren Wang
- National Institutes for Food and Drug Control, Beijing 100101, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China
| | - Kexin Ye
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Qien Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jiaming Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Bin Lv
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Jianying Dai
- Department of Research and Development, Hangzhou Yingjian Bioscience and Technology Co., Ltd, Hangzhou 310000, Zhejiang, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China.
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
3
|
Lv Y, Chen C, Han M, Tian C, Song F, Feng S, Xu M, Zhao Z, Zhou H, Su W, Zhong J. CXCL2: a key player in the tumor microenvironment and inflammatory diseases. Cancer Cell Int 2025; 25:133. [PMID: 40197328 PMCID: PMC11978139 DOI: 10.1186/s12935-025-03765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
CXCL2 (C-X-C Motif Chemokine Ligand 2), a constituent of the C-X-C chemokine subfamily, serves as a powerful chemotactic factor for neutrophils, facilitating leukocyte recruitment and movement while initiating an inflammatory response. Recent investigations have demonstrated the pivotal involvement of CXCL2 in carcinogenesis. Within the tumor microenvironment, CXCL2 modulates cellular activity primarily via its interaction with the CXCR2 receptor. The activation of signaling pathways, including ERK/MAPK, NF-κB/MAPK, PI3K/AKT, and JAK/STAT3, highlights CXCL2's inclination to promote tumorigenesis. Furthermore, the role of CXCL2 encompasses inflammatory conditions like lung inflammation, atherosclerosis, and obesity. This article examines the structural characteristics, biological roles, and molecular foundation of CXCL2 in carcinogenesis and inflammatory disorders.
Collapse
Affiliation(s)
- Yuanhao Lv
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Caizheng Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Miaomiao Han
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Chenfei Tian
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Fuyang Song
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Sijia Feng
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Miaoming Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Ziyin Zhao
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Hongyan Zhou
- Xinxiang Key Laboratory of Precision Diagnosis and Treatment for Colorectal Cancer, Xinxiang First People's Hospital, Xinxiang, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, Xinxiang Medical University, Xinxiang, China.
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, China.
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Xinxiang Key Laboratory of Precision Diagnosis and Treatment for Colorectal Cancer, Xinxiang First People's Hospital, Xinxiang, China.
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, Xinxiang Medical University, Xinxiang, China.
- Henan Province Engineering Technology Research Center of Tumor diagnostic biomarkers and RNA interference drugs, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
4
|
Gul F, Kocak O, Ozturk A, Ali Babademez M. Otomycosis risk after non-suppurative middle ear surgery. Braz J Otorhinolaryngol 2025; 91:101552. [PMID: 39754782 PMCID: PMC11753968 DOI: 10.1016/j.bjorl.2024.101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
OBJECTIVES The aim of this study was to investigate the risk factors that may cause postoperative otomycosis in patients undergoing Chronic Nonsuppurative Otitis Media (CNSOM) surgery. METHODS In this retrospective study, 409 out of 523 patients met the inclusion criteria. 44 patients diagnosed with otomycosis CNSOM were analyzed. Perioperative factors were analyzed to determine the potential risks of otomycosis. The primary factors identified as contributing to otomycosis were firmly adherent cerumen, tympano-meatal flap positioning, and Diabetes Mellitus (DM). The study analyzed the patients' follow-up six months after the surgical procedure. Otomycosis occurring within 30-days of surgery was classified as "early otomycosis", while those occurring later were classified as "late otomycosis". RESULTS Graft success at 6-months showed no significant difference between otomycosis and non-otomycosis groups. We found that the presence of DM, tympano-meatal flap positioning, and firmly adhered cerumen removal were significantly associated with the development of otomycosis. The logistic regression model was significant and explained 9.2% of the variation. Overall, individuals with the presence of advancement flap, DM, and cerumen removal status were respectively 2.0, 2.8, and 2.1 times more likely to have otomycosis. DM was the only risk factor identified in all three patients who developed late otomycosis. CONCLUSION This study found that compromised epithelial integrity in the external auditory canal, non-epithelial areas, and reduced blood circulation were independent risk factors for postoperative otomycosis. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Fatih Gul
- Ankara Yıldırım Beyazıt University Faculty of Medicine, Department of Otorhinolaryngology, Ankara, Turkey.
| | - Ozgenur Kocak
- Caycuma State Hospital, Department of Otorhinolaryngology, Zonguldak, Turkey
| | - Ali Ozturk
- Ankara Yıldırım Beyazıt University Faculty of Medicine, Department of Otorhinolaryngology, Ankara, Turkey
| | - Mehmet Ali Babademez
- Ankara Yıldırım Beyazıt University Faculty of Medicine, Department of Otorhinolaryngology, Ankara, Turkey
| |
Collapse
|
5
|
Da Silva J, Figueiredo A, Tseng YH, Carvalho E, Leal EC. Bone Morphogenetic Protein 7 Improves Wound Healing in Diabetes by Decreasing Inflammation and Promoting M2 Macrophage Polarization. Int J Mol Sci 2025; 26:2036. [PMID: 40076659 PMCID: PMC11900347 DOI: 10.3390/ijms26052036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetic foot ulcers (DFUs) are a devastating complication of diabetes, presenting limited treatment success rates due to their complex pathophysiology. Bone morphogenetic protein 7 (BMP7) confers tissue protective and regenerative functions, but its potential role in diabetic wound healing is unknown. The aim of this study was to investigate the effects of topical BMP7 treatment in wound healing using a streptozotocin-induced diabetic mouse model. The expression of markers of wound healing progression were detected using RT-PCR or immunohistochemistry. Overall, BMP7 improved wound closure, as well as maturation of granulation tissue and collagen deposition, as evidenced by hematoxylin and eosin and Masson's trichrome histological analysis. The expression of inflammatory markers (IL-6, TNF-α) and matrix metalloproteinase-9 were decreased in BMP7-treated wounds, together with the number of pro-inflammatory M1 macrophages and T lymphocytes. The number of anti-inflammatory M2 macrophages was increased in BMP7-treated wounds. Moreover, BMP7 decreased oxidative stress and increased Ki67+ cells and CD31+ cells, indicating induced proliferation and angiogenesis in the wound bed compared to the control wounds. Finally, BMP7 activated the ERK pathway and suppressed the p38 pathway in diabetic wounds. Together, our data suggest that BMP7 enhanced skin wound healing in diabetes by decreasing local inflammation and oxidative stress, which promoted a regenerative environment for collagen deposition, wound maturation, cell proliferation, and angiogenesis. These findings underline BMP7 as a potential therapeutic agent for the treatment of skin wounds in diabetes.
Collapse
Affiliation(s)
- Jessica Da Silva
- Doctoral Program in Experimental Biology and Biomedicine (PDBEB), Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.F.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3030-788 Coimbra, Portugal
| | - Ana Figueiredo
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.F.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3030-788 Coimbra, Portugal
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eugenia Carvalho
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.F.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3030-788 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ermelindo C. Leal
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.F.); (E.C.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3030-788 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
6
|
Luo J, Wu T, Zhang J, Liang Z, Shao W, Wang D, Li L, Zuo D, Zhou J. D-mannose promotes diabetic wound healing through inhibiting advanced glycation end products formation in keratinocytes. Mol Med 2025; 31:15. [PMID: 39827347 PMCID: PMC11748336 DOI: 10.1186/s10020-025-01070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Diabetic chronic foot ulcers pose a significant therapeutic challenge around the world, resulting in adverse effects and complications in patients. D-mannose is enriched in cirtus peel and exerts beneficial effects among various diseases, especially against inflammation-related disorders. METHODS Here, we examined the potential effect of D-mannose during wound healing process in streptozotocin (STZ)-induced diabetes mice in vivo and by culturing keratinocytes under high glucose condition in vitro. The skin lesion healing was recorded in photos and evaluated by histochemical staining. What's more, the advanced glycation end products (AGEs) concentration in blood and mice skin was quantified. Apoptotic cells were assessed by flow cytometry and Western blotting. Inflammatory cytokines and cellular differential gene expression levels were measured by real-time PCR. The expression of the AMPK/Nrf2/HO-1 signaling-related molecules was determined by Western blotting. RESULTS We first found that topical supplementation of D-mannose remarkably improved skin wound healing in diabetes mice. Furthermore, both in vivo and in vitro experiments demonstrated that D-mannose reduced the AGEs generation. Mechanistically, D-mannose inhibited AGEs, then upregulated AMPK/Nrf2/HO-1 signaling in the context of high glucose to maintain keratinocyte normal functions, which positively influenced macrophage and fibroblast to accelerate diabetic wound healing. Noteworthily, these protective effects of D-mannose were abolished by the pretreatment with inhibitors of AGEs or AMPK. CONCLUSION As far as we know, this is the first study exploring the protective role of D-mannose on diabetic wound healing via topical supplementation. We find that D-mannose protects keratinocytes from high glucose stimulation via inhibition of AGEs formation as well as orchestrates inflammatory microenvironment in diabetic wounded skin, suggesting its supplementation as a potential therapy to promote refractory wound healing in diabetic patients.
Collapse
Affiliation(s)
- Jialiang Luo
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianxing Wu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhicheng Liang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Weijie Shao
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Lei Li
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Daming Zuo
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
7
|
Santamaria MP, Mathias-Santamaria IF, Ferreira Bonafé AC, Gonzalez OA, Kirakodu S, Monteiro MDF, Casarin RCV, Shaddox LM, Miguel MMV. Microbiome and Inflammatory Biomarkers Associated With Palatal Wound Healing. J Periodontal Res 2025. [PMID: 39801488 DOI: 10.1111/jre.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
AIM The clinical outcomes of a variety of surgical procedures highly depend on tissue repair and show high variability among patients. There is a gap in the literature on how the host inflammatory response, the microbiome, and the interplay between them can influence oral mucosa healing. In this pilot study, we aimed to evaluate the microbiome and biomarkers profiles in patients who had desired versus undesired wound healing in the palatal mucosa. METHODS Seventeen patients underwent a free gingival graft (FGG) for socket preservation. Palatal wound closure (WC) and epithelization (EPT) were assessed clinically. Biofilm from the palatal wound was collected before the surgical procedure and 3, 7, 14, and 30 days postoperatively. The inflammatory exudate was sampled on Days 3 and 7. At 14 days posttreatment, patients were classified into two groups based on EPT rates: (1) undesired healing (UH) and (2) desired healing (DH). RESULTS No difference was observed in alfa diversity over time or between groups. In beta diversity, both UH and DH showed microbiome changes on Days 3-7 and 7, respectively, compared with the baseline (p = 0.01), returning to its initial condition 30 days later. There was a trend toward a different microbiome profile between groups on Day 7 (p = 0.08). Bacterium composition in DH showed a balance between healthy species and oral pathogens over time, whereas UH composition was characterized by microorganisms correlated with epithelium invasion/cytotoxicity; virulence factor upregulation; and oral diseases, such as periodontitis and aphthous stomatitis, until Day 30. UH showed an increase in IL-6, MCP-1, and MIP-1α over time, and DH showed a decrease in TIMP-1, IL-1β, and MIP-1α. On Days 3 and 7, MIP-1α and MMP-2 showed greater concentrations of DH in the intergroup assessment, and MCP-1 increased on Day 7 in UH. CONCLUSION Specific microbiome/inflammatory profiles are associated with DH and UH. TRIAL REGISTRATION NCT05171400.
Collapse
Affiliation(s)
- Mauro Pedrine Santamaria
- College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Division of Periodontics, Institute of Science and Technology, São José dos Campos, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Ana Carolina Ferreira Bonafé
- Division of Periodontics, Institute of Science and Technology, São José dos Campos, São Paulo State University (UNESP), São Paulo, Brazil
| | | | | | | | | | | | - Manuela Maria Viana Miguel
- College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Division of Periodontics, Institute of Science and Technology, São José dos Campos, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
8
|
Li Z, Zhang C, Wang L, Zhang Q, Dong Y, Sha X, Wang B, Zhu Z, Wang W, Wang Y, Zhou Y, Zhang Y. Chitooligosaccharides promote diabetic wound healing by mediating fibroblast proliferation and migration. Sci Rep 2025; 15:556. [PMID: 39747336 PMCID: PMC11697320 DOI: 10.1038/s41598-024-84398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Diabetic wounds are notoriously difficult to heal due to impaired cell repair mechanisms, reduced angiogenesis, and a heightened risk of infection. Fibroblasts play a vital role in wound healing by producing extracellular matrix (ECM) components and various growth factors, but their function is inhibited in diabetic wounds. Chitooligosaccharides (COS), intermediate products of chitosan degradation, have shown efficacy in promoting tissue repair, yet their role in diabetic wound healing remains underexplored. In a mouse model of diabetic wounds, COS treatment demonstrated substantial bioactivity in accelerating wound healing by enhancing fibroblast proliferation and migration. Additionally, COS increased collagen III deposition and angiogenesis at the wound sites. The COS also mitigated inflammatory responses by controlling leukocyte infiltration and bacterial infection. Mechanistically, COS regulated fibroblast activity via the PI3K/Akt signaling pathway, providing a novel bioactive material for chronic wound healing.
Collapse
Affiliation(s)
- Zihan Li
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, People's Republic of China
| | - Chuwei Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, People's Republic of China
| | - Lei Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Department of Burn and Plastic Surgery, Zhongda Hospital Affiliated Southeast University, Nanjing, People's Republic of China
| | - Qingrong Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military, Chongqing, People's Republic of China
| | - Yipeng Dong
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xinyu Sha
- Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Bolin Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, People's Republic of China
| | - Zhihan Zhu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
- Medical College, Nantong University, Nantong, People's Republic of China
| | | | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.
| | - Youlang Zhou
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China.
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
9
|
Chen LH, Ran XW. Relevance of macrophages in the wound healing process among individuals afflicted with diabetic foot ulcers. World J Diabetes 2024; 15:2384-2386. [PMID: 39676800 PMCID: PMC11580593 DOI: 10.4239/wjd.v15.i12.2384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024] Open
Abstract
In this paper, we provide a commentary on an article focusing on diabetic foot ulcer (DFU) as a dreadful complication of diabetes mellitus. The development of this condition is influenced by factors such as diabetic peripheral neuropathy, lower extremity artery disease, and infection. However, the underlying mechanism remains elusive. Macrophages play a critical role in wound healing processes, suggesting that therapies targeting these cells could potentially improve the management of DFU. A comprehensive understanding of developmental trends of macrophages within the field of DFU may facilitate research advancements and the development of novel treatment strategies.
Collapse
Affiliation(s)
- Li-Hong Chen
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xing-Wu Ran
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
10
|
Lohner H, Han X, Ren J, Liang S, Liang R, Wang H. HDAC6-Mediated FoxO1 Acetylation And Phosphorylation Control Periodontal Inflammatory Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627820. [PMID: 39713362 PMCID: PMC11661216 DOI: 10.1101/2024.12.10.627820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Post-translational modifications (PTMs) are critical regulators of protein function and cellular signaling. While histone deacetylation by histone deacetylases (HDACs) is well established, the role of specific HDACs in modulating non-histone protein PTMs, particularly in an infectious context, is poorly understood. Here, we reveal a pivotal role for HDAC6 in orchestrating periodontal inflammation through its dual regulatory effects on FoxO1 acetylation and phosphorylation. Using Porphyromonas gingivalis , a key periodontal pathogen, as a model pathogen, we observed that infection induces HDAC6 activation, driving inflammatory responses via modulating FoxO1 activity. HDAC6 depletion increased FoxO1 acetylation and phosphorylation, leading to its cytoplasmic sequestration and subsequent suppression of FoxO1- mediated pro-inflammatory cytokine production in macrophages. Mechanistically, HDAC6 deficiency not only directly enhances the acetylation of FoxO1 but also upregulates the expression of Rictor, a critical component of the mTORC2 complex, thereby promoting Akt phosphorylation and subsequently FoxO1 phosphorylation. This results in its cytoplasmic retention and attenuated inflammatory transcriptional activity. Functional studies demonstrated that HDAC6 depletion suppressed the production of key inflammatory mediators, including TNFα, IL-6, IL-12p40, and MIP-2, while promoting macrophage polarization toward anti-inflammatory M2 phenotypes. In vivo , using oral gavage infection and ligature-induced mouse periodontitis models, HDAC6 deficiency significantly reduced inflammatory cell infiltration in gingival tissues and protected against alveolar bone loss. These findings establish HDAC6 as a central regulator of periodontal inflammation, acting through the coordinated modulation of FoxO1 acetylation and phosphorylation. Beyond its role in oral pathology, HDAC6 may serve as a promising therapeutic target for managing inflammatory diseases linked to immune dysregulation.
Collapse
|
11
|
Mahmoud NN, Hamad S, Shraim S. Inflammation-Modulating Biomedical Interventions for Diabetic Wound Healing: An Overview of Preclinical and Clinical Studies. ACS OMEGA 2024; 9:44860-44875. [PMID: 39554458 PMCID: PMC11561615 DOI: 10.1021/acsomega.4c02251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 11/19/2024]
Abstract
A diabetic wound exemplifies the challenge of chronic, nonhealing wounds. Elevated blood sugar levels in diabetes profoundly disrupt macrophage function, impairing crucial activities such as phagocytosis, immune response, cell migration, and blood vessel formation, all essential for effective wound healing. Moreover, the persistent presence of pro-inflammatory cytokines and reactive oxygen species, coupled with a decrease in anti-inflammatory factors, exacerbates the delay in wound healing associated with diabetes. This review emphasizes the dysfunctional inflammatory responses underlying diabetic wounds and explores preclinical studies of inflammation-modulating bioactives and biomaterials that show promise in expediting diabetic wound healing. Additionally, this review provides an overview of selected clinical studies employing biomaterials and bioactive molecules, shedding light on the gap between extensive preclinical research and limited clinical studies in this field.
Collapse
Affiliation(s)
- Nouf N. Mahmoud
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Salma Hamad
- International
School of London Qatar, Doha 18511, Qatar
| | - Sawsan Shraim
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| |
Collapse
|
12
|
Yang H, Zhang X, Xue B. New insights into the role of cellular senescence and chronic wounds. Front Endocrinol (Lausanne) 2024; 15:1400462. [PMID: 39558972 PMCID: PMC11570929 DOI: 10.3389/fendo.2024.1400462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Chronic or non-healing wounds, such as diabetic foot ulcers (DFUs), venous leg ulcers (VLUs), pressure ulcers (PUs) and wounds in the elderly etc., impose significant biological, social, and financial burdens on patients and their families. Despite ongoing efforts, effective treatments for these wounds remain elusive, costing the United States over US$25 billion annually. The wound healing process is notably slower in the elderly, partly due to cellular senescence, which plays a complex role in wound repair. High glucose levels, reactive oxygen species, and persistent inflammation are key factors that induce cellular senescence, contributing to chronic wound failure. This suggests that cellular senescence may not only drive age-related phenotypes and pathology but also be a key mediator of the decreased capacity for trauma repair. This review analyzes four aspects: characteristics of cellular senescence; cytotoxic stressors and related signaling pathways; the relationship between cellular senescence and typical chronic non-healing wounds; and current and future treatment strategies. In theory, anti-aging therapy may influence the process of chronic wound healing. However, the underlying molecular mechanism is not well understood. This review summarizes the relationship between cellular senescence and chronic wound healing to contribute to a better understanding of the mechanisms of chronic wound healing.
Collapse
Affiliation(s)
- Huiqing Yang
- Institute of Evolution and Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
13
|
Zhong M, Guo J, Qahar M, Huang G, Wu J. Combination therapy of negative pressure wound therapy and antibiotic-loaded bone cement for accelerating diabetic foot ulcer healing: A prospective randomised controlled trial. Int Wound J 2024; 21:e70089. [PMID: 39379061 PMCID: PMC11461018 DOI: 10.1111/iwj.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
Negative pressure wound therapy (NPWT) and antibiotic-loaded bone cement (ALBC) are commonly used treatments for diabetic foot ulcers (DFUs). However, the combined efficacy of these two modalities remains unclear. This clinical study aimed to assess the effectiveness and underlying mechanisms of NPWT&ALBC in the management of DFUs. A total of 28 patients were recruited, 16 of whom served as controls and received only NPWT, whilst 12 received NPWT&ALBC. Both groups underwent wound repair surgery following the treatments. Blood samples were obtained to detect infections and inflammation. Wound tissue samples were also collected before and after the intervention to observe changes in inflammation, vascular structure and collagen through tissue staining. Compared with the NPWT group, the NPWT&ALBC group exhibited a superior wound bed, which was characterised by reduced inflammation infiltration and enhanced collagen expression. Immunostaining revealed a decrease in IL-6 levels and an increase in α-SMA, CD68, CD206 and collagen I expression. Western blot analysis demonstrated that NPWT&ALBC led to a decrease in inflammation levels and an increase in vascularization and collagen content. NPWT&ALBC therapy tends to form a wound bed with increased vascularization and M2 macrophage polarisation, which may contribute to DFUs wound healing.
Collapse
Affiliation(s)
- Meifang Zhong
- Department of Burn and Plastic SurgeryShenzhen Second People' s Hospital (The First Hospital Affiliated to Shenzhen University)ShenzhenChina
| | - Jiawei Guo
- Department of Hand and Foot SurgeryShenzhen Second People' s Hospital (The First Hospital Affiliated to Shenzhen University)ShenzhenChina
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical EngineeringShenzhen University Medical SchoolShenzhenChina
| | - Mulan Qahar
- Shenzhen Institute of Translational MedicineShenzhenChina
| | - Guangtao Huang
- Department of Burn and Plastic SurgeryShenzhen Second People' s Hospital (The First Hospital Affiliated to Shenzhen University)ShenzhenChina
| | - Jun Wu
- Department of Burn and Plastic SurgeryShenzhen Second People' s Hospital (The First Hospital Affiliated to Shenzhen University)ShenzhenChina
| |
Collapse
|
14
|
Sangalli L, Banday F, Sullivan A, Anjum K. Systemic Factors Affecting Prognosis and Outcomes in Periodontal Disease. Dent Clin North Am 2024; 68:571-602. [PMID: 39244245 DOI: 10.1016/j.cden.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
This review delves into the effects of autoimmune conditions like rheumatoid arthritis, inflammatory disorders such as irritable bowel syndrome, cardiovascular disease, diabetes, infectious ailments like human immunodeficiency virus, and their medications on periodontal therapy outcomes. It also explores the influence of hormones. Understanding these systemic factors is crucial for optimizing periodontal health and treatment efficacy. The review underscores the necessity of considering these variables in periodontal care. Other vital systemic factors are addressed elsewhere in this special edition.
Collapse
Affiliation(s)
- Linda Sangalli
- College of Dental Medicine, Midwestern University, 555 31st, Downers Grove, IL, USA
| | - Fatma Banday
- Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, USA
| | - Andrew Sullivan
- Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, USA
| | - Kainat Anjum
- Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, USA.
| |
Collapse
|
15
|
Chang TT, Li YZ, Mo HW, Chen C, Lin LY, Chang CC, Chen JW. Inhibition of CCL7 improves endothelial dysfunction and vasculopathy in mouse models of diabetes mellitus. Sci Transl Med 2024; 16:eadn1507. [PMID: 39231238 DOI: 10.1126/scitranslmed.adn1507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/05/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Diabetic vascular disease is a major complication of diabetes mellitus (DM). Chemokine C-C motif ligand 7 (CCL7) attracts macrophages and monocytes, amplifying inflammatory processes in the vasculature. We hypothesized a causal role for CCL7 in diabetic vasculopathy. CCL7 concentrations were higher in the plasma of patients with type 2 DM, as well as in supernatants from their endothelial progenitor cells (EPCs). High-glucose stimulation increased the secretion of CCL7 from human dermal microvascular endothelial cells (HDMECs) through the c-Fos and c-Jun signaling pathways. CCL7 inhibition using knockdown or neutralization antibody treatment reversed the high glucose-induced impaired tube formation and migration abilities of EPCs, human aortic endothelial cells, human coronary artery endothelial cells, and HDMECs. Administration of recombinant human CCL7 protein impaired tube formation and migration abilities by down-regulating the AKT-endothelial nitric oxide synthase and AKT/nuclear factor erythroid 2-related factor 2/heme oxygenase-1/vascular endothelial growth factor/stromal cell-derived factor-1 pathways and by up-regulating ERK/phosphorylated p65/interleukin-1β/interleukin-6/tumor necrosis factor-α pathways through CC chemokine receptor 3 in endothelial cells. Ccl7 knockout in streptozotocin-treated mice showed improved neovasculogenesis in ischemic limbs and accelerated wound repair, with increased circulating EPCs and capillary density. CCL7 antibody treatment in db/db mice and high-fat diet-induced hyperglycemia mice showed improved neovasculogenesis in ischemic limbs and wound areas, accompanied by up-regulation of angiogenic proteins and down-regulation of inflammatory proteins. Endothelial cell-specific Ccl7-knockout mice showed ameliorated diabetic vasculopathy in streptozotocin-induced DM. This study highlights the potential of CCL7 as a therapeutic target for diabetic vasculopathy.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - You-Zhen Li
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsiao-Wei Mo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Liang-Yu Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chia-Chi Chang
- Faculty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Faculty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
16
|
K S, J O, N M, I T, A F, AR E. Perioperative Blood Glucose Optimization in Orthopaedic Trauma Patients. OPERATIVE TECHNIQUES IN ORTHOPAEDICS 2024; 34:101128. [DOI: 10.1016/j.oto.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Wang J, Feng J, Ni Y, Wang Y, Zhang T, Cao Y, Zhou M, Zhao C. Histone modifications and their roles in macrophage-mediated inflammation: a new target for diabetic wound healing. Front Immunol 2024; 15:1450440. [PMID: 39229271 PMCID: PMC11368794 DOI: 10.3389/fimmu.2024.1450440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Impaired wound healing is one of the main clinical complications of type 2 diabetes (T2D) and a major cause of lower limb amputation. Diabetic wounds exhibit a sustained inflammatory state, and reducing inflammation is crucial to diabetic wounds management. Macrophages are key regulators in wound healing, and their dysfunction would cause exacerbated inflammation and poor healing in diabetic wounds. Gene regulation caused by histone modifications can affect macrophage phenotype and function during diabetic wound healing. Recent studies have revealed that targeting histone-modifying enzymes in a local, macrophage-specific manner can reduce inflammatory responses and improve diabetic wound healing. This article will review the significance of macrophage phenotype and function in wound healing, as well as illustrate how histone modifications affect macrophage polarization in diabetic wounds. Targeting macrophage phenotype with histone-modifying enzymes may provide novel therapeutic strategies for the treatment of diabetic wound healing.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Deng LE, Qiu Y, Zeng Y, Zou J, Kumar A, Pan Y, Nezamzadeh-Ejhieh A, Liu J, Liu X. Current and promising applications of MOF composites in the healing of diabetes wounds. RSC Med Chem 2024; 15:2601-2621. [PMID: 39149100 PMCID: PMC11324049 DOI: 10.1039/d4md00232f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/16/2024] [Indexed: 08/17/2024] Open
Abstract
Diabetes mellitus is an exponentially growing chronic metabolic disease identified by prolonged hyperglycemia that leads to a plethora of health problems. It is well established that the skin of diabetic patients is more prone to injury, and hence, wound healing is an utmost critical restorative process for injured skin and other tissues. Diabetes patients have problems with wound healing at all stages, which ultimately results in delays in the healing process. Therefore, it is vital to find new medications or techniques to hasten the healing of wounds. Metal-organic frameworks (MOFs), an assorted class of porous hybrid materials comprising metal ions coordinated to organic ligands, can display great potential in accelerating diabetic wound healing due to their good physicochemical properties. The release of metal ions during the degradation of MOFs can promote the differentiation of fibroblasts into myofibroblasts and subsequently angiogenesis. Secondly, similar to enzyme-like active substances, they can eliminate reactive oxygen species (ROS) overproduction (secondary to the bio-load of wound bacteria), which is conducive to accelerating diabetic wound healing. Subsequently, MOFs can support the slow release of drugs (molecular or gas therapeutics) in diabetic wounds and promote wound healing by regulating pathological signaling pathways in the wound microenvironment or inhibiting the expression of inflammatory factors. In addition, the combination of photodynamic and photothermal therapies using photo-stimulated porphyrin-based MOF nanosystems has brought up a new idea for treating complicated diabetic wound microenvironments. In this review, recent advances affecting diabetic wound healing, current means of rapid diabetic wound healing, and the limitations of traditional approaches are discussed. Further, the diabetic wound healing applications of MOFs have been discussed followed by the future challenges and directions of MOF materials in diabetic wound healing.
Collapse
Affiliation(s)
- Li-Er Deng
- Department of Nephrology, Dongguan Traditional Chinese Medicine Hospital, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine Dongguan Guangdong 523000 China
| | - Yuzhi Qiu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Medical University 523808 China
| | - Yana Zeng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Medical University 523808 China
| | - Jiafeng Zou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Medical University 523808 China
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow Lucknow 226007 India
| | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Medical University 523808 China
| | | | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Medical University 523808 China
| | - Xingyan Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University Dongguan 523808 China
| |
Collapse
|
19
|
Manole CG, Voiculescu VM, Soare C, Ceafalan LC, Gherghiceanu M, Hinescu ME. Skin Telocytes Could Fundament the Cellular Mechanisms of Wound Healing in Platelet-Rich Plasma Administration. Cells 2024; 13:1321. [PMID: 39195210 PMCID: PMC11353115 DOI: 10.3390/cells13161321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
For more than 40 years, autologous platelet concentrates have been used in clinical medicine. Since the first formula used, namely platelet-rich plasma (PRP), other platelet concentrates have been experimented with, including platelet-rich fibrin and concentrated growth factor. Platelet concentrates have three standard characteristics: they act as scaffolds, they serve as a source of growth factors and cytokines, and they contain live cells. PRP has become extensively used in regenerative medicine for the successful treatment of a variety of clinical (non-)dermatological conditions like alopecies, acne scars, skin burns, skin ulcers, muscle, cartilage, and bone repair, and as an adjuvant in post-surgery wound healing, with obvious benefits in terms of functionality and aesthetic recovery of affected tissues/organs. These indications were well documented, and a large amount of evidence has already been published supporting the efficacy of this method. The primordial principle behind minimally invasive PRP treatments is the usage of the patient's own platelets. The benefits of the autologous transplantation of thrombocytes are significant, representing a fast and economic method that requires only basic equipment and training, and it is biocompatible, thus being a low risk for the patient (infection and immunological reactions can be virtually disregarded). Usually, the structural benefits of applying PRP are attributed to fibroblasts only, as they are considered the most numerous cell population within the interstitium. However, this apparent simplistic explanation is still eluding those different types of interstitial cells (distinct from fibroblasts) that are residing within stromal tissue, e.g., telocytes (TCs). Moreover, dermal TCs have an already documented potential in angiogenesis (extra-cutaneous, but also within skin), and their implication in skin recovery in a few dermatological conditions was attested and described ultrastructurally and immunophenotypically. Interestingly, PRP biochemically consists of a series of growth factors, cytokines, and other molecules, to which TCs have also proven to have a positive expression. Thus, it is attractive to hypothesize and to document any tissular collaboration between cutaneous administered PRP and local dermal TCs in skin recovery/repair/regeneration. Therefore, TCs could be perceived as the missing link necessary to provide a solid explanation of the good results achieved by administering PRP in skin-repairing processes.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihail E. Hinescu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
20
|
Alam W. Wound Bed Preparation and Treatment Modalities. Clin Geriatr Med 2024; 40:375-384. [PMID: 38960531 DOI: 10.1016/j.cger.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Wound healing is a highly complex natural process, and its failure results in chronic wounds. The causes of delayed wound healing include patient-related and local wound factors. The main local impediments to delayed healing are the presence of nonviable tissue, excessive inflammation, infection, and moisture imbalance. For wounds that can be healed with adequate blood supply, a stepwise approach to identify and treat these barriers is termed wound bed preparation. Currently, a combination of patient-related and local factors, including wound debridement, specialty dressings, and advanced technologies, is available and successfully used to facilitate the healing process.
Collapse
Affiliation(s)
- Wahila Alam
- Department of Geriatrics, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
21
|
Choudhury S, Dhoke NR, Chawla S, Das A. Bioengineered MSC Cxcr2 transdifferentiated keratinocyte-like cell-derived organoid potentiates skin regeneration through ERK1/2 and STAT3 signaling in diabetic wound. Cell Mol Life Sci 2024; 81:172. [PMID: 38597972 PMCID: PMC11006766 DOI: 10.1007/s00018-023-05057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 04/11/2024]
Abstract
Skin regeneration is severely compromised in diabetic foot ulcers. Allogeneic mesenchymal stem cell (MSC) transplantation is limited due to the poor engraftment, mitogenic, and differentiation potential in the harsh wound microenvironment. Thus, to improve the efficacy of cell therapy, the chemokine receptor Cxcr2 was overexpressed in MSCs (MSCCxcr2). CXCL2/CXCR2 axis induction led to the enhanced proliferation of MSCs through the activation of STAT3 and ERK1/2 signaling. Transcriptional upregulation of FGFR2IIIb (KGF Receptor) promoter by the activated STAT3 and ERK1/2 suggested trans-differentiation of MSCs into keratinocytes. These stable MSCCxcr2 in 2D and 3D (spheroid) cell cultures efficiently transdifferentiated into keratinocyte-like cells (KLCs). An in vivo therapeutic potential of MSCCxcr2 transplantation and its keratinocyte-specific cell fate was observed by accelerated skin tissue regeneration in an excisional splinting wound healing murine model of streptozotocin-induced type 1 diabetes. Finally, 3D skin organoids generated using MSCCxcr2-derived KLCs upon grafting in a relatively avascular and non-healing wounds of type 2 diabetic db/db transgenic old mice resulted in a significant enhancement in the rate of wound closure by increased epithelialization (epidermal layer) and endothelialization (dermal layer). Our findings emphasize the therapeutic role of the CXCL2/CXCR2 axis in inducing trans-differentiation of the MSCs toward KLCs through the activation of ERK1/2 and STAT3 signaling and enhanced skin regeneration potential of 3D organoids grafting in chronic diabetic wounds.
Collapse
Affiliation(s)
- Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha R Dhoke
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
22
|
Lu YZ, Nayer B, Singh SK, Alshoubaki YK, Yuan E, Park AJ, Maruyama K, Akira S, Martino MM. CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature 2024; 628:604-611. [PMID: 38538784 PMCID: PMC11023938 DOI: 10.1038/s41586-024-07237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.
Collapse
Affiliation(s)
- Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Bhavana Nayer
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Shailendra Kumar Singh
- Laboratory of Host Defense, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Elle Yuan
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Anthony J Park
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Kenta Maruyama
- Laboratory of Host Defense, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
- Laboratory of Host Defense, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
23
|
Hu K, Liu L, Tang S, Zhang X, Chang H, Chen W, Fan T, Zhang L, Shen B, Zhang Q. MicroRNA-221-3p inhibits the inflammatory response of keratinocytes by regulating the DYRK1A/STAT3 signaling pathway to promote wound healing in diabetes. Commun Biol 2024; 7:300. [PMID: 38461326 PMCID: PMC10924844 DOI: 10.1038/s42003-024-05986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
Diabetic foot ulcer (DFU), a serious complication of diabetes, remains a clinical challenge. MicroRNAs affect inflammation and may have therapeutic value in DFU. Here, we find that an miR-221-3p mimic reduces the inflammatory response and increases skin wound healing rates in a mouse model of diabetes, whereas miR-221-3p knockout produced the opposite result. In human keratinocytes cells, miR-221-3p suppresses the inflammatory response induced by high glucose. The gene encoding DYRK1A is a target of miR-221-3p. High glucose increases the expression of DYRK1A, but silencing DYRK1A expression decreases high glucose-induced inflammatory cytokine release via dephosphorylation of STAT3, a substrate of DYRK1A. Application of miR-221-3p mimic to human keratinocytes cells not only decreases DYRK1A expression but also inhibits high glucose-induced production of inflammatory cytokines to promote wound healing. This molecular mechanism whereby miR-221-3p regulates inflammation through the DYRK1A/STAT3 signaling pathway suggests targets and therapeutic approaches for treating DFU.
Collapse
Affiliation(s)
- Keyan Hu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Endocrinology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Lei Liu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Songtao Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongfeng Chang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenyang Chen
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Taotao Fan
- Center of Experimental Practice, Anhui Medical University, Hefei, China
| | - Lesha Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Bing Shen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
24
|
Yaron JR, Bakkaloglu S, Grigaitis NA, Babur FH, Macko S, Rhodes S, Norvor-Davis S, Rege K. Inflammasome modulation with P2X7 inhibitor A438079-loaded dressings for diabetic wound healing. Front Immunol 2024; 15:1340405. [PMID: 38426101 PMCID: PMC10901979 DOI: 10.3389/fimmu.2024.1340405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The inflammasome is a multiprotein complex critical for the innate immune response to injury. Inflammasome activation initiates healthy wound healing, but comorbidities with poor healing, including diabetes, exhibit pathologic, sustained activation with delayed resolution that prevents healing progression. In prior work, we reported the allosteric P2X7 antagonist A438079 inhibits extracellular ATP-evoked NLRP3 signaling by preventing ion flux, mitochondrial reactive oxygen species generation, NLRP3 assembly, mature IL-1β release, and pyroptosis. However, the short half-life in vivo limits clinical translation of this promising molecule. Here, we develop a controlled release scaffold to deliver A438079 as an inflammasome-modulating wound dressing for applications in poorly healing wounds. We fabricated and characterized tunable thickness, long-lasting silk fibroin dressings and evaluated A438079 loading and release kinetics. We characterized A438079-loaded silk dressings in vitro by measuring IL-1β release and inflammasome assembly by perinuclear ASC speck formation. We further evaluated the performance of A438079-loaded silk dressings in a full-thickness model of wound healing in genetically diabetic mice and observed acceleration of wound closure by 10 days post-wounding with reduced levels of IL-1β at the wound edge. This work provides a proof-of-principle for translating pharmacologic inhibition of ATP-induced inflammation in diabetic wounds and represents a novel approach to therapeutically targeting a dysregulated mechanism in diabetic wound impairment.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, United States
| | - Selin Bakkaloglu
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Nicole A. Grigaitis
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- Biological Design Graduate Program, Arizona State University, Tempe, AZ, United States
| | - Farhan H. Babur
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Sophia Macko
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Samantha Rhodes
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Solenne Norvor-Davis
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, United States
- Biological Design Graduate Program, Arizona State University, Tempe, AZ, United States
- Chemical Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
25
|
Roy R, Mahmud F, Zayas J, Kuzel TM, Reiser J, Shafikhani SH. Reduced Bioactive Microbial Products (Pathogen-Associated Molecular Patterns) Contribute to Dysregulated Immune Responses and Impaired Healing in Infected Wounds in Mice with Diabetes. J Invest Dermatol 2024; 144:387-397.e11. [PMID: 37619833 PMCID: PMC10840742 DOI: 10.1016/j.jid.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Diabetic chronic ulcers are plagued with persistent nonresolving inflammation. However, diabetic wound environment early after injury suffers from inadequate inflammatory responses due to reductions in proinflammatory cytokines levels. Diabetic neutrophils have known impairments in bactericidal functions. We hypothesized that reduced bacterial killing by diabetic neutrophils, due to their bactericidal functional impairments, results in reduced bioactive bacterial products, known as pathogen-associated molecular patterns, which in turn contribute to reduced signaling through toll-like receptors, leading to inadequate production of proinflammatory cytokines in infected diabetic wound early after injury. We tested our hypothesis in db/db type 2 obese diabetic mouse wound infection model with Pseudomonas aeruginosa. Our data indicate that despite substantially higher levels of infection, toll-like receptor 4-mediated signaling is reduced in diabetic wounds early after injury owing to reduced bioactive levels of lipopolysaccharide. We further demonstrate that topical treatment with lipopolysaccharide enhances toll-like receptor 4 signaling, increases proinflammatory cytokine production, restores leukocyte trafficking, reduces infection burden, and stimulates healing in diabetic wounds. We posit that lipopolysaccharide may be a viable therapeutic option for the treatment of diabetic foot ulcers if it is applied topically after the surgical debridement process, which is intended to reset chronic ulcers into acute fresh wounds.
Collapse
Affiliation(s)
- Ruchi Roy
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Foyez Mahmud
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Janet Zayas
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA; Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Timothy M Kuzel
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA; Cancer Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Jochen Reiser
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Sasha H Shafikhani
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA; Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA; Cancer Center, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
26
|
Khoshnoudi P, Sabiza S, Khosravi M, Mohamadian B. Exploring effect of M2 macrophages on experimental full-thickness wound healing in streptozotocin-induced diabetic rats. Int J Exp Pathol 2024; 105:13-20. [PMID: 37969023 PMCID: PMC10797421 DOI: 10.1111/iep.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/23/2023] [Accepted: 10/21/2023] [Indexed: 11/17/2023] Open
Abstract
Diabetes mellitus is one of the most prevalent medical conditions, in both humans and animals. People with diabetes mellitus often experience slower than normal wound healing, making it a serious health concern. This study investigates the effect of M2 differentiated macrophages on full-thickness wound healing in white Westar rats exposed to streptozocin 70 mg/kg. A full-thickness skin defect with dimensions of 2 × 2 cm was created on the back of all the animals, and their blood sugar was simultaneously assessed. The monocytes were isolated from blood samples using the plastic adherence method and were exposed to dexamethasone (5-10 μ) for 24 h. Subsequently, they were washed with PBS and incubated in fresh cell culture medium for 5 days. The differentiated M2 cells were injected into four points of the experimental ulcers of the treatment group. Macroscopic and microscopic changes were evaluated and compared over a period of two weeks between the test and control groups. The infusion of these cells a few days after wounding enhances wound healing parameters significantly, as evidenced by an increase in germinating tissue formation, wound contraction, inflammation reduction, and collagen increase in the treated group.
Collapse
Affiliation(s)
- Parmis Khoshnoudi
- Department of Clinical Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Soroush Sabiza
- Department of Clinical Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Babak Mohamadian
- Department of Pathobiology, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| |
Collapse
|
27
|
Baldeon-Gutierrez R, Ohkura N, Yoshiba K, Yoshiba N, Tohma A, Takeuchi R, Belal RSI, Edanami N, Takahara S, Gomez-Kasimoto S, Ida T, Noiri Y. Wound-healing Processes After Pulpotomy in the Pulp Tissue of Type 1 Diabetes Mellitus Model Rats. J Endod 2024; 50:196-204. [PMID: 37939821 DOI: 10.1016/j.joen.2023.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Patients with type 1 diabetes mellitus (DM1) tend to have delayed wound healing, even in the pulp tissue. We hypothesized that hyperglycemia affects odontoblast-like cell (OLC) differentiation and is involved in macrophage polarization. Accordingly, we evaluated dental pulp stem cell differentiation and macrophage phenotypes after pulpotomy. METHODS After modifying DM1 rat models by streptozotocin, 8-week-old rats' upper left first molars were pulpotomized with mineral trioxide aggregate. Meanwhile, the control group was administered saline. Immunohistochemical localization of nestin, osteopontin, α-smooth muscles (α-SMAs), and CD68 (pan-macrophage marker) was conducted 7 days after pulpotomy. The OLC differentiation stage was determined using double immunofluorescence of nestin and α-SMA. Double immunofluorescence of CD68 and iNOS was counted as M1 macrophages and CD68 and CD206 as M2 macrophages. Proliferating cell nuclear antigen and Thy-1 (CD90) were evaluated by immunofluorescence. RESULTS In DM1 rats, the reparative dentin bridge was not complete; however, the osteopontin-positive area did not differ significantly from that in controls. Proliferating cell nuclear antigen, indicative of cell proliferation, increased in positive cells in DM1 rats compared with controls. Double-positive cells for α-SMA and nestin indicated many immature OLCs in DM1. CD90 was positive only in controls. CD68-positive cells, especially M1 macrophages, were increased in DM1 rats, allowing the inflammatory stage to continue 7 days after pulpotomy. CONCLUSIONS The condition of DM1 model rats can interfere at various stages of the wound healing process, altering OLC differentiation and macrophage polarization. These findings highlight the importance of normal blood glucose concentrations during pulp wound healing.
Collapse
Affiliation(s)
- Rosa Baldeon-Gutierrez
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoto Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Kunihiko Yoshiba
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Aiko Tohma
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryosuke Takeuchi
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Razi Saifullah Ibn Belal
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Edanami
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shintaro Takahara
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Susan Gomez-Kasimoto
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takako Ida
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
28
|
Gomathy M, Paul AJ, Krishnakumar V. A Systematic Review of Fish-Based Biomaterial on Wound Healing and Anti-Inflammatory Processes. Adv Wound Care (New Rochelle) 2024; 13:83-96. [PMID: 37166397 DOI: 10.1089/wound.2022.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Objective: To conduct a systematic literature review to study the effects of fish-based biomaterials on wound healing in both in vivo and in vitro animal models. Approach: This review covers the study reported in different articles between 2016 and August 2022 concentrating mainly on the cytotoxicity evaluation of different fish-based biomaterials on inflammation, reepithelialization and wound healing. Significance: This review shows considerable amount of research work carried out with fish-based biomaterials and collagen for treating burn wounds. Surprisingly there are only a few commercial products developed so far in this particular regard for surgical purpose and therefore, there is a way out and need for developing medical support product from fish-based biomaterials to treat and cure wounds. Recent Advances: Three-dimensional skin bioprinting technique is a large-scale solution for severe burn wounds that requires collagen as a raw material for printing, wherein fish collagen can be used in place of bovine and porcine, as it is biocompatible, promotes cell proliferation, adhesion, and migration, and degrades enzymatically. In the recent times, there are a few fish-based surgical products that have been formulated by Kerecis in United States. Critical Issues: The different fish-based biomaterial products are all mere supplements taken in orally as food or supplements till date and there is no proper proven medications that has been formulated so far in the field of wound healing and inflammation based on fish biomaterials except the surgical products that can be finger counted. Future Directions: Fish-based biomaterials are known for the medicinal properties that are used throughout the world and further investigations should be carried out to understand the actual physiochemical properties of its derivatives for the discovery of novel products and drugs.
Collapse
Affiliation(s)
- M Gomathy
- Department of Life Science, CHRIST (Deemed to be University), Bangalore Central Campus, Karnataka, India
| | - A John Paul
- Department of Zoology, St. Joseph's University, Bengaluru, India
| | - V Krishnakumar
- Department of Life Science, CHRIST (Deemed to be University), Bangalore Central Campus, Karnataka, India
| |
Collapse
|
29
|
Singh P, Sharma S, Sharma PK, Alam A. Topical Anti-ulcerogenic Effect of the Beta-adrenergic Blockers on Diabetic Foot Ulcers: Recent Advances and Future Prospectives. Curr Diabetes Rev 2024; 20:23-37. [PMID: 37867269 DOI: 10.2174/0115733998249061231009093006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Patients with diabetes suffer from major complications like Diabetic Retinopathy, Diabetic Coronary Artery Disease, and Diabetic Foot ulcers (DFUs). Diabetes complications are a group of ailments whose recovery time is especially delayed, irrespective of the underlying reason. The longer duration of wound healing enhances the probability of problems like sepsis and amputation. The delayed healing makes it more critical for research focus. By understanding the molecular pathogenesis of diabetic wounds, it is quite easy to target the molecules involved in the healing of wounds. Recent research on beta-adrenergic blocking drugs has revealed that these classes of drugs possess therapeutic potential in the healing of DFUs. However, because the order of events in defective healing is adequately defined, it is possible to recognize moieties that are currently in the market that are recognized to aim at one or several identified molecular processes. OBJECTIVE The aim of this study was to explore some molecules with different therapeutic categories that have demonstrated favorable effects in improving diabetic wound healing, also called the repurposing of drugs. METHOD Various databases like PubMed/Medline, Google Scholar and Web of Science (WoS) of all English language articles were searched, and relevant information was collected regarding the role of beta-adrenergic blockers in diabetic wounds or diabetic foot ulcers (DFUs) using the relevant keywords for the literature review. RESULT The potential beta-blocking agents and their mechanism of action in diabetic foot ulcers were studied, and it was found that these drugs have a profound effect on diabetic foot ulcer healing as per reported literatures. CONCLUSION There is a need to move forward from preclinical studies to clinical studies to analyze clinical findings to determine the effectiveness and safety of some beta-antagonists in diabetic foot ulcer treatment.
Collapse
Affiliation(s)
- Prateek Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shweta Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
30
|
Sultana A, Borgohain R, Rayaji A, Saha D, Kumar Das B. Promising Phytoconstituents in Diabetes-related Wounds: Mechanistic Insights and Implications. Curr Diabetes Rev 2024; 21:e270224227477. [PMID: 38424430 DOI: 10.2174/0115733998279112240129074457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The onset of diabetes mellitus (DM), a metabolic disorder characterized by high blood glucose levels and disrupted glucose metabolism, results in 20% of people with diabetes suffering from diabetes-related wounds worldwide. A minor wound, such as a cut or abrasion, can lead to infections and complications in diabetic patients. We must understand the mechanism/s contributing to this delayed wound healing to develop effective prevention strategies. The potential benefits of bioactive phytochemicals for diabetic wound healing have been reported in numerous studies. METHOD A bioactive compound may have multiple actions, including antioxidants, antiinflammatory, antimicrobial, and angiogenesis. Compounds derived from these plants have shown promising results in wound healing, inflammation reduction, collagen synthesis, and neovascularization improvement. RESULTS Consequently, this review provides an update to our understanding of how phytoconstituents promote wound healing in diabetics. A thorough literature review was conducted on diabetes, wound healing, and phytoconstituents for this study. Only English publications until June 2023 were included in the search, which used multiple search engines and the main keywords. Summing up, phytochemical-based interventions might improve the quality of life for diabetics by improving wound healing. CONCLUSION However, to fully understand the efficacy and safety of these phytochemicals in managing diabetic wounds, more research and clinical trials are needed.
Collapse
Affiliation(s)
- Arjina Sultana
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati 781017, Assam, India
| | - Ranadeep Borgohain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati 781017, Assam, India
| | - Ashwini Rayaji
- Department of Pharmaceutical Chemistry, KRE's Karnataka College of Pharmacy, Bidar 585403, Karnataka, India
| | - Dipankar Saha
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati 781017, Assam, India
| | - Bhrigu Kumar Das
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati 781017, Assam, India
| |
Collapse
|
31
|
Shi W, Li X, Wang Z, Li C, Wang D, Li C. CCL3 Promotes Cutaneous Wound Healing Through Recruiting Macrophages in Mice. Cell Transplant 2024; 33:9636897241264912. [PMID: 39076075 PMCID: PMC11289813 DOI: 10.1177/09636897241264912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/31/2024] Open
Abstract
Wound healing is a complex process, which involves three stages: inflammation, proliferation, and remodeling. Inflammation is the first step; thus, immune factors play an important regulatory role in wound healing. In this study, we focused on a chemokine, C-C motif chemokine ligand 3 (CCL3), which is often upregulated for expression during wound healing. We compared cutaneous wound healing at the histological, morphological, and molecular levels in the presence and absence of CCL3. The results showed that the wound healing rate in the wild-type and CCL3-/- + CCL3 mice was faster than that of CCL3-/- mice (P < 0.01), and application of CCL3 to wounds increased the healing rate. In the process of wound healing, the degree of reepithelialization and the rate of collagen deposition in the wound of CCL3-/- mice were significantly lower than those of wild-type mice (P < 0.01). The number of macrophages and the expression levels of tumor necrosis factor(TNF)-α and transforming growth factor (TGF)-β1 in the wounds of wild-type mice were much higher than those of the CCL3-/- mice. Removal of macrophages and CCL3-/- mice share similar phenotypes. Therefore, we infer that the wound healing requires the participation of macrophages, and CCL3 may play an important regulatory role through recruiting macrophages to the wound sites.
Collapse
Affiliation(s)
- Wanwan Shi
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xunsheng Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhen Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Chenguang Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Datao Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| |
Collapse
|
32
|
Yang P, Li Z, Fang B, Liu L. Self-healing hydrogels based on biological macromolecules in wound healing: A review. Int J Biol Macromol 2023; 253:127612. [PMID: 37871725 DOI: 10.1016/j.ijbiomac.2023.127612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The complete healing of skin wounds has been a challenge in clinical treatment. Self-healing hydrogels are special hydrogels formed by distinctive physicochemically reversible bonds, and they are considered promising biomaterials in the biomedical field owing to their inherently good drug-carrying capacity as well as self-healing and repair abilities. Moreover, natural polymeric materials have received considerable attention in skin tissue engineering owing to their low cytotoxicity, low immunogenicity, and excellent biodegradation rates. In this paper, we review recent advances in the design of self-healing hydrogels based on natural polymers for skin-wound healing applications. First, we outline a variety of natural polymers that can be used to construct self-healing hydrogel systems and highlight the advantages and disadvantages of different natural polymers. We then describe the principle of self-healing hydrogels in terms of two different crosslinking mechanisms-physical and chemical-and dissect their performance characteristics based on the practical needs of skin-trauma applications. Next, we outline the biological mechanisms involved in the healing of skin wounds and describe the current application strategies for self-healing hydrogels based on these mechanisms. Finally, we analyze and summarize the challenges and prospects of natural-material-based self-healing hydrogels for skin applications.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhen Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
33
|
Wu J, Xiong W, Li J, Liao H, Chai J, Huang X, Lai S, Kozlov S, Chu X, Xu X. Peptide TK-HR from the Skin of Chinese Folk Medicine Frog Hoplobatrachus Rugulosus Accelerates Wound Healing via the Activation of the Neurokinin-1 Receptor. J Med Chem 2023; 66:16002-16017. [PMID: 38015459 DOI: 10.1021/acs.jmedchem.3c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Wound healing is a complex process and remains a considerable challenge in clinical trials due to the lack of ideal therapeutic drugs. Here, a new peptide TK-HR identified from the skin of the frog Hoplobatrachus rugulosus was tested for its ability to heal cutaneous wounds in mice. Topical application of TK-HR at doses of 50-200 μg/mL significantly accelerated wound closure without causing any adverse effects in the animals. In vitro and in vivo investigations proved the regulatory role of the peptide on neutrophils, macrophages, keratinocytes, and vein endothelial cells involved in the inflammatory, proliferative, and remodeling phases of wound healing. Notably, TK-HR activated the MAPK and TGF-β-Smad signaling pathways by acting on NK1R in RAW264.7 cells and mice. The current work has identified that TK-HR is a potent wound healing regulator that can be applied for the treatment of wounds, including diabetic foot ulcers and infected wounds, in the future.
Collapse
Affiliation(s)
- Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jinqiao Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hang Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shian Lai
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Sergey Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Xinwei Chu
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
34
|
Salimabad F, Fathi AN, Babaei S. Effect of hydroalcoholic extract of Trigonella foenum-graecum leaves on wound healing in type 1 diabetic rats. J Wound Care 2023; 32:S24-S35. [PMID: 37907366 DOI: 10.12968/jowc.2023.32.sup11.s24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Diabetes describes a group of metabolic disorders characterised by increased blood glucose concentration. People living with diabetes have a higher risk of morbidity and mortality than the general population. In 2015 it was estimated that there were 415 million (uncertainty interval: 340-536 million) people with diabetes aged 20-79 years, and 5.0 million deaths attributable to diabetes. When diabetic patients develop an ulcer, they become at high risk for major complications, including infection and amputation. The pathophysiologic relationship between diabetes and impaired healing is complex. Vascular, neuropathic, immune function, and biochemical abnormalities each contribute to the altered tissue repair. The use of herbal medicine has increased and attracted the attention of many researchers all over the world. In this study, we have evaluated the effect of 500mg/kg hydroalcoholic extract of Trigonella foenum-graecum leaves (TFG-E) on wound healing in diabetic rats using a full-thickness cutaneous incisional wound model. Wounds of treated animals showed better tensiometric indices, accelerated wound contraction, faster re-epithelialisation, improved neovascularisation, better modulation of fibroblasts and macrophage presence in the wound bed and moderate collagen formation.
Collapse
Affiliation(s)
- Fatemeh Salimabad
- Department of Anatomical Sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Amene Nikgoftar Fathi
- Department of Anatomical Sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Saeid Babaei
- Department of Anatomical Sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
35
|
Campbell AE, McCready-Vangi AR, Uberoi A, Murga-Garrido SM, Lovins VM, White EK, Pan JTC, Knight SAB, Morgenstern AR, Bianco C, Planet PJ, Gardner SE, Grice EA. Variable staphyloxanthin production by Staphylococcus aureus drives strain-dependent effects on diabetic wound-healing outcomes. Cell Rep 2023; 42:113281. [PMID: 37858460 PMCID: PMC10680119 DOI: 10.1016/j.celrep.2023.113281] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 08/24/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Strain-level variation in Staphylococcus aureus is a factor that contributes to disease burden and clinical outcomes in skin disorders and chronic wounds. However, the microbial mechanisms that drive these variable host responses are poorly understood. To identify mechanisms underlying strain-specific outcomes, we perform high-throughput phenotyping screens on S. aureus isolates cultured from diabetic foot ulcers. Isolates from non-healing wounds produce more staphyloxanthin, a cell membrane pigment. In murine diabetic wounds, staphyloxanthin-producing isolates delay wound closure significantly compared with staphyloxanthin-deficient isolates. Staphyloxanthin promotes resistance to oxidative stress and enhances bacterial survival in neutrophils. Comparative genomic and transcriptomic analysis of genetically similar clinical isolates with disparate staphyloxanthin phenotypes reveals a mutation in the sigma B operon, resulting in marked differences in stress response gene expression. Our work illustrates a framework to identify traits that underlie strain-level variation in disease burden and suggests more precise targets for therapeutic intervention in S. aureus-positive wounds.
Collapse
Affiliation(s)
- Amy E Campbell
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amelia R McCready-Vangi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aayushi Uberoi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sofía M Murga-Garrido
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria M Lovins
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen K White
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie Ting-Chun Pan
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon A B Knight
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexis R Morgenstern
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Colleen Bianco
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul J Planet
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Pediatrics and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sue E Gardner
- College of Nursing, University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth A Grice
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Kwon S, Ha JH, Kim DK, Kim YS, Lim CS, Chang H, Lee JP, Park J. Revisiting metformin therapy for the mitigation of diabetic foot ulcer in patients with diabetic kidney disease from real-world evidence. Int Wound J 2023; 21:e14370. [PMID: 37740678 PMCID: PMC10824619 DOI: 10.1111/iwj.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/25/2023] Open
Abstract
Diabetic foot ulcer and diabetic kidney disease are diabetes-related chronic vascular complications that strongly correlate with high morbidity and mortality. Although metformin potentially confers a wound-healing advantage, no well-established clinical evidence supports the benefit of metformin for diabetic foot ulcer. Thus, this study investigated the effect of metformin on diabetic foot ulcer from a large diabetic kidney disease cohort for the first time. This retrospective cohort study enrolled 10 832 patients who visited the nephrology department more than twice at two South Korean tertiary-referral centers between 2001 and 2016. The primary outcome was diabetic foot ulcer events; secondary outcomes included hospitalization, amputation, a composite of amputation or vascular intervention, and Wagner Grade ≥ 3. Multivariate Cox analysis and propensity score matching (PSM) were used to balance baseline intergroup differences between metformin users and non-users. In total, 4748 patients were metformin users, and 6084 patients were metformin non-users. Over a follow-up period of 117.5 ± 66.9 months, the diabetic foot ulcer incidence was 5.2%. After PSM, metformin users showed a lower incidence of diabetic foot ulcer events than metformin non-users (adjusted hazard ratio 0.41; p < 0.001). In a sensitivity analysis of 563 patients with diabetic foot ulcer, metformin usage was associated with lower severity in all four secondary outcomes: hospitalization (adjusted hazard ratio 0.33; p < 0.001); amputation (adjusted hazard ratio 0.44; p = 0.001); composite of amputation or vascular intervention (adjusted hazard ratio 0.47; p < 0.001); and Wagner Grade ≥ 3 (adjusted hazard ratio 0.39; p < 0.001). In conclusion, metformin therapy in patients with diabetic kidney disease can lower diabetic foot ulcer incidence and progression.
Collapse
Affiliation(s)
- Soie Kwon
- Department of Internal MedicineChung‐Ang University Heuk‐Seok HospitalSeoulRepublic of Korea
- Department of Clinical Medical SciencesCollege of Medicine, Seoul National UniversitySeoulRepublic of Korea
| | - Jeong Hyun Ha
- Department of Plastic and Reconstructive SurgerySeoul National University HospitalSeoulRepublic of Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Boramae Medical CenterSeoulRepublic of Korea
| | - Dong Ki Kim
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University, College of MedicineSeoulRepublic of Korea
| | - Yon Su Kim
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University, College of MedicineSeoulRepublic of Korea
| | - Chun Soo Lim
- Department of Internal MedicineSeoul National University, College of MedicineSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University Boramae Medical CenterSeoulRepublic of Korea
| | - Hak Chang
- Department of Plastic and Reconstructive SurgerySeoul National University HospitalSeoulRepublic of Korea
- Department of Plastic and Reconstructive SurgerySeoul National University College of MedicineSeoulRepublic of Korea
| | - Jung Pyo Lee
- Department of Internal MedicineSeoul National University, College of MedicineSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University Boramae Medical CenterSeoulRepublic of Korea
| | - Ji‐Ung Park
- Department of Plastic and Reconstructive SurgerySeoul National University Boramae Medical CenterSeoulRepublic of Korea
- Department of Plastic and Reconstructive SurgerySeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
37
|
Lauterbach AL, Wallace RP, Alpar AT, Refvik KC, Reda JW, Ishihara A, Beckman TN, Slezak AJ, Mizukami Y, Mansurov A, Gomes S, Ishihara J, Hubbell JA. Topically-applied collagen-binding serum albumin-fused interleukin-4 modulates wound microenvironment in non-healing wounds. NPJ Regen Med 2023; 8:49. [PMID: 37696884 PMCID: PMC10495343 DOI: 10.1038/s41536-023-00326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Non-healing wounds have a negative impact on quality of life and account for many cases of amputation and even early death among patients. Diabetic patients are the predominate population affected by these non-healing wounds. Despite the significant clinical demand, treatment with biologics has not broadly impacted clinical care. Interleukin-4 (IL-4) is a potent modulator of the immune system, capable of skewing macrophages towards a pro-regeneration phenotype (M2) and promoting angiogenesis, but can be toxic after frequent administration and is limited by its short half-life and low bioavailability. Here, we demonstrate the design and characterization of an engineered recombinant interleukin-4 construct. We utilize this collagen-binding, serum albumin-fused IL-4 variant (CBD-SA-IL-4) delivered in a hyaluronic acid (HA)-based gel for localized application of IL-4 to dermal wounds in a type 2 diabetic mouse model known for poor healing as proof-of-concept for improved tissue repair. Our studies indicate that CBD-SA-IL-4 is retained within the wound and can modulate the wound microenvironment through induction of M2 macrophages and angiogenesis. CBD-SA-IL-4 treatment significantly accelerated wound healing compared to native IL-4 and HA vehicle treatment without inducing systemic side effects. This CBD-SA-IL-4 construct can address the underlying immune dysfunction present in the non-healing wound, leading to more effective tissue healing in the clinic.
Collapse
Affiliation(s)
- Abigail L Lauterbach
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Aaron T Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Kirsten C Refvik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Joseph W Reda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ako Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Taryn N Beckman
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, 60637, USA
| | - Anna J Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yukari Mizukami
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Suzana Gomes
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jun Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
38
|
Sant Ana M, Amantino CF, Silva RA, Gil CD, Greco KV, Primo FL, Girol AP, Oliani SM. Annexin A1 2-26 hydrogel improves healing properties in an experimental skin lesion after induction of type 1 diabetes. Biomed Pharmacother 2023; 165:115230. [PMID: 37531784 DOI: 10.1016/j.biopha.2023.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Diabetes mellitus (DM) is characterized by metabolic alterations that involve defects in the secretion and/or action of insulin, being responsible for several complications, such as impaired healing. Studies from our research group have shown that annexin A1 protein (AnxA1) is involved in the regulation of inflammation and cell proliferation. In light of these findings, we have developed a new technology and evaluated its effect on a wound healing in vivo model using type 1 diabetes (T1DM)-induced mice. We formulated a hydrogel containing AnxA12-26 using defined parameters such as organoleptic characteristics, pH, UV-vis spectroscopy and cytotoxicity assay. UV-vis spectroscopy confirmed the presence of the associated AnxA12-26 peptide in the three-dimensional hydrogel matrix, while the in vitro cytotoxicity assay showed excellent biocompatibility. Mice showed increased blood glucose levels, confirming the efficacy of streptozotocin (STZ) to induce T1DM. Treatment with AnxA12-26 hydrogel showed to improve diabetic wound healing, defined as complete re-epithelialization and tissue remodeling, with reduction of inflammatory infiltrate in diabetic animals. We envisage that the AnxA12-26 hydrogel, with its innovative composition and formulation be efficient on improving diabetic healing and contributing on the expansion of the therapeutic arsenal to treat diabetic wounds, at a viable cost.
Collapse
Affiliation(s)
- Monielle Sant Ana
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil
| | - Camila F Amantino
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Rafael A Silva
- Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Cristiane D Gil
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil; Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Karin V Greco
- Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | - Fernando L Primo
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Ana P Girol
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil; University Center Padre Albino, Catanduva, SP, Brazil; Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Sonia M Oliani
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil; Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil; Advanced Research Center in Medicine (CEPAM), União das Faculdades dos Grandes Lagos (Unilago), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
39
|
Zheng H, Cheng X, Jin L, Shan S, Yang J, Zhou J. Recent advances in strategies to target the behavior of macrophages in wound healing. Biomed Pharmacother 2023; 165:115199. [PMID: 37517288 DOI: 10.1016/j.biopha.2023.115199] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Chronic wounds and scar formation are widespread due to limited suitable remedies. The macrophage is a crucial regulator in wound healing, controlling the onset and termination of inflammation and regulating other processes related to wound healing. The current breakthroughs in developing new medications and drug delivery methods have enabled the accurate targeting of macrophages in oncology and rheumatic disease therapies through clinical trials. These successes have cleared the way to utilize drugs targeting macrophages in various disorders. This review thus summarizes macrophage involvement in normal and pathologic wound healing. It further details the targets available for macrophage intervention and therapeutic strategies for targeting the behavior of macrophages in tissue repair and regeneration.
Collapse
Affiliation(s)
- Hongkun Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lu Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
40
|
Linnemann C, Şahin F, Li N, Pscherer S, Götz F, Histing T, Nussler AK, Ehnert S. Insulin Can Delay Neutrophil Extracellular Trap Formation In Vitro-Implication for Diabetic Wound Care? BIOLOGY 2023; 12:1082. [PMID: 37626968 PMCID: PMC10452400 DOI: 10.3390/biology12081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Diabetes is a worldwide evolving disease with many associated complications, one of which is delayed or impaired wound healing. Appropriate wound healing strongly relies on the inflammatory reaction directly after injury, which is often altered in diabetic wound healing. After an injury, neutrophils are the first cells to enter the wound site. They have a special defense mechanism, neutrophil extracellular traps (NETs), consisting of released DNA coated with antimicrobial proteins and histones. Despite being a powerful weapon against pathogens, NETs were shown to contribute to impaired wound healing in diabetic mice and are associated with amputations in diabetic foot ulcer patients. The anti-diabetic drugs metformin and liraglutide have already been shown to regulate NET formation. In this study, the effect of insulin was investigated. NET formation after stimulation with PMA (phorbol myristate acetate), LPS (lipopolysaccharide), or calcium ionophore (CI) in the presence/absence of insulin was analyzed. Insulin led to a robust delay of LPS- and PMA-induced NET formation but had no effect on CI-induced NET formation. Mechanistically, insulin induced reactive oxygen species, phosphorylated p38, and ERK, but reduced citrullination of histone H3. Instead, bacterial killing was induced. Insulin might therefore be a new tool for the regulation of NET formation during diabetic wound healing, either in a systemic or topical application.
Collapse
Affiliation(s)
- Caren Linnemann
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Filiz Şahin
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Ningna Li
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany
| | - Stefan Pscherer
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
- Department of Internal Medicine III, Sophien- and Hufeland-Hospital, 99425 Weimar, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany
| | - Tina Histing
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Andreas K. Nussler
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| |
Collapse
|
41
|
Liu L, Zheng CX, Zhao N, Zhu T, Hu CB, Zhang N, Chen J, Zhang KC, Zhang S, Liu JX, Zhang K, Jing H, Sui BD, Jin Y, Jin F. Mesenchymal Stem Cell Aggregation-Released Extracellular Vesicles Induce CD31 + EMCN + Vessels in Skin Regeneration and Improve Diabetic Wound Healing. Adv Healthc Mater 2023; 12:e2300019. [PMID: 36999744 DOI: 10.1002/adhm.202300019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/01/2023]
Abstract
The blood vessel system is essential for skin homeostasis and regeneration. While the heterogeneity of vascular endothelial cells has been emergingly revealed, whether a regeneration-relevant vessel subtype exists in skin remains unknown. Herein, a specialized vasculature in skin featured by simultaneous CD31 and EMCN expression contributing to the regeneration process is identified, the decline of which functionally underlies the impaired angiogenesis of diabetic nonhealing wounds. Moreover, enlightened by the developmental process that mesenchymal condensation induces angiogenesis, it is demonstrated that mesenchymal stem/stromal cell aggregates (CAs) provide an efficacious therapy to enhance regrowth of CD31+ EMCN+ vessels in diabetic wounds, which is surprisingly suppressed by pharmacological inhibition of extracellular vesicle (EV) release. It is further shown that CAs promote secretion of angiogenic protein-enriched EVs by proteomic analysis, which directly exert high efficacy in boosting CD31+ EMCN+ vessels and treating nonhealing diabetic wounds. These results add to the current knowledge on skin vasculature and help establish feasible strategies to benefit wound healing under diabetic condition.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Oral Histopathology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Na Zhao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ting Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Cheng-Biao Hu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Nan Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kai-Chao Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Sha Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jie-Xi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kai Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Huan Jing
- Department of Endodontics, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
42
|
Elmaidomy AH, Mohamad SA, Abdelnaser M, Yahia R, Mokhtar FA, Alsenani F, Badr MY, Almaghrabi SY, Altemani FH, Alzubaidi MA, Saber EA, Elrehany MA, Abdelmohsen UR, Sayed AM. Vitis vinifera leaf extract liposomal Carbopol gel preparation's potential wound healing and antibacterial benefits: in vivo, phytochemical, and computational investigation. Food Funct 2023; 14:7156-7175. [PMID: 37462414 DOI: 10.1039/d2fo03212k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vitis vinifera Egyptian edible leaf extract loaded on a soybean lecithin, cholesterol, and Carbopol gel preparation (VVL-liposomal gel) was prepared to maximize the in vivo wound healing and anti-MRSA activities for the crude extract, using an excision wound model and focusing on TLR-2, MCP-1, CXCL-1, CXCL-2, IL-6 and IL-1β, and MRSA (wound infection model, and peritonitis infection model). VVL-liposomal gel was stable with significant drug entrapment efficiency reaching 88% ± 3, zeta potential value ranging from -50 to -63, and a size range of 50-200 μm nm in diameter. The in vivo evaluation proved the ability of VVL-liposomal gel to gradually release the drugs in a sustained manner with greater complete wound healing effect and tissue repair after 7 days of administration, with a significant decrease in bacterial count compared with the crude extract. Phytochemical investigation of the crude extract of the leaves yielded fourteen compounds: two new stilbenes (1, 2), along with twelve known ones (3-14). Furthermore, a computational study was conducted to identify the genes and possible pathways responsible for the anti-MRSA activity of the isolated compounds, and inverse docking was used to identify the most likely molecular targets that could mediate the extract's antibacterial activity. Gyr-B was discovered to be the best target for compounds 1 and 2. Hence, VVL-liposomal gel can be used as a novel anti-dermatophytic agent with potent wound healing and anti-MRSA capacity, paving the way for future clinical research.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Soad A Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Mahmoud Abdelnaser
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Ramadan Yahia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Universities Zone, New Minya City 61111, Egypt
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Moutaz Y Badr
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Safa Y Almaghrabi
- Department of Physiology, Faculty of Medicine, King Abduaziz University, Jeddah 22252, Saudi Arabia.
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mubarak A Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minya 61519, Egypt
- Delegated to Deraya University, Universities Zone, New Minya 61111, Egypt
| | - Mahmoud A Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minya 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt.
| |
Collapse
|
43
|
Jia Q, Zhao H, Wang Y, Cen Y, Zhang Z. Mechanisms and applications of adipose-derived stem cell-extracellular vesicles in the inflammation of wound healing. Front Immunol 2023; 14:1214757. [PMID: 37520532 PMCID: PMC10376705 DOI: 10.3389/fimmu.2023.1214757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Wound healing is a sophisticated process consisting of serial phases with overlaps, including hemostasis, inflammation, proliferation, and remodeling. The inflammation response is an early response that plays a crucial role in eliminating microbes and clearing damaged cell debris. However, in some pathological circumstances, such as diabetes mellitus, ischemia, trauma, deep burn, etc., abnormal inflammation can cause impaired wound healing. Adipose-derived stem cells (ADSCs) belong to the mesenchymal stem cell (MSC) family and exhibit prospective applications in tissue regeneration and dermatological repairs. ADSC-secreted extracellular vesicles (ADSC-EVs) mimic the functions of ADSCs without the concerns of cell survival, immune response, or ethical issues. Studies have revealed that ADSC-EVs can inhibit abnormal inflammation responses and accelerate wound healing through various mechanisms. Moreover, some studies explored modifications in the cargo components of ADSC-EVs to enhance their therapeutic efficacy. Given the increasing studies focusing on the potential of ADSC-EVs in wound healing, how they interfere with different phases of this process has been investigated in pieces. In this review, we summarized all up-to-date evidence to map a clearer picture of the underlying mechanisms of ADSC-EVs in inflammation response. The applications of ADSC-EVs aiming at inflammation in the healing process were also reviewed to provide therapeutic strategies for future investigators.
Collapse
Affiliation(s)
- Qingyi Jia
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanxing Zhao
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yixi Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenyu Zhang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Sung S, Steele LA, Risser GE, Spiller KL. Biomaterial-Assisted Macrophage Cell Therapy for Regenerative Medicine. Adv Drug Deliv Rev 2023:114979. [PMID: 37394101 DOI: 10.1016/j.addr.2023.114979] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Although most tissue types are capable of some form of self-repair and regeneration, injuries that are larger than a critical threshold or those occurring in the setting of certain diseases can lead to impaired healing and ultimately loss of structure and function. The immune system plays an important role in tissue repair and must be considered in the design of therapies in regenerative medicine. In particular, macrophage cell therapy has emerged as a promising strategy that leverages the reparative roles of these cells. Macrophages are critical for successful tissue repair and accomplish diverse functions throughout all phases of the process by dramatically shifting in phenotypes in response to microenvironmental cues. Depending on their response to various stimuli, they may release growth factors, support angiogenesis, and facilitate extracellular matrix remodeling. However, this ability to rapidly shift phenotype is also problematic for macrophage cell therapy strategies, because adoptively transferred macrophages fail to maintain therapeutic phenotypes following their administration to sites of injury or inflammation. Biomaterials are a potential way to control macrophage phenotype in situ while also enhancing their retention at sites of injury. Cell delivery systems incorporated with appropriately designed immunomodulatory signals have potential to achieve tissue regeneration in intractable injuries where traditional therapies have failed. Here we explorecurrent challenges in macrophage cell therapy, especially retention and phenotype control, how biomaterials may overcome them, and opportunities for next generation strategies. Biomaterials will be an essential tool to advance macrophage cell therapy for widespread clinical applications.
Collapse
Affiliation(s)
- Samuel Sung
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Lindsay A Steele
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Gregory E Risser
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
45
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
46
|
Role of Innate Immune Cells in Chronic Diabetic Wounds. J Indian Inst Sci 2023. [DOI: 10.1007/s41745-022-00355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
47
|
Chen Y, Liu H, Tian Y, Luo Z, Ran J, Miao Z, Zhang Q, Yin G, Xie Q. Fexofenadine protects against lipopolysaccharide-induced acute lung injury by targeting cytosolic phospholipase A2. Int Immunopharmacol 2023; 116:109637. [PMID: 36764283 DOI: 10.1016/j.intimp.2022.109637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 02/11/2023]
Abstract
OBJECTIVE Acute lung injury (ALI) causes acute respiratory distress syndrome, with a high mortality rate of 40%, with currently available pharmacological treatments. Cytosolic phospholipase A2 (cPLA2) plays a critical role in the lipopolysaccharide (LPS)-induced pathology of ALI. This study assessed the therapeutic effects of fexofenadine (FFD), an on-market small-molecule drug that can target cPLA2 in LPS-induced ALI. METHODS Primary macrophages obtained from the bone marrow of wild-type and cPLA2 knockout mice and the alveolar macrophage cell line, MHS were used to test the inhibitory effect of FFD on the cPLA2/ERK/p65 signaling pathway, NF-κB p65 translocation, and cytokine and chemokine production. An LPS-induced ALI mouse model was used to assess the treatment effects of FFD. Flow cytometry detected subsets of macrophages and neutrophils. cPLA2 activity and downstream hydrolysates were detected. Treatment with a cPLA2 inhibitor or NF-κB p65 inhibitor confirmed that FFD functioned through the cPLA2/ERK/p65 signaling pathway by targeting cPLA2. RESULTS FFD reduced the infiltration of macrophages and neutrophils, decreased the protein secretion in bronchoalveolar lavage fluid, and reduced the production of TNFα, IL-1β, IL-6, MCP-1, and IL-8 in the lung, bronchoalveolar lavage fluid, and sera of LPS-induced ALI mice. FFD inhibited cPLA2 activity, suppressed the cPLA2/ERK/p65 signaling pathway, inhibited translocation of p65, and decreased the production of cytokines, chemokines, and downstream hydrolysates of cPLA2, arachidonic acid, and leukotriene B4. CONCLUSION FFD inhibits the cPLA2/ERK/p65 signaling pathway by targeting cPLA2. Therefore, FFD is promising as a therapeutic against cPLA2-involved diseases, particularly ALI.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunru Tian
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhongling Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jingjing Ran
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhiyong Miao
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
48
|
Rashid N, Khalid SH, Ullah Khan I, Chauhdary Z, Mahmood H, Saleem A, Umair M, Asghar S. Curcumin-Loaded Bioactive Polymer Composite Film of PVA/Gelatin/Tannic Acid Downregulates the Pro-inflammatory Cytokines to Expedite Healing of Full-Thickness Wounds. ACS OMEGA 2023; 8:7575-7586. [PMID: 36872957 PMCID: PMC9979366 DOI: 10.1021/acsomega.2c07018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Curcumin (Cur) entrapped poly(vinyl alcohol) (PVA)/gelatin composite films were prepared by cross-linking with tannic acid (TA) as bioactive dressings for rapid wound closure. Films were evaluated for mechanical strength, swelling index, water vapor transmission rate (WVTR), film solubility, and in-vitro drug release studies. SEM revealed uniform and smooth surfaces of blank (PG9) and Cur-loaded composite films (PGC4). PGC4 exhibited excellent mechanical strength (tensile strength (TS) and Young's modulus (YM) were 32.83 and 0.55 MPa, respectively), swelling ability (600-800% at pH 5.4, 7.4, and 9), WVTR (2003 ± 26), and film solubility (27.06 ± 2.0). Sustained release (81%) of the encapsulated payload was also observed for 72 h. The antioxidant activity determined by DPPH free radical scavenging showed that the PGC4 possessed strong % inhibition. The PGC4 formulation displayed higher antibacterial potential against S. aureus (14.55 mm zone of inhibition) and E. coli (13.00 mm zone of inhibition) compared to blank and positive control by the agar well diffusion method. An in-vivo wound healing study was carried out on rats using a full-thickness excisional wound model. Wounds treated with PGC4 showed very rapid healing about 93% in just 10 days post wounding as compared to 82.75% by Cur cream and 80.90% by PG9. Furthermore, histopathological studies showed ordered collagen deposition and angiogenesis along with fibroblast formation. PGC4 also exerted a strong anti-inflammatory effect by downregulating the expression of pro-inflammatory cytokines (TNF-α and IL-6 were lowered by 76% and 68% as compared to the untreated group, respectively). Therefore, Cur-loaded composite films can be an ideal delivery system for effective wound healing.
Collapse
Affiliation(s)
- Nida Rashid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Syed Haroon Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zunera Chauhdary
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hira Mahmood
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ayesha Saleem
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Umair
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
49
|
Fang WC, Lan CCE. The Epidermal Keratinocyte as a Therapeutic Target for Management of Diabetic Wounds. Int J Mol Sci 2023; 24:4290. [PMID: 36901720 PMCID: PMC10002069 DOI: 10.3390/ijms24054290] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Diabetes mellitus (DM) is an important cause of chronic wounds and non-traumatic amputation. The prevalence and number of cases of diabetic mellitus are increasing worldwide. Keratinocytes, the outermost layer of the epidermis, play an important role in wound healing. A high glucose environment may disrupt the physiologic functions of keratinocytes, resulting in prolonged inflammation, impaired proliferation, and the migration of keratinocytes and impaired angiogenesis. This review provides an overview of keratinocyte dysfunctions in a high glucose environment. Effective and safe therapeutic approaches for promoting diabetic wound healing can be developed if molecular mechanisms responsible for keratinocyte dysfunction in high glucose environments are elucidated.
Collapse
Affiliation(s)
- Wei-Cheng Fang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Che E. Lan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
50
|
Quantitative Assessment of Low-Dose Photodynamic Therapy Effects on Diabetic Wound Healing Using Raman Spectroscopy. Pharmaceutics 2023; 15:pharmaceutics15020595. [PMID: 36839917 PMCID: PMC9966264 DOI: 10.3390/pharmaceutics15020595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
One of challenges that faces diabetes is the wound healing process. The delayed diabetic wound healing is caused by a complicated molecular mechanism involving numerous physiological variables. Low-dose photodynamic therapy (LDPDT) provides excellent results in rejuvenation and wound healing. In this study, the LDPDT effect on diabetic wounds in mice was studied using two photosensitizers, 5-aminolevulinic acid and methylene blue, and two laser dose expositions of 1 J/cm2 and 4 J/cm2 by Raman spectroscopy (RS). The latter was used as a noninvasive method, providing specific information about tissue state based on the fundamental vibrational modes of its molecular components. RS allows high spatial resolution acquisition of biochemical and structural information through the generation of point spectra or spectral images. An approach to in vivo quantitative assessment of diabetic wound healing state was developed. This approach is based on an application of the principal component analysis combined with the Mahalanobis metrics to skin Raman spectra, in particular, intensities of the amide I and CH2 bands.
Collapse
|