1
|
Guyot E. Heparan sulfate chains in hepatocellular carcinoma. Gastroenterol Rep (Oxf) 2025; 13:goaf023. [PMID: 40093586 PMCID: PMC11908768 DOI: 10.1093/gastro/goaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/13/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Hepatocellular carcinoma (HCC) corresponds to the vast majority of liver cancer cases, with one of the highest mortality rates. Major advances have been made in this field both in the characterization of the molecular pathogenesis and in the development of systemic therapies. Despite these achievements, biomarkers and more efficient treatments are still needed to improve its management. Heparan sulfate (HS) chains are polysaccharides that are present at the cell surface or in the extracellular matrix that are able to bind various types of molecules, such as soluble factors, affecting their availability and thus their effects, or to contribute to interactions that position cells in their environments. Enzymes can modify HS chains after their synthesis, thus changing their properties. Numerous studies have shown HS-related proteins to be key actors that are associated with cellular effects, such as tumor growth, invasion, and metastasis, including in the context of liver carcinogenesis. The aim of this review is to provide a comprehensive overview of the biology of HS chains and their potential importance in HCC, from biological considerations to clinical development, and the identification of biomarkers, as well as therapeutic perspectives.
Collapse
Affiliation(s)
- Erwan Guyot
- Biochemistry Unit, Saint-Antoine Hospital, AP-HP Sorbonne University, Paris Cedex, France
| |
Collapse
|
2
|
Verma RK, Srivastava PK, Singh A. Comprehensive analysis of inhibin-β A as a potential biomarker for gastrointestinal tract cancers through bioinformatics approaches. Sci Rep 2025; 15:1090. [PMID: 39774945 PMCID: PMC11707248 DOI: 10.1038/s41598-024-72679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025] Open
Abstract
Inhibin, β, which is also known as INHBA, encodes a protein that belongs to the Transforming Growth factor-β (TGF-β) superfamily, which plays a pivotal role in cancer. Gastrointestinal tract (GI tract) cancer refers to the cancers that develop in the colon, liver, esophagus, stomach, rectum, pancreas, and bile ducts of the digestive system. The role of INHBA in all GI tract cancers remains understudied. By utilizing GEPIA2, which uses transcriptomic data from TCGA, we examined the expression of INHBA across different GI tract cancers. The results revealed consistent upregulation of INHBA in all TCGA GI tract cancers, except for liver hepatocellular carcinoma, where it showed downregulation compared to normal tissues, along with GTEx normal samples. Significant differences in INHBA expression were noted in adenocarcinomas of the colon, pancreas, rectum, and stomach, while no such differences were observed in cholangiocarcinoma and liver cancer. Moreover, a comprehensive bioinformatics analysis has been done to demonstrate that the differences in expression levels are significantly related to pathological tumor stages and prognosis in different GI tract cancers. Mucinous adenocarcinoma, esophageal squamous cell carcinoma, and stomach adenocarcinoma show a higher frequency of INHBA alteration and are primarily linked to mutations and amplifications. DNA methylation, immune infiltration, functional enrichment analysis, the genes associated with INHBA, and survival analysis in all TCGA GI tract cancers have been extensively analyzed. In colon and stomach cancers, increased INHBA expression significantly correlates with poorer overall survival (OS). However, in colon and pancreatic adenocarcinoma, higher expression is significantly associated with worse disease-free survival (DFS). Additionally, INHBA expression exhibited a positive correlation with cancer-associated fibroblasts across all gastrointestinal (GI) tract cancers. The KEGG pathway analysis revealed that INHBA and its interacting proteins are involved in several pathways, including TGF-beta signaling, Signalling pathways regulating pluripotency of stem cells, colorectal cancer, pancreatic cancer, AGE-RAGE signaling, and so on as major pathways. These findings demonstrate that INHBA could serve as a potential biomarker therapeutic target for GI tract cancer.
Collapse
Affiliation(s)
- Rohit Kumar Verma
- Department of Life Sciences, School of Natural Sciences (SONS), Shiv Nadar Institution of Eminence, Delhi NCR, India
| | | | - Ashutosh Singh
- Department of Life Sciences, School of Natural Sciences (SONS), Shiv Nadar Institution of Eminence, Delhi NCR, India.
| |
Collapse
|
3
|
Chung TT, Kim SK, Lee SJ. Prognostic significance of HS2ST1 expression in patients with hepatocellular carcinoma. Genes Genomics 2024; 46:1165-1174. [PMID: 39153155 PMCID: PMC11410915 DOI: 10.1007/s13258-024-01556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Heparan sulfate 2-O-sulfotransferase 1 (HS2ST1) catalyzes the sulfation of glucuronic acid residues in heparan sulfate proteoglycans, enabling these proteoglycans to interact with numerous ligands within tumor microenvironments. However, the prognostic role of HS2ST1 expression in cancer remains unclear. OBJECTIVE This investigated HS2ST1 expression levels and their prognostic significance in various cancer types, demonstrated the prognostic value of HS2ST1 expression in hepatocellular carcinoma (HCC) patients, and identified molecular signatures associated with HS2ST1 expression. METHODS HS2ST1 expression and patient survival data from The Cancer Genome Atlas (TCGA) datasets were analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA) portal. We obtained gene expression and clinicopathological information on HCC patients from the TCGA and the Japan and France International Cancer Genome Consortium (ICGC) databases and performed survival analyses. We also examined relevant protein networks, differentially expressed genes, gene set enrichments, and tumor immune microenvironment features associated with HS2ST1 expression. RESULTS HS2ST1 exhibited higher expression in eight tumor types compared with normal tissues and was associated with poor prognoses in five tumors, including HCC. HS2ST1 status correlated with poor prognosis in two ICGC HCC cohorts. Elevated HS2ST1 expression in HCC tumors was associated with signaling pathways involved in cell cycle progression, protein secretion, and mTORC1 signaling. Moreover, HS2ST1 expression levels were inversely correlated with immune cell infiltration in the tumor microenvironment. CONCLUSION Our study elucidates the prognostic significance of HS2ST1 expression in HCC patients and provides insights into the potential roles of HS2ST1 in signaling pathways and the tumor microenvironment.
Collapse
Affiliation(s)
- Ting Ting Chung
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Seung Jin Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Li J, Wang X, Li Z, Li M, Zheng X, Zheng D, Wang Y, Xi M. SULF1 Activates the VEGFR2/PI3K/AKT Pathway to Promote the Development of Cervical Cancer. Curr Cancer Drug Targets 2024; 24:820-834. [PMID: 37539927 DOI: 10.2174/1568009623666230804161607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND PURPOSE Sulfatase 1 (SULF1) can regulate the binding of numerous signaling molecules by removing 6-O-sulfate from heparan sulfate proteoglycans (HSPGs) to affect numerous physiological and pathological processes. Our research aimed to investigate the effect of the SULF1-mediated VEGFR2/PI3K/AKT signaling pathway on tumorigenesis and development of cervical cancer (CC). METHODS The expression and prognostic values of SULF1 in patients with CC were analyzed through bioinformatics analysis, qRT-PCR, immunohistochemistry, and western blot. The function and regulatory mechanism of SULF1 in proliferation, migration, and invasion of cervical cancer cells were examined through lentivirus transduction, CCK8, flow cytometry analysis, plate colony formation assay, scratch assay, transwell assay, western blot, VEGFR2 inhibitor (Ki8751), and mouse models. RESULTS SULF1 expression was significantly upregulated in CC tissues, which was significantly associated with poor prognosis of patients with CC. In vitro, the upregulation of SULF1 expression in HeLa cells promoted cell proliferation, colony formation, migration, and invasion while inhibiting apoptosis. Conversely, the downregulation of SULF1 expression had the opposite effect. In vivo, the upregulation of SULF1 expression resulted in a significant increase in both tumor growth and angiogenesis, while its downregulation had the opposite effect. Furthermore, western blot detection and cell function rescue assay confirmed that the upregulation of SULF1 in HeLa cells promoted the tumorigenic behaviors of cancer cells by activating the VEGFR2/PI3K/AKT signaling pathway. CONCLUSION SULF1 plays an oncogenic role in the tumorigenesis and development of CC, indicating its potential as a novel molecular target for gene-targeted therapy in patients with CC.
Collapse
Affiliation(s)
- Juan Li
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Diagnosis and Treatment for Cervical Diseases, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xihao Wang
- Department of Pathology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhilong Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Minzhen Li
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuelian Zheng
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Danxi Zheng
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
5
|
Basu A, Champagne RN, Patel NG, Nicholson ED, Weiss RJ. TFCP2 is a transcriptional regulator of heparan sulfate assembly and melanoma cell growth. J Biol Chem 2023; 299:104713. [PMID: 37061003 PMCID: PMC10200990 DOI: 10.1016/j.jbc.2023.104713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
Heparan sulfate (HS) is a long, linear polysaccharide that is ubiquitously expressed in all animal cells and plays a key role in many cellular processes, including cell signaling and development. Dysregulation of HS assembly has been implicated in pathophysiological conditions, such as tumorigenesis and rare genetic disorders. HS biosynthesis occurs in a non-template-driven manner in the endoplasmic reticulum and Golgi through the activity of a large group of biosynthetic enzymes. While much is known about its biosynthesis, little is understood about the regulation of HS assembly across diverse tissue types and disease states. To address this gap in knowledge, we recently performed genome-wide CRISPR/Cas9 screens to identify novel regulatory factors of HS biosynthesis. From these screens, we identified the alpha globin transcription factor, TFCP2, as a top hit. To investigate the role of TFCP2 in HS assembly, we targeted TFCP2 expression in human melanoma cells using the CRISPR/Cas9 system. TFCP2 knockout cells exhibited decreased fibroblast growth factor binding to cell surface HS, alterations in HS composition, and slowed cell growth compared to wild-type cells. Additionally, RNA sequencing revealed that TFCP2 regulates the expression of multiple enzymes involved in HS assembly, including the secreted endosulfatase, SULF1. Pharmacological targeting of TFCP2 activity similarly reduced growth factor binding and increased SULF1 expression, and the knockdown of SULF1 expression in TFCP2 mutant cells restored melanoma cell growth. Overall, these studies identify TFCP2 as a novel transcriptional regulator of HS and highlight HS-protein interactions as a possible target to slow melanoma growth.
Collapse
Affiliation(s)
- Amrita Basu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Rachel N Champagne
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Neil G Patel
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Elijah D Nicholson
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ryan J Weiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
6
|
Jiang L, Xu F, Li C, Liu T, Zhao Q, Liu Y, Zhao Y, Li Y, Zhang Z, Tang X, Zhang J. Sulfotransferase 1C2 promotes hepatocellular carcinoma progression by enhancing glycolysis and fatty acid metabolism. Cancer Med 2023; 12:10738-10754. [PMID: 36880364 PMCID: PMC10225225 DOI: 10.1002/cam4.5759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is aggressive liver cancer. Despite advanced imaging and other diagnostic measures, HCC in a significant portion of patients had reached the advanced stage at the first diagnosis. Unfortunately, there is no cure for advanced HCC. As a result, HCC is still a leading cause of cancer death, and there is a pressing need for new diagnostic markers and therapeutic targets. METHODS We investigated sulfotransferase 1C2 (SUTL1C2), which we recently showed was overexpressed in human HCC cancerous tissues. Specifically, we analyzed the effects of SULT1C2 knockdown on the growth, survival, migration, and invasiveness of two HCC cell lines, i.e., HepG2 and Huh7 cells. We also studied the transcriptomes and metabolomes in the two HCC cell lines before and after SULT1C2 knockdown. Based on the transcriptome and metabolome data, we further investigated the SULT1C2 knockdown-mediated shared changes, i.e., glycolysis and fatty acid metabolism, in the two HCC cell lines. Finally, we performed rescue experiments to determine whether the inhibitory effects of SULT1C2 knockdown could be rescued via overexpression. RESULTS We showed that SULT1C2 overexpression promoted the growth, survival, migration, and invasiveness of HCC cells. In addition, SULT1C2 knockdown resulted in a wide range of gene expression and metabolome changes in HCC cells. Moreover, analysis of shared alterations showed that SULT1C2 knockdown significantly suppressed glycolysis and fatty acid metabolism, which could be rescued via SULT1C2 overexpression. CONCLUSIONS Our data suggest that SULT1C2 is a potential diagnostic marker and therapeutic target for human HCC.
Collapse
Affiliation(s)
- Liya Jiang
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Fang Xu
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Chenglong Li
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Ting Liu
- BGI College & Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Qianwei Zhao
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou UniversityZhengzhouHenanChina
| | - Yixian Liu
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Ying Zhao
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yamei Li
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Zhendong Zhang
- BGI College & Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary MedicineLong Island UniversityBrookvilleNew YorkUSA
- Division of Regenerative Medicine, Department of Medicine, Department of Basic Science, School of MedicineLoma Linda UniversityLoma LindaCaliforniaUSA
| | - Jintao Zhang
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenanChina
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
7
|
Lin ZS, Chung CC, Liu YC, Chang CH, Liu HC, Liang YY, Huang TL, Chen TM, Lee CH, Tang CH, Hung MC, Chen YH. EZH2/hSULF1 axis mediates receptor tyrosine kinase signaling to shape cartilage tumor progression. eLife 2023; 12:79432. [PMID: 36622753 PMCID: PMC9829410 DOI: 10.7554/elife.79432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023] Open
Abstract
Chondrosarcomas are primary cancers of cartilaginous tissue and capable of alteration to highly aggressive, metastatic, and treatment-refractory states, leading to a poor prognosis with a five-year survival rate at 11 months for dedifferentiated subtype. At present, the surgical resection of chondrosarcoma is the only effective treatment, and no other treatment options including targeted therapies, conventional chemotherapies, or immunotherapies are available for these patients. Here, we identify a signal pathway way involving EZH2/SULF1/cMET axis that contributes to malignancy of chondrosarcoma and provides a potential therapeutic option for the disease. A non-biased chromatin immunoprecipitation sequence, cDNA microarray analysis, and validation of chondrosarcoma cell lines identified sulfatase 1 (SULF1) as the top EZH2-targeted gene to regulate chondrosarcoma progression. Overexpressed EZH2 resulted in downregulation of SULF1 in chondrosarcoma cell lines, which in turn activated cMET pathway. Pharmaceutical inhibition of cMET or genetically silenced cMET pathway significantly retards the chondrosarcoma growth and extends mice survival. The regulation of EZH2/SULF1/cMET axis were further validated in patient samples with chondrosarcoma. The results not only established a signal pathway promoting malignancy of chondrosarcoma but also provided a therapeutic potential for further development of effective target therapy to treat chondrosarcoma.
Collapse
Affiliation(s)
- Zong-Shin Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichungTaiwan
| | - Chiao-Chen Chung
- Center for Molecular Medicine, China Medical University HospitalTaichungTaiwan
| | - Yu-Chia Liu
- Center for Molecular Medicine, China Medical University HospitalTaichungTaiwan
| | - Chu-Han Chang
- Center for Molecular Medicine, China Medical University HospitalTaichungTaiwan
| | - Hui-Chia Liu
- Center for Molecular Medicine, China Medical University HospitalTaichungTaiwan
| | - Yung-Yi Liang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichungTaiwan
| | - Teng-Le Huang
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medical UniversityTaichungTaiwan
| | - Tsung-Ming Chen
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine UniversityKaohsiungTaiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen UniversityKaohsiungTaiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichungTaiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichungTaiwan,Center for Molecular Medicine, China Medical University HospitalTaichungTaiwan,Department of Biotechnology, Asia UniversityTaichungTaiwan
| | - Ya-Huey Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichungTaiwan,Center for Molecular Medicine, China Medical University HospitalTaichungTaiwan
| |
Collapse
|
8
|
Role of Prosaposin and Extracellular Sulfatase Sulf-1 Detection in Pleural Effusions as Diagnostic Biomarkers of Malignant Mesothelioma. Biomedicines 2022; 10:biomedicines10112803. [PMID: 36359323 PMCID: PMC9687327 DOI: 10.3390/biomedicines10112803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Malignant pleural mesothelioma is an aggressive malignancy with poor prognosis. Unilateral pleural effusion is frequently the initial clinical sign requiring therapeutic thoracentesis, which also offers a diagnostic opportunity. Detection of soluble biomarkers can support diagnosis, but few show good diagnostic accuracy. Here, we studied the expression levels and discriminative power of two putative biomarkers, prosaposin and extracellular sulfatase SULF-1, identified by proteomic and transcriptomic analysis, respectively. Pleural effusions from a total of 44 patients (23 with mesothelioma, 8 with lung cancer, and 13 with non-malignant disease) were analyzed for prosaposin and SULF-1 by enzyme-linked immunosorbent assay. Pleural effusions from mesothelioma patients had significantly higher levels of prosaposin and SULF-1 than those from non-malignant disease patients. Receiver-operating characteristic (ROC) analysis showed that both biomarkers have good discriminating power as pointed out by an AUC value of 0.853 (p = 0.0005) and 0.898 (p < 0.0001) for prosaposin and SULF-1, respectively. Combining data ensued a model predicting improvement of the diagnostic performance (AUC = 0.916, p < 0.0001). In contrast, prosaposin couldn’t discriminate mesothelioma patients from lung cancer patients while ROC analysis of SULF-1 data produced an AUC value of 0.821 (p = 0.0077) but with low sensitivity. In conclusion, prosaposin and SULF-1 levels determined in pleural effusion may be promising biomarkers for differential diagnosis between mesothelioma and non-malignant pleural disease. Instead, more patients need to be enrolled before granting the possible usefulness of these soluble proteins in differentiating mesothelioma pleural effusions from those linked to lung cancer.
Collapse
|
9
|
Deng L, Chao H, Deng H, Yu Z, Zhao R, Huang L, Gong Y, Zhu Y, Wang Q, Li F, Liu L, He L, Tang Z, Liao C, Qi Y, Wang X, Zeng T, Zou H. A novel and sensitive DNA methylation marker for the urine-based liquid biopsies to detect bladder cancer. BMC Cancer 2022; 22:510. [PMID: 35524222 PMCID: PMC9077853 DOI: 10.1186/s12885-022-09616-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background Better prognostic outcome is closely correlated with early detection of bladder cancer. Current non-invasive urianalysis relies on simultaneously testing multiple methylation markers to achieve relatively high accuracy. Therefore, we have developed an easy-to-use, convenient, and accurate single-target urine-based DNA methylation test for the malignancy. Methods By analyzing TCGA data, 344 candidate markers with 424 primer pairs and probe sets synthesized were systematically screened in cancer cell lines, paired tissue specimens, and urine sediments from bladder cancer patients and normal controls. The identified marker was further validated in large case-control cohorts. Wilcoxon rank sum tests and c2 tests were performed to compare methylation levels between case-control groups and correlate methylation levels with demographic and clinical characteristics. In addition, MSP, qMSP, RT-PCR, western blot analysis, and immunohistochemistry were performed to measure levels of DNA methylation, mRNA transcription, and protein expression in cancer cell lines and tissues. Results A top-performing DMRTA2 marker identified was tested in both discovery and validation sets, showing similar sensitivity and specificity for bladder cancer detection. Overall sensitivity in the aggregate set was 82.9%(179/216). The specificity, from a control group consisting of patients with lithangiuria, prostatoplasia, and prostatitis, is 92.5%(468/506). Notably, the methylation assay had the highest sensitivities for tumors at stages of T1(90.4%) and T2(95.0%) compared with Ta (63.0%), T3(81.8%), and T4(81.8%). Furthermore, the test showed admirable detection rate of 80.0%(24/30) for recurring cancers. While methylation was observed in 39/54(72.2%) urine samples from patients with carcinomas of renal pelvis and ureter, it was detected at extremely low rate of 6.0%(8/133) in kidney and prostate cancers. Compared with SV-HUC-1, the normal bladder epithelial cell line, DMRTA2 was hypermethylated in 8/9 bladder cancer cell lines, consistent with the results of MSP and qMSP, but not correlated with mRNA and protein expression levels in these cell lines. Similarly, DMRTA2 immunostaining was moderate in some tissues but weak in others. Further studies are needed to address functional implications of DMRTA2 hypermethylation. Conclusions Our data demonstrated that a single-target DNA methylation signature, mDMRTA2, could be highly effective to detect both primary and recurring bladder cancer via urine samples. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09616-y.
Collapse
Affiliation(s)
- Leihong Deng
- The First Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Haichao Chao
- The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, China
| | - Huanhuan Deng
- Donghu Campus, Medical College of Nanchang University, 461 Bayi Dadao, Nanchang, 330006, Jiangxi, China
| | - Zhaojun Yu
- Donghu Campus, Medical College of Nanchang University, 461 Bayi Dadao, Nanchang, 330006, Jiangxi, China
| | - Rongsong Zhao
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, 510530, Guangdong, China
| | - Longwu Huang
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, 510530, Guangdong, China
| | - Yun Gong
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, 510530, Guangdong, China
| | - Yueting Zhu
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, 510530, Guangdong, China
| | - Qingping Wang
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, 510530, Guangdong, China
| | - Feng Li
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, 510530, Guangdong, China
| | - Lirong Liu
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, 510530, Guangdong, China
| | - Lei He
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, 510530, Guangdong, China
| | - Zhimin Tang
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, 510530, Guangdong, China
| | - Caizhi Liao
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, 510530, Guangdong, China
| | - Yan Qi
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, 510530, Guangdong, China
| | - Xianshu Wang
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, 510530, Guangdong, China
| | - Tao Zeng
- The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi, China.
| | - Hongzhi Zou
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, 510530, Guangdong, China.
| |
Collapse
|
10
|
Liu D, Zhang T, Chen X, Zhang B, Wang Y, Xie M, Ji X, Sun M, Huang W, Xia L. ONECUT2 facilitates hepatocellular carcinoma metastasis by transcriptionally upregulating FGF2 and ACLY. Cell Death Dis 2021; 12:1113. [PMID: 34839358 PMCID: PMC8627506 DOI: 10.1038/s41419-021-04410-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023]
Abstract
Metastasis is the predominant reason for high mortality of hepatocellular carcinoma (HCC) patients. It is critical to explore the molecular mechanism underlying HCC metastasis. Here, we reported that transcription factor One Cut homeobox 2 (ONECUT2) functioned as an oncogene to facilitate HCC metastasis. Elevated ONECUT2 expression was positively correlated with increased tumor number, tumor encapsulation loss, microvascular invasion, poor tumor differentiation, and advanced TNM stage. Mechanistically, ONECUT2 directly bound to the promoters of fibroblast growth factor 2 (FGF2) and ATP citrate lyase (ACLY) and transcriptionally upregulated their expression. Knockdown of FGF2 and ACLY inhibited ONECUT2-mediated HCC metastasis, whereas upregulation of FGF2 and ACLY rescued ONECUT2 knockdown-induced suppression of HCC metastasis. ONECUT2 expression was positively correlated with FGF2 and ACLY expression in human HCC tissues. HCC patients with positive coexpression of ONECUT2/FGF2 or ONECUT2/ACLY exhibited the worst prognosis. In addition, FGF2 upregulated ONECUT2 expression through the FGFR1/ERK/ELK1 pathway, which formed an FGF2-FGFR1-ONECUT2 positive feedback loop. Knockdown of ONECUT2 inhibited FGF2-induced HCC metastasis. Furthermore, the combination of FGFR1 inhibitor PD173074 with ACLY inhibitor ETC-1002 markedly suppressed ONECUT2-mediated HCC metastasis. In summary, ONECUT2 was a potential prognostic biomarker in HCC and targeting this oncogenic signaling pathway may provide an efficient therapeutic strategy against HCC metastasis.
Collapse
Affiliation(s)
- Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
11
|
Kerever A, Arikawa-Hirasawa E. Optimal Extracellular Matrix Niches for Neurogenesis: Identifying Glycosaminoglycan Chain Composition in the Subventricular Neurogenic Zone. Front Neuroanat 2021; 15:764458. [PMID: 34671246 PMCID: PMC8520954 DOI: 10.3389/fnana.2021.764458] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
In the adult mammalian brain, new neurons are generated in a restricted region called the neurogenic niche, which refers to the specific regulatory microenvironment of neural stem cells (NSCs). Among the constituents of neurogenic niches, the extracellular matrix (ECM) has emerged as a key player in NSC maintenance, proliferation, and differentiation. In particular, heparan sulfate (HS) proteoglycans are capable of regulating various growth factor signaling pathways that influence neurogenesis. In this review, we summarize our current understanding of the ECM niche in the adult subventricular zone (SVZ), with a special focus on basement membrane (BM)-like structures called fractones, and discuss how fractones, particularly their composition of glycosaminoglycans (GAGs), may influence neurogenesis.
Collapse
Affiliation(s)
- Aurelien Kerever
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Luo X, Campbell NA, He L, O’Brien DR, Singer MS, Lemjabbar-Alaoui H, Ahn KS, Smoot R, Torbenson MS, Rosen SD, Roberts LR. Sulfatase 2 (SULF2) Monoclonal Antibody 5D5 Suppresses Human Cholangiocarcinoma Xenograft Growth Through Regulation of a SULF2-Platelet-Derived Growth Factor Receptor Beta-Yes-Associated Protein Signaling Axis. Hepatology 2021; 74:1411-1428. [PMID: 33735525 PMCID: PMC9075007 DOI: 10.1002/hep.31817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Existing therapeutic approaches to treat cholangiocarcinoma (CCA) have limited effectiveness, prompting further study to develop therapies for CCA. We report a mechanistic role for the heparan sulfate editing enzyme sulfatase 2 (SULF2) in CCA pathogenesis. APPROACH AND RESULTS In silico analysis revealed elevated SULF2 expression in human CCA samples, occurring partly through gain of SULF2 copy number. We examined the effects of knockdown or overexpression of SULF2 on tumor growth, chemoresistance, and signaling pathway activity in human CCA cell lines in vitro. Up-regulation of SULF2 in CCA leads to increased platelet-derived growth factor receptor beta (PDGFRβ)-Yes-associated protein (YAP) signaling activity, promoting tumor growth and chemotherapy resistance. To explore the utility of targeting SULF2 in the tumor microenvironment for CCA treatment, we tested an anti-SULF2 mouse monoclonal antibody, 5D5, in a mouse CCA xenograft model. Targeting SULF2 by monoclonal antibody 5D5 inhibited PDGFRβ-YAP signaling and tumor growth in the mouse xenograft model. CONCLUSIONS These results suggest that SULF2 monoclonal antibody 5D5 or related agents may be potentially promising therapeutic agents in CCA.
Collapse
Affiliation(s)
- Xin Luo
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nellie A. Campbell
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Li He
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States,Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daniel R. O’Brien
- Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Mark S. Singer
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Hassan Lemjabbar-Alaoui
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Keun Soo Ahn
- Department of Surgery, Keimyung University School of Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Rory Smoot
- Department of Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Michael S. Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Steven D. Rosen
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States,Corresponding author: Lewis R Roberts, MB ChB, PhD, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States; Tel: +1-507-266-3239; Fax: +1-507-284-0762:
| |
Collapse
|
13
|
Kerever A, Nagahara F, Keino-Masu K, Masu M, van Kuppevelt TH, Vivès RR, Arikawa-Hirasawa E. Regulation of fractone heparan sulfate composition in young and aged subventricular zone neurogenic niches. Glycobiology 2021; 31:1531-1542. [PMID: 34324645 DOI: 10.1093/glycob/cwab081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 11/14/2022] Open
Abstract
Fractones, specialized extracellular matrix structures found in the subventricular zone (SVZ) neurogenic niche, can capture growth factors, such as basic fibroblast growth factor, from the extracellular milieu through a heparin-binding mechanism for neural stem cell presentation, which promotes neurogenesis. During aging, a decline in neurogenesis correlates with a change in the composition of heparan sulfate (HS) within fractones. In this study, we used antibodies that recognize specific short oligosaccharides with varying sulfation to evaluate the HS composition in fractones in young and aged brains. To further understand the conditions that regulate 6-O sulfation levels and its impact on neurogenesis, we used endosulfatase Sulf1 and Sulf2 double knock out (DKO) mice. Fractones in the SVZ of Sulf1/2 DKO mice showed immunoreactivity for the HS epitope, suggesting higher 6-O sulfation. While neurogenesis declined in the aged SVZ of both WT and Sulf1/2 DKO mice, we observed a larger number of neuroblasts in the young and aged SVZ of Sulf1/2 DKO mice. Together, these results show that the removal of 6-O-sulfation in fractones HS by endosulfatases inhibits neurogenesis in the SVZ. Our findings advance the current understanding regarding the extracellular environment that is best suited for neural stem cells to thrive, which is critical for the design of future stem cell therapies.
Collapse
Affiliation(s)
- Aurelien Kerever
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumina Nagahara
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuko Keino-Masu
- Department of Molecular Neurobiology, Faculty of Medicine, University of Tsukuba
| | - Masayuki Masu
- Department of Molecular Neurobiology, Faculty of Medicine, University of Tsukuba
| | - Toin H van Kuppevelt
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Romain R Vivès
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Furini S, Falciani C. Expression and Role of Heparan Sulfated Proteoglycans in Pancreatic Cancer. Front Oncol 2021; 11:695858. [PMID: 34249755 PMCID: PMC8267412 DOI: 10.3389/fonc.2021.695858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer is a lethal condition with poor outcomes and an increasing incidence. The unfavourable prognosis is due to the lack of early symptoms and consequent late diagnosis. An effective method for the early diagnosis of pancreatic cancer is therefore sought by many researchers in the field. Heparan sulfated proteoglycan-related genes are often expressed differently in tumors than in normal tissues. Alteration of the tumor microenvironment is correlated with the ability of heparan sulfated proteoglycans to bind cytokines and growth factors and eventually to influence tumor progression. Here we discuss the importance of glypicans, syndecans, perlecan and extracellular matrix modifying enzymes, such as heparanases and sulfatases, as potential diagnostics in pancreatic cancer. We also ran an analysis on a multidimensional cancer genomics database for heparan sulfated proteoglycan-related genes, and report altered expression of some of them.
Collapse
Affiliation(s)
- Simone Furini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
15
|
Zeng F, Liu Y, Ouyang Q, Sun Z, Zhang K, Li X, Liu Y. Rs3802278 in 3'-UTR of SULF1 associated with platinum resistance and survival in Chinese epithelial ovarian cancer patients. J Chemother 2021; 33:564-569. [PMID: 34029511 DOI: 10.1080/1120009x.2021.1913702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ovarian cancer is the leading cause of death from gynecologic cancers, but platinum resistance remains a major obstacle in the chemotherapy of ovarian cancer. This study aims to examine the role of polymorphisms in sulfatase 1 (SULF1) in platinum resistance and survival in advanced epithelial ovarian cancer (EOC) patients. We genotyped 12 SNPs of SULF1 in 195 EOC patients treated with platinum using MassARRAY method and evaluated the association between the SNPs and platinum response. SULF1 rs3802278 was marginal significantly associated with platinum resistance in recessive model with p value of 0.055. The patients with SULF1 rs3802278 AA were more resistant to platinum-based chemotherapy comparing to those with AG/GG genotype (OR: 2.317, 95%CI: 0.982 ∼ 5.465). In survival analysis, rs3802278 was significantly associated with both of PFS and OS after adjusted by FIGO stage and age. Patients with AA genotypes showed a shorter PFS and OS than with AG/GG genotypes (median PFS: 15 months vs. 21 months, p = 0.010, HR = 1.876, 95%CI: 1.165-3.022; median OS: 42 months vs. 73 months, p = 0.031, HR = 1.928, 95%CI: 1.061-3.504). SULF1 rs3802278 may serve as a potential candidate biomarker for the prediction of platinum resistance and prognosis in Chinese EOC patients.
Collapse
Affiliation(s)
- Feiyue Zeng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P. R. China
| | - Qianying Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P. R. China
| | - Zeen Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P. R. China
| | - Keqiang Zhang
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P. R. China
| | - Yingzi Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P. R. China
| |
Collapse
|
16
|
Yang YW, Phillips JJ, Jablons DM, Lemjabbar-Alaoui H. Development of novel monoclonal antibodies and immunoassays for sensitive and specific detection of SULF1 endosulfatase. Biochim Biophys Acta Gen Subj 2020; 1865:129802. [PMID: 33276062 DOI: 10.1016/j.bbagen.2020.129802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cell-surface heparan sulfate proteoglycans (HSPGs) function as receptors or co-receptors for ligand binding and mediate the transmission of critical extracellular signals into cells. The complex and dynamic modifications of heparan sulfates on the core proteins are highly regulated to achieve precise signaling transduction. Extracellular endosulfatase Sulf1 catalyzes the removal of 6-O sulfation from HSPGs and thus regulates signaling mediated by 6-O sulfation on HSPGs. The expression of Sulf1 is altered in many cancers. Further studies are needed to clarify Sulf1 role in tumorigenesis, and new tools that can expand our knowledge in this field are required. METHODS We have developed and validated novel SULF1 monoclonal antibodies (mAbs). The isotype and subclass for each of these antibodies were determined. These antibodies provide invaluable reagents to assess SULF1- tissue and blood levels by immunohistochemistry and ELISA assays, respectively. RESULTS This study reports novel mAbs and immunoassays developed for sensitive and specific human Sulf1 protein detection. Using these SULF1 mAbs, we developed an ELISA assay to investigate whether blood-derived SULF1 may be a useful biomarker for detecting cancer early. Furthermore, we have demonstrated the utility of these antibodies for Sulf1 protein detection, localization, and quantification in biospecimens using various immunoassays. CONCLUSIONS This study describes novel Sulf1 mAbs suitable for various immunoassays, including Western blot analysis, ELISA, and immunohistochemistry, which can help understand Sulf1 pathophysiological role. GENERAL SIGNIFICANCE New tools to assess and clarify SULF1 role in tumorigenesis are needed. Our novel Sulf1 mAbs and immunoassays assay may have utility for such application.
Collapse
Affiliation(s)
- Yi-Wei Yang
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Departments of Neurological Surgery and Pathology, University of California San Francisco, San Francisco, CA, USA
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hassan Lemjabbar-Alaoui
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 2020; 11:5120. [PMID: 33037194 PMCID: PMC7547708 DOI: 10.1038/s41467-020-18794-x] [Citation(s) in RCA: 1256] [Impact Index Per Article: 251.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tissues are dynamically shaped by bidirectional communication between resident cells and the extracellular matrix (ECM) through cell-matrix interactions and ECM remodelling. Tumours leverage ECM remodelling to create a microenvironment that promotes tumourigenesis and metastasis. In this review, we focus on how tumour and tumour-associated stromal cells deposit, biochemically and biophysically modify, and degrade tumour-associated ECM. These tumour-driven changes support tumour growth, increase migration of tumour cells, and remodel the ECM in distant organs to allow for metastatic progression. A better understanding of the underlying mechanisms of tumourigenic ECM remodelling is crucial for developing therapeutic treatments for patients. Tumors are more than cancer cells — the extracellular matrix is a protein structure that organizes all tissues and is altered in cancer. Here, the authors review recent progress in understanding how the cancer cells and tumor-associated stroma cells remodel the extracellular matrix to drive tumor growth and metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA.
| | - Abisola Abisoye-Ogunniyan
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Kevin J Metcalf
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Zena Werb
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
18
|
Du J, Yang J, Meng L. Screening and Identification of Differentially Expressed Genes Between Diabetic Nephropathy Glomerular and Normal Glomerular via Bioinformatics Technology. Comb Chem High Throughput Screen 2020; 24:645-655. [PMID: 32954999 DOI: 10.2174/1386207323999200821163314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes is a chronic metabolic disease characterized by disorders of glucose and lipid metabolism. Its most serious microvascular complication is diabetic nephropathy (DN), which is characterized by varying degrees of proteinuria and progressive glomerulosclerosis, eventually progressing to end-stage renal failure. OBJECTIVE The aim of this research is to identify hub genes that might serve as genetic markers to enhance the diagnosis, treatment, and prognosis of DN. METHODS The procedures of the study include access to public data, identification of differentially expressed genes (DEGs) by GEO2R, and functional annotation of DEGs using enrichment analysis. Subsequently, the construction of the protein-protein interaction (PPI) network and identification of significant modules were performed. Finally, the hub genes were identified and analyzed, including clustering analysis, Pearson's correlation coefficient analysis, and multivariable linear regression analysis. RESULTS Between the GSE30122 and GSE1009 datasets, a total of 142 DEGs were identified, which were mainly enriched in cell migration, platelet activation, glomerulus development, glomerular basement membrane development, focal adhesion, regulation of actin cytoskeleton, and the PI3K-AKT signaling pathway. The PPI network was composed of 205 edges and 142 nodes. A total of 10 hub genes (VEGFA, NPHS1, WT1, PODXL, TJP1, FYN, SULF1, ITGA3, COL4A3, and FGF1) were identified from the PPI network. CONCLUSION The DEGs between DN and control glomeruli samples may be involved in the occurrence and development of DN. It was speculated that hub genes might be important inhibitory genes in the pathogenesis of diabetic nephropathy, therefore, they are expected to become the new gene targets for the treatment of DN.
Collapse
Affiliation(s)
- Junjie Du
- Nephrology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Jihong Yang
- Nephrology Department, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Lingbing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing 100730, China
| |
Collapse
|
19
|
Brasil da Costa FH, Lewis MS, Truong A, Carson DD, Farach-Carson MC. SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models. PLoS One 2020; 15:e0230354. [PMID: 32413029 PMCID: PMC7228113 DOI: 10.1371/journal.pone.0230354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022] Open
Abstract
Bone marrow stroma influences metastatic prostate cancer (PCa) progression, latency, and recurrence. At sites of PCa bone metastasis, cancer-associated fibroblasts and tumor-associated macrophages interact to establish a perlecan-rich desmoplastic stroma. As a heparan sulfate proteoglycan, perlecan (HSPG2) stores and stabilizes growth factors, including heparin-binding Wnt3A, a positive regulator of PCa cell growth. Because PCa cells alone do not induce CAF production of perlecan in the desmoplastic stroma, we sought to discover the sources of perlecan and its growth factor-releasing modifiers SULF1, SULF2, and heparanase in PCa cells and xenografts, bone marrow fibroblasts, and macrophages. SULF1, produced primarily by bone marrow fibroblasts, was the main glycosaminoglycanase present, a finding validated with primary tissue specimens of PCa metastases with desmoplastic bone stroma. Expression of both HSPG2 and SULF1 was concentrated in αSMA-rich stroma near PCa tumor nests, where infiltrating pro-tumor TAMs also were present. To decipher SULF1's role in the reactive bone stroma, we created a bone marrow biomimetic hydrogel incorporating perlecan, PCa cells, macrophages, and fibroblastic bone marrow stromal cells. Finding that M2-like macrophages increased levels of SULF1 and HSPG2 produced by fibroblasts, we examined SULF1 function in Wnt3A-mediated PCa tumoroid growth in tricultures. Comparing control or SULF1 knockout fibroblastic cells, we showed that SULF1 reduces Wnt3A-driven growth, cellularity, and cluster number of PCa cells in our 3D model. We conclude that SULF1 can suppress Wnt3A-driven growth signals in the desmoplastic stroma of PCa bone metastases, and SULF1 loss favors PCa progression, even in the presence of pro-tumorigenic TAMs.
Collapse
Affiliation(s)
- Fabio Henrique Brasil da Costa
- Biosciences Department, Rice University, Houston, TX, United States of America
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center School of Dentistry, Houston, TX, United States of America
| | - Michael S. Lewis
- Department of Pathology and Medicine, Cedars-Sinai Medical Center, West Hollywood, CA, United States of America
| | - Anna Truong
- Department of Chemistry, Rice University, Houston, TX, United States of America
| | - Daniel D. Carson
- Biosciences Department, Rice University, Houston, TX, United States of America
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Mary C. Farach-Carson
- Biosciences Department, Rice University, Houston, TX, United States of America
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center School of Dentistry, Houston, TX, United States of America
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| |
Collapse
|
20
|
Chen F, Zhang Z, Yu Y, Liu Q, Pu F. HSulf‑1 and palbociclib exert synergistic antitumor effects on RB‑positive triple‑negative breast cancer. Int J Oncol 2020; 57:223-236. [PMID: 32377705 PMCID: PMC7252455 DOI: 10.3892/ijo.2020.5057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Human sulfatase-1 (HSulf-1) is emerging as a novel prognostic biomarker in breast cancer. Previous studies demonstrated HSulf-1 to function as a negative regulator of cyclin D1 in breast cancer. Accumulating preclinical evidence is supporting the efficacy of cyclin-dependent kinase (CDK) 4/6 inhibitors against the luminal androgen receptor sub-type of triple-negative breast cancer (TNBC). It was therefore hypothesized that HSulf-1 may cooperate with CDK4/6 inhibitors to control cell cycle progression in breast cancer cells. HSulf-1 expression was found to be downregulated in TNBC tissues and cell lines compared with that in healthy tissues and non-breast cancer cell lines, respectively. High levels of HSulf-1 expression was also found to be associated with increased progression-free survival and overall survival in patients with TNBC. Functionally, it was demonstrated that HSulf-1 served as tumor suppressor in TNBC by inducing cell cycle arrest and apoptosis whilst inhibiting proliferation, epithelial-mesenchymal transition, migration and invasion. Subsequent overexpression of HSulf-1 coupled with treatment with the CDK4/6 inhibitor palbociclib exhibited a synergistic antitumor effect on retinoblastoma (RB)-positive TNBC. Further studies revealed the mechanism underlying this cooperative antiproliferative effect involved to be due to the prohibitive effects of HSulf-1 on the palbociclib-induced accumulation of cyclin D1 through AKT/STAT3 and ERK1/2/STAT3 signaling. Taken together, findings from the present study not only suggest that HSulf-1 may be a potential therapeutic target for TNBC, but also indicate that combinatorial treatment could be an alternative therapeutic option for RB-positive TNBC, which may open novel perspectives.
Collapse
Affiliation(s)
- Fengxia Chen
- Department of Medical Oncology, General Hospital of The Yangtze River Shipping, Wuhan Polytechnic University, Wuhan, Hubei 430010, P.R. China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yihan Yu
- Department of Pediatrics, The Third Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qiuyu Liu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
21
|
Lyu Y, Cheng Y, Wang B, Chen L, Zhao S. Sulfatase 1 expression in pancreatic cancer and its correlation with clinicopathological features and postoperative prognosis. Cancer Biomark 2018; 22:701-707. [PMID: 29843217 DOI: 10.3233/cbm-181210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Recent studies have shown that Sulfatase 1 (SULF1) plays a crucial role in the genesis, development, and progression of tumors. However, there have been few studies on the role of SULF1 in pancreatic cancer. OBJECTIVE The present study examined the differences in SULF1 expression levels between pancreatic cancer and normal tissues, and their correlation with the clinicopathological features and prognosis. METHODS A total of 65 pancreatic cancer samples were enrolled in this study. An immunohistochemical assay were used in this study. The relationship between SULF1 expression and clinicopathological features were tested using χ2 test or Fisher's exact test. The Kaplan-Meier method was used to calculate the cumulative survival rates of the patients. RESULTS The study showed that the SULF1 expression level was higher in pancreatic cancer tissues than in normal tissues. Analysis of the clinical and pathological data of patients revealed that high SULF1 expression was associated with later T, N, and TNM stages, higher CA19-9 levels, smaller tumor size, and poorer prognosis. CONCLUSIONS These findings suggested that SULF1 could be an indicator of the clinicopathological features and prognosis of pancreatic cancer.
Collapse
|
22
|
Heparan Sulfate Proteoglycans in Human Colorectal Cancer. Anal Cell Pathol (Amst) 2018; 2018:8389595. [PMID: 30027065 PMCID: PMC6031075 DOI: 10.1155/2018/8389595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide, accounting for more than 610,000 mortalities every year. Prognosis of patients is highly dependent on the disease stage at diagnosis. Therefore, it is crucial to investigate molecules involved in colorectal cancer tumorigenesis, with possible use as tumor markers. Heparan sulfate proteoglycans are complex molecules present in the cell membrane and extracellular matrix, which play vital roles in cell adhesion, migration, proliferation, and signaling pathways. In colorectal cancer, the cell surface proteoglycan syndecan-2 is upregulated and increases cell migration. Moreover, expression of syndecan-1 and syndecan-4, generally antitumor molecules, is reduced. Levels of glypicans and perlecan are also altered in colorectal cancer; however, their role in tumor progression is not fully understood. In addition, studies have reported increased heparan sulfate remodeling enzymes, as the endosulfatases. Therefore, heparan sulfate proteoglycans are candidate molecules to clarify colorectal cancer tumorigenesis, as well as important targets to therapy and diagnosis.
Collapse
|
23
|
Novikova MV, Khromova NV, Kopnin PB. Components of the Hepatocellular Carcinoma Microenvironment and Their Role in Tumor Progression. BIOCHEMISTRY (MOSCOW) 2017; 82:861-873. [PMID: 28941454 DOI: 10.1134/s0006297917080016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes recently published data on the mechanisms of tumor cell interaction with the tumor microenvironment. Tumor stroma influences the processes of hepatocarcinogenesis, epithelial-to-mesenchymal transition, invasion, and metastasis. The tumor microenvironment includes both cellular and noncellular components. Main cellular components of hepatocellular carcinoma (HCC) stroma are tumor-associated fibroblasts, hepatic stellate cells, immune cells, and endothelial cells that produce extracellular components of tumor microenvironment such as extracellular matrix, various proteins, proteolytic enzymes, growth factors, and cytokines. The noncellular components of the stroma modulate signaling pathways in tumor cells and stimulate invasion and metastasis. The tumor microenvironment composition and organization can serve as prognostic factors in HCC pathogenesis. Current approaches in HCC targeted therapy are aimed at creating efficient strategies for interrupting tumor interactions with the stroma. Recent data on the composition and role of the microenvironment in HCC pathogenesis, as well as new developments in antitumor drug design are discussed.
Collapse
Affiliation(s)
- M V Novikova
- Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, 115478, Russia.
| | | | | |
Collapse
|
24
|
Yamada T, Kerever A, Yoshimura Y, Suzuki Y, Nonaka R, Higashi K, Toida T, Mercier F, Arikawa-Hirasawa E. Heparan sulfate alterations in extracellular matrix structures and fibroblast growth factor-2 signaling impairment in the aged neurogenic niche. J Neurochem 2017; 142:534-544. [PMID: 28547849 DOI: 10.1111/jnc.14081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 01/06/2023]
Abstract
Adult neurogenesis in the subventricular zone of the lateral ventricle decreases with age. In the subventricular zone, the specialized extracellular matrix structures, known as fractones, contact neural stem cells and regulate neurogenesis. Fractones are composed of extracellular matrix components, such as heparan sulfate proteoglycans. We previously found that fractones capture and store fibroblast growth factor 2 (FGF-2) via heparan sulfate binding, and may deliver FGF-2 to neural stem cells in a timely manner. The heparan sulfate (HS) chains in the fractones of the aged subventricular zone are modified based on immunohistochemistry. However, how aging affects fractone composition and subsequent FGF-2 signaling and neurogenesis remains unknown. The formation of the FGF-fibroblast growth factor receptor-HS complex is necessary to activate FGF-2 signaling and induce the phosphorylation of extracellular signal-regulated kinase (Erk1/2). In this study, we observed a reduction in HS 6-O-sulfation, which is critical for FGF-2 signal transduction, and failure of the FGF-2-induced phosphorylation of Erk1/2 in the aged subventricular zone. In addition, we observed increased HS 6-O-endo-sulfatase, an enzyme that may be responsible for the HS modifications in aged fractones. In conclusion, the data revealed that heparan sulfate 6-O-sulfation is reduced and FGF-2-dependent Erk1/2 signaling is impaired in the aged subventricular zone. HS modifications in fractones might play a role in the reduced neurogenic activity in aging brains.
Collapse
Affiliation(s)
- Taihei Yamada
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aurelien Kerever
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Yoshimura
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuji Suzuki
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Nonaka
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyohei Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Frederic Mercier
- Department of Tropical Medicine and Infectious Diseases, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Wang X, Ding J, Feng Y, Weng L, Zhao G, Xiang J, Zhang M, Xing D. Targeting of growth factors in the treatment of hepatocellular carcinoma: The potentials of polysaccharides. Oncol Lett 2017; 13:1509-1517. [PMID: 28454283 DOI: 10.3892/ol.2017.5602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/19/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has become a leading cause of cancer-associated mortality worldwide and is thus of great concern. Although various chemotherapeutic drugs are currently used for the treatment of HCC, severe side effects associated with these treatments have prompted interest in novel therapies, including the use of certain biological macromolecules such as polysaccharides. Several studies have shown that polysaccharides have anticancer and antiproliferative effects on HCC. Vascular endothelial growth factor, transforming growth factor β, epidermal growth factor and fibroblast growth factor may be effective targets for polysaccharides and may modulate tumor growth and immunity through increasing the expression levels of cytokines. The present review focuses on the ways in which growth factors contribute to the development of HCC, and on the anti-growth factor activities of natural and synthetic polysaccharides, as well as their effect on proinflammatory cytokines.
Collapse
Affiliation(s)
- Xuan Wang
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jieyu Ding
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yuanyuan Feng
- Oncology Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| | - Lingling Weng
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Guangqiang Zhao
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jianfeng Xiang
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Minguang Zhang
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Dongwei Xing
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
26
|
The "in and out" of glucosamine 6-O-sulfation: the 6th sense of heparan sulfate. Glycoconj J 2016; 34:285-298. [PMID: 27812771 DOI: 10.1007/s10719-016-9736-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023]
Abstract
The biological properties of Heparan sulfate (HS) polysaccharides essentially rely on their ability to bind and modulate a multitude of protein ligands. These interactions involve internal oligosaccharide sequences defined by their sulfation patterns. Amongst these, the 6-O-sulfation of HS contributes significantly to the polysaccharide structural diversity and is critically involved in the binding of many proteins. HS 6-O-sulfation is catalyzed by 6-O-sulfotransferases (6OSTs) during biosynthesis, and it is further modified by the post-synthetic action of 6-O-endosulfatases (Sulfs), two enzyme families that remain poorly characterized. The aim of the present review is to summarize the contribution of 6-O-sulfates in HS structure/function relationships and to discuss the present knowledge on the complex mechanisms regulating HS 6-O-sulfation.
Collapse
|
27
|
Sulf1 and Sulf2 Differentially Modulate Heparan Sulfate Proteoglycan Sulfation during Postnatal Cerebellum Development: Evidence for Neuroprotective and Neurite Outgrowth Promoting Functions. PLoS One 2015; 10:e0139853. [PMID: 26448642 PMCID: PMC4598108 DOI: 10.1371/journal.pone.0139853] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022] Open
Abstract
Introduction Sulf1 and Sulf2 are cell surface sulfatases, which remove specific 6-O-sulfate groups from heparan sulfate (HS) proteoglycans, resulting in modulation of various HS-dependent signaling pathways. Both Sulf1 and Sulf2 knockout mice show impairments in brain development and neurite outgrowth deficits in neurons. Methodology and Main Findings To analyze the molecular mechanisms behind these impairments we focused on the postnatal cerebellum, whose development is mainly characterized by proliferation, migration, and neurite outgrowth processes of precursor neurons. Primary cerebellar granule cells isolated from Sulf1 or Sulf2 deficient newborns are characterized by a reduction in neurite length and cell survival. Furthermore, Sulf1 deficiency leads to a reduced migration capacity. The observed impairments in cell survival and neurite outgrowth could be correlated to Sulf-specific interference with signaling pathways, as shown for FGF2, GDNF and NGF. In contrast, signaling of Shh, which determines the laminar organization of the cerebellar cortex, was not influenced in either Sulf1 or Sulf2 knockouts. Biochemical analysis of cerebellar HS demonstrated, for the first time in vivo, Sulf-specific changes of 6-O-, 2-O- and N-sulfation in the knockouts. Changes of a particular HS epitope were found on the surface of Sulf2-deficient cerebellar neurons. This epitope showed a restricted localization to the inner half of the external granular layer of the postnatal cerebellum, where precursor cells undergo final maturation to form synaptic contacts. Conclusion Sulfs introduce dynamic changes in HS proteoglycan sulfation patterns of the postnatal cerebellum, thereby orchestrating fundamental mechanisms underlying brain development.
Collapse
|
28
|
Yu Z, Zhang W, Deng F. MicroRNA-577 inhibits gastric cancer growth by targeting E2F transcription factor 3. Oncol Lett 2015; 10:1447-1452. [PMID: 26622688 DOI: 10.3892/ol.2015.3390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 03/24/2015] [Indexed: 12/23/2022] Open
Abstract
The incidence and mortality rates of gastric cancer are one of the highest of all types of cancers. Emerging evidence has demonstrated that altered expression of micro (mi)RNAs may be implicated in the tumorigenesis of numerous types of cancer. Therefore, miRNAs may have potential as important tools in cancer diagnostics and therapeutics. miRNAs regulate the expression of genes involved in mediating cell proliferation and developmental timing, among numerous other processes. Altered expression levels of miRNAs may result in the ability of cells to proliferate aberrantly and migrate. The present study used reverse transcription-quantitative polymerase chain reaction assays to analyze miRNA-577 expression in gastric cancer tissues and cell lines, MTT and cell cycle analysis to examine cell proliferation in vitro, and luciferase assays and western blot to investigate miRNA-577's downstream targets. The results demonstrated that miRNA-577 was significantly downregulated in gastric cancer patient samples and cell lines. In addition, miRNA-577 affected an important regulator of E2F transcription factor 3 expression and that altered miRNA-577 expression resulted in the aberrant proliferation of gastric cancer cells.
Collapse
Affiliation(s)
- Zhanjiang Yu
- Department of General Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Wei Zhang
- Department of Endocrinology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Fengchun Deng
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
29
|
Li G, Li L, Tian F, Zhang L, Xue C, Linhardt RJ. Glycosaminoglycanomics of cultured cells using a rapid and sensitive LC-MS/MS approach. ACS Chem Biol 2015; 10:1303-10. [PMID: 25680304 DOI: 10.1021/acschembio.5b00011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosaminoglycans (GAGs), a family of polysaccharides widely distributed in eukaryotic cells, are responsible for a wide array of biological functions. Quantitative disaccharide compositional analysis is one of the primary ways to characterize the GAG structure. This structural analysis is typically time-consuming (1-2 weeks) and labor intensive, requiring GAG recovery and multistep purification, prior to the enzymatic/chemical digestion of GAGs, and finally their analysis. Moreover, 10(5)-10(7) cells are usually required for compositional analysis. We report a sensitive, rapid, and quantitative analysis of GAGs present in a small number of cells. Commonly studied cell lines were selected based on phenotypic properties related to the biological functions of GAGs. These cells were lysed using a commercial surfactant reagent, sonicated, and digested with polysaccharide lyases. The resulting disaccharides were recovered by centrifugal filtration, labeled with 2-aminoacridone, and analyzed by liquid chromatography (LC)-mass spectrometry (MS). Using a highly sensitive MS method, multiple reaction monitoring (MRM), the limit of detection for each disaccharide was reduced to 0.5-1.0 pg, as compared with 1.0-5.0 ng obtained using standard LC-MS analysis. Sample preparation time was reduced to 1-2 days, and the cell number required was reduced to 5000 cells for complete GAG characterization to as few as 500 cells for the characterization of the major GAG disaccharide components. Our survey of the glycosaminoglycanomes of the 20 selected cell lines reveals major differences in their GAG amounts and compositions. Structure-function relationships are explored using these data, suggesting the utility of this method in cellular glycobiology.
Collapse
Affiliation(s)
- Guoyun Li
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong 266003, China
- Department of Chemistry
and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lingyun Li
- Department of Chemistry
and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Wadsworth Center, New York State, Department of Health, Albany, New York 12201, United States
| | - Fang Tian
- American Type Culture Collection, Manassas, Virginia 20110, United States
| | - Linxia Zhang
- Biomedical
Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Changhu Xue
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong 266003, China
| | - Robert J. Linhardt
- Biomedical
Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Chemical and Biological
Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Biology,
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
30
|
Shire A, Lomberk G, Lai JP, Zou H, Tsuchiya N, Aderca I, Moser CD, Gulaid KH, Oseini A, Hu C, Warsame O, Jenkins RB, Roberts LR. Restoration of epigenetically silenced SULF1 expression by 5-aza-2-deoxycytidine sensitizes hepatocellular carcinoma cells to chemotherapy-induced apoptosis. ACTA ACUST UNITED AC 2015; 3:1-18. [PMID: 26236329 PMCID: PMC4520440 DOI: 10.1159/000375461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the second most frequent cause of cancer death worldwide. Sulfatase 1 (SULF1) functions as a tumor suppressor in HCC cell lines in vitro but also has an oncogenic effect in some HCCs in vivo. Aim The purpose of this study was to examine the mechanisms regulating SULF1 and its function in HCC. Methods First, SULF1 mRNA and protein expression were examined. Second, we examined SULF1 gene copy numbers in HCC cells. Third, we assessed whether DNA methylation or methylation and/or acetylation of histone marks on the promoter regulate SULF1 expression. Finally, we examined the effect of 5-aza-2′-deoxycytidine (5-Aza-dC) on sulfatase activity and drug-induced apoptosis. Results SULF1 mRNA was downregulated in nine of eleven HCC cell lines, but only in six of ten primary tumors. SULF1 mRNA correlated with protein expression. Gene copy number assessment by fluorescence in situ hybridization showed intact SULF1 alleles in low-SULF1-expressing cell lines. CpG island methylation in the SULF1 promoter and two downstream CpG islands did not show an inverse correlation between DNA methylation and SULF1 expression. However, chromatin immunoprecipitation showed that the SULF1 promoter acquires a silenced chromatin state in low-SULF1-expressing cells through an increase in di/trimethyl-K9H3 and trimethyl-K27H3 and a concomitant loss of activating acetyl K9, K14H3 marks. 5-Aza-dC restored SULF1 mRNA expression in SULF1-negative cell lines, with an associated increase in sulfatase activity and sensitization of HCC cells to cisplatin-induced apoptosis. Conclusion SULF1 gene silencing in HCC occurs through histone modifications on the SULF1 promoter. Restoration of SULF1 mRNA expression by 5-Aza-dC sensitized HCC cells to drug-induced apoptosis.
Collapse
Affiliation(s)
- Abdirashid Shire
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Gwen Lomberk
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Jin-Ping Lai
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Hongzhi Zou
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Norihiko Tsuchiya
- Department of Urology, Akita University School of Medicine, Akita 010-8543 Japan
| | - Ileana Aderca
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Catherine D Moser
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Kadra H Gulaid
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Abdul Oseini
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Chunling Hu
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Omar Warsame
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| | - Robert B Jenkins
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology College of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer Center, Rochester, MN, 55905 USA
| |
Collapse
|
31
|
Dhanasekaran R, Nakamura I, Hu C, Chen G, Oseini AM, Seven ES, Miamen AG, Moser CD, Zhou W, van Kuppevelt TH, van Deursen J, Mounajjed T, Fernandez-Zapico ME, Roberts LR. Activation of the transforming growth factor-β/SMAD transcriptional pathway underlies a novel tumor-promoting role of sulfatase 1 in hepatocellular carcinoma. Hepatology 2015; 61:1269-83. [PMID: 25503294 PMCID: PMC4376661 DOI: 10.1002/hep.27658] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/06/2014] [Indexed: 01/13/2023]
Abstract
UNLABELLED In vitro studies have proposed a tumor suppressor role for sulfatase 1 (SULF1) in hepatocellular carcinoma (HCC); however, high expression in human HCC has been associated with poor prognosis. The reason underlying this paradoxical observation remains to be explored. Using a transgenic (Tg) mouse model overexpressing Sulf1 (Sulf1-Tg), we assessed the effects of SULF1 on the diethylnitrosamine model of liver carcinogenesis. Sulf1-Tg mice show a higher incidence of large and multifocal tumors with diethylnitrosamine injection compared to wild-type mice. Lung metastases were found in 75% of Sulf1-Tg mice but not in wild-type mice. Immunohistochemistry, immunoblotting, and reporter assays all show a significant activation of the transforming growth factor-β (TGF-β)/SMAD transcriptional pathway by SULF1 both in vitro and in vivo. This effect of SULF1 on the TGF-β/SMAD pathway is functional; overexpression of SULF1 promotes TGF-β-induced gene expression and epithelial-mesenchymal transition and enhances cell migration/invasiveness. Mechanistic analyses demonstrate that inactivating mutation of the catalytic site of SULF1 impairs the above actions of SULF1 and diminishes the release of TGF-β from the cell surface. We also show that SULF1 expression decreases the interaction between TGF-β1 and its heparan sulfate proteoglycan sequestration receptor, TGFβR3. Finally, using gene expression from human HCCs, we show that patients with high SULF1 expression have poorer recurrence-free survival (hazard ratio 4.1, 95% confidence interval 1.9-8.3; P = 0.002) compared to patients with low SULF1. We also found strong correlations of SULF1 expression with TGF-β expression and with several TGF-β-related epithelial-mesenchymal transition genes in human HCC. CONCLUSION Our study proposes a novel role of SULF1 in HCC tumor progression through augmentation of the TGF-β pathway, thus defining SULF1 as a potential biomarker for tumor progression and a novel target for drug development for HCC.
Collapse
Affiliation(s)
| | - Ikuo Nakamura
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Chunling Hu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Gang Chen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905,Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Abdul M. Oseini
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Elif Sezin Seven
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Alexander G Miamen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Catherine D Moser
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| | - Wei Zhou
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | | | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Taofic Mounajjed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
32
|
Vicente CM, Lima MA, Nader HB, Toma L. SULF2 overexpression positively regulates tumorigenicity of human prostate cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:25. [PMID: 25887999 PMCID: PMC4374423 DOI: 10.1186/s13046-015-0141-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/26/2015] [Indexed: 01/06/2023]
Abstract
Background SULF2 is a 6-O-endosulfatase which removes 6-O sulfate residues from N-glucosamine present on heparan sulfate (HS). The sulfation pattern of HS influences signaling events mediated by heparan sulfate proteoglycans (HSPGs) located on cell surface, which are critical for the interactions with growth factors and their receptors. Alterations in SULF2 expression have been identified in the context of several cancer types but its function in cancer is still unclear where the precise molecular mechanism involved has not been fully deciphered. To further investigate SULF2 role in tumorigenesis, we overexpressed such gene in prostate cancer cell lines. Methods The normal prostate epithelial cell line RWPE-1 and the prostate cancer cells DU-145, and PC3 were transfected with SULF2-expressing plasmid pcDNA3.1/Myc-His(−)-Hsulf-2. Transfected cells were then submitted to viability, migration and colony formation assays. Results Transfection of DU-145 and PC3 prostate cancer cells with SULF2 resulted in increased viability, which did not occur with normal prostate cells. The effect was reverted by the knockdown of SULF2 using specific siRNAs. Furthermore, forced expression of SULF2 augmented cell migration and colony formation in both prostate cell lines. Detailed structural analysis of HS from cells overexpressing SULF2 showed a reduction of the trisulfated disaccharide UA(2S)-GlcNS(6S). There was an increase in epithelial-mesenchymal transition markers and an increase in WNT signaling pathway. Conclusions These results indicate that SULF2 have a pro-tumorigenic effect in DU-145 and PC3 cancer cells, suggesting an important role of this enzyme in prostatic cancer metastasis.
Collapse
Affiliation(s)
- Carolina M Vicente
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, UNIFESP, Rua Três de Maio, 100 - 4° andar, Vila Clementino, CEP 04044-020, São Paulo, SP, Brazil.
| | - Marcelo A Lima
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, UNIFESP, Rua Três de Maio, 100 - 4° andar, Vila Clementino, CEP 04044-020, São Paulo, SP, Brazil. .,Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Helena B Nader
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, UNIFESP, Rua Três de Maio, 100 - 4° andar, Vila Clementino, CEP 04044-020, São Paulo, SP, Brazil.
| | - Leny Toma
- Departamento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, UNIFESP, Rua Três de Maio, 100 - 4° andar, Vila Clementino, CEP 04044-020, São Paulo, SP, Brazil.
| |
Collapse
|
33
|
Abstract
Sulf-1 and Sulf-2 are endo-acting extracellular sulfatases. The Sulfs liberate 6-O sulfate groups, mainly from N, 6-O, and 2-O trisulfated disaccharides of heparan sulfate (HS)/heparin chains. The Sulfs have been shown to modulate the interaction of a number of protein ligands including growth factors and morphogens with HS/heparin and thus regulate the signaling of these ligands. They also play important roles in development and are dysregulated in many cancers. The establishment of the expression of the Sulfs and methods of assaying them has been desirable to investigate these enzymes. In this chapter, methods to express and purify recombinant Sulfs and to analyze HS structures in an extracellular fraction of HSulf-transfected HEK293 cells are described. The application of these enzymes for ex vivo degradation of an anti-HS epitope accumulated in the brain of a neurodegenerative disease model mouse is also described.
Collapse
Affiliation(s)
- Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan,
| |
Collapse
|
34
|
MiR-338-3p inhibits hepatocarcinoma cells and sensitizes these cells to sorafenib by targeting hypoxia-induced factor 1α. PLoS One 2014; 9:e115565. [PMID: 25531114 PMCID: PMC4274118 DOI: 10.1371/journal.pone.0115565] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/25/2014] [Indexed: 01/30/2023] Open
Abstract
Hypoxia is a common feature of solid tumors and an important contributor to anti-tumor drug resistance. Hypoxia inducible factor-1 (HIF-1) is one of the key mediators of the hypoxia signaling pathway, and was recently proven to be required for sorafenib resistance in hepatocarcinoma (HCC). MicroRNAs have emerged as important posttranslational regulators in HCC. It was reported that miR-338-3p levels are associated with clinical aggressiveness of HCC. However, the roles of miR-338-3p in HCC disease and resistance to its therapeutic drugs are unknown. In this study, we found that miR-338-3p was frequently down-regulated in 14 HCC clinical samples and five cell lines. Overexpression of miR-338-3p inhibited HIF-1α 3'-UTR luciferase activity and HIF-1α protein levels in HepG2, SMMC-7721, and Huh7 cells. miR-338-3p significantly reduced cell viability and induced cell apoptosis of HCC cells. Additionally, HIF-1α overexpression rescued and HIF-1α knock-down abrogated the anti-HCC activity of miR-338-3p. Furthermore, miR-338-3p sensitized HCC cells to sorafenib in vitro and in a HCC subcutaneous nude mice tumor model by inhibiting HIF-1α. Collectively, miR-338-3p inhibits HCC tumor growth and sensitizes HCC cells to sorafenib by down-regulating HIF-1α. Our data indicate that miR-338-3p could be a potential candidate for HCC therapeutics.
Collapse
|
35
|
Solari V, Borriello L, Turcatel G, Shimada H, Sposto R, Fernandez GE, Asgharzadeh S, Yates EA, Turnbull JE, DeClerck YA. MYCN-dependent expression of sulfatase-2 regulates neuroblastoma cell survival. Cancer Res 2014; 74:5999-6009. [PMID: 25164011 DOI: 10.1158/0008-5472.can-13-2513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Heparan sulfate proteoglycans (HSPG) play a critical role in the interaction of tumor cells and their microenvironment. HSPG activity is dictated by sulfation patterns controlled by sulfotransferases, which add sulfate groups, and sulfatases (Sulf), which remove 6-O-sulfates. Here, we report altered expression of these enzymes in human neuroblastoma cells with higher levels of Sulf-2 expression, a specific feature of MYCN-amplified cells (MYCN-A cells) that represent a particularly aggressive subclass. Sulf-2 overexpression in neuroblastoma cells lacking MYCN amplification (MYCN-NA cells) increased their in vitro survival. Mechanistic investigations revealed evidence of a link between Sulf-2 expression and MYCN pathogenicity in vitro and in vivo. Analysis of Sulf-2 protein expression in 65 human neuroblastoma tumors demonstrated a higher level of Sulf-2 expression in MYCN-A tumors than in MYCN-NA tumors. In two different patient cohorts, we confirmed the association in expression patterns of Sulf-2 and MYCN and determined that Sulf-2 overexpression predicted poor outcomes in a nonindependent manner with MYCN. Our findings define Sulf-2 as a novel positive regulator of neuroblastoma pathogenicity that contributes to MYCN oncogenicity. Cancer Res; 74(21); 5999-6009. ©2014 AACR.
Collapse
Affiliation(s)
- Valeria Solari
- Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom. Division of Hematology-Oncology, Department of Pediatrics, University of Southern California, Los Angeles, California. The Saban Research Institute of Children's Hospital, Los Angeles, California
| | - Lucia Borriello
- Division of Hematology-Oncology, Department of Pediatrics, University of Southern California, Los Angeles, California. The Saban Research Institute of Children's Hospital, Los Angeles, California
| | - Gianluca Turcatel
- The Saban Research Institute of Children's Hospital, Los Angeles, California
| | - Hiroyuki Shimada
- Department of Pathology, University of Southern California, Los Angeles, California
| | - Richard Sposto
- Division of Hematology-Oncology, Department of Pediatrics, University of Southern California, Los Angeles, California. Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - G Esteban Fernandez
- The Saban Research Institute of Children's Hospital, Los Angeles, California
| | - Shahab Asgharzadeh
- Division of Hematology-Oncology, Department of Pediatrics, University of Southern California, Los Angeles, California. Department of Pathology, University of Southern California, Los Angeles, California. Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Edwin A Yates
- Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jeremy E Turnbull
- Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | - Yves A DeClerck
- Division of Hematology-Oncology, Department of Pediatrics, University of Southern California, Los Angeles, California. The Saban Research Institute of Children's Hospital, Los Angeles, California. Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California.
| |
Collapse
|
36
|
Huang Y, Mao Y, Buczek-Thomas JA, Nugent MA, Zaia J. Oligosaccharide substrate preferences of human extracellular sulfatase Sulf2 using liquid chromatography-mass spectrometry based glycomics approaches. PLoS One 2014; 9:e105143. [PMID: 25127119 PMCID: PMC4134258 DOI: 10.1371/journal.pone.0105143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/09/2014] [Indexed: 12/25/2022] Open
Abstract
Sulfs are extracellular endosulfatases that selectively remove the 6-O-sulfate groups from cell surface heparan sulfate (HS) chain. By altering the sulfation at these particular sites, Sulfs function to remodel HS chains. As a result of the remodeling activity, HSulf2 regulates a multitude of cell-signaling events that depend on interactions between proteins and HS. Previous efforts to characterize the substrate specificity of human Sulfs (HSulfs) focused on the analysis of HS disaccharides and synthetic repeating units. In this study, we characterized the substrate preferences of human HSulf2 using HS oligosaccharides with various lengths and sulfation degrees from several naturally occurring HS sources by applying liquid chromatography mass spectrometry based glycomics methods. The results showed that HSulf2 preferentially digests highly sulfated HS oligosaccharides with zero acetyl groups and this preference is length dependent. In terms of length of oligosaccharides, HSulf2 digestion induced more sulfation decrease on DP6 (DP: degree of polymerization) compared to DP2, DP4 and DP8. In addition, the HSulf2 preferentially digests the oligosaccharide domain located at the non-reducing end (NRE) of the HS and heparin chain. In addition, the HSulf2 digestion products were altered only for specific isomers. HSulf2 treated NRE oligosaccharides also showed greater decrease in cell proliferation than those from internal domains of the HS chain. After further chromatographic separation, we identified the three most preferred unsaturated hexasaccharide for HSulf2.
Collapse
Affiliation(s)
- Yu Huang
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yang Mao
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jo Ann Buczek-Thomas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew A. Nugent
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Hammond E, Khurana A, Shridhar V, Dredge K. The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics. Front Oncol 2014; 4:195. [PMID: 25105093 PMCID: PMC4109498 DOI: 10.3389/fonc.2014.00195] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are an integral and dynamic part of normal tissue architecture at the cell surface and within the extracellular matrix. The modification of HSPGs in the tumor microenvironment is known to result not just in structural but also functional consequences, which significantly impact cancer progression. As substrates for the key enzymes sulfatases and heparanase, the modification of HSPGs is typically characterized by the degradation of heparan sulfate (HS) chains/sulfation patterns via the endo-6-O-sulfatases (Sulf1 and Sulf2) or by heparanase, an endo-glycosidase that cleaves the HS polymers releasing smaller fragments from HSPG complexes. Numerous studies have demonstrated how these enzymes actively influence cancer cell proliferation, signaling, invasion, and metastasis. The activity or expression of these enzymes has been reported to be modified in a variety of cancers. Such observations are consistent with the degradation of normal architecture and basement membranes, which are typically compromised in metastatic disease. Moreover, recent studies elucidating the requirements for these proteins in tumor initiation and progression exemplify their importance in the development and progression of cancer. Thus, as the influence of the tumor microenvironment in cancer progression becomes more apparent, the focus on targeting enzymes that degrade HSPGs highlights one approach to maintain normal tissue architecture, inhibit tumor progression, and block metastasis. This review discusses the role of these enzymes in the context of the tumor microenvironment and their promise as therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Keith Dredge
- Progen Pharmaceuticals Ltd. , Brisbane, QLD , Australia
| |
Collapse
|
38
|
Gill RMS, Michael A, Westley L, Kocher HM, Murphy JI, Dhoot GK. SULF1/SULF2 splice variants differentially regulate pancreatic tumour growth progression. Exp Cell Res 2014; 324:157-71. [PMID: 24726914 DOI: 10.1016/j.yexcr.2014.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 12/14/2022]
Abstract
This study highlights the highly dynamic nature of SULF1/SULF2 splice variants in different human pancreatic cancers that regulate the activities of multiple cell signalling pathways in development and disease. Most pancreatic tumours expressed variable levels of both SULF1 and SULF2 variants including some expression during inflammation and pancreatitis. Many ductal and centro-acinar cell-derived pancreatic tumours are known to evolve into lethal pancreatic ductal adenocarcinomas but the present study also detected different stages of such tumour progression in the same tissue biopsies of not only acinar cell origin but also islet cell-derived cancers. The examination of caerulein-induced pancreatic injury and tumorigenesis in a Kras-driven mouse model confirmed the activation and gradual increase of SULF1/SULF2 variants during pancreatitis and tumorigenesis but with reduced levels in Stat3 conditional knockout mice with reduced inflammation. The significance of differential spatial and temporal patterns of specific SULF1/SULF2 splice variant expression during cancer growth became further apparent from their differential stimulatory or inhibitory effects on growth factor activities, tumour growth and angiogenesis not only during in vitro but also in vivo growth thus providing possible novel therapeutic targets.
Collapse
Affiliation(s)
- Roop M S Gill
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK
| | - Andreas Michael
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK
| | - Leah Westley
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts and the London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1M 6BQ, UK
| | - Joshua I Murphy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK
| | - Gurtej K Dhoot
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK.
| |
Collapse
|
39
|
Liu L, Ding F, Chen J, Wang B, Liu Z. hSulf-1 inhibits cell proliferation and migration and promotes apoptosis by suppressing stat3 signaling in hepatocellular carcinoma. Oncol Lett 2014; 7:963-969. [PMID: 24944651 PMCID: PMC3961425 DOI: 10.3892/ol.2014.1848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/06/2013] [Indexed: 12/29/2022] Open
Abstract
Human sulfatase-1 (hSulf-1) has been shown to desulfate cellular heparin sulfate proteoglycans and modulate several growth factors and cytokines. However, hSulf-1 has not been previously shown to mediate the signal transducer and activator of transcription 3 (stat3) signaling pathway, which is known to regulate cell proliferation, motility and apoptosis. The present study investigated the role of hSulf-1 in stat3 signaling in hepatocellular cancer. hSulf-1 expression vector and stat3 small interfering RNA (siRNA) were constructed to control the expression of hSulf-1 and stat3 in HepG2 cells. hSulf-1 was found to inhibit the phosphorylation of stat3 and downregulate its targeted protein. MTT and Transwell chamber assays, as well as Annexin V/propidium iodide double-staining methods, were used to examine the effects of hSulf-1 on stat3-mediated motility, proliferation and apoptosis in HepG2 cells. Transfection with hSulf-1 cDNA and/or stat3 siRNA inhibited cell proliferation and motility, concurrent with G0/G1 and G2/M phase cell cycle arrest and apoptosis. Overall, the results of the current study suggested that hSulf-1 functions as a negative regulator of proliferation and migration and as a positive regulator of apoptosis in hepatocellular carcinoma, at least partly via the downregulation of stat3 signaling.
Collapse
Affiliation(s)
- Ling Liu
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Feng Ding
- Department of Clinical Laboratory, Wuhan Puai Hospital, Wuhan, Hubei 430033, P.R. China
| | - Jiwei Chen
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Boyong Wang
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhisu Liu
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
40
|
Vivès RR, Seffouh A, Lortat-Jacob H. Post-Synthetic Regulation of HS Structure: The Yin and Yang of the Sulfs in Cancer. Front Oncol 2014; 3:331. [PMID: 24459635 PMCID: PMC3890690 DOI: 10.3389/fonc.2013.00331] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/27/2013] [Indexed: 12/11/2022] Open
Abstract
Heparan sulfate (HS) is a complex polysaccharide that takes part in most major cellular processes, through its ability to bind and modulate a very large array of proteins. These interactions involve saccharide domains of specific sulfation pattern (S-domains), the assembly of which is tightly orchestrated by a highly regulated biosynthesis machinery. Another level of structural control does also take place at the cell surface, where degrading enzymes further modify HS post-synthetically. Amongst them are the Sulfs, a family of extracellular sulfatases (two isoforms in human) that catalyze the specific 6-O-desulfation of HS. By targeting HS functional sulfated domains, Sulfs dramatically alter its ligand binding properties, thereby modulating a broad range of signaling pathways. Consequently, Sulfs play major roles during development, as well as in tissue homeostasis and repair. Sulfs have also been associated with many pathologies including cancer, but despite increasing interest, the role of Sulfs in tumor development still remains unclear. Studies have been hindered by a poor understanding of the Sulf enzymatic activities and conflicting data have shown either anti-oncogenic or tumor-promoting effects of these enzymes, depending on the tumor models analyzed. These opposite effects clearly illustrate the fine tuning of HS functions by the Sulfs, and the need to clarify the mechanisms involved. In this review, we will detail the present knowledge on the structural and functional properties of the Sulfs, with a special focus on their implication during tumor progression. Finally, we will discuss attempts and perspectives of using the Sulfs as a biomarker of cancer prognosis and diagnostic and as a target for anti-cancer therapies.
Collapse
Affiliation(s)
- Romain R Vivès
- Université Grenoble-Alpes, Institut de Biologie Structurale , Grenoble , France ; CNRS, Institut de Biologie Structurale , Grenoble , France ; CEA, DSV, Institut de Biologie Structurale , Grenoble , France
| | - Amal Seffouh
- Université Grenoble-Alpes, Institut de Biologie Structurale , Grenoble , France ; CNRS, Institut de Biologie Structurale , Grenoble , France ; CEA, DSV, Institut de Biologie Structurale , Grenoble , France
| | - Hugues Lortat-Jacob
- Université Grenoble-Alpes, Institut de Biologie Structurale , Grenoble , France ; CNRS, Institut de Biologie Structurale , Grenoble , France ; CEA, DSV, Institut de Biologie Structurale , Grenoble , France
| |
Collapse
|
41
|
Zacharski LR, Hommann M, Kaufmann R. Rationale for clinical trials of coagulation: reactive drugs in hepatocellular carcinoma. Expert Rev Cardiovasc Ther 2014; 2:777-84. [PMID: 15350179 DOI: 10.1586/14779072.2.5.777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evidence for the regulation of cancer growth by components of the blood coagulation mechanism provides abundant opportunity for the development of novel hypotheses for the experimental treatment of malignancy. Information available on the heterogeneity in mechanisms of interaction between various cancer cell types, and procoagulant and fibrinolytic pathways, platelets, glycosaminoglycan-regulated growth factors and cell-adhesion molecules indicates that insightful clinical trial design may allow targeting of individual cancer cell types with agents capable of intercepting mechanisms of growth control that are relevant to specific tumor types. This paper reviews the evidence that the common anticoagulant, heparin, inhibits hepatocellular carcinoma cell proliferation and hepatocellular carcinoma tumor dissemination in experimental animals. Clinical trials of heparin performed to date have shown increased tumor response rates and survival in other tumor types. Expression of urokinase-type plasminogen activator by hepatocellular carcinoma cells enhances tumor cell proliferation, motility, invasiveness and metastatic dissemination. Inhibition of the urokinase-type plasminogen activator/plasmin system by protease inhibitors such as aprotinin (Trasylol, Bayer) have shown improvement in the clinical course of certain tumor types. These data suggest that drugs that are well-known in the field of vascular medicine may find a role in the treatment of hepatocellular carcinoma, a common tumor type that has resisted containment by other means.
Collapse
Affiliation(s)
- Leo R Zacharski
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, VA Medical Center, 215 North Main Street, White River Junction, Vermont 05009, USA.
| | | | | |
Collapse
|
42
|
Szatmári T, Dobra K. The role of syndecan-1 in cellular signaling and its effects on heparan sulfate biosynthesis in mesenchymal tumors. Front Oncol 2013; 3:310. [PMID: 24392351 PMCID: PMC3867677 DOI: 10.3389/fonc.2013.00310] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022] Open
Abstract
Proteoglycans (PGs) and in particular the syndecans are involved in the differentiation process across the epithelial-mesenchymal axis, principally through their ability to bind growth factors and modulate their downstream signaling. Malignant tumors have individual proteoglycan profiles, which are closely associated with their differentiation and biological behavior, mesenchymal tumors showing a different profile from that of epithelial tumors. Syndecan-1 is the main syndecan of epithelial malignancies, whereas in sarcomas its expression level is generally low, in accordance with their mesenchymal phenotype and highly malignant behavior. This proteoglycan is often overexpressed in adenocarcinoma cells, whereas mesothelioma and fibrosarcoma cells express syndecan-2 and syndecan-4 more abundantly. Increased expression of syndecan-1 in mesenchymal tumors changes the tumor cell morphology to an epithelioid direction whereas downregulation results in a change in shape from polygonal to spindle-like morphology. Although syndecan-1 plays major roles on the cell-surface, there are also intracellular functions, which are not very well studied. On the functional level, syndecan-1 affects mesenchymal tumor cell proliferation, adhesion, migration and motility, and the effect varies with the different domains of the core protein. Syndecan-1 may exert stimulatory or inhibitory effects, depending on the concentration of various mitogens, enzymes, and signaling molecules, the ratio between the shed and membrane-associated syndecan-1 and histological grade of the tumour. Growth factor signaling seems to be delicately controlled by regulatory loops involving the syndecan expression levels and their sulfation patterns. Overexpression of syndecan-1 modulates the biosynthesis and sulfation of heparan sulfate and it also affects the expression of other PGs. On transcriptomic level, syndecan-1 modulation results in profound effects on genes involved in regulation of cell growth.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
43
|
Zhang D, Wang Y, Dong L, Huang Y, Yuan J, Ben W, Yang Y, Ning N, Lu M, Guan Y. Therapeutic role of EF24 targeting glucose transporter 1-mediated metabolism and metastasis in ovarian cancer cells. Cancer Sci 2013; 104:1690-6. [PMID: 24112101 DOI: 10.1111/cas.12293] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/04/2023] Open
Abstract
Cancer cells require glucose to support their rapid growth through a process known as aerobic glycolysis, or the Warburg effect. As in ovarian cancer cells, increased metabolic activity and glucose concentration has been linked to aggressiveness of cancer. However, it is unclear as to whether targeting the glycolytic pathway may kill the malignant cells and likely have broad therapeutic implications against ovarian cancer metastasis. In the present research, we found that EF24, a HIF-1α inhibitor, could significantly block glucose uptake, the rate of glycolysis, and lactate production compared with vehicle treatment in SKOV-3, A2780 and OVCAR-3 cells. These results might possibly contribute to the further observation that EF24 could inhibit ovarian cancer cell migration and invasion from wound healing and Transwell assays. Furthermore, as an important mediator of glucose metabolism, glucose transporter 1 (Glut1) was found to contribute to the function of EF24 in both energy metabolism and metastasis. To examine the effect of EF24 and the mediated role of Glut1 in vivo in a xenograph subcutaneous tumor model, intraperitoneal metastasis and lung metastasis model were introduced. Our results indicated that EF24 treatment could inhibit tumor growth, intraperitoneal metastasis and lung metastasis of SKOV-3 cells, and Glut1 is a possible mediator for the role of EF24. In conclusion, our results highlight that an anti-cancer reagent with an inhibiting effect on energy metabolism could inhibit metastasis, and EF24 is a possible candidate for anti-metastasis therapeutic applications for ovarian cancer.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shen J, Wei J, Wang H, Yang Y, Yue G, Wang L, Yu L, Xie L, Sun X, Bian X, Zou Z, Qian X, Guan W, Liu B. SULF2 methylation is associated with in vitro cisplatin sensitivity and clinical efficacy for gastric cancer patients treated with a modified FOLFOX regimen. PLoS One 2013; 8:e75564. [PMID: 24124496 PMCID: PMC3790846 DOI: 10.1371/journal.pone.0075564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/14/2013] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Biomarkers capable of discriminating the patients who are likely to respond to certain chemotherapeutic agents could improve the clinical efficiency. The sulfatases(SULFs) play a critical role in the pathogenesis of a variety of human cancers. Here, we focused our investigation on the prognostic and predictive impact of SULF2 methylation in gastric cancer. METHODS Promoter CpG island methylation of SULF2 was analyzed in 100 gastric cancer samples. The in vitro sensitivity to cisplatin, docetaxel, gemcitabine, irinotecan and pemetrexed were determined by histoculture drug response assay(HDRA). Additionally, 56 gastric cancer patients treated with a modified FOLFOX regimen(biweekly oxaliplatin plus 5-FU and folinic acid) were retrospectively analyzed to further evaluate the prognostic and predictive impact of SULF2 methylation in gastric cancer. RESULTS Methylated SULF2(SULF2M) was detected in 28 patients, while the remaining 72 patients showed unmethylated SULF2(SULF2U, methylation rate: 28%). Samples with SULF2U were more sensitive to cisplatin than those with SULF2M(inhibition rate: 48.80% vs. 38.15%, P = 0.02), while samples with SULF2M were more sensitive to irinotecan than SULF2U(inhibition rate: 53.61% vs. 40.92%, P = 0.01). There were no association between SULF2 methylation and in vitro sensitivity to docetaxel, gemcitabine and pemetrexed. SULF2 methylation was found to have a significant association with cisplatin efficacy(SULF2M: 57.14%, SULF2U: 80.56%, P = 0.02) and irinotecan efficacy(SULF2M: 89.29%, SULF2U: 62.50%, P = 0.01). Among the 56 patients receiving the modified FOLFOX regimen, a significant association was observed between survival and SULF2 methylation status(SULF2M: 309 days, 95% CI = 236 to 382 days; SULF2U: 481 days, 95% CI = 418 to 490 days; P = 0.02). Multivariate analysis revealed that SULF2 methylation was an independent prognostic factor of overall survival in gastric cancer patients treated with platinum-based chemotherapy. CONCLUSION SULF2 methylation is negatively associated with cisplatin sensitivity in vitro. SULF2 methylation may be a novel prognostic biomarker for gastric cancer patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Jie Shen
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Jia Wei
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Hao Wang
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yang Yang
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Guofeng Yue
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Wang
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Lixia Yu
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Li Xie
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Xia Sun
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Xinyu Bian
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Zhengyun Zou
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoping Qian
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Wenxian Guan
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (WG); (BL)
| | - Baorui Liu
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (WG); (BL)
| |
Collapse
|
45
|
Kisiel JB, Li J, Zou H, Oseini AM, Strauss BB, Gulaid KH, Moser CD, Aderca I, Ahlquist DA, Roberts LR, Shire AM. Methylated Bone Morphogenetic Protein 3 (BMP3) Gene: Evaluation of Tumor Suppressor Function and Biomarker Potential in Biliary Cancer. JOURNAL OF MOLECULAR BIOMARKERS & DIAGNOSIS 2013; 4:1000145. [PMID: 25077038 PMCID: PMC4112127 DOI: 10.4172/2155-9929.1000145] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Although cholangiocarcinoma (CC) is an uncommon and highly lethal malignancy, early detection enables the application of potentially curative therapies and improves survival. Consequently, tools to improve the early diagnosis of CC are urgently needed. During a screen for genes epigenetically suppressed by methylation in CC that might serve as methylation markers for CC, we found that the BMP3 gene is methylated in CC cell lines, but the potential diagnostic value and the function of BMP3 in CC are unknown. METHODS We aimed to quantitatively assess BMP3 methylation in resected CC tumor specimens using methylation specific PCR and evaluate the tumor suppressor role of BMP3 in biliary cancer cell lines in comparison to an immortalized normal cholangiocyte cell line. Expression of BMP3 was quantified by mRNA levels before and after treatment with 5-Aza-2'-deoxycytidine and trichostatin A. After transfection with a BMP3-containing plasmid, cell viability was measured using the bromodeoxyuridine incorporation assay and apoptosis quantified by caspase assay. RESULTS In primary CC tumor tissue specimens significantly more methylated BMP3 copies were found when compared to matched benign bile duct epithelium from the same patient, with high specificity. BMP3 expression was absent in cell lines with BMP3 methylation; this suppression of BMP3 expression was reversed by treatment with a DNA demethylating agent and histone de-acetylase inhibitor. Transfection of a BMP3-expressing construct into a BMP3-negative biliary cancer cell line restored BMP3 mRNA expression and reduced cell proliferation and cell viability while increasing the rate of apoptosis. CONCLUSION These findings strongly support a tumor suppressor role for BMP3 in CC and suggest that BMP3 methylation may be a new biomarker for early detection of CCs. of the peptidome are also involved.
Collapse
Affiliation(s)
| | | | - Hongzhi Zou
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Abdul M Oseini
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Benjamin B Strauss
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Kadra H. Gulaid
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Catherine D Moser
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Ileana Aderca
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - David A Ahlquist
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| | - Abdirashid M Shire
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA
| |
Collapse
|
46
|
Cheng L, Zhang Q, Yang S, Yang Y, Zhang W, Gao H, Deng X, Zhang Q. A 4-gene panel as a marker at chromosome 8q in Asian gastric cancer patients. Genomics 2013; 102:323-30. [PMID: 23722107 DOI: 10.1016/j.ygeno.2013.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/04/2013] [Accepted: 05/20/2013] [Indexed: 12/13/2022]
Abstract
A widely held viewpoint is that the use of multiple markers, combined in some type of algorithm, will be necessary to provide high enough discrimination between diseased cases and non-diseased. We applied stepwise logistic regression analysis to identify the best combination of the 32 biomarkers at chromosome 8q on an independent public microarray test set of 80 paired gastric samples. A combination of SULF1, INTS8, ATP6V1C1, and GPR172A was identified with a prediction accuracy of 98.0% for discriminating carcinomas from adjacent noncancerous tissues in our previous 25 paired samples. Interestingly, the overexpression of SULF1 was associated with tumor invasion and metastasis. Function prediction analysis revealed that the 4-marker panel was mainly associated with acidification of intracellular compartments. Taken together, we found a 4-gene panel that accurately discriminated gastric carcinomas from adjacent noncancerous tissues and these results had potential clinical significance in the early diagnosis and targeted treatment of gastric cancer.
Collapse
Affiliation(s)
- Lei Cheng
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Engineering Center for Biochip at Shanghai, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bao L, Yan Y, Xu C, Ji W, Shen S, Xu G, Zeng Y, Sun B, Qian H, Chen L, Wu M, Su C, Chen J. MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett 2013; 337:226-36. [PMID: 23684551 DOI: 10.1016/j.canlet.2013.05.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/27/2013] [Accepted: 05/04/2013] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) have been believed to associate with malignant progression including cancer cell proliferation, apoptosis, differentiation, angiogenesis, invasion and metastasis. However, the functions of miRNAs are intricate, one miRNA can directly or indirectly target multiple genes and function as oncogene or tumor suppressor gene. In this study, we found that miR-21 inhibits PTEN and human sulfatase-1 (hSulf-1) expression in hepatocellular carcinoma (HCC) cells. The hSulf-1 is a heparin-degrading endosulfatase, which can inhibit the heparin binding growth factor-mediated signaling transduction into cells. Therefore, miR-21-mediated suppression of both hSulf-1 and PTEN led to activation of AKT/ERK pathways and epithelial-mesenchymal transition (EMT) in HCC cells, and finally enhance the activity of HCC cell proliferation and movement and promote HCC xenograft tumor growth in mouse models. These findings may provide candidate targets for prevention and treatment of HCC.
Collapse
Affiliation(s)
- Longlong Bao
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & Institute, Second Military Medical University, Shanghai 200438, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu CT, Zhu ST, Li P, Wang YJ, Zhang H, Zhang ST. SULF1 inhibits proliferation and invasion of esophageal squamous cell carcinoma cells by decreasing heparin-binding growth factor signaling. Dig Dis Sci 2013; 58:1256-63. [PMID: 23053899 DOI: 10.1007/s10620-012-2429-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/19/2012] [Indexed: 01/06/2023]
Abstract
BACKGROUND Heparin-binding growth factor signaling is involved in the pathogenesis and development of human cancers. It can be regulated by sulfation of cell-surface heparan sulfate proteoglycans (HSPG). SULF1 is a heparin-degrading endosulfatase which can modulate the sulfation of HSPGs. AIM The purpose of this study was to elucidate the role of SULF1 in modulating proliferation and invasion of esophageal squamous cell carcinoma (ESCC) by decreasing heparin-binding growth factor signaling. METHODS We restored SULF1 expression in the ESCC cell line KYSE150, and examined the effects of SULF1 expression on the proliferation and invasion of KYSE150 cells. In addition, we investigated the expression of SULF1 in human ESCC tissues and analyzed the correlation of SULF1 expression with clinicopathologic characteristics of ESCC. RESULTS Our study shows that re-expression of SULF1 in ESCC cell line results in the downregulation of hepatocyte growth factor-mediated activation of MAPK pathways with a resultant decrease in cell invasiveness. Cell proliferation was also inhibited in SULF1-transfected KYSE150 cells. Immunohistochemical assays reveal that SULF1 is expressed in nearly half of the human ESCC tissues but not in normal esophageal epithelial cells. SULF1 expression in human ESCC tissues is negatively correlated with tumor size and tumor invasion. CONCLUSION This study identified that SULF1 inhibits proliferation and invasion of ESCC by decreasing heparin-binding growth factor signaling and suggested that SULF1 plays an inhibiting role in the pathogenesis of ESCC.
Collapse
Affiliation(s)
- Chun-Tao Liu
- Department of Gastroenterology, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Yong An Road 95, Beijing, 100050, China
| | | | | | | | | | | |
Collapse
|
49
|
Dong HH, Xiang S, Liang HF, Li CH, Zhang ZW, Chen XP. The niche of hepatic cancer stem cell and cancer recurrence. Med Hypotheses 2013; 80:666-8. [DOI: 10.1016/j.mehy.2013.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 12/17/2022]
|
50
|
Liu H, Fu X, Ji W, Liu K, Bao L, Yan Y, Wu M, Yang J, Su C. Human sulfatase-1 inhibits the migration and proliferation of SMMC-7721 hepatocellular carcinoma cells by downregulating the growth factor signaling. Hepatol Res 2013; 43:516-25. [PMID: 22900980 DOI: 10.1111/j.1872-034x.2012.01080.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM The human sulfatase-1 (hSulf-1) gene regulates the sulfation of heparan sulfate proteoglycans (HSPG) and suppresses tumorigenesis and angiogenesis by inhibiting several growth factor signaling pathways. Because the serine-threonine protein kinase (AKT) and extracellular signal-regulated kinase (ERK) signaling pathways are critical in cell survival, proliferation, migration and angiogenesis, the possible correlation between hSulf-1 and AKT/ERK signaling in hepatocellular carcinoma (HCC) cells needs further exploration. METHODS Adenovirus Ad5-hSulf1 carrying the hSulf-1 gene, and vectors carrying hSulf-1 shRNA, AKT shRNA and ERK shRNA were constructed and used to manipulate the expression of hSulf-1, AKT and ERK in SMMC-7721 cells. The scarification test, transwell and 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide assays were used to examine the cellular migration and proliferation, and the expression of hSulf-1 and signaling factors, including the total and phosphorylated AKT and ERK, was analyzed by western blot in SMMC-7721 cells. RESULTS After infection with Ad5-hSulf1, the expression of hSulf-1 was increased with viral multiplicity of infection in SMMC-7721 cells. Compared with the control adenovirus Ad5-EGFP and blank control groups, cells in the Ad5-hSulf1 group were showed that the phosphorylation of AKT and ERK was decreased. Meanwhile, the cell migration and cell viability were obviously suppressed. CONCLUSION The expression of hSulf-1 mediated by adenovirus in HCC cells could downregulate the activity of AKT and ERK signaling pathways, and inhibit HCC cell migration and proliferation. The hSulf-1 gene may be considered as a candidate of antitumor factor for cancer gene therapy.
Collapse
Affiliation(s)
- Hu Liu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and Institute Department of Laparoscopic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|