1
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Sasaki M, Hara T, Wang JX, Zhou Y, Kennedy KV, Umeweni CN, Alston MA, Spergel ZC, Ishikawa S, Teranishi R, Nakagawa R, Mcmillan EA, Whelan KA, Karakasheva TA, Hamilton KE, Ruffner MA, Muir AB. Lysyl Oxidase Regulates Epithelial Differentiation and Barrier Integrity in Eosinophilic Esophagitis. Cell Mol Gastroenterol Hepatol 2024; 17:923-937. [PMID: 38340809 PMCID: PMC11026689 DOI: 10.1016/j.jcmgh.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS Epithelial disruption in eosinophilic esophagitis (EoE) encompasses both impaired differentiation and diminished barrier integrity. We have shown that lysyl oxidase (LOX), a collagen cross-linking enzyme, is up-regulated in the esophageal epithelium in EoE. However, the functional roles of LOX in the esophageal epithelium remains unknown. METHODS We investigated roles for LOX in the human esophageal epithelium using 3-dimensional organoid and air-liquid interface cultures stimulated with interleukin (IL)13 to recapitulate the EoE inflammatory milieu, followed by single-cell RNA sequencing, quantitative reverse-transcription polymerase chain reaction, Western blot, histology, and functional analyses of barrier integrity. RESULTS Single-cell RNA sequencing analysis on patient-derived organoids revealed that LOX was induced by IL13 in differentiated cells. LOX-overexpressing organoids showed suppressed basal and up-regulated differentiation markers. In addition, LOX overexpression enhanced junctional protein genes and transepithelial electrical resistance. LOX overexpression restored the impaired differentiation and barrier function, including in the setting of IL13 stimulation. Transcriptome analyses on LOX-overexpressing organoids identified an enriched bone morphogenetic protein (BMP) signaling pathway compared with wild-type organoids. In particular, LOX overexpression increased BMP2 and decreased the BMP antagonist follistatin. Finally, we found that BMP2 treatment restored the balance of basal and differentiated cells. CONCLUSIONS Our data support a model whereby LOX exhibits noncanonical roles as a signaling molecule important for epithelial homeostasis in the setting of inflammation via activation of the BMP pathway in the esophagus. The LOX/BMP axis may be integral in esophageal epithelial differentiation and a promising target for future therapies.
Collapse
Affiliation(s)
- Masaru Sasaki
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Takeo Hara
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joshua X Wang
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yusen Zhou
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kanak V Kennedy
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Chizoba N Umeweni
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maiya A Alston
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Zachary C Spergel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Satoshi Ishikawa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ryugo Teranishi
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ritsu Nakagawa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Emily A Mcmillan
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelly A Whelan
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Tatiana A Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melanie A Ruffner
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Amanda B Muir
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
3
|
Wu H, Mu C, Xu L, Yu K, Shen L, Zhu W. Host-microbiota interaction in intestinal stem cell homeostasis. Gut Microbes 2024; 16:2353399. [PMID: 38757687 PMCID: PMC11110705 DOI: 10.1080/19490976.2024.2353399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Intestinal stem cells (ISCs) play a pivotal role in gut physiology by governing intestinal epithelium renewal through the precise regulation of proliferation and differentiation. The gut microbiota interacts closely with the epithelium through myriad of actions, including immune and metabolic interactions, which translate into tight connections between microbial activity and ISC function. Given the diverse functions of the gut microbiota in affecting the metabolism of macronutrients and micronutrients, dietary nutrients exert pronounced effects on host-microbiota interactions and, consequently, the ISC fate. Therefore, understanding the intricate host-microbiota interaction in regulating ISC homeostasis is imperative for improving gut health. Here, we review recent advances in understanding host-microbiota immune and metabolic interactions that shape ISC function, such as the role of pattern-recognition receptors and microbial metabolites, including lactate and indole metabolites. Additionally, the diverse regulatory effects of the microbiota on dietary nutrients, including proteins, carbohydrates, vitamins, and minerals (e.g. iron and zinc), are thoroughly explored in relation to their impact on ISCs. Thus, we highlight the multifaceted mechanisms governing host-microbiota interactions in ISC homeostasis. Insights gained from this review provide strategies for the development of dietary or microbiota-based interventions to foster gut health.
Collapse
Affiliation(s)
- Haiqin Wu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Food Informatics, AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Laipeng Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Li Z, Wang T, Liu P, Huang Y. SpatialDM for rapid identification of spatially co-expressed ligand-receptor and revealing cell-cell communication patterns. Nat Commun 2023; 14:3995. [PMID: 37414760 PMCID: PMC10325966 DOI: 10.1038/s41467-023-39608-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Cell-cell communication is a key aspect of dissecting the complex cellular microenvironment. Existing single-cell and spatial transcriptomics-based methods primarily focus on identifying cell-type pairs for a specific interaction, while less attention has been paid to the prioritisation of interaction features or the identification of interaction spots in the spatial context. Here, we introduce SpatialDM, a statistical model and toolbox leveraging a bivariant Moran's statistic to detect spatially co-expressed ligand and receptor pairs, their local interacting spots (single-spot resolution), and communication patterns. By deriving an analytical null distribution, this method is scalable to millions of spots and shows accurate and robust performance in various simulations. On multiple datasets including melanoma, Ventricular-Subventricular Zone, and intestine, SpatialDM reveals promising communication patterns and identifies differential interactions between conditions, hence enabling the discovery of context-specific cell cooperation and signalling.
Collapse
Affiliation(s)
- Zhuoxuan Li
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Tianjie Wang
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong SAR, China
| | - Pentao Liu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China.
- Center for Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| | - Yuanhua Huang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China.
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong SAR, China.
- Center for Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
5
|
Bonjoch L, Fernandez-Rozadilla C, Alvarez-Barona M, Lopez-Novo A, Herrera-Pariente C, Amigo J, Bujanda L, Remedios D, Dacal A, Cubiella J, Balaguer F, Fernández-Bañares F, Carracedo A, Jover R, Castellvi-Bel S, Ruiz-Ponte C. BMPR2 as a Novel Predisposition Gene for Hereditary Colorectal Polyposis. Gastroenterology 2023; 165:162-172.e5. [PMID: 36907526 DOI: 10.1053/j.gastro.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND & AIMS Colorectal cancer (CRC) is one of the most prevalent tumors worldwide, with incidence quickly increasing (particularly in the context of early-onset cases), despite important prevention efforts, mainly in the form of population-wide screening programs. Although many cases present a clear familial component, the current list of hereditary CRC genes leaves a considerable proportion of the cases unexplained. METHODS In this work, we used whole-exome sequencing approaches on 19 unrelated patients with unexplained colonic polyposis to identify candidate CRC predisposition genes. The candidate genes were then validated in an additional series of 365 patients. CRISPR-Cas9 models were used to validate BMPR2 as a potential candidate for CRC risk. RESULTS We found 8 individuals carrying 6 different variants in the BMPR2 gene (approximately 2% of our cohort of patients with unexplained colonic polyposis). CRISPR-Cas9 models of 3 of these variants showed that the p.(Asn442Thrfs∗32) truncating variant completely abrogated BMP pathway function in a similar way to the BMPR2 knockout. Missense variants p.(Asn565Ser), p.(Ser967Pro) had varying effects on cell proliferation levels, with the former impairing cell control inhibition via noncanonical pathways. CONCLUSIONS Collectively, these results support loss-of-function BMPR2 variants as candidates to be involved in CRC germline predisposition.
Collapse
Affiliation(s)
- Laia Bonjoch
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ceres Fernandez-Rozadilla
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Miriam Alvarez-Barona
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Anael Lopez-Novo
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Cristina Herrera-Pariente
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Jorge Amigo
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Luis Bujanda
- Hospital Universitario de Donostia, Instituto Biodonostia, Universidad del Pais Vasco, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, San Sebastián, Spain
| | - David Remedios
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Ourense, Spain
| | - Andrés Dacal
- Department of Gastroenterology, Hospital Lucus Augusti, Lugo, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Joaquín Cubiella
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Ourense, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Bañares
- Hospital Universitari Mutua Terrassa, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas, Ourense, Madrid, Spain
| | - Angel Carracedo
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Rodrigo Jover
- Digestive Medicine Department, Instituto de Investigación Biomédica, Hospital General Universitario de Alicante, Departamento de Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
| | - Sergi Castellvi-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas, Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Clara Ruiz-Ponte
- Instituto de Investigacion Sanitaria de Santiago, Grupo de Medicina Xenomica, Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.
| |
Collapse
|
6
|
Xie Z, Zhou G, Zhang M, Han J, Wang Y, Li X, Wu Q, Li M, Zhang S. Recent developments on BMPs and their antagonists in inflammatory bowel diseases. Cell Death Discov 2023; 9:210. [PMID: 37391444 DOI: 10.1038/s41420-023-01520-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Inflammatory bowel diseases (IBDs), including ulcerative colitis, and Crohn's disease, are intestinal disorders characterized by chronic relapsing inflammation. A large proportion of patients with IBD will progress to develop colitis-associated colorectal cancer due to the chronic intestinal inflammation. Biologic agents that target tumour necrosis factor-α, integrin α4β7, and interleukin (IL)12/23p40 have been more successful than conventional therapies in treating IBD. However, drug intolerance and loss of response are serious drawbacks of current biologics, necessitating the development of novel drugs that target specific pathways in IBD pathogenesis. One promising group of candidate molecules are bone morphogenetic proteins (BMPs), members of the TGF-β family involved in regulating morphogenesis, homeostasis, stemness, and inflammatory responses in the gastrointestinal tract. Also worth examining are BMP antagonists, major regulators of these proteins. Evidence has shown that BMPs (especially BMP4/6/7) and BMP antagonists (especially Gremlin1 and follistatin-like protein 1) play essential roles in IBD pathogenesis. In this review, we provide an updated overview on the involvement of BMPs and BMP antagonists in IBD pathogenesis and in regulating the fate of intestinal stem cells. We also described the expression patterns of BMPs and BMP antagonists along the intestinal crypt-villus axis. Lastly, we synthesized available research on negative regulators of BMP signalling. This review summarizes recent developments on BMPs and BMP antagonists in IBD pathogenesis, which provides novel insights into future therapeutic strategies.
Collapse
Affiliation(s)
- Zhuo Xie
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gaoshi Zhou
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Mudan Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jing Han
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ying Wang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoling Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qirui Wu
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Manying Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.
| |
Collapse
|
7
|
Lin M, Hartl K, Heuberger J, Beccaceci G, Berger H, Li H, Liu L, Müllerke S, Conrad T, Heymann F, Woehler A, Tacke F, Rajewsky N, Sigal M. Establishment of gastrointestinal assembloids to study the interplay between epithelial crypts and their mesenchymal niche. Nat Commun 2023; 14:3025. [PMID: 37230989 DOI: 10.1038/s41467-023-38780-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
The cellular organization of gastrointestinal crypts is orchestrated by different cells of the stromal niche but available in vitro models fail to fully recapitulate the interplay between epithelium and stroma. Here, we establish a colon assembloid system comprising the epithelium and diverse stromal cell subtypes. These assembloids recapitulate the development of mature crypts resembling in vivo cellular diversity and organization, including maintenance of a stem/progenitor cell compartment in the base and their maturation into secretory/absorptive cell types. This process is supported by self-organizing stromal cells around the crypts that resemble in vivo organization, with cell types that support stem cell turnover adjacent to the stem cell compartment. Assembloids that lack BMP receptors either in epithelial or stromal cells fail to undergo proper crypt formation. Our data highlight the crucial role of bidirectional signaling between epithelium and stroma, with BMP as a central determinant of compartmentalization along the crypt axis.
Collapse
Affiliation(s)
- Manqiang Lin
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Kimberly Hartl
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Julian Heuberger
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Giulia Beccaceci
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Hilmar Berger
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Hao Li
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Lichao Liu
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Stefanie Müllerke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Thomas Conrad
- Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Core Facility Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Felix Heymann
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115, Berlin, Germany.
| |
Collapse
|
8
|
Sasaki M, Hara T, Wang JX, Zhou Y, Kennedy KV, Umeweni NN, Alston MA, Spergel ZC, Nakagawa R, Mcmillan EA, Whelan KA, Karakasheva TA, Hamilton KE, Ruffner MA, Muir AB. Lysyl oxidase regulates epithelial differentiation and barrier integrity in eosinophilic esophagitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534387. [PMID: 37034590 PMCID: PMC10081173 DOI: 10.1101/2023.03.27.534387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background & Aims Epithelial disruption in eosinophilic esophagitis (EoE) encompasses both impaired differentiation and diminished barrier integrity. We have shown that lysyl oxidase (LOX), a collagen cross-linking enzyme, is upregulated in the esophageal epithelium in EoE. However, the functional roles of LOX in the esophageal epithelium remains unknown. Methods We investigated roles for LOX in the human esophageal epithelium using 3-dimensional organoid and air-liquid interface cultures stimulated with interleukin (IL)-13 to recapitulate the EoE inflammatory milieu, followed by single-cell RNA sequencing, quantitative reverse transcription-polymerase chain reaction, western blot, histology, and functional analyses of barrier integrity. Results Single-cell RNA sequencing analysis on patient-derived organoids revealed that LOX was induced by IL-13 in differentiated cells. LOX-overexpressing organoids demonstrated suppressed basal and upregulated differentiation markers. Additionally, LOX overexpression enhanced junctional protein genes and transepithelial electrical resistance. LOX overexpression restored the impaired differentiation and barrier function, including in the setting of IL-13 stimulation. Transcriptome analyses on LOX-overexpressing organoids identified enriched bone morphogenetic protein (BMP) signaling pathway compared to wild type organoids. Particularly, LOX overexpression increased BMP2 and decreased BMP antagonist follistatin. Finally, we found that BMP2 treatment restored the balance of basal and differentiated cells. Conclusions Our data support a model whereby LOX exhibits non-canonical roles as a signaling molecule important for epithelial homeostasis in the setting of inflammation via activation of BMP pathway in esophagus. The LOX/BMP axis may be integral in esophageal epithelial differentiation and a promising target for future therapies.
Collapse
Affiliation(s)
- Masaru Sasaki
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Takeo Hara
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joshua X. Wang
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yusen Zhou
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kanak V. Kennedy
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicole N. Umeweni
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Maiya A. Alston
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Zachary C. Spergel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ritsu Nakagawa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Emily A. Mcmillan
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelly A. Whelan
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Cancer & Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tatiana A. Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kathryn E. Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melanie A. Ruffner
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Izadi M, Rezvani ME, Aliabadi A, Karimi M, Aflatoonian B. Mesenchymal stem cells-derived exosomes as a promising new approach for the treatment of infertility caused by polycystic ovary syndrome. Front Pharmacol 2022; 13:1021581. [PMID: 36299896 PMCID: PMC9589245 DOI: 10.3389/fphar.2022.1021581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial metabolic and most common endocrine disorder that its prevalence, depending on different methods of evaluating PCOS traits, varies from 4% to 21%. Chronic low-grade inflammation and irregular apoptosis of granulosa cells play a crucial role in the pathogenesis of PCOS infertility. Mesenchymal stem cells (MSCs)-derived exosomes and extracellular vesicles (EVs) are lipid bilayer complexes that act as a means of intercellular transferring of proteins, lipids, DNA and different types of RNAs. It seems that this nanoparticles have therapeutic effects on the PCOS ovary such as regulating immunity response, anti-inflammatory (local and systemic) and suppress of granulosa cells (GCs) apoptosis. Although there are few studies demonstrating the effects of exosomes on PCOS and their exact mechanisms is still unknown, in the present study we reviewed the available studies of the functions of MSC-derived exosome, EVs and secretome on apoptosis of granulosa cells and inflammation in the ovary. Therefore, the novel cell-free therapeutic approaches for PCOS were suggested in this study.
Collapse
Affiliation(s)
- Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Aliabadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Karimi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
10
|
Fan J, Lin B, Fan M, Niu T, Gao F, Tan B, Du X. Research progress on the mechanism of radiation enteritis. Front Oncol 2022; 12:888962. [PMID: 36132154 PMCID: PMC9483210 DOI: 10.3389/fonc.2022.888962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Radiation enteritis (Re) is one of the most common complications of radiation therapy for abdominal tumors. The efficacy of cancer treatment by radiation is often limited by the side effects of Re. Re can be acute or chronic. Treatment of acute Re is essentially symptomatic. However, chronic Re usually requires surgical procedures. The underlying mechanisms of Re are complex and have not yet been elucidated. The purpose of this review is to provide an overview of the pathogenesis of Re. We reviewed the role of intestinal epithelial cells, intestinal stem cells (ISCs), vascular endothelial cells (ECs), intestinal microflora, and other mediators of Re, noting that a better understanding of the pathogenesis of Re may lead to better treatment modalities.
Collapse
Affiliation(s)
- Jinjia Fan
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Binwei Lin
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Mi Fan
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Tintin Niu
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Feng Gao
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Bangxian Tan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Xiaobo Du
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
- *Correspondence: Xiaobo Du,
| |
Collapse
|
11
|
Chen Z, Yuan L, Li X, Yu J, Xu Z. BMP2 inhibits cell proliferation by downregulating EZH2 in gastric cancer. Cell Cycle 2022; 21:2298-2308. [PMID: 35856444 DOI: 10.1080/15384101.2022.2092819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Gastric cancer is among the most common gastrointestinal malignancies. Recent studies have suggested that bone morphogenetic protein-2 (BMP2) is related to the development and progression of various cancers. Meanwhile, evidence suggests that BMP2 might lead to epigenetic changes in gastric cancer. Thus, we investigated whether BMP2 plays a role in the development of gastric cancer via epigenetic regulation. Cell viability, colony formation, and cell cycle assays were performed to assess the effect of recombinant human BMP2 (rhBMP2) in gastric cancer cells. LDN-193189 and Noggins were used as antagonists of the canonical BMP-SMAD signaling pathway. The protein levels were determined using a western blot analysis. Lentiviral vectors with EZH2 shRNA or EZH2 overexpression were used to mediate the role of EZH2 and the relationship between BMP2 and EZH2 in gastric cancer. We found that rhBMP2 inhibits cell proliferation by arresting the cell cycle in HGC-27 and SNU-216 gastric cancer cells. Neither LDN-193189 nor Noggins, antagonists of the canonical BMP-SMAD signaling pathway, can reverse the effect of rhBMP2 on gastric cancer. Molecularly, rhBMP2 downregulates the expression of EZH2 and H3K27me3, leading to increases in P16 and P21 and decreases in CDK2, CDK4, and CDK6. Altogether, in this study, we demonstrate that BMP2 serves as a tumor suppressor in gastric cancer cells by downregulating EZH2 and H3K27me3 through the non-SMAD BMP pathway, suggesting that BMP2 might be a new therapeutic target for gastric cancer treatment. Abbreviations: BMP: bone morphogenetic protein; TGF-β: transforming growth factor-beta; EZH2: enhancer of zeste homolog 2; H3K27me3: trimethylation histone H3 lysine 27; HRECs: human retinal endothelial cells; PcG: polycomb group; PRC: polycomb repressive complexes.
Collapse
Affiliation(s)
- Zilu Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liyue Yuan
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaopeng Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Fink M, Wrana JL. Regulation of homeostasis and regeneration in the adult intestinal epithelium by the TGF-β superfamily. Dev Dyn 2022; 252:445-462. [PMID: 35611490 DOI: 10.1002/dvdy.500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
The delicate balance between the homeostatic maintenance and regenerative capacity of the intestine makes this a fascinating tissue of study. The intestinal epithelium undergoes continuous homeostatic renewal but is also exposed to a diverse array of stresses that can range from physiological processes such as digestion, to exposure to infectious agents, drugs, radiation therapy, and inflammatory stimuli. The intestinal epithelium has thus evolved to efficiently maintain and reinstate proper barrier function that is essential for intestinal integrity and function. Factors governing homeostatic epithelial turnover are well described, however, the dynamic regenerative mechanisms that occur following injury are the subject of intense ongoing investigations. The TGF-β superfamily is a key regulator of both homeostatic renewal and regenerative processes of the intestine. Here we review the roles of TGF-β and BMP on the adult intestinal epithelium during self-renewal and injury to provide a framework for understanding how this major family of morphogens can tip the scale between intestinal health and disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mardi Fink
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Yang S, Yao L, Wang X, Sun H, Du C, Song C, Fu J, Wu Y, Huang H, Wang C, Wang Y, Xie Y. Exosomes Derived from SW480-Resistant Colon Cancer Cells Are Promote Angiogenesis via BMP-2/Smad5 Signaling Pathway. Appl Bionics Biomech 2022; 2022:6124374. [PMID: 35634178 PMCID: PMC9135529 DOI: 10.1155/2022/6124374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background Multidrug resistance is the main cause of tumor recurrence and metastasis. Therefore, it is urgent to explore the mechanism and treatment of drug resistance of tumor cells. We aim to investigate the relationship between drug resistance and angiogenesis in SW480 colon cancer cells and the possible underlying mechanism. Methods Exosomes were extracted from SW480-sensitive or SW480-resistant colon cancer cells (SW480/oxaliplatin). The CCK-8 assay, migration assay, tube formation assay, qPCR, and Western blotting were performed in human umbilical vein endothelial cells (HUVECs). The underlying mechanisms were detected by Western blotting assays and BMP-2 si-RNA silencing assay in vitro and in vivo. Results The conditioned medium and exosomes of SW480/oxaliplatin cells promoted proliferation, migration, and tube formation of HUVECs. The expression of BMP-2 released by SW480/oxaliplatin exosomes was 2.3-folds higher than that by SW480 exosomes. Additionally, exosomal BMP-2 inhibiting the Smad signaling pathway induced the expression of vascular endothelial growth factor and CD31. Silencing of BMP-2 partly blocks the promoting effect of SW480/oxaliplatin exosomes on angiogenesis. Moreover, SW480/oxaliplatin cells increased the BMP-2 expression, consequently promoting angiogenesis in vivo. Conclusions SW480-resistant colon cancer exosomes promoted angiogenesis via the BMP-2/Smad signaling pathway, which is potential for the novel treatment for antiangiogenic therapies in colon cancer.
Collapse
Affiliation(s)
- Song Yang
- Department of General Surgery, Lu'an Hospital of Anhui Medical University, Lu'an Hospital of Anhui Province, Anhui 237005, China
| | - Lei Yao
- Department of General Surgery, Lu'an Hospital of Anhui Medical University, Lu'an Hospital of Anhui Province, Anhui 237005, China
| | - Xiaolong Wang
- Department of General Surgery, Lu'an Hospital of Anhui Medical University, Lu'an Hospital of Anhui Province, Anhui 237005, China
| | - Hao Sun
- Department of General Surgery, Lu'an Hospital of Anhui Medical University, Lu'an Hospital of Anhui Province, Anhui 237005, China
| | - Chaogang Du
- Department of General Surgery, Lu'an Hospital of Anhui Medical University, Lu'an Hospital of Anhui Province, Anhui 237005, China
| | - Chengpeng Song
- Department of General Surgery, Lu'an Hospital of Anhui Medical University, Lu'an Hospital of Anhui Province, Anhui 237005, China
| | - Jingyu Fu
- Department of General Surgery, Lu'an Hospital of Anhui Medical University, Lu'an Hospital of Anhui Province, Anhui 237005, China
| | - Yongjun Wu
- Department of General Surgery, Lu'an Hospital of Anhui Medical University, Lu'an Hospital of Anhui Province, Anhui 237005, China
| | - Hongwu Huang
- Department of General Surgery, Lu'an Hospital of Anhui Medical University, Lu'an Hospital of Anhui Province, Anhui 237005, China
| | - Chuansi Wang
- Department of General Surgery, Lu'an Hospital of Anhui Medical University, Lu'an Hospital of Anhui Province, Anhui 237005, China
| | - Yongsen Wang
- Department of General Surgery, Lu'an Hospital of Anhui Medical University, Lu'an Hospital of Anhui Province, Anhui 237005, China
| | - Yixiang Xie
- Department of General Surgery, Lu'an Hospital of Anhui Medical University, Lu'an Hospital of Anhui Province, Anhui 237005, China
| |
Collapse
|
14
|
Piechowska A, Kruszniewska-Rajs C, Kimsa-Dudek M, Kołomańska M, Strzałka-Mrozik B, Gola J, Głuszek S. The role of miR-370 and miR-138 in the regulation of BMP2 suppressor gene expression in colorectal cancer: preliminary studies. J Cancer Res Clin Oncol 2022; 148:1569-1582. [PMID: 35292840 DOI: 10.1007/s00432-022-03977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/06/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is the fourth-most common cancer worldwide and the second most common cancer cause of death in the world. The components of the TGFβ-signalling pathway, which are often affected by miRNAs, are involved in the regulation of apoptosis and cell cycle. Therefore, in the current study, the expression of BMP2 gene in CRC tissues at different clinical stages compared to the non-tumour tissues has been assessed. Moreover, the plasma BMP2 protein concentration in the same group of CRC patients has been validated. Due to the constant necessity to conduct further research of the correlation between specific miRNAs and mRNAs in CRC, in silico analysis has been performed to select miRNAs that regulate BMP2 mRNA. METHODS The cDNA samples from tumor and non-tumor tissue were used in a qPCR reaction to determine the mRNA expression of the BMP2 gene and the expression of selected miRNAs. The concentration of BMP2 protein in plasma samples was also measured. RESULTS It was indicated that BMP2 was downregulated in CRC tissue. Moreover, miR-370 and miR-138 expression showed an upward trend. Decreased BMP2 with accompanied increasing miR-370 and miR-138 expression was relevant to the malignant clinicopathological features of CRC and consequently poor patient prognosis. CONCLUSION Our data suggest that miR-370 with its clear expression in plasma samples may be a potential diagnostic marker to determine the severity of the disease in patients at a later stage of colorectal cancer.
Collapse
Affiliation(s)
- Agnieszka Piechowska
- Department of Surgical Medicine With the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Magdalena Kołomańska
- Department of Anatomy, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland.
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Stanisław Głuszek
- Department of Surgical Medicine With the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, Poland.,Department of Clinic General Oncological and Endocrinological Surgery, Regional Hospital, Kielce, Poland
| |
Collapse
|
15
|
Brown MA, Ried T. Shifting the Focus of Signaling Abnormalities in Colon Cancer. Cancers (Basel) 2022; 14:784. [PMID: 35159051 PMCID: PMC8834070 DOI: 10.3390/cancers14030784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
Colon cancer tumorigenesis occurs incrementally. The process involves the acquisition of mutations which typically follow an established pattern: activation of WNT signaling, activation of RAS signaling, and inhibition of TGF-β signaling. This arrangement recapitulates, to some degree, the stem cell niche of the intestinal epithelium, which maintains WNT and EGF activity while suppressing TGF-β. The resemblance between the intestinal stem cell environment and colon cancer suggests that the concerted activity of these pathways generates and maintains a potent growth-inducing stimulus. However, each pathway has a myriad of downstream targets, making it difficult to identify which aspects of these pathways are drivers. To address this, we utilize the cell cycle, the ultimate regulator of cell proliferation, as a foundation for cross-pathway integration. We attempt to generate an overview of colon cancer signaling patterns by integrating the major colon cancer signaling pathways in the context of cell replication, specifically, the entrance from G1 into S-phase.
Collapse
Affiliation(s)
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
16
|
Challenges and opportunities targeting mechanisms of epithelial injury and recovery in acute intestinal graft-versus-host disease. Mucosal Immunol 2022; 15:605-619. [PMID: 35654837 PMCID: PMC9259481 DOI: 10.1038/s41385-022-00527-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Despite advances in immunosuppressive prophylaxis and overall supportive care, gastrointestinal (GI) graft-versus-host disease (GVHD) remains a major, lethal side effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has become increasingly clear that the intestinal epithelium, in addition to being a target of transplant-related toxicity and GVHD, plays an important role in the onset of GVHD. Over the last two decades, increased understanding of the epithelial constituents and their microenvironment has led to the development of novel prophylactic and therapeutic interventions, with the potential to protect the intestinal epithelium from GVHD-associated damage and promote its recovery following insult. In this review, we will discuss intestinal epithelial injury and the role of the intestinal epithelium in GVHD pathogenesis. In addition, we will highlight possible approaches to protect the GI tract from damage posttransplant and to stimulate epithelial regeneration, in order to promote intestinal recovery. Combined treatment modalities integrating immunomodulation, epithelial protection, and induction of regeneration may hold the key to unlocking mucosal recovery and optimizing therapy for acute intestinal GVHD.
Collapse
|
17
|
Jasso GJ, Jaiswal A, Varma M, Laszewski T, Grauel A, Omar A, Silva N, Dranoff G, Porter JA, Mansfield K, Cremasco V, Regev A, Xavier RJ, Graham DB. Colon stroma mediates an inflammation-driven fibroblastic response controlling matrix remodeling and healing. PLoS Biol 2022; 20:e3001532. [PMID: 35085231 PMCID: PMC8824371 DOI: 10.1371/journal.pbio.3001532] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/08/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammation is often associated with the development of tissue fibrosis, but how mesenchymal cell responses dictate pathological fibrosis versus resolution and healing remains unclear. Defining stromal heterogeneity and identifying molecular circuits driving extracellular matrix deposition and remodeling stands to illuminate the relationship between inflammation, fibrosis, and healing. We performed single-cell RNA-sequencing of colon-derived stromal cells and identified distinct classes of fibroblasts with gene signatures that are differentially regulated by chronic inflammation, including IL-11-producing inflammatory fibroblasts. We further identify a transcriptional program associated with trans-differentiation of mucosa-associated fibroblasts and define a functional gene signature associated with matrix deposition and remodeling in the inflamed colon. Our analysis supports a critical role for the metalloprotease Adamdec1 at the interface between tissue remodeling and healing during colitis, demonstrating its requirement for colon epithelial integrity. These findings provide mechanistic insight into how inflammation perturbs stromal cell behaviors to drive fibroblastic responses controlling mucosal matrix remodeling and healing.
Collapse
Affiliation(s)
- Guadalupe J. Jasso
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alok Jaiswal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mukund Varma
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Tyler Laszewski
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Angelo Grauel
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Abdifatah Omar
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nilsa Silva
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Glenn Dranoff
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jeffrey A. Porter
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Keith Mansfield
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Viviana Cremasco
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute and David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (RJX); (DBG)
| | - Daniel B. Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (RJX); (DBG)
| |
Collapse
|
18
|
Kamali Zonouzi S, Pezeshki PS, Razi S, Rezaei N. Cancer-associated fibroblasts in colorectal cancer. Clin Transl Oncol 2021; 24:757-769. [PMID: 34839457 DOI: 10.1007/s12094-021-02734-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality among cancers. Many aspects of this cancer are under investigation to find established markers of diagnosis, prognosis, and also potential drug targets. In this review article, we are going to discuss the possible solution to all these aims by investigating the literature about cancer-associated fibroblasts (CAFs) involved in CRC. Moreover, we are going to review their interaction with the tumor microenvironment (TME) and vitamin D and their role in tumorigenesis and metastasis. Moreover, we are going to expand more on some markers produced by them or related to them including FAP, a-SMA, CXCL12, TGF- β, POSTN, and β1-Integrin. Some signaling pathways related to CAFs are as follows: FAK, AKT, activin A, and YAP/TAZ. Some genes related to the CAFs which are found to be possible therapeutic targets include COL3A1, JAM3, AEBP1 and, CAF-derived TGFB3, WNT2, and WNT54.
Collapse
Affiliation(s)
- S Kamali Zonouzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - P S Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - S Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - N Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
19
|
Westra WM, Straub D, Milano F, Buttar NS, Wang KK, Krishnadath KK. Inhibition of the BMP pathway prevents development of Barrett's-associated adenocarcinoma in a surgical rat model. Dis Esophagus 2021; 35:6412930. [PMID: 34718471 PMCID: PMC9113020 DOI: 10.1093/dote/doab072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/30/2021] [Accepted: 09/19/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Esophageal adenocarcinoma (EAC) is an aggressive cancer, associated with reflux esophagitis and intestinal metaplasia (IM). One underlying biological mechanism, which possibly drives the development of EAC, is the dysregulated expression of Bone Morphogenetic Proteins (BMPs). AIM To investigate if local delivery of Noggin, a BMP antagonist, reduced EAC. METHODS After obtaining proof of principal on local delivery of a Noggin/Sucralfate substance, a randomized controlled trial to test the effects of Noggin on EAC development was performed in a surgical rat model. In the model, an esophago-jejunostomy leads to development of reflux-esophagitis, IM and eventually EAC. Rats were treated by Noggin/Sucralfate or Sucralfate alone. Treatment was administered from 26 to 29 weeks after the operation. RESULTS Of the 112 operated rats, 52 survived beyond 26 weeks. Finally, 25 rats treated with Noggin/Sucralfate and 21 with Sucralfate, were evaluated. At the end, 39 (85%) of the animals had IM while 28 (61%) developed cancer. There were significantly more cancers in the Noggin/Sucralfate arm (50%) versus the Sucralfate group (73%) (Chi square, P < 0.05). Most cancers were mucous producing T3 adenocarcinomas. There were no significant differences in the amount of IM, size or grade of the cancers, or expression of columnar and squamous markers between the two groups. CONCLUSION In this study, we demonstrated that inhibition of BMPs by Noggin reduced development of EAC in a surgical esophagitis-IM-EAC rat model. In future, effective targeting of the BMP pathway with selective BMP-inhibitors could become an important asset to improve EAC patient outcome.
Collapse
Affiliation(s)
- Wytske M Westra
- Center for Experimental and Molecular Medicine (CEMM), AUMC, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Danielle Straub
- Center for Experimental and Molecular Medicine (CEMM), AUMC, Amsterdam, The Netherlands
| | - Francesca Milano
- Center for Experimental and Molecular Medicine (CEMM), AUMC, Amsterdam, The Netherlands
| | - Navtej S Buttar
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kenneth K Wang
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kausilia K Krishnadath
- Address correspondence to: Professor Kausilia K. Krishnadath, Department of Gastroenterology, University of Amsterdam Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. Tel: +31 20 5666703; Fax: +31 20 6917033;
| |
Collapse
|
20
|
Boog H, Medda R, Cavalcanti-Adam EA. Single Cell Center of Mass for the Analysis of BMP Receptor Heterodimers Distributions. J Imaging 2021; 7:jimaging7110219. [PMID: 34821850 PMCID: PMC8620704 DOI: 10.3390/jimaging7110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
At the plasma membrane, transmembrane receptors are at the interface between cells and their environment. They allow sensing and transduction of chemical and mechanical extracellular signals. The spatial distribution of receptors and the specific recruitment of receptor subunits to the cell membrane is crucial for the regulation of signaling and cell behavior. However, it is challenging to define what regulates such spatial patterns for receptor localization, as cell shapes are extremely diverse when cells are maintained in standard culture conditions. Bone morphogenetic protein receptors (BMPRs) are serine-threonine kinases, which build heteromeric complexes of BMPRI and II. These are especially interesting targets for receptor distribution studies, since the signaling pathways triggered by BMPR-complexes depends on their dimerization mode. They might exist as preformed complexes, or assemble upon binding of BMP, triggering cell signaling which leads to differentiation or migration. In this work we analyzed BMPR receptor distributions in single cells grown on micropatterns, which allow not only to control cell shape, but also the distribution of intracellular organelles and protein assemblies. We developed a script called ComRed (Center Of Mass Receptor Distribution), which uses center of mass calculations to analyze the shift and spread of receptor distributions according to the different cell shapes. ComRed was tested by simulating changes in experimental data showing that shift and spread of distributions can be reliably detected. Our ComRed-based analysis of BMPR-complexes indicates that receptor distribution depends on cell polarization. The absence of a coordinated internalization after addition of BMP suggests that a rapid and continual recycling of BMPRs might occur. Receptor complexes formation and localization in cells induced by BMP might yield insights into the local regulation of different signaling pathways.
Collapse
Affiliation(s)
- Hendrik Boog
- Department of Cellular Biophysics-Growth Factor Mechanobiology, Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany; (H.B.); (R.M.)
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Rebecca Medda
- Department of Cellular Biophysics-Growth Factor Mechanobiology, Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany; (H.B.); (R.M.)
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Cellular Biophysics-Growth Factor Mechanobiology, Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany; (H.B.); (R.M.)
- Correspondence:
| |
Collapse
|
21
|
Mesenchymal Stem Cell-Conditioned Media Regulate Steroidogenesis and Inhibit Androgen Secretion in a PCOS Cell Model via BMP-2. Int J Mol Sci 2021; 22:ijms22179184. [PMID: 34502090 PMCID: PMC8431467 DOI: 10.3390/ijms22179184] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women. Previous studies have demonstrated the therapeutic efficacy of human bone marrow mesenchymal stem cells (BM-hMSCs) for PCOS; however, the regulatory mechanism remains unknown. Bone morphogenetic proteins (BMPs) secreted by BM-hMSCs may underlie the therapeutic effect of these cells on PCOS, based on the ability of BMPs to modulate androgen production and alter steroidogenesis pathway enzymes. In this study, we analyze the effect of BMP-2 on androgen production and steroidogenic pathway enzymes in H295R cells as a human PCOS in vitro cell model. In H295R cells, BMP-2 significantly suppressed cell proliferation, androgen production, and expression of androgen-synthesizing genes, as well as inflammatory gene expression. Furthermore, H295R cells treated with the BM-hMSCs secretome in the presence of neutralizing BMP-2 antibody or with BMP-2 gene knockdown showed augmented expression of androgen-producing genes. Taken together, these results indicate that BMP-2 is a key player mediating the favorable effects of the BM-hMSCs secretome in a human PCOS cell model. BMP-2 overexpression could increase the efficacy of BM-hMSC-based therapy, serving as a novel stem cell therapy for patients with intractable PCOS.
Collapse
|
22
|
Zullo KM, Douglas B, Maloney NM, Ji Y, Wei Y, Herbine K, Cohen R, Pastore C, Cramer Z, Wang X, Wei W, Somsouk M, Hung LY, Lengner C, Kohanski MH, Cohen NA, Herbert DR. LINGO3 regulates mucosal tissue regeneration and promotes TFF2 dependent recovery from colitis. Scand J Gastroenterol 2021; 56:791-805. [PMID: 33941035 PMCID: PMC8647134 DOI: 10.1080/00365521.2021.1917650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aim: Recovery of damaged mucosal surfaces following inflammatory insult requires diverse regenerative mechanisms that remain poorly defined. Previously, we demonstrated that the reparative actions of Trefoil Factor 3 (TFF3) depend upon the enigmatic receptor, leucine rich repeat and immunoglobulin-like domain containing nogo receptor 2 (LINGO2). This study examined the related orphan receptor LINGO3 in the context of intestinal tissue damage to determine whether LINGO family members are generally important for mucosal wound healing and maintenance of the intestinal stem cell (ISC) compartment needed for turnover of mucosal epithelium.Methods and Results: We find that LINGO3 is broadly expressed on human enterocytes and sparsely on discrete cells within the crypt niche, that contains ISCs. Loss of function studies indicate that LINGO3 is involved in recovery of normal intestinal architecture following dextran sodium sulfate (DSS)-induced colitis, and that LINGO3 is needed for therapeutic action of the long acting TFF2 fusion protein (TFF2-Fc), including a number of signaling pathways critical for cell proliferation and wound repair. LINGO3-TFF2 protein-protein interactions were relatively weak however and LINGO3 was only partially responsible for TFF2 induced MAPK signaling suggesting additional un-identified components of a receptor complex. However, deficiency in either TFF2 or LINGO3 abrogated budding/growth of intestinal organoids and reduced expression of the intestinal ISC gene leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), indicating homologous roles for these proteins in tissue regeneration, possibly via regulation of ISCs in the crypt niche.Conclusion: We propose that LINGO3 serves a previously unappreciated role in promoting mucosal wound healing.
Collapse
Affiliation(s)
- Kelly M. Zullo
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Bonnie Douglas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Nicole M. Maloney
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Yingbiao Ji
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Yun Wei
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karl Herbine
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Rachel Cohen
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Christopher Pastore
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Zvi Cramer
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Xin Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Wenjie Wei
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19147
| | - Ma Somsouk
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Li Yin Hung
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104,Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher Lengner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Michael H. Kohanski
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104,The Corporal Michael J. Crescenz VA Medical Center Surgical Service, Philadelphia, PA 19104
| | - Noam A. Cohen
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104,The Corporal Michael J. Crescenz VA Medical Center Surgical Service, Philadelphia, PA 19104,Monell Chemical Senses Center, Philadelphia, PA 19104
| | - De’Broski R. Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104,Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
23
|
Ouladan S, Gregorieff A. Taking a Step Back: Insights into the Mechanisms Regulating Gut Epithelial Dedifferentiation. Int J Mol Sci 2021; 22:ijms22137043. [PMID: 34208872 PMCID: PMC8268356 DOI: 10.3390/ijms22137043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 01/22/2023] Open
Abstract
Despite the environmental constraints imposed upon the intestinal epithelium, this tissue must perform essential functions such as nutrient absorption and hormonal regulation, while also acting as a critical barrier to the outside world. These functions depend on a variety of specialized cell types that are constantly renewed by a rapidly proliferating population of intestinal stem cells (ISCs) residing at the base of the crypts of Lieberkühn. The niche components and signals regulating crypt morphogenesis and maintenance of homeostatic ISCs have been intensely studied over the last decades. Increasingly, however, researchers are turning their attention to unraveling the mechanisms driving gut epithelial regeneration due to physical damage or infection. It is now well established that injury to the gut barrier triggers major cell fate changes, demonstrating the highly plastic nature of the gut epithelium. In particular, lineage tracing and transcriptional profiling experiments have uncovered several injury-induced stem-cell populations and molecular markers of the regenerative state. Despite the progress achieved in recent years, several questions remain unresolved, particularly regarding the mechanisms driving dedifferentiation of the gut epithelium. In this review, we summarize the latest studies, primarily from murine models, that define the regenerative processes governing the gut epithelium and discuss areas that will require more in-depth investigation.
Collapse
Affiliation(s)
- Shaida Ouladan
- Department of Pathology, McGill University, Montréal, QC H3A 2B4, Canada;
- McGill Regenerative Medicine Network, Montréal, QC H3A 1A3, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Alex Gregorieff
- Department of Pathology, McGill University, Montréal, QC H3A 2B4, Canada;
- McGill Regenerative Medicine Network, Montréal, QC H3A 1A3, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
24
|
Jia J, Dai Y, Zhang Q, Tang P, Fu Q, Xiong G. Stromal Score-Based Gene Signature: A Prognostic Prediction Model for Colon Cancer. Front Genet 2021; 12:655855. [PMID: 34054919 PMCID: PMC8150004 DOI: 10.3389/fgene.2021.655855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Growing evidence has revealed the crucial roles of stromal cells in the microenvironment of various malignant tumors. However, efficient prognostic signatures based on stromal characteristics in colon cancer have not been well-established yet. The present study aimed to construct a stromal score-based multigene prognostic prediction model for colon cancer. METHODS Stromal scores were calculated based on the expression profiles of a colon cancer cohort from TCGA database applying the ESTIMATE algorithm. Linear models were used to identify differentially expressed genes between low-score and high-score groups by limma R package. Univariate, LASSO, and multivariate Cox regression models were used successively to select the prognostic gene signature. Two independent datasets from GEO were used as external validation cohorts. RESULTS Low stromal score was demonstrated to be a favorable factor to the overall survival of colon cancer patients in TCGA cohort (p = 0.0046). Three hundred and seven stromal score-related differentially expressed genes were identified. Through univariate, LASSO, and multivariate Cox regression analyses, a gene signature consisting of LEP, NOG, and SYT3 was recognized to build a prognostic prediction model. Based on the predictive values estimated by the established integrated model, patients were divided into two groups with significantly different overall survival outcomes (p < 0.0001). Time-dependent Receiver operating characteristic curve analyses suggested the satisfactory predictive efficacy for the 5-year overall survival of the model (AUC value = 0.733). A nomogram with great predictive performance combining the multigene prediction model and clinicopathological factors was developed. The established model was validated in an external cohort (AUC value = 0.728). In another independent cohort, the model was verified to be of significant prognostic value for different subgroups, which was demonstrated to be especially accurate for young patients (AUC value = 0.763). CONCLUSION The well-established model based on stromal score-related gene signature might serve as a promising tool for the prognostic prediction of colon cancer.
Collapse
Affiliation(s)
- Jing Jia
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuhan Dai
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peiyu Tang
- The School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Qiang Fu
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guanying Xiong
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
26
|
Differential miRNA-Gene Expression in M Cells in Response to Crohn's Disease-Associated AIEC. Microorganisms 2020; 8:microorganisms8081205. [PMID: 32784656 PMCID: PMC7466023 DOI: 10.3390/microorganisms8081205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC), which abnormally colonize the ileal mucosa of Crohn’s disease (CD) patients, are able to invade intestinal epithelial cells (IECs) and translocate through M cells overlying Peyer’s patches. The levels of microRNA (miRNA) and gene expression in IECs and M cells upon AIEC infection have not been investigated. Here, we used human intestinal epithelial Caco-2 monolayers and an in vitro M-cell model of AIEC translocation to analyze comprehensive miRNA and gene profiling under basal condition and upon infection with the reference AIEC LF82 strain. Our results showed that AIEC LF82 translocated through M cells but not Caco-2 monolayers. Both differential gene expression and miRNA profile in M cells compared to Caco-2 cells were obtained. In addition, AIEC infection induces changes in gene and miRNA profiles in both Caco-2 and M cells. In silico analysis showed that certain genes dysregulated upon AIEC infection were potential targets of AIEC-dysregulated miRNAs, suggesting a miRNA-mediated regulation of gene expression during AIEC infection in Caco-2, as well as M cells. This study facilitates the discovery of M cell-specific and AIEC response-specific gene-miRNA signature and enhances the molecular understanding of M cell biology under basal condition and in response to infection with CD-associated AIEC.
Collapse
|
27
|
Rowan SC, Jahns H, Mthunzi L, Piouceau L, Cornwell J, Doody R, Frohlich S, Callanan JJ, McLoughlin P. Gremlin 1 depletion in vivo causes severe enteropathy and bone marrow failure. J Pathol 2020; 251:117-122. [PMID: 32297672 PMCID: PMC7384058 DOI: 10.1002/path.5450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium is perpetually renewed from a stem cell niche in the base of crypts to maintain a healthy bowel mucosa. Exit from this niche and maturation of epithelial cells requires tightly controlled gradients in BMP signalling, progressing from low BMP signalling at the crypt base to high signalling at the luminal surface. The BMP antagonist gremlin 1 (Grem1) is highly expressed by subepithelial myofibroblasts adjacent to the intestinal crypts but its role in regulating the stem cell niche and epithelial renewal in vivo has not been explored. To explore the effects of Grem1 loss in adulthood following normal growth and development, we bred mice (ROSA26CreER‐Grem1flx/flx) in which Grem1 could be deleted by tamoxifen administration. While Grem1 remained intact, these mice were healthy, grew normally, and reproduced successfully. Following Grem1 depletion, the mice became unwell and were euthanised (at 7–13 days). Post‐mortem examination revealed extensive mucosal abnormalities throughout the small and large intestines with failure of epithelial cell replication and maturation, villous atrophy, and features of malabsorption. Bone marrow hypoplasia was also observed with associated early haematopoietic failure. These results demonstrate an essential homeostatic role for gremlin 1 in maintaining normal bowel epithelial function in adulthood, suggesting that abnormalities in gremlin 1 expression can contribute to enteropathies. We also identified a previously unsuspected requirement for gremlin 1 in normal haematopoiesis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Simon C Rowan
- University College Dublin, School of Medicine and Conway Institute, Dublin, Ireland
| | - Hanne Jahns
- University College Dublin, School of Veterinary Medicine, Dublin, Ireland
| | - Liberty Mthunzi
- University College Dublin, School of Medicine and Conway Institute, Dublin, Ireland
| | - Lucie Piouceau
- University College Dublin, School of Medicine and Conway Institute, Dublin, Ireland
| | - Joanna Cornwell
- University College Dublin, School of Medicine and Conway Institute, Dublin, Ireland
| | - Róisín Doody
- University College Dublin, School of Medicine and Conway Institute, Dublin, Ireland
| | | | - John J Callanan
- University College Dublin, School of Veterinary Medicine, Dublin, Ireland
| | - Paul McLoughlin
- University College Dublin, School of Medicine and Conway Institute, Dublin, Ireland
| |
Collapse
|
28
|
Shi J, Jiang D, Yang S, Sun Y, Wang J, Zhang X, Liu Y, Lu Y, Yang K. Molecular profile reveals immune-associated markers of lymphatic invasion in human colon adenocarcinoma. Int Immunopharmacol 2020; 83:106402. [PMID: 32200154 DOI: 10.1016/j.intimp.2020.106402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/23/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
Lymphatic invasion (LI) is an early event of metastasis and closely associated with overall survival in colon adenocarcinoma (COAD). Our aim was to gain deeper insight into the mechanism of lymphatic invasion in COAD. Subtype-specific somatic mutations and differentially expressed genes (DEGs) screening were based on The Cancer Genome Atlas (TCGA). Gene Ontology (GO) enrichment analysis was utilized to explore the biological function. The condition of tumor-infiltrating lymphocytes was performed by TIMER online database. Survival analysis was based on Kaplan-Meier curve method. Lymphatic invasion was associated with poor prognosis of patients with COAD. Nine mutations were enriched in lymphatic invasion-negative group. A total of 50 were differentially expressed between LI-positive tissues and LI-negative tissues. The DEGs were enriched in lipoprotein-related functions. MUC4 in-frame deletion at A4166-S4181 was associated with favorable prognosis of COAD patients. BMPR2 frameshift mutation g.chr2:202555407delA played cis and trans functions in downregulation of itself and CTLA4 upregulation. And it was associated with higher mutational burden. LAMP5, CUBN and TCHH were DEGs associated with prognosis and abundance of tumor-infiltrating lymphocytes. In conclusion, our study provides LI-associated genetic and transcriptional alterations, which helps to better understand the potential mechanisms and microenvironment in COAD.
Collapse
Affiliation(s)
- Jingqi Shi
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032 Shaanxi, People's Republic of China
| | - Dongbo Jiang
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032 Shaanxi, People's Republic of China
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032 Shaanxi, People's Republic of China
| | - Yuanjie Sun
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032 Shaanxi, People's Republic of China
| | - Jing Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032 Shaanxi, People's Republic of China
| | - Xiyang Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032 Shaanxi, People's Republic of China
| | - Yang Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032 Shaanxi, People's Republic of China
| | - Yuchen Lu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032 Shaanxi, People's Republic of China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an 710032 Shaanxi, People's Republic of China.
| |
Collapse
|
29
|
Bidirectional tumor/stroma crosstalk promotes metastasis in mesenchymal colorectal cancer. Oncogene 2020; 39:2453-2466. [PMID: 31974473 DOI: 10.1038/s41388-020-1157-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/13/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022]
Abstract
Patients with the mesenchymal subtype colorectal cancer (CRC) have a poor prognosis, in particular patients with stroma-rich tumors and aberrant SMAD4 expression. We hypothesized that interactions between SMAD4-deficient CRC cells and cancer-associated fibroblasts provide a biological explanation. In transwell invasion assays, fibroblasts increased the invasive capacity of SMAD4-deficient HT29 CRC cells, but not isogenic SMAD4-proficient HT29 cells. A TGF-β/BMP-specific array showed BMP2 upregulation by fibroblasts upon stimulation with conditioned medium from SMAD4-deficient CRC cells, while also stimulating their invasion. In a mouse model for experimental liver metastasis, the co-injection of fibroblasts increased metastasis formation of SMAD4-deficient CRC cells (p = 0.02) but not that of SMAD4-proficient CRC cells. Significantly less metastases were seen in mice co-injected with BMP2 knocked-down fibroblasts. Fibroblast BMP2 expression seemed to be regulated by TRAIL, a factor overexpressed in SMAD4-deficient CRC cells. In a cohort of 146 stage III CRC patients, we showed that patients with a combination of high stromal BMP2 expression and the loss of tumor SMAD4 expression had a significantly poorer overall survival (HR 2.88, p = 0.04). Our results suggest the existence of a reciprocal loop in which TRAIL from SMAD4-deficient CRC cells induces BMP2 in fibroblasts, which enhances CRC invasiveness and metastasis.
Collapse
|
30
|
He SN, Guan SH, Wu MY, Li W, Xu MD, Tao M. Down-regulated hsa_circ_0067934 facilitated the progression of gastric cancer by sponging hsa-mir-4705 to downgrade the expression of BMPR1B. Transl Cancer Res 2019; 8:2691-2703. [PMID: 35117027 PMCID: PMC8798177 DOI: 10.21037/tcr.2019.10.32] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
Background Gastric cancer is the third most lethal cancer worldwide. Finding a novel marker is essential to targeted therapy and the diagnosis of gastric cancer. As newly discovered markers, circRNAs have aroused widespread attention on a global scale. Our research aims to understand the role of circRNAs in gastric cancer and to explore the underlying pathogenesis. Methods Raw expression data of circRNAs were obtained from the GEO database. Integrated bioinformatics analysis was used to screen differentially expressed circRNAs (DECs) by RobustRankAggreg package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to predict the functions of DECs. Then, the miRNAs and mRNAs at the downstream of DECs were predicted. Expression data of miRNAs and mRNAs were downloaded from The Cancer Genome Atlas (TCGA). The aberrantly expressed miRNAs and mRNAs were selected using the edgeR package. Results Four datasets (GSE78092, GSE83521, GSE89143, and GSE93541) were downloaded from the GEO database. Among them, two DECs (hsa_circ_0007991 and hsa_circ_0067934) were screened. The functional analyses of DECs confirmed that they were cancer-related circRNAs. Furthermore, hsa-mir-4705 (miRNA) and BMPR1B (mRNA) at the downstream of hsa_circ_0067934 were found differentially expressed in gastric cancer by expression data from TCGA database. Conclusions Our study discovered the critical roles of hsa_circ_0007991 and hsa_circ_0067934 in the development of gastric cancer, and they could be novel markers for targeted therapy and assist the diagnosis of early-stage gastric cancer. Moreover, we discovered that the hsa_circ_0067934/hsa-mir-4705/BMPR1B axis might be involved in the carcinogenesis of gastric cancer.
Collapse
Affiliation(s)
- Shen-Nan He
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shi-Hua Guan
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Meng-Yao Wu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wei Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou 215021, China.,Comprehensive Cancer Center, Suzhou Xiangcheng People's Hospital, Suzhou 215000, China
| | - Meng-Dan Xu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Min Tao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou 215021, China
| |
Collapse
|
31
|
Miura T, Ishiguro M, Ishikawa T, Okazaki S, Baba H, Kikuchi A, Yamauchi S, Matsuyama T, Uetake H, Kinugasa Y. Methylation of bone morphogenetic protein 2 is associated with poor prognosis in colorectal cancer. Oncol Lett 2019; 19:229-238. [PMID: 31897134 PMCID: PMC6924114 DOI: 10.3892/ol.2019.11091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
The present study investigated aberrant methylation in colorectal cancer (CRC) and its impact on characteristics and prognosis of patients with CRC. Bone morphogenetic protein 2 (BMP2) was identified as a target gene in oligonucleotide microarray expression profiling in a previous study. Subsequently, the BMP2 methylation status was assessed in 498 patients with stage I–III CRC using methylation-specific polymerase chain reaction, and the association between BMP2 methylation status, patient characteristics and prognosis was assessed. BMP2 methylation was observed in 302/498 (60.6%) patients and was associated with positive lymph nodes and venous invasion (P<0.05). In the stage III subgroup, overall survival (OS) was significantly worse in the methylated BMP2 group compared with in the unmethylated BMP2 group (P=0.012). BMP2 methylation was identified as an independent factor for poor OS in stage III patients (P=0.041). Notably, in the left-sided stage III CRC subgroup, relapse-free survival and OS were significantly worse in the methylated BMP2 group than in the unmethylated group (P=0.048 and P=0.031, respectively). In conclusion, DNA hypermethylation of BMP2 was a poor prognostic factor in patients with stage III disease, particularly in those with left-sided stage III CRC. BMP2 methylation may be a biomarker for prognosis prediction and treatment decision-making.
Collapse
Affiliation(s)
- Tomiyuki Miura
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Megumi Ishiguro
- Department of Translational Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Toshiaki Ishikawa
- Department of Specialized Surgeries, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Satoshi Okazaki
- Department of Specialized Surgeries, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hironobu Baba
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Akifumi Kikuchi
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shinichi Yamauchi
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takatoshi Matsuyama
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hiroyuki Uetake
- Department of Specialized Surgeries, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
32
|
Abstract
Regenerative processes that maintain the function of the gastrointestinal (GI) epithelium are critical for health and survival of multicellular organisms. In insects and vertebrates, intestinal stem cells (ISCs) regenerate the GI epithelium. ISC function is regulated by intrinsic, local, and systemic stimuli to adjust regeneration to tissue demands. These control mechanisms decline with age, resulting in significant perturbation of intestinal homeostasis. Processes that lead to this decline have been explored intensively in Drosophila melanogaster in recent years and are now starting to be characterized in mammalian models. This review presents a model for age-related regenerative decline in the fly intestine and discusses recent findings that start to establish molecular mechanisms of age-related decline of mammalian ISC function.
Collapse
Affiliation(s)
- Heinrich Jasper
- Immunology Discovery, Genentech, Inc., South San Francisco, California 94080, USA;
| |
Collapse
|
33
|
Wang J, Lin Y, Jiang T, Gao C, Wang D, Wang X, Wei Y, Liu T, Zhu L, Wang P, Qi F. Up-regulation of TIMP-3 and RECK decrease the invasion and metastasis ability of colon cancer. Arab J Gastroenterol 2019; 20:127-134. [PMID: 31558368 DOI: 10.1016/j.ajg.2019.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/04/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND STUDY AIMS Although the function of microRNA21 (miR-21) in the invasion and metastasis of colon cancer has been extensively studied, the mechanisms of invasion and migration related pathways between and its targets are still not elucidated. This study explored the mechanisms of the pathway between miR-21 and the target genes in vitro and in vivo. MATERIALS AND METHODS We transfected pmiRZip21 or Leti3 into colon cancer cells. The levels of miR-21 expression, mRNA transcription and protein of target genes were analysed by TaqMan microRNA assays, RT-PCR and western blot, respectively. Scratch migration and trans-well assays were used to evaluate metastasis and invasion. To build a subcutaneous tumour animal model, detect the level of miR-21 and the target genes and then identify the mechanisms in vivo. RESULTS MiR-21 expression levels in colon cancer cells transfected with pmiRZip21 in vivo or in vitro were decreased (P < 0.05). The mRNA and protein levels of TIMP-3 and RECK were up-regulated after inhibiting miR-21 in vitro and in vivo (P < 0.05), but those of BMPR-II and PCDH17 were not. In pmiRZip21-transfected colon cancer cells, invasion and migration were significantly decreased both in vitro and vivo (P < 0.05). CONCLUSIONS Up-regulation of TIMP-3 and RECK, by inhibiting miR-21 expression can decrease tumour invasion and metastasis ability in vitro and in vivo, and has potential as a possible target site in anti-tumour therapy. More effects in vivo have to be investigated in further research.
Collapse
Affiliation(s)
- Jinmiao Wang
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, 154 An-Shan Road, Heping District, Tianjin 300052, PR China
| | - Yunshou Lin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Tao Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Duowei Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xiaodong Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Ying Wei
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Liwei Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Pengzhi Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
34
|
Abstract
Intestinal homeostasis and regeneration are driven by intestinal stem cells (ISCs) lying in the crypt. In addition to the actively cycling ISCs that maintain daily homeostasis, accumulating evidence supports the existence of other pools of stem/progenitor cells with the capacity to repair damaged tissue and facilitate rapid restoration of intestinal integrity after injuries. Appropriate control of ISCs and other populations of intestinal epithelial cells with stem cell activity is essential for intestinal homeostasis and regeneration while their deregulation is implicated in colorectal tumorigenesis. In this review, we will summarize the recent findings about ISC identity and cellular plasticity in intestine, discuss regulatory mechanisms that control ISCs for intestinal homeostasis and regeneration, and put a particular emphasis on extrinsic niche-derived signaling and intrinsic epigenetic regulation. Moreover, we highlight several fundamental questions about the precise mechanisms conferring robust capacity for intestine to maintain physiological homeostasis and repair injuries.
Collapse
Affiliation(s)
- Deqing Hu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics; Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Heping, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Heping, Tianjin, China
| | - Han Yan
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics; Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Heping, Tianjin, China
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, USA.,Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, China
| |
Collapse
|
35
|
Abstract
The intestinal epithelium withstands continuous mechanical, chemical and biological insults despite its single-layered, simple epithelial structure. The crypt-villus tissue architecture in combination with rapid cell turnover enables the intestine to act both as a barrier and as the primary site of nutrient uptake. Constant tissue replenishment is fuelled by continuously dividing stem cells that reside at the bottom of crypts. These cells are nurtured and protected by specialized epithelial and mesenchymal cells, and together constitute the intestinal stem cell niche. Intestinal stem cells and early progenitor cells compete for limited niche space and, therefore, the ability to retain or regain stemness. Those cells unable to do so differentiate to one of six different mature cell types and move upwards towards the villus, where they are shed into the intestinal lumen after 3-5 days. In this Review, we discuss the signals, cell types and mechanisms that control homeostasis and regeneration in the intestinal epithelium. We investigate how the niche protects and instructs intestinal stem cells, which processes drive differentiation of mature cells and how imbalance in key signalling pathways can cause human disease.
Collapse
|
36
|
Spit M, Koo BK, Maurice MM. Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer. Open Biol 2018; 8:rsob.180120. [PMID: 30209039 PMCID: PMC6170508 DOI: 10.1098/rsob.180120] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Rapidly renewing tissues such as the intestinal epithelium critically depend on the activity of small-sized stem cell populations that continuously generate new progeny to replace lost and damaged cells. The complex and tightly regulated process of intestinal homeostasis is governed by a variety of signalling pathways that balance cell proliferation and differentiation. Accumulating evidence suggests that stem cell control and daughter cell fate determination is largely dictated by the microenvironment. Here, we review recent developments in the understanding of intestinal stem cell dynamics, focusing on the roles, mechanisms and interconnectivity of prime signalling pathways that regulate stem cell behaviour in intestinal homeostasis. Furthermore, we discuss how mutational activation of these signalling pathways endows colorectal cancer cells with niche-independent growth advantages during carcinogenesis.
Collapse
Affiliation(s)
- Maureen Spit
- Cell Biology, Center for Molecular Medicine, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Bon-Kyoung Koo
- IMBA - Institute of Molecular Biotechnology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Madelon M Maurice
- Cell Biology, Center for Molecular Medicine, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands .,Oncode Institute, The Netherlands
| |
Collapse
|
37
|
Yip HYK, Tan CW, Hirokawa Y, Burgess AW. Colon organoid formation and cryptogenesis are stimulated by growth factors secreted from myofibroblasts. PLoS One 2018; 13:e0199412. [PMID: 29928021 PMCID: PMC6013242 DOI: 10.1371/journal.pone.0199412] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Although small intestinal epithelial stem cells form crypts when using intestinal culture conditions, colon stem cells usually form colonospheres. Colon mesenchymal cell feeder layers can stimulate colon crypts to form organoids and produce crypts. We have investigated whether conditioned medium from colon mesenchymal cells can also stimulate colonosphere and organoid cryptogenesis. We prepared conditioned medium (CM) from WEHI-YH2 cells (mouse colon myofibroblasts); the CM stimulated both colonosphere formation and organoid cryptogenesis in vitro. The colon organoid-stimulating factors in WEHI-YH2 CM are inactivated by heating and trypsin digestion and proteins can be concentrated by ultrafiltration. Both the colonosphere- and organoid cryptogenesis- stimulatory effects of the CM are independent of canonical Wnt and Notch signaling. In contrast, bone morphogenetic protein 4 (BMP4) abolishes colonosphere formation and organoid cryptogenesis. The Transforming Growth Factor beta (TGFβ) Type I receptor kinase inhibitor (A83-01) stimulates colonosphere formation, whereas the Epidermal Growth Factor receptor (EGFR) kinase inhibitor (AG1478) reduces the formation of colonospheres, but in the presence of EGF, a “just-right” concentration of AG1478 increases colon organoid cryptogenesis.
Collapse
Affiliation(s)
- Hon Yan Kelvin Yip
- Structural Biology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Chin Wee Tan
- Structural Biology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (CWT); (AWB)
| | - Yumiko Hirokawa
- Structural Biology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Antony Wilks Burgess
- Structural Biology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria, Australia
- * E-mail: (CWT); (AWB)
| |
Collapse
|
38
|
Wang S, Chen YG. BMP signaling in homeostasis, transformation and inflammatory response of intestinal epithelium. SCIENCE CHINA-LIFE SCIENCES 2018; 61:800-807. [PMID: 29855793 DOI: 10.1007/s11427-018-9310-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
Intestine is the organ for food digestion, nutrient absorption and pathogen defense, in which processes intestinal epithelium plays a central role. Intestinal epithelium undergoes fast turnover, and its homeostasis is regulated by multiple signaling pathways, including Wnt, Notch, Hippo and BMP pathways. BMP signaling has been shown to negatively regulate self-renewal of Lgr5+ intestinal stem cells, constrains the expansion of intestinal epithelium, therefore attenuating colorectal cancer formation. BMPs and their receptors are expressed in both epithelial and mesenchymal cells, suggesting a two-way interaction between the mesenchyme and epithelium. In this review, we summarize the current understanding of the function of BMP signaling in homeostasis, cancerous transformation and inflammatory response of intestinal epithelium.
Collapse
Affiliation(s)
- Shan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
39
|
Guo X, Wang X, Di R, Liu Q, Hu W, He X, Yu J, Zhang X, Zhang J, Broniowska K, Chen W, Wu C, Chu M. Metabolic Effects of FecB Gene on Follicular Fluid and Ovarian Vein Serum in Sheep (Ovis aries). Int J Mol Sci 2018; 19:ijms19020539. [PMID: 29439449 PMCID: PMC5855761 DOI: 10.3390/ijms19020539] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/28/2022] Open
Abstract
The FecB gene has been discovered as an important gene in sheep for its high relationship with the ovulation rate, but its regulatory mechanism remains unknown. In the present study, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were adopted to detect the metabolic effects of FecB gene in follicular fluid (FF) and ovarian vein serum (OVS) in Small Tail Han (STH) sheep. ANOVA and random forest statistical methods were employed for the identification of important metabolic pathways and biomarkers. Changes in amino acid metabolism, redox environment, and energy metabolism were observed in FF from the three FecB genotype STH ewes. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) showed that metabolic effects of FecB gene are more pronounced in FF than in OVS. Therefore, the difference of the metabolic profile in FF is also affected by the FecB genotypes. In Spearman correlation analysis, key metabolites (e.g., glucose 6-phosphate, glucose 1-phosphate, aspartate, asparagine, glutathione oxidized (GSSG), cysteine-glutathione disulfide, γ-glutamylglutamine, and 2-hydrosybutyrate) in ovine FF samples showed a significant correlation with the ovulation rate. Our findings will help to explain the metabolic mechanism of high prolificacy ewes and benefit fertility identification.
Collapse
Affiliation(s)
- Xiaofei Guo
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiarui Yu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | | | - Wei Chen
- Shanghai Applied Protein Technology Co., Ltd., Shanghai 200233, China.
| | - Changxin Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
40
|
Sun J, Liu X, Gao H, Zhang L, Ji Q, Wang Z, Zhou L, Wang Y, Sui H, Fan Z, Li Q. Overexpression of colorectal cancer oncogene CHRDL2 predicts a poor prognosis. Oncotarget 2017; 8:11489-11506. [PMID: 28009989 PMCID: PMC5355280 DOI: 10.18632/oncotarget.14039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) both promote and suppress tumorigenesis, and multiple BMP antagonists reportedly contribute to cancer progression. In this study, we demonstrated that the BMP antagonist Chordin-like 2 (CHRDL2) is upregulated in colorectal cancer (CRC) tissues, and that CHRDL2 levels correlate with clinical features of CRC patients, including tumor size, TNM staging, and tumor differentiation. In addition, survival rate and Cox proportional hazards model analyses showed that high CHRDL2 levels correlate with a poor prognosis in CRC. Moreover, CHRDL2 promoted CRC cell proliferation in vitro and in vivo, perhaps through up-regulation of Cyclin D1 and down-regulation of P21. Co-immunoprecipitation assays showed that CHRDL2 bound to BMPs, which inhibited p-Smad1/5, thereby promoting CRC cell proliferation and inhibiting apoptosis. These results suggest CHRDL2 could serve as a biomarker of poor prognosis in CRC, and provide evidence that CHRDL2 acts as an oncogene in human CRC, making it a novel potential therapeutic target.
Collapse
Affiliation(s)
- Jian Sun
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xuan Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Gao
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Long Zhang
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziyuan Wang
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Cancer Institute of Traditional Chinese Medicine & Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhongze Fan
- Interventional Cancer Institute of Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
41
|
Redondo PA, Pavlou M, Loizidou M, Cheema U. Elements of the niche for adult stem cell expansion. J Tissue Eng 2017; 8:2041731417725464. [PMID: 28890779 PMCID: PMC5574483 DOI: 10.1177/2041731417725464] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells.
Collapse
Affiliation(s)
- Patricia A Redondo
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Marina Pavlou
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Umber Cheema
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| |
Collapse
|
42
|
Finnberg NK, Gokare P, Lev A, Grivennikov SI, MacFarlane AW, Campbell KS, Winters RM, Kaputa K, Farma JM, Abbas AES, Grasso L, Nicolaides NC, El-Deiry WS. Application of 3D tumoroid systems to define immune and cytotoxic therapeutic responses based on tumoroid and tissue slice culture molecular signatures. Oncotarget 2017; 8:66747-66757. [PMID: 28977993 PMCID: PMC5620133 DOI: 10.18632/oncotarget.19965] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022] Open
Abstract
We have developed 3D-tumoroids and tumor slice in vitro culture systems from surgical tumor specimens derived from patients with colorectal cancer (CRC) or lung cancer to evaluate immune cell populations infiltrating cultured tissues. The system incorporates patient's peripherally and tumor-derived immune cells into tumoroid in vitro cultures to evaluate the ability of the culture to mimic an immunosuppressive tumor microenvironment (ITM). This system enables analysis of tumor response to standard therapy within weeks of surgical resection. Here we show that tumoroid cultures from a CRC patient are highly sensitive to the thymidylate synthase inhibitor 5-fluorouracil (adrucil) but less sensitive to the combination of nucleoside analog trifluridine and thymidine phosphorylase inhibitor tipiracil (Lonsurf). Moreover, re-introduction of isolated immune cells derived from surrounding and infiltrating tumor tissue as well as CD45+ tumor infiltrating hematopoietic cells displayed prolonged (>10 days) survival in co-culture. Established tumor slice cultures were found to contain both an outer epithelial and inner stromal cell compartment mimicking tumor structure in vivo. Collectively, these data suggest that, 3D-tumoroid and slice culture assays may provide a feasible in vitro approach to assess efficacy of novel therapeutics in the context of heterogeneous tumor-associated cell types including immune and non-transformed stromal cells. In addition, delineating the impact of therapeutics on immune cells, and cell types involved in therapeutic resistance mechanisms may be possible in general or for patient-specific responses.
Collapse
Affiliation(s)
- Niklas K Finnberg
- Department of Hematology/Oncology and Molecular Therapeutics Program, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Prashanth Gokare
- Department of Hematology/Oncology and Molecular Therapeutics Program, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Avital Lev
- Department of Hematology/Oncology and Molecular Therapeutics Program, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sergei I Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Kerry S Campbell
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ryan M Winters
- Biosample Repository Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Karen Kaputa
- Biosample Repository Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jeffrey M Farma
- Division of General Surgery, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Abbas El-Sayed Abbas
- Division of Thoracic Surgery, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | - Wafik S El-Deiry
- Department of Hematology/Oncology and Molecular Therapeutics Program, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
43
|
Voorneveld PW, Reimers MS, Bastiaannet E, Jacobs RJ, van Eijk R, Zanders MMJ, Herings RMC, van Herk-Sukel MPP, Kodach LL, van Wezel T, Kuppen PJK, Morreau H, van de Velde CJH, Hardwick JCH, Liefers GJ. Statin Use After Diagnosis of Colon Cancer and Patient Survival. Gastroenterology 2017; 153:470-479.e4. [PMID: 28512021 DOI: 10.1053/j.gastro.2017.05.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Statin use has been associated with a reduced incidence of colorectal cancer and might also affect survival of patients diagnosed with colon cancer. Statins are believed to inhibit Ras signaling and may also activate the bone morphogenetic protein (BMP) signaling pathway in colorectal cancer cells. We investigated the effects of statins on overall survival of patients with a diagnosis of colon cancer, and whether their effects were associated with changes in KRAS or the BMP signaling pathways. METHODS Data were derived from the PHARMO database network (Netherlands) and linked to patients diagnosed with colon cancer from 2002 through 2007, listed in the Eindhoven Cancer Registry. We obtained information on causes of death from statistics Netherlands. We constructed a tissue microarray of 999 colon cancer specimens from patients who underwent surgical resection from 2002 through 2008. Survival was analyzed with statin user status after diagnosis as a time-dependent covariate. Multivariable Poisson regression survival models and Cox analyses were used to study the effect of statins on survival. Tumor tissues were analyzed by immunohistochemistry for levels of SMAD4, BMPR1A, BMPR1B, and BMPR2 proteins. Tumor tissues were considered to have intact BMP signaling if they contained SMAD4 plus BMPR1A, BMPR1B, or BMPR2. DNA was isolated from tumor tissues and analyzed by quantitative polymerase chain reaction to detect mutations in KRAS. The primary outcome measures were overall mortality and cancer-specific mortality. RESULTS In this cohort, 21.0% of the patients (210/999) were defined as statin users after diagnosis of colon cancer. Statin use after diagnosis was significantly associated with reduced risk of death from any cause (adjusted relative risk [RR], 0.67; 95% confidence interval [CI], 0.51-0.87; P = .003) and death from cancer (adjusted RR, 0.66; 95% CI, 0.49-0.89; P = .007). Statin use after diagnosis was associated with reduced risk of death from any cause or from cancer for patients whose tumors had intact BMP signaling (adjusted RR, 0.39; 95% CI, 0.22-0.68; P = .001), but not for patients whose tumors did not have BMP signaling (adjusted RR, 0.81; 95% CI, 0.55-1.21; P = .106; P < .0001 for the interaction). Statin use after diagnosis was not associated with reduced risk of death from any cause or from cancer for patients whose tumors did not contain KRAS mutations (adjusted RR, 0.81; 95% CI, 0.56-1.18; P = .273) or whose tumors did have KRAS mutations (adjusted RR, 0.59; 95% CI 0.35-1.03; P = .062; P = .90 for the interaction). CONCLUSIONS In an analysis of 999 patients with a diagnosis of colon cancer, we associated statin with reduced risk of death from any cause or from cancer. The benefit of statin use is greater for patients whose tumors have intact BMP signaling, independent of KRAS mutation status. Randomized controlled trials are required to confirm these results.
Collapse
Affiliation(s)
- Philip W Voorneveld
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, the Netherlands
| | - Marlies S Reimers
- Department of Surgery, Leiden University Medical Center, the Netherlands
| | - Esther Bastiaannet
- Department of Surgery, Leiden University Medical Center, the Netherlands; Department of Gerontology & Geriatrics, Leiden University Medical Center, the Netherlands
| | - Rutger J Jacobs
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, the Netherlands
| | - Ronald van Eijk
- Department of Pathology, Leiden University Medical Center, the Netherlands
| | | | - Ron M C Herings
- PHARMO Institute for Drug Outcomes Research, the Netherlands
| | | | - Liudmila L Kodach
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, the Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, the Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, the Netherlands
| | | | - James C H Hardwick
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, the Netherlands.
| | - Gerrit Jan Liefers
- Department of Surgery, Leiden University Medical Center, the Netherlands
| |
Collapse
|
44
|
Liu RX, Ren WY, Ma Y, Liao YP, Wang H, Zhu JH, Jiang HT, Wu K, He BC, Sun WJ. BMP7 mediates the anticancer effect of honokiol by upregulating p53 in HCT116 cells. Int J Oncol 2017; 51:907-917. [PMID: 28731124 DOI: 10.3892/ijo.2017.4078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death. Hence, there is a great need to explore new efficacious drugs for the treatment of CRC. Honokiol (HNK), a natural product extracted from magnolia bark, processes various biological activities, including anticancer. In this study, we introduced cell viability assay, western blotting, real-time PCR and immunofluorescent staining to determine the anticancer effect of HNK, and the possible mechanism underlying this biological process. We found that HNK can inhibit the proliferation and induce apoptosis in HCT116 cells in a concentration- and time-dependent manner. HNK activates p53 in HCT116 and other colon cancer cells. Exogenous p53 potentiates the anticancer of HNK, while p53 inhibitor decreases this effect of HNK. Moreover, HNK upregulates the expression of bone morphogenetic protein 7 (BMP7) in colon cancer cells; Exogenous BMP7 enhances the anticancer activity of HNK and BMP7 specific antibody reduces this effect of HNK. For mechanism, we found that HNK cannot increase the level of Smad1/5/8; Exogenous BMP7 potentiates the HNK-induced activation of p53. On the contrary, BMP7 specific antibody inhibits the HNK-induced activation of p53 in colon cancer cells and partly decreases the total level of p53. Our findings suggested that HNK may be a promising anticancer drug for CRC; activation of p53 plays an important role in the anticancer activity of HNK, which may be initialized partly by the HNK-induced upregulation of BMP7.
Collapse
Affiliation(s)
- Rong-Xing Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wen-Yan Ren
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yan Ma
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yun-Peng Liao
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Han Wang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jia-Hui Zhu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hai-Tao Jiang
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ke Wu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wen-Juan Sun
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
45
|
Emerging roles of the bone morphogenetic protein pathway in cancer: potential therapeutic target for kinase inhibition. Biochem Soc Trans 2017; 44:1117-34. [PMID: 27528760 DOI: 10.1042/bst20160069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-β (TGF-β) family signalling pathway. Similar to TGF-β, the complex roles of BMPs in development and disease are demonstrated by their dichotomous roles in various cancers and cancer stages. Although early studies implicated BMP signalling in tumour suppressive phenotypes, the results of more recent experiments recognize BMPs as potent tumour promoters. Many of these complexities are becoming illuminated by understanding the role of BMPs in their contextual role in unique cell types of cancer and the impact of their surrounding tumour microenvironment. Here we review the emerging roles of BMP signalling in cancer, with a focus on the molecular underpinnings of BMP signalling in individual cancers as a valid therapeutic target for cancer prevention and treatment.
Collapse
|
46
|
Múnera JO, Sundaram N, Rankin SA, Hill D, Watson C, Mahe M, Vallance JE, Shroyer NF, Sinagoga KL, Zarzoso-Lacoste A, Hudson JR, Howell JC, Chatuvedi P, Spence JR, Shannon JM, Zorn AM, Helmrath MA, Wells JM. Differentiation of Human Pluripotent Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling. Cell Stem Cell 2017; 21:51-64.e6. [PMID: 28648364 PMCID: PMC5531599 DOI: 10.1016/j.stem.2017.05.020] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
Abstract
Gastric and small intestinal organoids differentiated from human pluripotent stem cells (hPSCs) have revolutionized the study of gastrointestinal development and disease. Distal gut tissues such as cecum and colon, however, have proved considerably more challenging to derive in vitro. Here we report the differentiation of human colonic organoids (HCOs) from hPSCs. We found that BMP signaling is required to establish a posterior SATB2+ domain in developing and postnatal intestinal epithelium. Brief activation of BMP signaling is sufficient to activate a posterior HOX code and direct hPSC-derived gut tube cultures into HCOs. In vitro, HCOs express colonic markers and contained colon-specific cell populations. Following transplantation into mice, HCOs undergo morphogenesis and maturation to form tissue that exhibits molecular, cellular, and morphologic properties of human colon. Together these data show BMP-dependent patterning of human hindgut into HCOs, which will be valuable for studying diseases including colitis and colon cancer.
Collapse
Affiliation(s)
- Jorge O Múnera
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - David Hill
- University of Michigan, Ann Arbor, MI 48109, USA
| | - Carey Watson
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Maxime Mahe
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jefferson E Vallance
- Division of Gastroenterology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Noah F Shroyer
- Division of Gastroenterology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Adrian Zarzoso-Lacoste
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jonathan R Hudson
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jonathan C Howell
- Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Praneet Chatuvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
47
|
Van Raay T, Allen-Vercoe E. Microbial Interactions and Interventions in Colorectal Cancer. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0004-2016. [PMID: 28643625 PMCID: PMC11687491 DOI: 10.1128/microbiolspec.bad-0004-2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Recently, several lines of evidence that indicate a strong link between the development of colorectal cancer (CRC) and aspects of the gut microbiota have become apparent. However, it remains unclear how changes in the gut microbiota might influence carcinogenesis or how regional organization of the gut might influence the microbiota. In this review, we discuss several leading theories that connect gut microbial dysbiosis with CRC and set this against a backdrop of what is known about proximal-distal gut physiology and the pathways of CRC development and progression. Finally, we discuss the potential for gut microbial modulation therapies, for example, probiotics, antibiotics, and others, to target and improve gut microbial dysbiosis as a strategy for the prevention or treatment of CRC.
Collapse
Affiliation(s)
- Terence Van Raay
- Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
48
|
Abstract
The bone morphogenetic proteins, (BMP)s are regulatory peptides that have significant effects on the growth and differentiation of gastrointestinal tissues. In addition, the BMPs have been shown to exert anti-inflammatory actions in the gut and to negatively regulate the growth of gastric neoplasms. The role of BMP signaling in the regulation of gastric metaplasia, dysplasia and neoplasia has been poorly characterized. Transgenic expression in the mouse stomach of the BMP inhibitor noggin leads to decreased parietal cell number, increased epithelial cell proliferation, and to the emergence of SPEM. Moreover, expression of noggin increases Helicobacter-induced inflammation and epithelial cell proliferation, accelerates the development of dysplasia, and it increases the expression of signal transducer and activator of transcription 3 (STAT3) and of activation-induced cytidine deaminase (AID). These findings provide new clues for a better understanding of the pathophysiological mechanisms that regulate gastric inflammation and the development of both dysplastic and neoplastic lesions of the stomach.
Collapse
|
49
|
Tian H, Zhao J, Brochmann EJ, Wang JC, Murray SS. Bone morphogenetic protein-2 and tumor growth: Diverse effects and possibilities for therapy. Cytokine Growth Factor Rev 2017; 34:73-91. [PMID: 28109670 DOI: 10.1016/j.cytogfr.2017.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/14/2016] [Accepted: 01/09/2017] [Indexed: 11/19/2022]
Abstract
Concern regarding safety with respect to the clinical use of human bone morphogenetic protein-2 (BMP-2) has become an increasingly controversial topic. The role of BMP-2 in carcinogenesis is of particular concern. Although there have been many studies of this topic, the results have been contradictory and confusing. We conducted a systematic review of articles that are relevant to the relationship or effect of BMP-2 on all types of tumors and a total of 97 articles were included. Studies reported in these articles were classified into three major types: "expression studies", "in vitro studies", and "in vivo studies". An obvious pattern was that those works that hypothesize an inhibitory effect for BMP-2 most often examined only the proliferative properties of the tumor cells. This subset of studies also contained an extraordinary number of contradictory findings which made drawing a reliable general conclusion impossible. In general, we support a pro-tumorigenesis role for BMP-2 based on the data from these in vitro cell studies and in vivo animal studies, however, more clinical studies should be carried out to help make a firm conclusion.
Collapse
Affiliation(s)
- Haijun Tian
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Elsa J Brochmann
- Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA, United States; Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, North Hills, CA, United States; Department of Medicine, University of California, Los Angeles, CA, United States
| | - Jeffrey C Wang
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, United States
| | - Samuel S Murray
- Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA, United States; Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, North Hills, CA, United States; Department of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
50
|
Qi Z, Li Y, Zhao B, Xu C, Liu Y, Li H, Zhang B, Wang X, Yang X, Xie W, Li B, Han JDJ, Chen YG. BMP restricts stemness of intestinal Lgr5 + stem cells by directly suppressing their signature genes. Nat Commun 2017; 8:13824. [PMID: 28059064 PMCID: PMC5227110 DOI: 10.1038/ncomms13824] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium possesses a remarkable self-renewal ability, which is mediated by actively proliferating Lgr5+ stem cells. Bone morphogenetic protein (BMP) signalling represents one major counterforce that limits the hyperproliferation of intestinal epithelium, but the exact mechanism remains elusive. Here we demonstrate that epithelial BMP signalling plays an indispensable role in restricting Lgr5+ stem cell expansion to maintain intestinal homeostasis and prevent premalignant hyperproliferation on damage. Mechanistically, BMP inhibits stemness of Lgr5+ stem cells through Smad-mediated transcriptional repression of a large number of stem cell signature genes, including Lgr5, and this effect is independent of Wnt/β-catenin signalling. Smad1/Smad4 recruits histone deacetylase HDAC1 to the promoters to repress transcription, and knockout of Smad4 abolishes the negative effects of BMP on stem cells. Our findings therefore demonstrate that epithelial BMP constrains the Lgr5+ stem cell self-renewal via Smad-mediated repression of stem cell signature genes to ensure proper homeostatic renewal of intestinal epithelium. Bone morphogenetic protein (BMP) maintains intestinal homeostasis by restricting its hyperproliferation but whether it directly regulates the stem cells is unknown. Here the authors show that BMP constrains the Lgr5+ stem cell expansion under both homeostatic and injury conditions through Smad-mediated repression of stem cell signature genes.
Collapse
Affiliation(s)
- Zhen Qi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yehua Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Zhao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chi Xu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haonan Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bingjie Zhang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinquan Wang
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing 100071, China
| | - Wei Xie
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing-Dong Jackie Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|