1
|
Liao H, He YJ, Zhang S, Kang X, Yang X, Xu B, Magnuson JT, Wang S, Zheng C, Qiu W. Perfluorohexanesulfonic Acid (PFHxS) Induces Hepatotoxicity through the PPAR Signaling Pathway in Larval Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22894-22906. [PMID: 39680074 DOI: 10.1021/acs.est.4c07056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In recent years, the industrial substitution of long-chain per- and polyfluoroalkyl substances (PFAS) with short-chain alternatives has become increasingly prevalent, resulting in the widespread environmental detection of perfluorohexanesulfonic acid (PFHxS), a short-chain PFAS. However, there remains limited information about the potential adverse effects of PFHxS at environmental concentrations to wildlife. Here, early life stage zebrafish (Danio rerio) were exposed to environmentally relevant concentrations of PFHxS to better characterize the adverse effects of PFHxS on aquatic organisms. Nontargeted, transcriptomic analysis revealed potential hepatotoxic effects in exposed larvae, including macrovesicular and microvesicular hepatic steatosis, as well as focal liver necrosis. Morphological, histological, biochemical, and targeted transcript expression profiles further confirmed significant alterations in hepatocellular lesion numbers, liver pathological structures, relative liver size, liver biochemical parameters, and liver function genes. To validate the PPAR-mediated toxicological mechanism identified as an enriched pathway through in silico bioinformatics analysis, we tested the coexposure to an antagonist and PPAR morpholino knockdown. This intervention alleviated PFHxS-induced hepatic effects, including reductions in the levels of aspartate aminotransferase, alanine aminotransferase, total cholesterol, and total triglycerides. Our results demonstrate that environmentally relevant concentrations of PFHxS can impair liver development and function in fish, which could have potential risks to aquatic organisms.
Collapse
Affiliation(s)
- Haolin Liao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying-Jie He
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuwen Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
| | - Xinyuan Kang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Chashan University Town, Wenzhou 325035, China
| | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri 65201, United States
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Villares M, Espert L, Daussy CF. Peroxisomes are underappreciated organelles hijacked by viruses. Trends Cell Biol 2024:S0962-8924(24)00248-4. [PMID: 39667991 DOI: 10.1016/j.tcb.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
Peroxisomes are cellular organelles that are crucial for metabolism, stress responses, and healthy aging. They have recently come to be considered as important mediators of the immune response during viral infections. Consequently, various viruses target peroxisomes for the purpose of hijacking either their biogenesis or their functions, as a means of replicating efficiently, making this a compelling research area. Despite their known connections with mitochondria, which have been the object of considerable research on account of their role in the innate immune response, less is known about peroxisomes in this context. In this review, we explore the evolving understanding of the role of peroxisomes, highlighting recent findings on how they are exploited by viruses to modulate their replication cycle.
Collapse
Affiliation(s)
- Marie Villares
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Lucile Espert
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Coralie F Daussy
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France.
| |
Collapse
|
3
|
Le DHH, Kanokudom S, Nguyen HM, Yorsaeng R, Honsawek S, Vongpunsawad S, Poovorawan Y. Hepatitis C Virus-Core Antigen: Implications in Diagnostic, Treatment Monitoring and Clinical Outcomes. Viruses 2024; 16:1863. [PMID: 39772172 PMCID: PMC11680303 DOI: 10.3390/v16121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
The hepatitis C virus (HCV) infection, a global health concern, can lead to chronic liver disease. The HCV core antigen (HCVcAg), a viral protein essential for replication, offers a cost-effective alternative to HCV RNA testing, particularly in resource-limited settings. This review explores the significance of HCVcAg, a key protein in the hepatitis C virus, examining its structure, function, and role in the viral life cycle. It also evaluates its clinical use in diagnosis and treatment monitoring, comparing its performance to the standard HCV RNA assay using data from PubMed and Google Scholar. HCVcAg assays show high pooled sensitivity (93.5%) and pooled specificity (99.2%) compared to HCV RNA assays, correlating closely (r = 0.87) with HCV RNA levels. Hence, HCVcAg testing offers a cost-effective way to diagnose active HCV infections and monitor treatment, especially in resource-limited settings, but its sensitivity can vary and standardization is needed. HCVcAg also predicts liver disease progression and assesses liver damage risk, aiding patient management. It helps to identify patients at risk for fibrosis or carcinoma, making it vital in hepatitis C care. HCVcAg testing can expand access to HCV care, simplify management, and contribute to global elimination strategies, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Duong Hoang Huy Le
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (D.H.H.L.); (S.K.); (R.Y.); (S.V.)
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand;
- Medical Biochemistry & Molecular Biology Department, Fundamental Sciences and Basic Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam;
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (D.H.H.L.); (S.K.); (R.Y.); (S.V.)
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand;
| | - Ha Minh Nguyen
- Medical Biochemistry & Molecular Biology Department, Fundamental Sciences and Basic Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam;
- Laboratory Department, Nguyen Tri Phuong Hospital, Ho Chi Minh City 700000, Vietnam
| | - Ritthideach Yorsaeng
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (D.H.H.L.); (S.K.); (R.Y.); (S.V.)
| | - Sittisak Honsawek
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand;
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (D.H.H.L.); (S.K.); (R.Y.); (S.V.)
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (D.H.H.L.); (S.K.); (R.Y.); (S.V.)
- The Royal Society of Thailand, Sanam Sueapa, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Asgharzadeh F, Memarzia A, Alikhani V, Beigoli S, Boskabady MH. Peroxisome proliferator-activated receptors: Key regulators of tumor progression and growth. Transl Oncol 2024; 47:102039. [PMID: 38917593 PMCID: PMC11254173 DOI: 10.1016/j.tranon.2024.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
One of the main causes of death on the globe is cancer. Peroxisome-proliferator-activated receptors (PPARs) are nuclear hormone receptors, including PPARα, PPARδ and PPARγ, which are important in regulating cancer cell proliferation, survival, apoptosis, and tumor growth. Activation of PPARs by endogenous or synthetic compounds regulates tumor progression in various tissues. Although each PPAR isotype suppresses or promotes tumor development depending on the specific tissues or ligands, the mechanism is still unclear. PPARs are receiving interest as possible therapeutic targets for a number of disorders. Numerous clinical studies are being conducted on PPARs as possible therapeutic targets for cancer. Therefore, this review will focus on the existing and future uses of PPARs agonists and antagonists in treating malignancies. PubMed, Science Direct, and Scopus databases were searched regarding the effect of PPARs on various types of cancers until the end of May 2023. The results of the review articles showed the therapeutic influence of PPARs on a wide range of cancer on in vitro, in vivo and clinical studies. However, further experimental and clinical studies are needed to be conducted on the influence of PPARs on various cancers.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vida Alikhani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Fernandez CJ, Alkhalifah M, Afsar H, Pappachan JM. Metabolic Dysfunction-Associated Fatty Liver Disease and Chronic Viral Hepatitis: The Interlink. Pathogens 2024; 13:68. [PMID: 38251375 PMCID: PMC10821334 DOI: 10.3390/pathogens13010068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has now affected nearly one-third of the global population and has become the number one cause of chronic liver disease in the world because of the obesity pandemic. Chronic hepatitis resulting from hepatitis B virus (HBV) and hepatitis C virus (HCV) remain significant challenges to liver health even in the 21st century. The co-existence of MAFLD and chronic viral hepatitis can markedly alter the disease course of individual diseases and can complicate the management of each of these disorders. A thorough understanding of the pathobiological interactions between MAFLD and these two chronic viral infections is crucial for appropriately managing these patients. In this comprehensive clinical review, we discuss the various mechanisms of chronic viral hepatitis-mediated metabolic dysfunction and the impact of MAFLD on the progression of liver disease.
Collapse
Affiliation(s)
- Cornelius J. Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, UK;
| | - Mohammed Alkhalifah
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Sharoe Green Lane, Preston PR2 9HT, UK; (M.A.); (H.A.)
- Department of Family Medicine and Polyclinics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11411, Saudi Arabia
| | - Hafsa Afsar
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Sharoe Green Lane, Preston PR2 9HT, UK; (M.A.); (H.A.)
| | - Joseph M. Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Sharoe Green Lane, Preston PR2 9HT, UK; (M.A.); (H.A.)
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, UK
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
6
|
Biagi F, Carlomagno F, Carbone M, Veralli R, Vespasiani-Gentilucci U, Riva E, Manfrini S, Tuccinardi D, De Santis A, Gnessi L, Watanabe M. Fibroblast Growth Factor 21 in Chronic Hepatitis C: A Potential Non-Invasive Biomarker of Liver Status upon Viral Eradication. Metabolites 2023; 13:1119. [PMID: 37999215 PMCID: PMC10673401 DOI: 10.3390/metabo13111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Fibroblast growth factor 21 (FGF-21), previously recognized as a marker of liver damage and a potential drug target in non-alcoholic fatty liver disease (NAFLD), has unclear implications in hepatitis C virus (HCV) infections. This study aimed to investigate the relationship between FGF-21 levels and liver health in patients with HCV undergoing direct-acting antiviral (DAA) treatment. Forty-five patients were assessed for liver stiffness, blood chemistry, and other relevant metrics before and after achieving sustained viral response (SVR), defined as the absence of detectable HCV-RNA after 24 weeks of treatment. Post-treatment, all patients showed a decrease in liver stiffness and improved liver enzyme levels (AST and ALT), alongside an increase in FGF-21 levels. Interestingly, the increase in FGF-21 correlated negatively with liver stiffness but showed no correlation with hepatic steatosis. The observed elevation in FGF-21 levels at SVR following DAA therapy for chronic HCV infection can be attributed to the restoration of hepatic function, including its synthetic capabilities. Specifically, the mitigation of liver fibrosis post-HCV eradication is expected to lead to improvements in liver function, such as enhanced albumin and FGF-21 production. This improvement in synthetic function likely drives the increase in FGF-21 levels, rather than changes in liver fat content. We suggest a potential role of FGF-21 as a marker of fibrosis and hepatic cytotoxicity and as a drug target beyond NAFLD, to be confirmed by additional studies.
Collapse
Affiliation(s)
- Filippo Biagi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy (F.C.); (M.W.)
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Francesco Carlomagno
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy (F.C.); (M.W.)
| | - Martina Carbone
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy (A.D.S.)
- Department of General Surgery, Section of Gastroenterology, Azienda Sanitaria Universitaria Friuli Centrale–P.O. Santa Maria della Misericordia di Udine, 33100 Udine, Italy
| | - Roberta Veralli
- Clinical Laboratory Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy;
- Unit of Virology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | | | - Elisabetta Riva
- Unit of Virology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Medicine and Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Adriano De Santis
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy (A.D.S.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy (F.C.); (M.W.)
| | - Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy (F.C.); (M.W.)
| |
Collapse
|
7
|
Zhao M, Lei Y, Zhou Y, Sun M, Li X, Zhou Z, Huang J, Li X, Zhao B. Development and investigation of metabolism-associated risk assessment models for patients with viral hepatitis. Front Cell Infect Microbiol 2023; 13:1165647. [PMID: 37065201 PMCID: PMC10095836 DOI: 10.3389/fcimb.2023.1165647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Dysregulation of metabolism plays an important role in the onset and progression of multiple pathogenic diseases, including viral hepatitis. However, a model to predict viral hepatitis risk by metabolic pathways is still lacking. Thus, we developed two risk assessment models for viral hepatitis based on metabolic pathways identified through univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analysis. The first model is designed to assess the progression of the disease by evaluating changes in the Child–Pugh class, hepatic decompensation, and the development of hepatocellular carcinoma. The second model is focused on determining the prognosis of the illness, taking into account the patient’s cancer status. Our models were further validated by Kaplan–Meier plots of survival curves. In addition, we investigated the contribution of immune cells in metabolic processes and identified three distinct subsets of immune cells—CD8+ T cells, macrophages, and NK cells—that have significantly affected metabolic pathways. Specifically, our findings suggest that resting or inactive macrophages and NK cells contribute to maintaining metabolic homeostasis, particularly with regard to lipid and α-amino acid metabolism, thereby potentially reducing the risk of viral hepatitis progression. Moreover, maintaining metabolic homeostasis ensures a balance between killer-proliferative and exhausted CD8+ T cells, which helps in mitigating CD8+ T cell-mediated liver damage while preserving energy reserves. In conclusion, our study offers a useful tool for early disease detection in viral hepatitis patients through metabolic pathway analysis and sheds light on the immunological understanding of the disease through the examination of immune cell metabolic disorders.
Collapse
Affiliation(s)
- Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Lei
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanyan Zhou
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingan Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Xinyu Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- *Correspondence: Bin Zhao, ; ; Xinyu Li,
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Xinyu Li,
| |
Collapse
|
8
|
Gottschalk CG, Peterson D, Armstrong J, Knox K, Roy A. Potential molecular mechanisms of chronic fatigue in long haul COVID and other viral diseases. Infect Agent Cancer 2023; 18:7. [PMID: 36750846 PMCID: PMC9902840 DOI: 10.1186/s13027-023-00485-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Historically, COVID-19 emerges as one of the most devastating diseases of humankind, which creates an unmanageable health crisis worldwide. Until now, this disease costs millions of lives and continues to paralyze human civilization's economy and social growth, leaving an enduring damage that will take an exceptionally long time to repair. While a majority of infected patients survive after mild to moderate reactions after two to six weeks, a growing population of patients suffers for months with severe and prolonged symptoms of fatigue, depression, and anxiety. These patients are no less than 10% of total COVID-19 infected individuals with distinctive chronic clinical symptomatology, collectively termed post-acute sequelae of COVID-19 (PASC) or more commonly long-haul COVID. Interestingly, Long-haul COVID and many debilitating viral diseases display a similar range of clinical symptoms of muscle fatigue, dizziness, depression, and chronic inflammation. In our current hypothesis-driven review article, we attempt to discuss the molecular mechanism of muscle fatigue in long-haul COVID, and other viral diseases as caused by HHV6, Powassan, Epstein-Barr virus (EBV), and HIV. We also discuss the pathological resemblance of virus-triggered muscle fatigue with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).
Collapse
Affiliation(s)
- Carl Gunnar Gottschalk
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,grid.267468.90000 0001 0695 7223Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Daniel Peterson
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Jan Armstrong
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Konstance Knox
- grid.267468.90000 0001 0695 7223Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Avik Roy
- Simmaron Research INC, 948 Incline Way, Incline Village, NV, 89451, USA. .,Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA. .,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI, 53186, USA.
| |
Collapse
|
9
|
Sularea VM, Sugrue JA, O'Farrelly C. Innate antiviral immunity and immunometabolism in hepatocytes. Curr Opin Immunol 2023; 80:102267. [PMID: 36462263 DOI: 10.1016/j.coi.2022.102267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
The human liver mediates whole-body metabolism, systemic inflammation and responses to hepatotropic pathogens. Hepatocytes, the most abundant cell type of the liver, have critical roles in each of these activities. The regulation of metabolic pathways, such as glucose metabolism, lipid biosynthesis and oxidation, influences whole-organism functionality. However, the immune potential of the liver in general and hepatocytes in particular is also determined by metabolic ability. The major shifts in cellular metabolism required to drive activity in immune cells are now well-described. Given the unique functions of hepatocytes in systemic metabolism and inflammation, and their ability to mediate local antiviral innate immunity, the metabolic shifts required to facilitate these activities are likely to be complex and challenging to define. In this review, we explore what is known about the complex metabolic rewiring required for hepatocytes to respond appropriately to viral infection. We also discuss how viruses can manipulate hepatocyte metabolism to facilitate infection.
Collapse
Affiliation(s)
- Vasile Mihai Sularea
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jamie A Sugrue
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
An Update on the Metabolic Landscape of Oncogenic Viruses. Cancers (Basel) 2022; 14:cancers14235742. [PMID: 36497226 PMCID: PMC9738352 DOI: 10.3390/cancers14235742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Viruses play an important role in cancer development as about 12% of cancer types are linked to viral infections. Viruses that induce cellular transformation are known as oncoviruses. Although the mechanisms of viral oncogenesis differ between viruses, all oncogenic viruses share the ability to establish persistent chronic infections with no obvious symptoms for years. During these prolonged infections, oncogenic viruses manipulate cell signaling pathways that control cell cycle progression, apoptosis, inflammation, and metabolism. Importantly, it seems that most oncoviruses depend on these changes for their persistence and amplification. Metabolic changes induced by oncoviruses share many common features with cancer metabolism. Indeed, viruses, like proliferating cancer cells, require increased biosynthetic precursors for virion production, need to balance cellular redox homeostasis, and need to ensure host cell survival in a given tissue microenvironment. Thus, like for cancer cells, viral replication and persistence of infected cells frequently depend on metabolic changes. Here, we draw parallels between metabolic changes observed in cancers or induced by oncoviruses, with a focus on pathways involved in the regulation of glucose, lipid, and amino acids. We describe whether and how oncoviruses depend on metabolic changes, with the perspective of targeting them for antiviral and onco-therapeutic approaches in the context of viral infections.
Collapse
|
11
|
Leslie J, Geh D, Elsharkawy AM, Mann DA, Vacca M. Metabolic dysfunction and cancer in HCV: Shared pathways and mutual interactions. J Hepatol 2022; 77:219-236. [PMID: 35157957 DOI: 10.1016/j.jhep.2022.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022]
Abstract
HCV hijacks many host metabolic processes in an effort to aid viral replication. The resulting hepatic metabolic dysfunction underpins many of the hepatic and extrahepatic manifestations of chronic hepatitis C (CHC). However, the natural history of CHC is also substantially influenced by the host metabolic status: obesity, insulin resistance and hepatic steatosis are major determinants of CHC progression toward hepatocellular carcinoma (HCC). Direct-acting antivirals (DAAs) have transformed the treatment and natural history of CHC. While DAA therapy effectively eradicates the virus, the long-lasting overlapping metabolic disease can persist, especially in the presence of obesity, increasing the risk of liver disease progression. This review covers the mechanisms by which HCV tunes hepatic and systemic metabolism, highlighting how systemic metabolic disturbance, lipotoxicity and chronic inflammation favour disease progression and a precancerous niche. We also highlight the therapeutic implications of sustained metabolic dysfunction following sustained virologic response as well as considerations for patients who develop HCC on the background of metabolic dysfunction.
Collapse
Affiliation(s)
- Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ahmed M Elsharkawy
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Queen Elizabeth Medical Centre, Birmingham, B15 2TH UK; National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey.
| | - Michele Vacca
- Interdisciplinary Department of Medicine, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
12
|
Wang X, Zhou Y, Wang C, Zhao Y, Cheng Y, Yu S, Li X, Zhang W, Zhang Y, Quan H. HCV Core protein represses DKK3 expression via epigenetic silencing and activates the Wnt/β-catenin signaling pathway during the progression of HCC. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:1998-2009. [PMID: 35768685 DOI: 10.1007/s12094-022-02859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
The Wnt/β-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). A number of studies have focused on the aberrant hypermethylation of the DKK family proteins and its role in regulating the activation of specific signaling pathways. However, the exact way by which DKK regulates the signaling pathway caused by Core protein of HCV has not been reported. In the present study, we evaluated the expression level of DKK and its aberrant promoter methylation to investigate the involvement of epigenetic regulation in hepatoma cell lines. The transcription and protein expression of DKK1 was significantly increased, whereas the transcription and protein expression levels of DKK2, DKK3, and DKK4 were significantly decreased following overexpression of Core protein. Pyrosequencing indicated that hypermethylation of DKK3 was increased. This was associated with increased expression of Dnmt1. The investigation of the molecular mechanism indicated that HCV Core protein interacted with Dnmt1, which combined with the promoter of DKK3, leading to methylation of DKK3. Functional studies indicated that Core protein promoted the growth, migration and invasion of cancer cells. However, upregulation of the expression of DKK3 and/or the knockdown of the expression of Dnmt1 inhibited the growth, migration and invasion of cancer cells. Taken together, the data indicated that epigenetic silencing of DKK3 caused by Dnmt1 activated the Wnt/β-catenin pathway in HCV Core-mediated HCC. Therefore, DKK3 may be a potential diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Chunfu Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yanyan Zhao
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yan Cheng
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Suhuai Yu
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xiaofeng Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wenjing Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Huiqin Quan
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
13
|
Biomarkers for the Detection and Management of Hepatocellular Carcinoma in Patients Treated with Direct-Acting Antivirals. Cancers (Basel) 2022; 14:cancers14112700. [PMID: 35681679 PMCID: PMC9179595 DOI: 10.3390/cancers14112700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chronic Hepatitis C virus (HCV) represents the main etiological factor for hepatocellular carcinoma (HCC) in developed countries. The introduction of direct-acting antivirals (DAAs) improved the eradication of the hepatitis C virus (HCV) but not the reduction in the incidence of HCV-associated HCC. Some patients still develop HCC, even after reaching a sustained virological response (SVR). This review is a summary of pre-clinical studies that investigated predictive biomarkers for HCC occurrence and recurrence in HCV-infected patients treated with DAAs. The presented biomarkers are found dysregulated in serum or tissue at specific time points (before, during, after DAA treatment or post SVR) and correlated with HCC-predisposing conditions. Thus, this review aims to improve the management of patients developing HCV-induced HCC. Abstract Hepatocellular carcinoma (HCC) is the sixth-most common type of cancer worldwide and chronic Hepatitis C virus (HCV) represents the main etiological factor in developed countries. HCV promotes hepatocarcinogenesis through persistent liver inflammation and dysregulation of cell signaling pathways. The introduction of direct-acting antivirals (DAAs) resulted in a significant improvement in the eradication of the virus, with an expected reduction of HCC incidence. However, the risk of HCC development can persist after DAA treatment. Recent studies have investigated the potential use of molecular biomarkers that predict HCC occurrence or recurrence helping the stratification of patients under surveillance. This review aimed to summarize all pre-clinical exploration of predictive biomarkers to identify DAA-treated patients at risk for HCC development. Dysregulated microRNAs, lncRNAs, histone modifications, cytokines, proteins, and sphingolipids represent various classes of HCC risk predictors identified in two different biological sources (tissue and serum). The non-invasive serum markers can provide a more accessible means to perform clinical monitoring and predict the risk of HCC. In addition, conditions like cirrhosis, predisposing to HCC, strongly correlate with most of the molecular predictors identified, supporting the value of these molecules as possible biomarkers of HCC in DAA-treated patients.
Collapse
|
14
|
Suh JH, Kim KH, Conner ME, Moore DD, Preidis GA. Hepatic PPARα Is Destabilized by SIRT1 Deacetylase in Undernourished Male Mice. Front Nutr 2022; 9:831879. [PMID: 35419389 PMCID: PMC8997242 DOI: 10.3389/fnut.2022.831879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
The nutrient sensing nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) regulates the host response to short-term fasting by inducing hepatic transcriptional programming of ketogenesis, fatty acid oxidation and transport, and autophagy. This adaptation is ineffective in chronically undernourished individuals, among whom dyslipidemia and hepatic steatosis are common. We recently reported that hepatic PPARα protein is profoundly depleted in male mice undernourished by a low-protein, low-fat diet. Here, we identify PPARα as a deacetylation target of the NAD-dependent deacetylase sirtuin-1 (SIRT1) and link this to the decrease in PPARα protein levels in undernourished liver. Livers from undernourished male mice expressed high levels of SIRT1, with decreased PPARα acetylation and strongly decreased hepatic PPARα protein. In cultured hepatocytes, PPARα protein levels were decreased by transiently transfecting constitutively active SIRT1 or by treating cells with the potent SIRT1 activator resveratrol, while silencing SIRT1 increased PPARα protein levels. SIRT1 expression is correlated with increased PPARα ubiquitination, suggesting that protein loss is due to proteasomal degradation. In accord with these findings, the dramatic loss of hepatic PPARα in undernourished male mice was completely restored by treating mice with the proteasome inhibitor bortezomib. Similarly, treating undernourished mice with the SIRT1 inhibitor selisistat/EX-527 completely restored hepatic PPARα protein. These data suggest that induction of SIRT1 in undernutrition results in hepatic PPARα deacetylation, ubiquitination, and degradation, highlighting a new mechanism that mediates the liver's failed adaptive metabolic responses in chronic undernutrition.
Collapse
Affiliation(s)
- Ji Ho Suh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Kang Ho Kim
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Department of Education, Innovation and Technology, Baylor College of Medicine, Houston, TX, United States
| | - David D Moore
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, United States
| | - Geoffrey A Preidis
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
15
|
PPAR Ligands Induce Antiviral Effects Targeting Perturbed Lipid Metabolism during SARS-CoV-2, HCV, and HCMV Infection. BIOLOGY 2022; 11:biology11010114. [PMID: 35053112 PMCID: PMC8772958 DOI: 10.3390/biology11010114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
Simple Summary The current coronavirus disease 2019 pandemic turned the attention of researchers to developing novel strategies to counteract virus infections. Despite several antiviral drugs being commercially available, there is an urgent need to identify novel molecules efficacious against viral infections that act through different mechanisms of action. In this context, our attention is focused on novel compounds acting on nuclear receptors, whose activity could be beneficial in viral infections, including coronavirus, hepatitis C virus, and cytomegalovirus. Abstract The manipulation of host metabolisms by viral infections has been demonstrated by several studies, with a marked influence on the synthesis and utilization of glucose, nucleotides, fatty acids, and amino acids. The ability of virus to perturb the metabolic status of the infected organism is directly linked to the outcome of the viral infection. A great deal of research in recent years has been focusing on these metabolic aspects, pointing at modifications induced by virus, and suggesting novel strategies to counteract the perturbed host metabolism. In this review, our attention is turned on PPARs, nuclear receptors controlling multiple metabolic actions, and on the effects played by PPAR ligands during viral infections. The role of PPAR agonists and antagonists during SARS-CoV-2, HCV, and HCMV infections will be analyzed.
Collapse
|
16
|
Toobian D, Ghosh P, Katkar GD. Parsing the Role of PPARs in Macrophage Processes. Front Immunol 2021; 12:783780. [PMID: 35003101 PMCID: PMC8727354 DOI: 10.3389/fimmu.2021.783780] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cells are richly equipped with nuclear receptors, which act as ligand-regulated transcription factors. Peroxisome proliferator activated receptors (PPARs), members of the nuclear receptor family, have been extensively studied for their roles in development, differentiation, and homeostatic processes. In the recent past, there has been substantial interest in understanding and defining the functions of PPARs and their agonists in regulating innate and adaptive immune responses as well as their pharmacologic potential in combating acute and chronic inflammatory disease. In this review, we focus on emerging evidence of the potential roles of the PPAR subtypes in macrophage biology. We also discuss the roles of dual and pan PPAR agonists as modulators of immune cell function, microbial infection, and inflammatory diseases.
Collapse
Affiliation(s)
- Daniel Toobian
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
- Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, CA, United States
- Department of Medicine, University of California San Diego, San Diego, CA, United States
- Veterans Affairs Medical Center, La Jolla, CA, United States
| | - Gajanan D. Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
17
|
Boeckmans J, Rombaut M, Demuyser T, Declerck B, Piérard D, Rogiers V, De Kock J, Waumans L, Magerman K, Cartuyvels R, Rummens JL, Rodrigues RM, Vanhaecke T. Infections at the nexus of metabolic-associated fatty liver disease. Arch Toxicol 2021; 95:2235-2253. [PMID: 34027561 PMCID: PMC8141380 DOI: 10.1007/s00204-021-03069-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease that affects about a quarter of the world population. MAFLD encompasses different disease stadia ranging from isolated liver steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma. Although MAFLD is considered as the hepatic manifestation of the metabolic syndrome, multiple concomitant disease-potentiating factors can accelerate disease progression. Among these risk factors are diet, lifestyle, genetic traits, intake of steatogenic drugs, male gender and particular infections. Although infections often outweigh the development of fatty liver disease, pre-existing MAFLD could be triggered to progress towards more severe disease stadia. These combined disease cases might be underreported because of the high prevalence of both MAFLD and infectious diseases that can promote or exacerbate fatty liver disease development. In this review, we portray the molecular and cellular mechanisms by which the most relevant viral, bacterial and parasitic infections influence the progression of fatty liver disease and steatohepatitis. We focus in particular on how infectious diseases, including coronavirus disease-19, hepatitis C, acquired immunodeficiency syndrome, peptic ulcer and periodontitis, exacerbate MAFLD. We specifically underscore the synergistic effects of these infections with other MAFLD-promoting factors.
Collapse
Affiliation(s)
- Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium.
| | - Matthias Rombaut
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Thomas Demuyser
- Department of Microbiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
- Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Baptist Declerck
- Department of Microbiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Luc Waumans
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Koen Magerman
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
- Department of Immunology and Infection, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Reinoud Cartuyvels
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Jean-Luc Rummens
- Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
18
|
HCV Proteins Modulate the Host Cell miRNA Expression Contributing to Hepatitis C Pathogenesis and Hepatocellular Carcinoma Development. Cancers (Basel) 2021; 13:cancers13102485. [PMID: 34069740 PMCID: PMC8161081 DOI: 10.3390/cancers13102485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary According to the last estimate by the World Health Organization (WHO), more than 71 million individuals have chronic hepatitis C worldwide. The persistence of HCV infection leads to chronic hepatitis, which can evolve into liver cirrhosis and ultimately into hepatocellular carcinoma (HCC). Although the pathogenic mechanisms are not fully understood, it is well established that an interplay between host cell factors, including microRNAs (miRNA), and viral components exist in all the phases of the viral infection and replication. Those interactions establish a complex equilibrium between host cells and HCV and participate in multiple mechanisms characterizing hepatitis C pathogenesis. The present review aims to describe the role of HCV structural and non-structural proteins in the modulation of cellular miRNA during HCV infection and pathogenesis. Abstract Hepatitis C virus (HCV) genome encodes for one long polyprotein that is processed by cellular and viral proteases to generate 10 polypeptides. The viral structural proteins include the core protein, and the envelope glycoproteins E1 and E2, present at the surface of HCV particles. Non-structural (NS) proteins consist of NS1, NS2, NS3, NS4A, NS4B, NS5a, and NS5b and have a variable function in HCV RNA replication and particle assembly. Recent findings evidenced the capacity of HCV virus to modulate host cell factors to create a favorable environment for replication. Indeed, increasing evidence has indicated that the presence of HCV is significantly associated with aberrant miRNA expression in host cells, and HCV structural and non-structural proteins may be responsible for these alterations. In this review, we summarize the recent findings on the role of HCV structural and non-structural proteins in the modulation of host cell miRNAs, with a focus on the molecular mechanisms responsible for the cell re-programming involved in viral replication, immune system escape, as well as the oncogenic process. In this regard, structural and non-structural proteins have been shown to modulate the expression of several onco-miRNAs or tumor suppressor miRNAs.
Collapse
|
19
|
Fowl Adenovirus Serotype 4 Induces Hepatic Steatosis via Activation of Liver X Receptor-α. J Virol 2021; 95:JVI.01938-20. [PMID: 33361420 DOI: 10.1128/jvi.01938-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is a hepatotropic virus that causes severe hepatic damage characterized by basophilic intranuclear inclusion bodies, vacuolar degeneration, and multifocal necrosis in hepatocytes. Many aspects of FAdV-4 infection and pathogenesis, however, remain unknown. Here, we found that FAdV-4-induced hepatic injury is accompanied by the accumulation of oil droplets (triglycerides) in the cytoplasm of hepatocytes, a typical indicator of steatosis, in FAdV-4-infected chickens. Significant upregulation of adipose synthesis-related genes, such as liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), and sterol regulatory element-binding protein-1c (SREBP-1c), and significant downregulation of low-density lipoprotein secretion-related genes and lipid oxidation- and lipid decomposition-related genes were observed in the infected chickens. FAdV-4 infection in cultured leghorn male hepatoma (LMH) cells caused similar signs of steatosis, with alterations in various lipogenesis-related genes. We eliminated the effect of LXR-α activation on FAdV-4-induced steatosis and found that treatment with an LXR-α antagonist (SR9243) and RNA interference (small interfering RNA targeting LXR-α [Si-LXR-α]) decreased the number of oil droplets and the accumulation of lipogenic genes, but treatment with an LXR-α agonist (T0901317) increased the number of oil droplets and the accumulation of lipogenic genes in the cells. Additionally, SR9243 treatment or Si-LXR-α transfection led to significant reductions in viral DNA level, protein expression, and virus production, whereas T0901317 treatment caused significant increases in viral DNA level, protein expression, and virus production. However, inhibition of SREBP-1c activity had no significant effect on virus production. Collectively, these results indicated that FAdV-4-induced steatosis involves activation of the LXR-α signaling pathway, which might be a molecular mechanism underlying the hepatic injury associated with FAdV-4 infection.IMPORTANCE Fowl adenovirus serotype 4 (FAdV-4) is an important hepatotropic adenovirus in chicken, but the underlying mechanism of FAdV-4-induced hepatic injury remains unclear. We report here that infection with FAdV-4 induced the accumulation of oil droplets (triglycerides) in the cytoplasm of hepatocytes, a typical indicator of steatosis, in the livers of chickens. FAdV-4-induced steatosis might be caused by a disrupted balance of fat metabolism, as evidenced by differential regulation of various lipase genes. The significant upregulation of liver X receptor-α (LXR-α) prompted us to investigate the interplay between LXR-α activation and FAdV-4-induced steatosis. Treatment with an agonist, an antagonist, or RNA interference targeting LXR-α in cultured leghorn male hepatoma (LMH) cells indicated that FAdV-4-induced steatosis was dependent upon LXR-α activation, which contributed to virus replication. These results provide important mechanistic insights, revealing that FAdV-4 induces hepatic steatosis by activating the LXR-α signaling pathway and highlighting the therapeutic potential of strategies targeting the LXR-α pathway for the treatment of FAdV-4 infection.
Collapse
|
20
|
Sepulveda-Crespo D, Resino S, Martinez I. Strategies Targeting the Innate Immune Response for the Treatment of Hepatitis C Virus-Associated Liver Fibrosis. Drugs 2021; 81:419-443. [PMID: 33400242 DOI: 10.1007/s40265-020-01458-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Direct-acting antivirals eliminate hepatitis C virus (HCV) in more than 95% of treated individuals and may abolish liver injury, arrest fibrogenesis, and reverse fibrosis and cirrhosis. However, liver regeneration is usually a slow process that is less effective in the late stages of fibrosis. What is more, fibrogenesis may prevail in patients with advanced cirrhosis, where it can progress to liver failure and hepatocellular carcinoma. Therefore, the development of antifibrotic drugs that halt and reverse fibrosis progression is urgently needed. Fibrosis occurs due to the repair process of damaged hepatic tissue, which eventually leads to scarring. The innate immune response against HCV is essential in the initiation and progression of liver fibrosis. HCV-infected hepatocytes and liver macrophages secrete proinflammatory cytokines and chemokines that promote the activation and differentiation of hepatic stellate cells (HSCs) to myofibroblasts that produce extracellular matrix (ECM) components. Prolonged ECM production by myofibroblasts due to chronic inflammation is essential to the development of fibrosis. While no antifibrotic therapy is approved to date, several drugs are being tested in phase 2 and phase 3 trials with promising results. This review discusses current state-of-the-art knowledge on treatments targeting the innate immune system to revert chronic hepatitis C-associated liver fibrosis. Agents that cause liver damage may vary (alcohol, virus infection, etc.), but fibrosis progression shows common patterns among them, including chronic inflammation and immune dysregulation, hepatocyte injury, HSC activation, and excessive ECM deposition. Therefore, mechanisms underlying these processes are promising targets for general antifibrotic therapies.
Collapse
Affiliation(s)
- Daniel Sepulveda-Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| | - Isidoro Martinez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
21
|
Ahmed N, Ahmed N, Filip R, Pezacki JP. Nuclear Hormone Receptors and Host-Virus Interactions. NUCLEAR RECEPTORS 2021:315-348. [DOI: 10.1007/978-3-030-78315-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Shimotohno K. HCV Assembly and Egress via Modifications in Host Lipid Metabolic Systems. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036814. [PMID: 32122916 PMCID: PMC7778218 DOI: 10.1101/cshperspect.a036814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) proliferates by hijacking the host lipid machinery. In vitro replication systems revealed many aspects of the virus life cycle; in particular, viral utilization of host lipid metabolism during HCV proliferation. HCV interacts with lipid droplets (LDs) before starting the process of virus capsid formation at the lipid-rich endoplasmic reticulum (ER) membrane compartment. HCV buds into the ER via lipoprotein assembly and secretion. Exchangeable apolipoproteins, represented by apolipoprotein E (apoE), play pivotal roles in enhancing HCV-specific infectivity. HCV virions are likely to interact with other lipoproteins circulating in blood vessels and incorporate apolipoproteins as well as lipids. This review focuses on virus assembly and egress by briefly describing the recent advances in this area.
Collapse
|
23
|
Nevola R, Acierno C, Pafundi PC, Adinolfi LE. Chronic hepatitis C infection induces cardiovascular disease and type 2 diabetes: mechanisms and management. Minerva Med 2020; 112:188-200. [PMID: 33205641 DOI: 10.23736/s0026-4806.20.07129-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite the availability of effective treatments, hepatitis C virus (HCV) still remains a threat to public health. HCV is capable to trigger, behind liver damage, extrahepatic manifestations, including cardiovascular disease and type 2 diabetes (T2DM). A close association has been reported between HCV infection and cardiovascular disease due to imbalances in metabolic pathways and chronic inflammation. HCV through both direct and indirect mechanisms causes a higher incidence of ischemic stroke, acute coronary syndrome, heart failure and peripheral arterial disease. In addition, a higher risk of death from cardiovascular events has been showed in HCV patients. Insulin resistance is a hallmark of HCV infection and represents the link between HCV and T2DM, which is one of the most frequent HCV-associated extrahepatic manifestations. The pathological basis of the increased risk of T2DM in HCV infection is provided by the alterations of the molecular mechanisms of IR induced both by the direct effects of the HCV proteins, and by the indirect effects mediated by chronic inflammation, oxidative stress and hepatic steatosis. T2DM increases the risk of compensated and decompensate cirrhosis and hepatocellular carcinoma as well as increases the risk of cardiovascular disease, lower limb amputation and end stage renal disease. Current evidence suggests that HCV eradication reduces the incidence and mortality of cardiovascular disease and T2DM, further underling the importance of public health strategies for eradication the infection. The aim of this review was to update evidence and management of interaction between HCV, cardiovascular disease, and T2DM in the era of DAA treatment.
Collapse
Affiliation(s)
- Riccardo Nevola
- Unit of Internal Medicine, Department of Advanced Medical and Surgery Sciences, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Carlo Acierno
- Unit of Internal Medicine, Department of Advanced Medical and Surgery Sciences, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Pia C Pafundi
- Unit of Internal Medicine, Department of Advanced Medical and Surgery Sciences, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Luigi E Adinolfi
- Unit of Internal Medicine, Department of Advanced Medical and Surgery Sciences, Luigi Vanvitelli University of Campania, Naples, Italy -
| |
Collapse
|
24
|
Abstract
Liver cancer is a global problem and hepatocellular carcinoma (HCC) accounts for about 85% of this cancer. In the USA, etiologies and risk factors for HCC include chronic hepatitis C virus (HCV) infection, diabetes, non-alcoholic steatohepatitis (NASH), obesity, excessive alcohol drinking, exposure to tobacco smoke, and genetic factors. Chronic HCV infection appears to be associated with about 30% of HCC. Chronic HCV infection induces multistep changes in liver, involving metabolic disorders, steatosis, cirrhosis and HCC. Liver carcinogenesis requires initiation of neoplastic clones, and progression to clinically diagnose malignancy. Tumor progression associates with profound exhaustion of tumor-antigen-specific CD8+T cells, and accumulation of PD-1hi CD8+T cells and Tregs. In this chapter, we provide a brief description of HCV and environmental/genetic factors, immune regulation, and highlight mechanisms of HCV associated HCC. We also underscore HCV treatment and recent paradigm of HCC progression, highlighted the current treatment and potential future therapeutic opportunities.
Collapse
|
25
|
Pagliari F, Marafioti MG, Genard G, Candeloro P, Viglietto G, Seco J, Tirinato L. ssRNA Virus and Host Lipid Rearrangements: Is There a Role for Lipid Droplets in SARS-CoV-2 Infection? Front Mol Biosci 2020; 7:578964. [PMID: 33134318 PMCID: PMC7579428 DOI: 10.3389/fmolb.2020.578964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Since its appearance, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has immediately alarmed the World Health Organization for its very high contagiousness and the complexity of patient clinical profiles. The worldwide scientific community is today gathered in a massive effort in order to develop safe vaccines and effective therapies in the shortest possible time. Every day, new pieces of SARS-CoV-2 infective puzzle are disclosed. Based on knowledge gained with other related coronaviruses and, more in general, on single-strand RNA viruses, we highlight underexplored molecular routes in which lipids and lipid droplets (LDs) might serve essential functions in viral infections. In fact, both lipid homeostasis and the pathways connected to lipids seem to be fundamental in all phases of the coronavirus infection. This review aims at describing potential roles for lipid and LDs in host-virus interactions and suggesting LDs as new and central cellular organelles to be investigated as potential targets against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Francesca Pagliari
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Maria Grazia Marafioti
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Geraldine Genard
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Patrizio Candeloro
- BioNEM Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Joao Seco
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Luca Tirinato
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,BioNEM Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
26
|
ElFihry R, Elmessaoudi-Idrissi M, Jadid FZ, Zaidane I, Chihab H, Tahiri M, Kabine M, Badre W, Chemin I, Marchio A, Pineau P, Ezzikouri S, Benjelloun S. Effect of Peroxisome Proliferator-Activated Receptor-γ Coactivator-1 Alpha Variants on Spontaneous Clearance and Fibrosis Progression during Hepatitis C Virus Infection in Moroccan Patients. Virol Sin 2020; 35:566-574. [PMID: 32297157 PMCID: PMC7736597 DOI: 10.1007/s12250-020-00220-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/08/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) is still one of the main causes of liver disease worldwide. Metabolic disorders, including non-alcoholic fatty liver disease (NAFLD), induced by HCV have been shown to accelerate the progression of fibrosis to cirrhosis and to increase the risk of hepatocellular carcinoma. An optimal peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) activity is crucial to prevent NAFLD installation. The present study aims to investigate the associations between two common PPARGC1A polymorphisms (rs8192678 and rs12640088) and the outcomes of HCV infection in a North African context. A series of 592 consecutive Moroccan subjects, including 292 patients with chronic hepatitis C (CHC), 100 resolvers and 200 healthy controls were genotyped using a TaqMan allelic discrimination assay. PPARGC1A variations at rs8192678 and rs12640088 were not associated with spontaneous clearance of HCV infection (adjusted ORs = 0.76 and 0.79 respectively, P > 0.05, for both). Furthermore, multivariable logistic regression analysis showed that both SNPs were not associated with fibrosis progression (OR = 0.71; 95% CI 0.20-2.49; P = 0.739; OR = 1.28; 95% CI 0.25-6.54; P = 0.512, respectively). We conclude that, in the genetic context of South Mediterranean patients, rs8192678 and rs12640088 polymorphisms of PPARGC1A are neither associated with spontaneous clearance nor with disease progression in individuals infected with HCV.
Collapse
Affiliation(s)
- Raouia ElFihry
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
- Laboratoire Santé et Environnement, département de Biologie, Faculté des Sciences Ain Chock, University Hassan II of Casablanca, 20360, Casablanca, Morocco
| | | | - Fatima-Zahra Jadid
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
| | - Imane Zaidane
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
| | - Hajar Chihab
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
| | - Mohamed Tahiri
- Service d'Hépato-Gastro-Entérologie, CHU Ibn Rochd, 20360, Casablanca, Morocco
| | - Mostafa Kabine
- Laboratoire Santé et Environnement, département de Biologie, Faculté des Sciences Ain Chock, University Hassan II of Casablanca, 20360, Casablanca, Morocco
| | - Wafaa Badre
- Service d'Hépato-Gastro-Entérologie, CHU Ibn Rochd, 20360, Casablanca, Morocco
| | - Isabelle Chemin
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon Cedex 03, France
| | - Agnes Marchio
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, 75015, Paris, France
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, 75015, Paris, France
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 20360, Casablanca, Morocco.
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 20360, Casablanca, Morocco.
| |
Collapse
|
27
|
Gatti P, Ilamathi HS, Todkar K, Germain M. Mitochondria Targeted Viral Replication and Survival Strategies-Prospective on SARS-CoV-2. Front Pharmacol 2020; 11:578599. [PMID: 32982760 PMCID: PMC7485471 DOI: 10.3389/fphar.2020.578599] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 is a positive sense RNA coronavirus that constitutes a new threat for the global community and economy. While vaccines against SARS-CoV-2 are being developed, the mechanisms through which this virus takes control of an infected cell to replicate remains poorly understood. Upon infection, viruses completely rely on host cell molecular machinery to survive and replicate. To escape from the immune response and proliferate, viruses strategically modulate cellular metabolism and alter subcellular organelle architecture and functions. One way they do this is by modulating the structure and function of mitochondria, a critical cellular metabolic hub but also a key platform for the regulation of cellular immunity. This versatile nature of mitochondria defends host cells from viruses through several mechanisms including cellular apoptosis, ROS signaling, MAVS activation and mitochondrial DNA-dependent immune activation. These events are regulated by mitochondrial dynamics, a process by which mitochondria alter their structure (including their length and connectivity) in response to stress or other cues. It is therefore not surprising that viruses, including coronaviruses hijack these processes for their survival. In this review, we highlight how positive sense RNA viruses modulate mitochondrial dynamics and metabolism to evade mitochondrial mediated immune response in order to proliferate.
Collapse
Affiliation(s)
- Priya Gatti
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie, Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Hema Saranya Ilamathi
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie, Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Kiran Todkar
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie, Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie, Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
28
|
Zhao Q, Tang P, Zhang T, Huang JF, Xiao XR, Zhu WF, Gonzalez FJ, Li F. Celastrol ameliorates acute liver injury through modulation of PPARα. Biochem Pharmacol 2020; 178:114058. [PMID: 32470546 PMCID: PMC7377972 DOI: 10.1016/j.bcp.2020.114058] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
Celastrol, derived from the roots of the Tripterygium Wilfordi, has attracted interest for its potential anti-inflammatory and lipid-lowering activities. In the present study, the protective effect of celastrol on carbon tetrachloride (CCl4)-induced acute liver injury was investigated. Celastrol improved the increased transaminase activity, inflammation, and oxidative stress induced by CCl4, resulting in improved metabolic disorders found in mice with liver injury. Dual-luciferase reporter assays and primary hepatocyte studies demonstrated that the peroxisome proliferator-activated receptor α (PPARα) signaling mediated the protective effect of celastrol, which was not observed in Ppara-null mice, and co-treatment of wild-type mice with the PPARα antagonist GW6471. Mechanistically, PPARα deficiency potentiated CCl4-induced liver injury through a deoxycholic acid (DCA)-EGR1-inflammatory factor axis. These data demonstrate a novel role for celastrol in protection against acute liver injury through modulating PPARα signaling.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ping Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Feng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei-Feng Zhu
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Department of Gastroenterology and Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
29
|
Pommergaard HC, Preuss Hasselby J, Linno Willemoe G, Ralbovska A, Arendtsen Rostved A, Rasmussen A, Aagaard Schultz N, Hillingsø J, Nørgaard Larsen P, Kugler JM. Peroxisome proliferator-activated receptor activity correlates with poor survival in patients resected for hepatocellular carcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2020; 28:327-335. [PMID: 32359017 DOI: 10.1002/jhbp.745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/02/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND/PURPOSE Few clinically useful biomarkers are known to predict prognosis in patients with hepatocellular carcinoma (HCC). The aim of this study was to investigate the correlation between PPAR activity and ALDH7A1 expression and their prognostic significance using RNA sequencing in patients undergoing liver resection for HCC. METHODS We included patients undergoing liver resection for HCC at a tertiary referral center for hepato-pancreato-biliary surgery between May 2014 and January 2018. PPAR activity and ALDH7A1 expression were evaluated by RNA sequencing and correlated with overall survival, recurrence and histological features. RESULTS We included 52 patients with a median follow-up of 20.9 months, predominantly males (88.5%) with a single tumor (84.6%) in a non-cirrhotic liver (73.1%). Three-year overall survival was 48.6% in patients with a specific PPAR target gene expression profile (cancer cluster 3) compared with 81.7% in controls (P = .04, Log-rank test). This remained significant (odds ratio 14.02, 95% confidence interval 1.92-102.22, P = .009) when adjusted for age, cirrhosis, microvascular invasion, number of tumors and free resection margins. ALDH7A1 expression was not correlated with PPAR or any outcomes. CONCLUSION PPAR activity in a subset of tumor samples was associated with reduced overall survival indicating that PPAR may be a valuable prognostic biomarker.
Collapse
Affiliation(s)
- Hans-Christian Pommergaard
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane Preuss Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gro Linno Willemoe
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Adela Ralbovska
- Institute for Molecular and Cellular Medicine, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - Andreas Arendtsen Rostved
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Allan Rasmussen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai Aagaard Schultz
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens Hillingsø
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Nørgaard Larsen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jan-Michael Kugler
- Institute for Molecular and Cellular Medicine, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| |
Collapse
|
30
|
Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Rewiring Host Signaling: Hepatitis C Virus in Liver Pathogenesis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037366. [PMID: 31501266 DOI: 10.1101/cshperspect.a037366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease including metabolic disease, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HCV induces and promotes liver disease progression by perturbing a range of survival, proliferative, and metabolic pathways within the proinflammatory cellular microenvironment. The recent breakthrough in antiviral therapy using direct-acting antivirals (DAAs) can cure >90% of HCV patients. However, viral cure cannot fully eliminate the HCC risk, especially in patients with advanced liver disease or comorbidities. HCV induces an epigenetic viral footprint that promotes a pro-oncogenic hepatic signature, which persists after DAA cure. In this review, we summarize the main signaling pathways deregulated by HCV infection, with potential impact on liver pathogenesis. HCV-induced persistent signaling patterns may serve as biomarkers for the stratification of HCV-cured patients at high risk of developing HCC. Moreover, these signaling pathways are potential targets for novel chemopreventive strategies.
Collapse
Affiliation(s)
- Alessia Virzì
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France.,Institut Universitaire de France (IUF), 75231 Paris, France
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
31
|
Wang CC, Cheng PN, Kao JH. Systematic review: chronic viral hepatitis and metabolic derangement. Aliment Pharmacol Ther 2020; 51:216-230. [PMID: 31746482 DOI: 10.1111/apt.15575] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/08/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The liver has a critical role in the metabolism of glucose and lipids. Chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection leads to a spectrum of liver disease including chronic hepatitis, cirrhosis and hepatocellular carcinoma. Metabolic syndrome (MetS) has a rising incidence owing to an epidemic of type 2 diabetes mellitus (T2DM) and obesity. Non-alcoholic fatty liver disease is a liver manifestation of MetS and has become the most common cause of chronic liver disease worldwide. AIM To summarise the interplay among hepatitis viruses, MetS and its components. METHODS We searched the literature about HBV, HCV infection, MetS, fatty liver and its components from PubMed. RESULTS With respect to the viral replication cycle, lipids are important mediators between viral entry and hepatocyte in HCV infection, but not in HBV infection. Thus, HCV infection is inversely associated with hyperlipidaemia and lipid rebound occurs following sustained viral response induced by interferon-based therapy or direct antiviral agents. In addition, HCV infection is positively associated with insulin resistance, hepatic steatosis, MetS and the risk of T2DM and atherosclerosis. In contrast, HBV infection may protect infected subjects from the development of MetS and hepatic steatosis. Accumulating evidence suggests that HBV infection is inversely associated with lipid metabolism, and exhibits no conclusive association with insulin resistance or the risk of T2DM and arteriosclerosis. CONCLUSIONS In patients with viral hepatitis and concurrent metabolic diseases, a multidisciplinary approach should be given rather than simply antiviral treatment.
Collapse
Affiliation(s)
- Chia-Chi Wang
- Department of Gastroenterology and Hepatology, Buddhist Tzu Chi Medical Foundation and School of Medicine, Taipei Tzu Chi Hospital, Tzu Chi University, Hualien, Taiwan
| | - Pin-Nan Cheng
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, Department of Medical Research and Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Wang Y, Yu Y, Wang Q, Wei S, Wang S, Qin Q, Yang M. PPAR-δ of orange-spotted grouper exerts antiviral activity against fish virus and regulates interferon signaling and inflammatory factors. FISH & SHELLFISH IMMUNOLOGY 2019; 94:38-49. [PMID: 31470135 DOI: 10.1016/j.fsi.2019.08.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Peroxisome proliferator-activated receptor δ (PPAR-δ), also called PPAR-β or PPAR-β/δ, is a member of the peroxisome proliferator-activated receptor (PPAR) family, which belongs to the nuclear steroid receptor superfamily. Activated PPARs participate in the regulation of lipid and glucose metabolism and also affect cellular proliferation, differentiation, and apoptosis, and the immune responses. To investigate the roles of PPAR-δ in Singapore grouper iridovirus (SGIV) infection, we cloned and characterized the gene encoding a PPAR-δ homologue from the orange-spotted grouper, Epinephelus coioides (EcPPAR-δ). EcPPAR-δ encodes a 514-amino-acid polypeptide, with 95.29% and 74.76% homologue to the Seriola dumerili and human proteins, respectively. EcPPAR-δ contains a typical DNA-binding domain and a ligand-binding domain. Its expression was induced by SGIV infection in vitro. A subcellular localization analysis showed that EcPPAR-δ localizes throughout the cytoplasm and nucleus, with a diffuse intracellular expression pattern. SGIV replication was reduced by EcPPAR-δ overexpression, which was evident in the reduced severity of the cytopathic effect, reduced viral gene transcription, and the reduced expression of the viral capsid protein. The replication of SGIV increased with the knockdown of EcPPAR-δ. The overexpression and silencing of EcPPAR-δ in grouper spleen cells showed that EcPPAR-δ plays a positive role in the regulation of the interferon signaling pathway, but has an anti-inflammatory effect on the inflammatory response. The anti-inflammatory effect of EcPPAR-δ may be related to its function in maintaining cell homeostasis. Because the interferon signaling pathway plays an important role in antiviral immune responses, we speculate that the activation of the interferon signaling pathway by EcPPAR-δ overexpression underlies its inhibitory effect on SGIV replication. Together, our data greatly extend our understanding of the roles of the EcPPAR-δ family members in the pathogenesis of fish viruses.
Collapse
Affiliation(s)
- Yuxin Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
33
|
Hu DD, Zhao Q, Cheng Y, Xiao XR, Huang JF, Qu Y, Li X, Tang YM, Bao WM, Yang JH, Jiang T, Hu JP, Gonzalez FJ, Li F. The Protective Roles of PPARα Activation in Triptolide-Induced Liver Injury. Toxicol Sci 2019; 171:1-12. [PMID: 31241159 PMCID: PMC11514144 DOI: 10.1093/toxsci/kfz146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Triptolide (TP), one of the main active ingredients in Tripterygium wilfordii Hook F, is clinically used to treat immune diseases but is known to cause liver injury. The aim of this study was to investigate the biomarkers for TP-induced hepatotoxicity in mice and to determine potential mechanisms of its liver injury. LC/MS-based metabolomics was used to determine the metabolites that were changed in TP-induced liver injury. The accumulation of long-chain acylcarnitines in serum indicated that TP exposure disrupted endogenous peroxisome proliferator-activated receptor α (PPARα) signaling. Triptolide-induced liver injury could be alleviated by treatment of mice with the PPARα agonist fenofibrate, whereas the PPARα antagonist GW6471 increased hepatotoxicity. Furthermore, fenofibrate did not protect Ppara-/- mice from TP-induced liver injury, suggesting an essential role for the PPARα in the protective effect of fenofibrate. Elevated long-chain acylcarnitines may protect TP-induced liver injury through activation of the NOTCH-NRF2 pathway as revealed in primary mouse hepatocytes and in vivo. In agreement with these observations in mice, the increase in long-chain acylcarnitines was observed in the serum of patients with cholestatic liver injury compared with healthy volunteers. These data demonstrated the role of PPARα and long-chain acylcarnitines in TP-induced hepatotoxicity, and suggested that modulation of PPARα may protect against drug-induced liver injury.
Collapse
Affiliation(s)
- Dan-Dan Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming 650500, China
| | - Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan Cheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jian-Feng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan Qu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xian Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology of Natural Products, Kunming Medical University, Kunming 650500, China
| | - Ying-Mei Tang
- Department of Gastroenterology, Yunnan Research Center for Liver Diseases, The 2nd Affiliated Hospital of Kunming Medical University, Kunming 650033, China
| | - Wei-Min Bao
- Department of General Surgery, Yunnan Provincial 1st People’s Hospital, Kunming 650032, China
| | - Jin-Hui Yang
- Department of Gastroenterology, Yunnan Research Center for Liver Diseases, The 2nd Affiliated Hospital of Kunming Medical University, Kunming 650033, China
| | - Tao Jiang
- Department of Gastroenterology, Yunnan Research Center for Liver Diseases, The 2nd Affiliated Hospital of Kunming Medical University, Kunming 650033, China
| | - Jia-Peng Hu
- Clinical Laboratory, The 2nd Affiliated Hospital of Kunming Medical University, Kunming 650033, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland 20892
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
34
|
Transforming Growth Factor β Acts as a Regulatory Molecule for Lipogenic Pathways among Hepatitis C Virus Genotype-Specific Infections. J Virol 2019; 93:JVI.00811-19. [PMID: 31243135 DOI: 10.1128/jvi.00811-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection promotes metabolic disorders, and the severity of lipogenic disease depends upon the infecting virus genotype. Here, we have examined HCV genotype 1-, 2-, or 3-specific regulation of lipid metabolism, involving transforming growth factor β (TGF-β)-regulated phospho-Akt (p-Akt) and peroxisome proliferator-activated receptor alpha (PPARα) axes. Since HCV core protein is one of the key players in metabolic regulation, we also examined its contribution in lipid metabolic pathways. The expression of regulatory molecules, TGF-β1/2, phospho-Akt (Ser473), PPARα, sterol regulatory element-binding protein 1 (SREBP-1), fatty acid synthase (FASN), hormone-sensitive lipase (HSL), and acyl dehydrogenases was analyzed in virus-infected hepatocytes. Interestingly, HCV genotype 3a exhibited much higher activation of TGF-β and p-Akt, with a concurrent decrease in PPARα expression and fatty acid oxidation. A significant and similar decrease in HSL, unlike in HCV genotype 1a, was observed with both genotypes 2a and 3a. Similar observations were made from ectopic expression of the core genomic region from each genotype. The key role of TGF-β was further verified using specific small interfering RNA (siRNA). Together, our results highlight a significant difference in TGF-β-induced activity for the HCV genotype 2a- or 3a-induced lipogenic pathway, exhibiting higher triglyceride synthesis and a decreased lipolytic mechanism. These results may help in therapeutic modalities for early treatment of HCV genotype-associated lipid metabolic disorders.IMPORTANCE Hepatic steatosis is a frequent complication associated with chronic hepatitis C virus (HCV) infection and is a key prognostic indicator for progression to fibrosis and cirrhosis. Several mechanisms are proposed for the development of steatosis, especially with HCV genotype 3a. Our observations suggest that transforming growth factor β (TGF-β) and peroxisome proliferator-activated receptor alpha (PPARα)-associated mechanistic pathways in hepatocytes infected with HCV genotype 2a and 3a differ from those in cells infected with genotype 1a. The results suggest that a targeted therapeutic approach for enhanced PPARα and lipolysis may reduce HCV genotype-associated lipid metabolic disorder in liver disease.
Collapse
|
35
|
Lupberger J, Croonenborghs T, Roca Suarez AA, Van Renne N, Jühling F, Oudot MA, Virzì A, Bandiera S, Jamey C, Meszaros G, Brumaru D, Mukherji A, Durand SC, Heydmann L, Verrier ER, El Saghire H, Hamdane N, Bartenschlager R, Fereshetian S, Ramberger E, Sinha R, Nabian M, Everaert C, Jovanovic M, Mertins P, Carr SA, Chayama K, Dali-Youcef N, Ricci R, Bardeesy NM, Fujiwara N, Gevaert O, Zeisel MB, Hoshida Y, Pochet N, Baumert TF. Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus-Infected Cells and Liver to Identify Pathways Associated With Disease Development. Gastroenterology 2019; 157:537-551.e9. [PMID: 30978357 PMCID: PMC8318381 DOI: 10.1053/j.gastro.2019.04.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/01/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The mechanisms of hepatitis C virus (HCV) infection, liver disease progression, and hepatocarcinogenesis are only partially understood. We performed genomic, proteomic, and metabolomic analyses of HCV-infected cells and chimeric mice to learn more about these processes. METHODS Huh7.5.1dif (hepatocyte-like cells) were infected with culture-derived HCV and used in RNA sequencing, proteomic, metabolomic, and integrative genomic analyses. uPA/SCID (urokinase-type plasminogen activator/severe combined immunodeficiency) mice were injected with serum from HCV-infected patients; 8 weeks later, liver tissues were collected and analyzed by RNA sequencing and proteomics. Using differential expression, gene set enrichment analyses, and protein interaction mapping, we identified pathways that changed in response to HCV infection. We validated our findings in studies of liver tissues from 216 patients with HCV infection and early-stage cirrhosis and paired biopsy specimens from 99 patients with hepatocellular carcinoma, including 17 patients with histologic features of steatohepatitis. Cirrhotic liver tissues from patients with HCV infection were classified into 2 groups based on relative peroxisome function; outcomes assessed included Child-Pugh class, development of hepatocellular carcinoma, survival, and steatohepatitis. Hepatocellular carcinomas were classified according to steatohepatitis; the outcome was relative peroxisomal function. RESULTS We quantified 21,950 messenger RNAs (mRNAs) and 8297 proteins in HCV-infected cells. Upon HCV infection of hepatocyte-like cells and chimeric mice, we observed significant changes in levels of mRNAs and proteins involved in metabolism and hepatocarcinogenesis. HCV infection of hepatocyte-like cells significantly increased levels of the mRNAs, but not proteins, that regulate the innate immune response; we believe this was due to the inhibition of translation in these cells. HCV infection of hepatocyte-like cells increased glucose consumption and metabolism and the STAT3 signaling pathway and reduced peroxisome function. Peroxisomes mediate β-oxidation of very long-chain fatty acids; we found intracellular accumulation of very long-chain fatty acids in HCV-infected cells, which is also observed in patients with fatty liver disease. Cells in livers from HCV-infected mice had significant reductions in levels of the mRNAs and proteins associated with peroxisome function, indicating perturbation of peroxisomes. We found that defects in peroxisome function were associated with outcomes and features of HCV-associated cirrhosis, fatty liver disease, and hepatocellular carcinoma in patients. CONCLUSIONS We performed combined transcriptome, proteome, and metabolome analyses of liver tissues from HCV-infected hepatocyte-like cells and HCV-infected mice. We found that HCV infection increases glucose metabolism and the STAT3 signaling pathway and thereby reduces peroxisome function; alterations in the expression levels of peroxisome genes were associated with outcomes of patients with liver diseases. These findings provide insights into liver disease pathogenesis and might be used to identify new therapeutic targets.
Collapse
Affiliation(s)
- Joachim Lupberger
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France.
| | - Tom Croonenborghs
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Armando Andres Roca Suarez
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Nicolaas Van Renne
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Frank Jühling
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Marine A Oudot
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Alessia Virzì
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Simonetta Bandiera
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Carole Jamey
- Université de Strasbourg, Strasbourg, France; Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Gergö Meszaros
- Université de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Daniel Brumaru
- Université de Strasbourg, Strasbourg, France; Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Atish Mukherji
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Sarah C Durand
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Laura Heydmann
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Eloi R Verrier
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Hussein El Saghire
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Nourdine Hamdane
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shaunt Fereshetian
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Evelyn Ramberger
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Rileen Sinha
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mohsen Nabian
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Celine Everaert
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Marko Jovanovic
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Department of Biological Sciences, Columbia University, New York, New York
| | - Philipp Mertins
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Steven A Carr
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Nassim Dali-Youcef
- Université de Strasbourg, Strasbourg, France; Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Romeo Ricci
- Université de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | | | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Olivier Gevaert
- Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, California
| | - Mirjam B Zeisel
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nathalie Pochet
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Thomas F Baumert
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France; Pôle Hépato-digestif, Institut Hopitalo-Universitaire, Strasbourg, France.
| |
Collapse
|
36
|
Diabetes Mellitus and Risk of Hepatic Fibrosis/Cirrhosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5308308. [PMID: 31080822 PMCID: PMC6475555 DOI: 10.1155/2019/5308308] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Development of cirrhosis is two- to threefold greater in patients with diabetes mellitus (DM), and in this setting, the prevalence of cirrhosis is surging worldwide. The present review served to examine clinical ties between DM and liver fibrosis and hepatic cirrhosis and explore related biologic mechanisms. Pathways contributing to various etiologies of cirrhosis in conjunction with DM were key investigative targets.
Collapse
|
37
|
Akgöllü E, Akkız H. Association between hepatic steatosis and MTP gene -493G/T polymorphism in the patients with HCV genotype 1 infection. INFECTION GENETICS AND EVOLUTION 2019; 70:101-106. [PMID: 30790698 DOI: 10.1016/j.meegid.2019.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 01/07/2023]
Abstract
AIM Hepatitis C virus (HCV) affects approximately 250 million people worldwide. If patients are untreated, 80% of patients with chronic HCV develop liver failure, liver cirrhosis (LC), and hepatocellular carcinoma (HCC). HCV genotype 1 is the most prevalent among the infected individuals with HCV. Hepatic steatosis is known as accumulation of lipid molecules in hepatocytes, and its prevalence is approximately 55% in CHC infection. The reason of HCV-related hepatic steatosis in CHC infection is mainly HCV core protein. HCV core protein inhibits activities of microsomal triglyceride transfer protein (MTP) which is a lipid transfer protein expressed in the liver. The -493G/T polymorphism in the promoter region of MTP gene has been associated with HCV-related hepatic steatosis. This polymorphism in MTP gene influences MTP mRNA expression, therefore which might also affect lipid transfer. We evaluated the association between MTP gene polymorphism and the risk of HCV genotype 1-related hepatic steatosis. METHODS In the current study, MTP gene polymorphism was explored in 144 biopsy-proven chronic HCV genotype 1 patients by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS The results showed that there were no any difference between the steatosis and the non-steatosis groups for the allele and genotype frequencies of the -493G/T polymorphism (P > .05). Moreover, MTP genotypes (GG vs. TG + TT) were not associated with BMI, fibrosis stages and the levels of biochemical parameters. Additionally, there were statistically significant differences in the biochemical parameters including triglyceride, total cholesterol, LDL, VLDL levels between the two groups (P < .05). CONCLUSIONS In conclusion, the current study demonstrates for the first time that MTP gene -493G/T polymorphism has not a major effect on the risk of HCV genotype 1-related hepatic steatosis in Turkish population. Further studies are imperative to clarify the association of this polymorphism with HCV genotype 1 infection in HCV-related hepatic steatosis.
Collapse
Affiliation(s)
- Ersin Akgöllü
- Çukurova University, Faculty of Medicine, Department of Gastroenterology, Adana, Turkey.
| | - Hikmet Akkız
- Çukurova University, Faculty of Medicine, Department of Gastroenterology, Adana, Turkey
| |
Collapse
|
38
|
Mahmoudvand S, Shokri S, Taherkhani R, Farshadpour F. Hepatitis C virus core protein modulates several signaling pathways involved in hepatocellular carcinoma. World J Gastroenterol 2019; 25:42-58. [PMID: 30643357 PMCID: PMC6328967 DOI: 10.3748/wjg.v25.i1.42] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer, and hepatitis C virus (HCV) infection plays a major role in HCC development. The molecular mechanisms by which HCV infection leads to HCC are varied. HCV core protein is an important risk factor in HCV-associated liver pathogenesis and can modulate several signaling pathways involved in cell cycle regulation, cell growth promotion, cell proliferation, apoptosis, oxidative stress and lipid metabolism. The dysregulation of signaling pathways such as transforming growth factor β (TGF-β), vascular endothelial growth factor (VEGF), Wnt/β-catenin (WNT), cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptor α (PPARα) by HCV core protein is implicated in the development of HCC. Therefore, it has been suggested that this protein be considered a favorable target for further studies in the development of HCC. In addition, considering the axial role of these signaling pathways in HCC, they are considered druggable targets for cancer therapy. Therefore, using strategies to limit the dysregulation effects of core protein on these signaling pathways seems necessary to prevent HCV-related HCC.
Collapse
Affiliation(s)
- Shahab Mahmoudvand
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Somayeh Shokri
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Reza Taherkhani
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Fatemeh Farshadpour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| |
Collapse
|
39
|
Chida T, Kawata K, Ohta K, Matsunaga E, Ito J, Shimoyama S, Yamazaki S, Noritake H, Suzuki T, Suda T, Kobayashi Y. Rapid Changes in Serum Lipid Profiles during Combination Therapy with Daclatasvir and Asunaprevir in Patients Infected with Hepatitis C Virus Genotype 1b. Gut Liver 2018; 12:201-207. [PMID: 29212314 PMCID: PMC5832345 DOI: 10.5009/gnl17179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Changes in lipid profiles in patients infected with hepatitis C virus (HCV) during direct-acting antiviral therapy have been reported in recent years. However, the clinical aspects of disturbed lipid metabolism in chronic HCV infection have not been fully elucidated. Methods Dynamic changes in serum total, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) cholesterol and apolipoprotein levels in patients infected with HCV genotype 1b were examined during combination therapy with daclatasvir (DCV) and asunaprevir (ASV). Results Total, LDL−, and HDL-cholesterol levels increased rapidly and persistently after week 4. Apolipoprotein (apo) A-I, apo B, apo C-II, and apo C-III levels were significantly higher at week 4 than at week 0. In contrast, apo A-II and apo E levels were significantly lower. The differences in LDL− and HDL-cholesterol levels were positively correlated with those of apo B and apo A-I, respectively. Interestingly, in patients with non-sustained virological response, these cholesterol levels decreased rapidly after viral breakthrough or viral relapse. Furthermore, similar changes were observed for apo A-I, apo B and apo C-III levels. Conclusions Clearance of HCV using combination therapy with DCV and ASV results in rapid changes in serum lipid profiles, suggesting an influence of HCV infection on disturbed lipid metabolism.
Collapse
Affiliation(s)
- Takeshi Chida
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Kawata
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuyoshi Ohta
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Erika Matsunaga
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Jun Ito
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shin Shimoyama
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoru Yamazaki
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidenao Noritake
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshimasa Kobayashi
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
40
|
Control of progression towards liver fibrosis and hepatocellular carcinoma by SOCS3 polymorphisms in chronic HCV-infected patients. INFECTION GENETICS AND EVOLUTION 2018; 66:1-8. [PMID: 30172885 DOI: 10.1016/j.meegid.2018.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/15/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Chronic Hepatitis C is one of the most important risk factors of liver cirrhosis and hepatocellular carcinoma. Before reaching these ultimate steps, insulin resistance triggered by hepatitis C virus infection is known to participate in the progression of liver disease. The present study aims to investigate the influence of two functional polymorphisms on SOCS3 mRNA expression and on the outcomes of CHC progression in a North African context. PATIENTS & METHODS In this case-control study, 601 Moroccan subjects composed of 200 healthy controls, 101 resolvers and 300 patients with persistent HCV infection including 95 mild chronic hepatitis, 131 Advanced Liver Diseases and 74 HCC were enrolled. They were genotyped for the 4874 A/G (rs4969170) and A + 930- > G (rs4969168) SOCS3 variants using TaqMan SNPs assays. SOCS3 mRNA expression was assessed using Real Time PCR technique. RESULTS Logistic regression analysis showed that variation at rs4969168 was associated with spontaneous clearance of HCV (P < 0.05). In addition, minor allele frequencies were significantly higher in AdLD patients when compared to the mCHC group both for rs4969168 (P = 7.0 E-04) and rs4969170 (P = 4.0 E-05). A significant association between haplotype and liver disease progression was also found. Moreover, SOCS3 mRNA was significantly more expressed in peripheral leukocytes from patients with HCC than in those from mCHC. Finally, rs4969170 was significantly associated with LDL-lipoprotein (P = 0.04), total cholesterol (P = 5.0 E-04), and higher fasting glucose levels (P = 0.005) in patients with persistent HCV infection. CONCLUSIONS Our results underline the importance of the functional SOCS3 polymorphisms in the modulation of CHC progression and suggest their contribution to HCC development by affecting its mRNA expression and perturbing key metabolic parameters.
Collapse
|
41
|
Brocker CN, Patel DP, Velenosi TJ, Kim D, Yan T, Yue J, Li G, Krausz KW, Gonzalez FJ. Extrahepatic PPARα modulates fatty acid oxidation and attenuates fasting-induced hepatosteatosis in mice. J Lipid Res 2018; 59:2140-2152. [PMID: 30158201 DOI: 10.1194/jlr.m088419] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
PPARα (PPARA), expressed in most oxidative tissues, is a major regulator of lipid homeostasis; hepatic PPARA plays a critical role during the adaptive fasting response by promoting FA oxidation (FAO). To clarify whether extrahepatic PPARA activity can protect against lipid overload when hepatic PPARA is impaired, lipid accumulation was compared in WT (Ppara +/+), total body Ppara-null (Ppara -/-), and hepatocyte-specific Ppara-null (Ppara ΔHep) mice that were fasted for 24 h. Histologic staining indicated reduced lipid accumulation in Ppara ΔHep versus Ppara -/- mice, and biochemical analyses revealed diminished medium- and long-chain FA accumulation in Ppara ΔHep mouse livers. Hepatic PPARA target genes were suppressed in both mouse models. Serum FFAs increased in all genotypes after fasting but were highest in Ppara -/- mice. In Ppara ΔHep mice, FAO genes were increased in brown adipose tissue, heart, and muscle, and total lipase activity was elevated in the muscle and heart, suggesting increased lipid utilization. Thus, extrahepatic PPARA activity reduces systemic lipid load when hepatic lipid metabolism is impaired by elevating FAO and lipase activity in other tissues and, as a result, protects against fasting-induced hepatosteatosis. This has important clinical implications in disease states with impaired hepatic PPARA function, such as nonalcoholic steatohepatitis and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daxesh P Patel
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thomas J Velenosi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jiang Yue
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Guolin Li
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
42
|
Crouchet E, Wrensch F, Schuster C, Zeisel MB, Baumert TF. Host-targeting therapies for hepatitis C virus infection: current developments and future applications. Therap Adv Gastroenterol 2018; 11:1756284818759483. [PMID: 29619090 PMCID: PMC5871046 DOI: 10.1177/1756284818759483] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/15/2018] [Indexed: 02/04/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases and hepatocellular carcinoma (HCC) worldwide. In the past few years, anti-HCV therapies have undergone a revolution with the approval of multiple direct-acting antivirals (DAAs), which enable interferon-free treatments with considerable improvement of sustained virologic response in patients. Today, DAAs have become the standard of care for HCV therapy. However, several limitations remain, which include access to therapy, treatment failure in a subset of patients and persistent risk of HCC development following cure in patients with advanced fibrosis. By targeting conserved host proteins involved in the HCV life cycle, host-targeting agents (HTAs) offer opportunities for pan-genotypic antiviral approaches with a high barrier to drug resistance. Moreover, when applied in combination with DAAs, HTAs could improve the management of difficult-to-treat patients by acting through a complementary mechanism of action. In this review, we summarize the different HTAs evaluated in preclinical and clinical development and discuss their potential role for anti-HCV therapies.
Collapse
Affiliation(s)
- Emilie Crouchet
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Florian Wrensch
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Mirjam B. Zeisel
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France Université de Strasbourg, Strasbourg, France Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
| | | |
Collapse
|
43
|
Singaravelu R, Quan C, Powdrill MH, Shaw TA, Srinivasan P, Lyn RK, Alonzi RC, Jones DM, Filip R, Russell RS, Pezacki JP. MicroRNA-7 mediates cross-talk between metabolic signaling pathways in the liver. Sci Rep 2018; 8:361. [PMID: 29321595 PMCID: PMC5762714 DOI: 10.1038/s41598-017-18529-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/08/2017] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of cellular metabolism. To characterise miRNAs crucial to the maintenance of hepatic lipid homeostasis, we examined the overlap between the miRNA signature associated with inhibition of peroxisome proliferator activated receptor-α (PPAR-α) signaling, a pathway regulating fatty acid metabolism, and the miRNA profile associated with 25-hydroxycholesterol treatment, an oxysterol regulator of sterol regulatory element binding protein (SREBP) and liver X receptor (LXR) signaling. Using this strategy, we identified microRNA-7 (miR-7) as a PPAR-α regulated miRNA, which activates SREBP signaling and promotes hepatocellular lipid accumulation. This is mediated, in part, by suppression of the negative regulator of SREBP signaling: ERLIN2. miR-7 also regulates genes associated with PPAR signaling and sterol metabolism, including liver X receptor β (LXR-β), a transcriptional regulator of sterol synthesis, efflux, and excretion. Collectively, our findings highlight miR-7 as a novel mediator of cross-talk between PPAR, SREBP, and LXR signaling pathways in the liver.
Collapse
Affiliation(s)
- Ragunath Singaravelu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Curtis Quan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Megan H Powdrill
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Tyler A Shaw
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Prashanth Srinivasan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rodney K Lyn
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rhea C Alonzi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Daniel M Jones
- Immunology and Infectious Diseases, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6, Canada
| | - Roxana Filip
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rodney S Russell
- Immunology and Infectious Diseases, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6, Canada
| | - John P Pezacki
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
44
|
Abstract
Metabolic disorders are common in patients with chronic hepatitis C virus (HCV) infection. Epidemiologic and clinical data indicate an overprevalence of lipids abnormalite, steatosis, insuline resistance (IR) and diabetes mellitus in HCV patients, suggesting that HCV itself may interact with glucido-lipidic metabolism. HCV interacts with the host lipid metabolism by several mechanisms leading to hepatic steatosis and hypolipidemia which are reversible after viral eradication. Liver and peripheral IR are HCV genotype/viral load dependent and improved after viral eradication. This article examines examine the relationship between HCV, lipid abnormalities, steatosis, IR, and diabetes and the pathogenic mechanisms accounting for these events in HCV-infected patients.
Collapse
Affiliation(s)
- Lawrence Serfaty
- Hepatology Department, INSERM UMR_S 938, APHP, Saint-Antoine Hospital, UPMC Univ Paris 06, Paris, France.
| |
Collapse
|
45
|
The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie 2017; 136:75-84. [DOI: 10.1016/j.biochi.2016.12.019] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/24/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
|
46
|
Abstract
Hepatitis C virus (HCV) represents a significant global disease burden, with an estimated 130-150 million people worldwide living with chronic HCV infection. Within the six major clinical HCV genotypes, genotype 3 represents 22-30% of all infection and is described as a unique entity with higher rates of steatosis, faster progression to cirrhosis, and higher rates of hepatocellular carcinoma. Hepatic steatosis in the setting of hepatitis C genotype 3 (HCV-3) is driven by viral influence on three major pathways: microsomal triglyceride transfer protein, sterol regulatory element-binding protein-1c, and peroxisome proliferator-associated receptor-α. Historically with direct-acting antivirals, the rates of cure for HCV-3 therapies lagged behind the other genotypes. As current therapies for HCV-3 continue to close this gap, it is important to be cognizant of common drug interactions such as acid-suppressing medication and amiodarone. In this review, we discuss the rates of steatosis in HCV-3, the mechanisms behind HCV-3-specific steatosis, and current and future therapies.
Collapse
Affiliation(s)
- Austin Chan
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Infectious Diseases Research, Duke Clinical Research Institute, Durham, NC, USA
| | - Keyur Patel
- Toronto Center for Liver Disease, University of Toronto, Toronto, ON, Canada
| | - Susanna Naggie
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Infectious Diseases Research, Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
47
|
Sun HY, Lin CC, Tsai PJ, Tsai WJ, Lee JC, Tsao CW, Cheng PN, Wu IC, Chiu YC, Chang TT, Young KC. Lipoprotein lipase liberates free fatty acids to inhibit HCV infection and prevent hepatic lipid accumulation. Cell Microbiol 2016; 19. [PMID: 27665576 DOI: 10.1111/cmi.12673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
Lipoprotein lipase (LPL) has been identified as an anti-hepatitis C virus (HCV) host factor, but the cellular mechanism remains elusive. Here, we investigated the cellular mechanism of LPL involving in anti-HCV. The functional activation of peroxisome proliferator-activated receptor (PPAR) α signal by LPL transducing into hepatocytes was investigated in HCV-infected cells, primary human hepatocytes, and in HCV-core transgenic mice. The result showed that the levels of transcriptional transactivity and nuclear translocation of PPARα in Huh7 cells and primary human hepatocytes were elevated by physiologically ranged LPL treatment of either very-low density lipoprotein or HCV particles. The LPL-induced hepatic PPARα activation was weakened by blocking the LPL enzymatic activity, and by preventing the cellular uptake of free unsaturated fatty acids with either albumin chelator or silencing of CD36 translocase. The knockdowns of PPARα and CD36 reversed the LPL-mediated suppression of HCV infection. Furthermore, treatment with LPL, like the direct activation of PPARα, not only reduced the levels of apolipoproteins B, E, and J, which are involved in assembly and release of HCV virions, but also alleviated hepatic lipid accumulation induced by core protein. HCV-core transgenic mice exhibited more hepatic miR-27b, which negatively regulates PPARα expression, than did the wild-type controls. The induction of LPL activity by fasting in the core transgenic mice activated PPARα downstream target genes that are involved in fatty acid β-oxidation. Taken together, our study reveals dual beneficial outcomes of LPL in anti-HCV and anti-steatosis and shed light on the control of chronic hepatitis C in relation to LPL modulators.
Collapse
Affiliation(s)
- Hung-Yu Sun
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ju Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jen Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiung-Wen Tsao
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Pin-Nan Cheng
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Chin Wu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Cheng Chiu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Tsung Chang
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chia Young
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
48
|
Levy G, Habib N, Guzzardi MA, Kitsberg D, Bomze D, Ezra E, Uygun BE, Uygun K, Trippler M, Schlaak JF, Shibolet O, Sklan EH, Cohen M, Timm J, Friedman N, Nahmias Y. Nuclear receptors control pro-viral and antiviral metabolic responses to hepatitis C virus infection. Nat Chem Biol 2016; 12:1037-1045. [PMID: 27723751 DOI: 10.1038/nchembio.2193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Viruses lack the basic machinery needed to replicate and therefore must hijack the host's metabolism to propagate. Virus-induced metabolic changes have yet to be systematically studied in the context of host transcriptional regulation, and such studies shoul offer insight into host-pathogen metabolic interplay. In this work we identified hepatitis C virus (HCV)-responsive regulators by coupling system-wide metabolic-flux analysis with targeted perturbation of nuclear receptors in primary human hepatocytes. We found HCV-induced upregulation of glycolysis, ketogenesis and drug metabolism, with glycolysis controlled by activation of HNF4α, ketogenesis by PPARα and FXR, and drug metabolism by PXR. Pharmaceutical inhibition of HNF4α reversed HCV-induced glycolysis, blocking viral replication while increasing apoptosis in infected cells showing virus-induced dependence on glycolysis. In contrast, pharmaceutical inhibition of PPARα or FXR reversed HCV-induced ketogenesis but increased viral replication, demonstrating a novel host antiviral response. Our results show that virus-induced changes to a host's metabolism can be detrimental to its life cycle, thus revealing a biologically complex relationship between virus and host.
Collapse
Affiliation(s)
- Gahl Levy
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Habib
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Maria Angela Guzzardi
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Daniel Kitsberg
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Bomze
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elishai Ezra
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Faculty of Engineering, Jerusalem College of Technology, Jerusalem, Israel
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin Trippler
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Joerg F Schlaak
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Oren Shibolet
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Merav Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joerg Timm
- Institute for Virology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Nir Friedman
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
49
|
Liu J, Wang L, Wang W, Li Y, Jia X, Zhai S, Shi J, Dang S. Application of network construction to estimate functional changes to insulin receptor substrates 1 and 2 in Huh7 cells following infection with the hepatitis C virus. Mol Med Rep 2016; 14:2379-2388. [PMID: 27432476 PMCID: PMC4991679 DOI: 10.3892/mmr.2016.5527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/03/2016] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is closely associated with insulin resistance (IS), acting primarily by interfering with insulin signaling pathways, increasing cytokine-mediated (tumor necrosis factor α, interleukin 6) inflammatory responses and enhancing oxidative stress. In the insulin signaling pathways, the insulin receptor substrate (IRS) is one of the key regulatory factors. The present study constructed gene regulatory sub‑networks specific for IRS1 and IRS2 in Huh7 cells and HCV‑infected Huh7 (HCV‑Huh7) cells using linear programming and a decomposition algorithm, and investigated the possible mechanisms underlying the function of IRS1/2 in HCV‑induced IS in Huh7 cells. All data were obtained from GSE20948 of the Gene Expression Omnibus database from the National Center for Biotechnology Information. Genes which were significantly differentially expressed between Huh7 and HCV‑Huh7 cells were analyzed using the significance analysis of microarray algorithm. The top 50 genes, including IRS1/2, were used as target genes to determine the gene regulatory networks and next the sub‑networks of IRS1 and IRS2 in HCV‑Huh7 and Huh7 cells using Gene Regulatory Network Inference Tool, an algorithm based on linear programming and the decomposition process. The IRS1/2 sub‑networks were divided into upstream/downstream groups and activation/suppression clusters, and were further analyzed using Molecule Annotation System 3.0 and Database for Annotation, Visualization, and Integrated Discovery software, two online platforms for enrichment and clustering analysis and visualization. The results indicated that in Huh7 cells, the downstream network of IRS2 is more complex than that of IRS1, indicating that the insulin metabolism in Huh7 cells may be primarily mediated by IRS2. In HCV‑Huh7 cells, the downstream pathway of IRS2 is blocked, suggesting that this may be the underlying mechanism in HCV infection that leads to insulin resistance. The present findings add a further dimension to the understanding of the pathological mechanisms of HCV infection-associated insulin resistance, and provide novel concepts for insulin resistance and glucose metabolism research.
Collapse
Affiliation(s)
- Jingkun Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| | - Linbang Wang
- The First Clinical Department, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenjun Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| | - Yaping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| | - Xiaoli Jia
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| | - Song Zhai
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| | - Juan Shi
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| | - Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004
| |
Collapse
|
50
|
Vallianou I, Dafou D, Vassilaki N, Mavromara P, Hadzopoulou-Cladaras M. Hepatitis C virus suppresses Hepatocyte Nuclear Factor 4 alpha, a key regulator of hepatocellular carcinoma. Int J Biochem Cell Biol 2016; 78:315-326. [PMID: 27477312 DOI: 10.1016/j.biocel.2016.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
Hepatitis C Virus (HCV) infection presents with a disturbed lipid profile and can evolve to hepatic steatosis and hepatocellular carcinoma (HCC). Hepatocyte Nuclear Factor 4 alpha (HNF4α) is the most abundant transcription factor in the liver, a key regulator of hepatic lipid metabolism and a critical determinant of Epithelial to Mesenchymal Transition and hepatic development. We have previously shown that transient inhibition of HNF4α initiates transformation of immortalized hepatocytes through a feedback loop consisting of miR-24, IL6 receptor (IL6R), STAT3, miR-124 and miR-629, suggesting a central role of HNF4α in HCC. However, the role of HNF4α in Hepatitis C Virus (HCV)-related hepatocarcinoma has not been evaluated and remains controversial. In this study, we provide strong evidence suggesting that HCV downregulates HNF4α expression at both transcriptional and translational levels. The observed decrease of HNF4α expression correlated with the downregulation of its downstream targets, HNF1α and MTP. Ectopic overexpression of HCV proteins also exhibited an inhibitory effect on HNF4α levels. The inhibition of HNF4α expression by HCV appeared to be mediated at transcriptional level as HCV proteins suppressed HNF4α gene promoter activity. HCV also up-regulated IL6R, activated STAT3 protein phosphorylation and altered the expression of acute phase genes. Furthermore, as HCV triggered the loss of HNF4α a consequent change of miR-24, miR-629 or miR-124 was observed. Our findings demonstrated that HCV-related HCC could be mediated through HNF4α-microRNA deregulation implying a possible role of HNF4α in HCV hepatocarcinogenesis. HCV inhibition of HNF4α could be sustained to promote HCC.
Collapse
Affiliation(s)
- Ioanna Vallianou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Margarita Hadzopoulou-Cladaras
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|