1
|
R P, Rakshit S, Shanmugam G, George M, Sarkar K. Wiskott Aldrich syndrome protein (WASp)-deficient Th1 cells promote R-loop-driven transcriptional insufficiency and transcription-coupled nucleotide excision repair factor (TC-NER)-driven genome-instability in the pathogenesis of T cell acute lymphoblastic leukemia. Clin Immunol 2024; 263:110204. [PMID: 38582251 DOI: 10.1016/j.clim.2024.110204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND T-ALL is an aggressive hematological tumor that develops as the result of a multi-step oncogenic process which causes expansion of hematopoietic progenitors that are primed for T cell development to undergo malignant transformation and growth. Even though first-line therapy has a significant response rate, 40% of adult patients and 20% of pediatric patients will relapse. Therefore, there is an unmet need for treatment for relapsed/refractory T-ALL to develop potential targeted therapies. METHODS Pediatric T-ALL patient derived T cells were grown under either nonskewingTh0 or Th1-skewing conditions to further process for ChIP-qPCR, RDIP-qPCR and other RT-PCR assays. Endogenous WASp was knocked out using CRISPR-Cas9 and was confirmed using flow cytometry and western blotting. LC-MS/MS was performed to find out proteomic dataset of WASp-interactors generated from Th1-skewed, human primary Th-cells. DNA-damage was assessed by immunofluorescence confocal-imaging and single-cell gel electrophoresis (comet assay). Overexpression of RNaseH1 was also done to restore normal Th1-transcription in WASp-deficient Th1-skewed cells. RESULTS We discovered that nuclear-WASp is required for suppressing R-loop production (RNA/DNA-hybrids) at Th1-network genes by ribonucleaseH2 (RNH2) and topoisomerase1. Nuclear-WASp is associated with the factors involved in preventing and dissolving R-loops in Th1 cells. In nuclear- WASp-reduced malignant Th1-cells, R-loops accumulate in vivo and are processed into DNA-breaks by transcription-coupled-nucleotide-excision repair (TC-NER). Several epigenetic modifications were also found to be involved at Th1 gene locus which are responsible for active/repressive marks of particular genes. By demonstrating WASp as a physiologic regulator of programmed versus unprogrammed R-loops, we suggest that the transcriptional role of WASp in vivo extends also to prevent transcription-linked DNA damage during malignancy and through modification of epigenetic dysregulations. CONCLUSION Our findings present a provocative possibility of resetting R-loops as a therapeutic intervention to correct both immune deficiency and malignancy in T-cell acute lymphoblastic leukemia patients and a novel role of WASp in the epigenetic regulation of T helper cell differentiation in T-ALL patients, anticipating WASp's requirement for the suppression of T-ALL progression.
Collapse
Affiliation(s)
- Pradeep R
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
2
|
Gadjalova I, Heinze JM, Goess MC, Hofmann J, Buck A, Weber MC, Blissenbach B, Kampick M, Krut O, Steiger K, Janssen KP, Neumann PA, Ruland J, Keppler SJ. B cell-mediated CD4 T-cell costimulation via CD86 exacerbates pro-inflammatory cytokine production during autoimmune intestinal inflammation. Mucosal Immunol 2024; 17:67-80. [PMID: 37918715 DOI: 10.1016/j.mucimm.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Dysregulated B cell responses have been described in inflammatory bowel disease (IBD) patients; however, the role of B cells in IBD pathology remained incompletely understood. We here provide evidence for the detrimental role of activated B cells during the onset of autoimmune intestinal inflammation. Using Wiskott-Aldrich Syndrome interacting protein deficient (Wipf1-/-) mice as a mouse model of chronic colitis, we identified clusters of differentiation (CD)86 expression on activated B cells as a crucial factor exacerbating pro-inflammatory cytokine production of intestinal CD4 T cells. Depleting B cells through anti-CD20 antibody treatment or blocking costimulatory signals mediated by CD86 through cytotoxic T lymphocyte antigen-4-immunoglobulin (CTLA-4-Ig) diminished intestinal inflammation in our mouse model of chronic IBD at the onset of disease. This was due to a reduction in aberrant humoral immune responses and reduced CD4 T cell pro-inflammatory cytokine production, especially interferon-g (IFN-g) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Interestingly, in addition to B cells isolated from the inflamed colon of Wipf1-/- mice, we also found CD86 mRNA and protein expression upregulated on activated B cells isolated from inflamed tissue of human patients with IBD. B cell activation and CD86 expression were boosted by soluble CD40L in vitro, which we found in the serum of mice and human patients with IBD. In summary, our data provides detailed insight into the contribution of B cells to intestinal inflammation, with implications for the treatment of IBD.
Collapse
Affiliation(s)
- Iana Gadjalova
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany
| | - Julia M Heinze
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany
| | - Marie C Goess
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany
| | - Julian Hofmann
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany
| | - Annalisa Buck
- Department of Surgery, Technical University of Munich, School of Medicine, Munich, Germany
| | - Marie-Christin Weber
- Department of Surgery, Technical University of Munich, School of Medicine, Munich, Germany
| | | | - Maximilian Kampick
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany
| | - Oleg Krut
- Paul-Ehrlich-Institut, Langen, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Technical University of Munich, School of Medicine, Munich, Germany
| | | | - Jürgen Ruland
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Center for Infection Research (DZIF), Munich, Germany
| | - Selina J Keppler
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, School of Medicine, Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Munich, Germany; Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria.
| |
Collapse
|
3
|
Sosna B, Aebisher D, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D, Oleś P, Cieślar G, Kawczyk-Krupka A. Selected Cytokines and Metalloproteinases in Inflammatory Bowel Disease. Int J Mol Sci 2023; 25:202. [PMID: 38203373 PMCID: PMC10779120 DOI: 10.3390/ijms25010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a collective term for two diseases: ulcerative colitis (UC) and Crohn's disease (CD). There are many factors, e.g., genetic, environmental and immunological, that increase the likelihood of these diseases. Indicators of IBDs include extracellular matrix metalloproteinases (MMPs). The aim of this review is to present data on the role of selected cytokines and metalloproteinases in IBD. In recent years, more and more transcriptomic studies are emerging. These studies are improving the characterization of the cytokine microenvironment inside inflamed tissue. It is observed that the levels of several cytokines are consistently increased in inflamed tissue in IBD, both in UC and CD. This review shows that MMPs play a major role in the pathology of inflammatory processes, cancer, and IBD. IBD-associated inflammation is associated with increased expression of MMPs and reduced ability of tissue inhibitors of metalloproteinases (TIMPs) to inhibit their action. In IBD patients in tissues that are inflamed, MMPs are produced in excess and TIMP activity is not sufficient to block MMPs. This review is based on our personal selection of the literature that was retrieved by a selective search in PubMed using the terms "Inflammatory bowel disease" and "pathogenesis of Inflammatory bowel diseases" that includes systematic reviews, meta-analyses, and clinical trials. The involvement of the immune system in the pathophysiology of IBD is reviewed in terms of the role of the cytokines and metalloproteinases involved.
Collapse
Affiliation(s)
- Barbara Sosna
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| |
Collapse
|
4
|
Illig D, Kotlarz D. Dysregulated inflammasome activity in intestinal inflammation - Insights from patients with very early onset IBD. Front Immunol 2022; 13:1027289. [PMID: 36524121 PMCID: PMC9744759 DOI: 10.3389/fimmu.2022.1027289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disorder triggered by imbalances of the microbiome and immune dysregulations in genetically susceptible individuals. Several mouse and human studies have demonstrated that multimeric inflammasomes are critical regulators of host defense and gut homeostasis by modulating immune responses to pathogen- or damage-associated molecular patterns. In the context of IBD, excessive production of pro-inflammatory Interleukin-1β has been detected in patient-derived intestinal tissues and correlated with the disease severity or failure to respond to anti-tumor necrosis factor therapy. Correspondingly, genome-wide association studies have suggested that single nucleotide polymorphisms in inflammasome components might be associated with risk of IBD development. The relevance of inflammasomes in controlling human intestinal homeostasis has been further exemplified by the discovery of very early onset IBD (VEO-IBD) patients with monogenic defects affecting different molecules in the complex regulatory network of inflammasome activity. This review provides an overview of known causative monogenic entities of VEO-IBD associated with altered inflammasome activity. A better understanding of the molecular mechanisms controlling inflammasomes in monogenic VEO-IBD may open novel therapeutic avenues for rare and common inflammatory diseases.
Collapse
Affiliation(s)
- David Illig
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany,Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,*Correspondence: Daniel Kotlarz,
| |
Collapse
|
5
|
Sharma TT, Rabizadeh RR, Prabhakar VS, Bury MI, Sharma AK. Evolving Experimental Platforms to Evaluate Ulcerative Colitis. Adv Biol (Weinh) 2022; 6:e2200018. [PMID: 35866469 DOI: 10.1002/adbi.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/06/2022] [Indexed: 01/28/2023]
Abstract
Ulcerative colitis (UC) is a multifactorial disease defined by chronic intestinal inflammation with idiopathic origins. It has a predilection to affect the mucosal lining of the large intestines and rectum. Management of UC depends upon numerous factors that include disease pathogenesis and severity that are maintained via medical or surgical means. Chronic inflammation that is left untreated or managed poorly from a clinical stance can result in intestinal ulceration accompanied by resulting physiological dysfunction. End-stage UC is mediated by surgical intervention with the resection of diseased tissue. This can lead to numerous health-related quality of life issues but is considered a curative approach. Regimens to treat UC are ever evolving and find their basis within various platforms to evaluate and treat UC. Numerous modeling systems have been examined to delineate potential mechanisms of action. However, UC is a heterogenous disease spanning unknown genetic origins coupled with environmental factors that can influence disease outcomes and related treatment procedures. Unfortunately, there is no one-size-fits-all model to fully assess all facets of UC. Within the context of this review article, the utility of various approaches that have been employed to gain insight into different aspects of UC will be investigated.
Collapse
Affiliation(s)
- Tiffany T Sharma
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA.,Stanley Manne Children's Research Institute, Chicago, IL, 60611, USA
| | - Rebecca R Rabizadeh
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Vibhav S Prabhakar
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Matthew I Bury
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA
| | - Arun K Sharma
- Lurie Children's Hospital, Division of Pediatric Urology, Chicago, IL, 60611, USA.,Stanley Manne Children's Research Institute, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Urology, Northwestern University, Chicago, IL, 60611, USA.,McCormick School of Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.,Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, IL, 60208, USA.,Simpson Querrey Institute (SQI), Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
6
|
Sasahara Y, Uchida T, Suzuki T, Abukawa D. Primary Immunodeficiencies Associated With Early-Onset Inflammatory Bowel Disease in Southeast and East Asia. Front Immunol 2022; 12:786538. [PMID: 35095863 PMCID: PMC8792847 DOI: 10.3389/fimmu.2021.786538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
Background Causes of early-onset inflammatory bowel disease (IBD) vary, and primary immunodeficiency diseases (PIDs) are associated with early-onset IBD as monogenic disorders. Aim This review investigates the prevalence, clinical manifestation, genetic profile, and treatment of patients with early-onset IBD in Southeast and East Asia. Methods A systemic review of articles reporting PID patients associated with early-onset IBD in Southeast and East Asia was conducted. Results The prevalence of PID associated with IBD was higher than that reported in western nations, and the frequency of patients with bloody stools as an early symptom was relatively higher in monogenic diseases. A total 13 (12.0%) of 108 patients with early-onset IBD were diagnosed as PID by exome sequencing and targeted gene panel analysis in Japan, including four patients with XIAP, three with IL10RA, and two or one patient with other gene mutations. In addition, ten patients were reported as having IL-10 receptor alpha (IL-10RA) deficiency in China and Hong Kong. Allogeneic hematopoietic stem cell transplantation was performed in patients with X-linked inhibitor of apoptosis deficiency, IL-10RA deficiency, or other PID as a curative treatment, and the preferable outcome of reduced-intensity conditioning and complete resolution of IBD symptoms and dysbiosis were achieved. Conclusion Comprehensive molecular diagnosis has been widely applied to screen for patients with PID-associated IBD in Southeast and East Asia. These results contributed to the awareness of monogenic PID in early-onset IBD patients and their differences in clinical manifestations and genetic profiles compared to the patients in western counties.
Collapse
Affiliation(s)
- Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Uchida
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tasuku Suzuki
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daiki Abukawa
- Department of General Pediatrics, Gastroenterology and Hepatology, Miyagi Children's Hospital, Sendai, Japan
| |
Collapse
|
7
|
Herman KE, Yoshida T, Hughson A, Grier A, Gill SR, Beck LA, Fowell DJ. IL-17-Dependent Dysregulated Cutaneous Immune Homeostasis in the Absence of the Wiskott-Aldrich Syndrome Protein. Front Immunol 2022; 13:817427. [PMID: 35265075 PMCID: PMC8900519 DOI: 10.3389/fimmu.2022.817427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Wiskott-Aldrich Syndrome (WAS) is characterized by recurrent infections, thrombocytopenia, and eczema. Here, we show that WASp-deficient mice on a BALB/c background have dysregulated cutaneous immune homeostasis with increased leukocyte accumulation in the skin, 1 week after birth. Increased cutaneous inflammation was associated with epithelial abnormalities, namely, altered keratinization, abnormal epidermal tight junctional morphology and increased trans-epidermal water loss; consistent with epidermal barrier dysfunction. Immune and physical barrier disruption was accompanied by progressive skin dysbiosis, highlighting the functional significance of the disrupted cutaneous homeostasis. Interestingly, the dysregulated immunity in the skin preceded the systemic elevation in IgE and lymphocytic infiltration of the colonic lamina propria associated with WASp deficiency. Mechanistically, the enhanced immune cell accumulation in the skin was lymphocyte dependent. Elevated levels of both Type 2 (IL-4, IL-5) and Type 17 (IL-17, IL-22, IL-23) cytokines were present in the skin, as well as the 'itch' factor IL-31. Unexpectedly, the canonical WAS-associated cytokine IL-4 did not play a role in the immune dysfunction. Instead, IL-17 was critical for skin immune infiltration and elevation of both Type 2 and Type 17 cytokines. Our findings reveal a previously unrecognized IL-17-dependent breakdown in immune homeostasis and cutaneous barrier integrity in the absence of WASp, targeting of which may provide new therapeutic possibilities for the treatment of skin pathologies in WAS patients.
Collapse
Affiliation(s)
- Katherine E. Herman
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Angela Hughson
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Alex Grier
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Lisa A. Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah J. Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, United States,Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States,*Correspondence: Deborah J. Fowell,
| |
Collapse
|
8
|
Tsou AM, Goettel JA, Bao B, Biswas A, Kang YH, Redhu NS, Peng K, Putzel GG, Saltzman J, Kelly R, Gringauz J, Barends J, Hatazaki M, Frei SM, Emani R, Huang Y, Shen Z, Fox JG, Glickman JN, Horwitz BH, Snapper SB. Utilizing a reductionist model to study host-microbe interactions in intestinal inflammation. MICROBIOME 2021; 9:215. [PMID: 34732258 PMCID: PMC8565002 DOI: 10.1186/s40168-021-01161-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/10/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND The gut microbiome is altered in patients with inflammatory bowel disease, yet how these alterations contribute to intestinal inflammation is poorly understood. Murine models have demonstrated the importance of the microbiome in colitis since colitis fails to develop in many genetically susceptible animal models when re-derived into germ-free environments. We have previously shown that Wiskott-Aldrich syndrome protein (WASP)-deficient mice (Was-/-) develop spontaneous colitis, similar to human patients with loss-of-function mutations in WAS. Furthermore, we showed that the development of colitis in Was-/- mice is Helicobacter dependent. Here, we utilized a reductionist model coupled with multi-omics approaches to study the role of host-microbe interactions in intestinal inflammation. RESULTS Was-/- mice colonized with both altered Schaedler flora (ASF) and Helicobacter developed colitis, while those colonized with either ASF or Helicobacter alone did not. In Was-/- mice, Helicobacter relative abundance was positively correlated with fecal lipocalin-2 (LCN2), a marker of intestinal inflammation. In contrast, WT mice colonized with ASF and Helicobacter were free of inflammation and strikingly, Helicobacter relative abundance was negatively correlated with LCN2. In Was-/- colons, bacteria breach the mucus layer, and the mucosal relative abundance of ASF457 Mucispirillum schaedleri was positively correlated with fecal LCN2. Meta-transcriptomic analyses revealed that ASF457 had higher expression of genes predicted to enhance fitness and immunogenicity in Was-/- compared to WT mice. In contrast, ASF519 Parabacteroides goldsteinii's relative abundance was negatively correlated with LCN2 in Was-/- mice, and transcriptional analyses showed lower expression of genes predicted to facilitate stress adaptation by ASF519 in Was-/-compared to WT mice. CONCLUSIONS These studies indicate that the effect of a microbe on the immune system can be context dependent, with the same bacteria eliciting a tolerogenic response under homeostatic conditions but promoting inflammation in immune-dysregulated hosts. Furthermore, in inflamed environments, some bacteria up-regulate genes that enhance their fitness and immunogenicity, while other bacteria are less able to adapt and decrease in abundance. These findings highlight the importance of studying host-microbe interactions in different contexts and considering how the transcriptional profile and fitness of bacteria may change in different hosts when developing microbiota-based therapeutics. Video abstract.
Collapse
Affiliation(s)
- Amy M Tsou
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, NY, USA.
- Division of Pediatric Gastroenterology and Nutrition, Weill Cornell Medical College, New York, NY, USA.
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bin Bao
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Amlan Biswas
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yu Hui Kang
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Naresh S Redhu
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kaiyue Peng
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, NY, USA
| | - Jeffrey Saltzman
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Ryan Kelly
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Jordan Gringauz
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Jared Barends
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Mai Hatazaki
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, NY, USA
| | - Sandra M Frei
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rohini Emani
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ying Huang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan N Glickman
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bruce H Horwitz
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Liu H, Wang Y, Li Y, Tao L, Zhang Y, He X, Zhou Y, Liu X, Wang Y, Li L. Clinical and genetic analysis of 2 rare cases of Wiskott-Aldrich syndrome from Chinese minorities: Two case reports. Medicine (Baltimore) 2021; 100:e25527. [PMID: 33879693 PMCID: PMC8078428 DOI: 10.1097/md.0000000000025527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive disease characterized by thrombocytopenia, small platelets, eczema, immunodeficiency, and an increased risk of autoimmunity and malignancies. X-linked thrombocytopenia (XLT), the milder phenotype of WAS, is always limited to thrombocytopenia with absent or slight infections and eczema. Here, we illustrated the clinical and molecular characteristics of 2 unrelated patients with WAS from Chinese minorities. PATIENT CONCERNS Patient 1, a 13-day-old male newborn of the Chinese Lahu minority, showed a classic WAS phenotype, including thrombocytopenia, small platelets, buttock eczema, and recurrent infections. Patient 2, an 8-year-and 8-month-old boy of the Chinese Zhuang minority, presented an XLT phenotype without eczema and repeated infections. DIAGNOSIS Next-generation sequencing was performed to investigate the genetic variations. Flow cytometry was used to quantify the expression of WAS protein and analyze the lymphocyte subsets. A novel frameshift WAS mutation (c.927delC, p.Q310Rfs∗135) and a known nonsense WAS mutation (c.1090C>T, p.R364X) were identified in Patient 1 and Patient 2, respectively. Both patients were confirmed to have WAS protein deficiency, which was more severe in Patient 1. Meanwhile, the analysis of lymphocyte subsets revealed an abnormality in Patient 1, but not in Patient 2. Combined with the above clinical data and genetic characteristics, Patient 1 and Patient 2 were diagnosed as classic WAS and XLT, respectively. In addition, many miliary nodules were accidentally found in abdominal cavity of Patient 2 during appendectomy. Subsequently, Patient 2 was confirmed with pulmonary and abdominal tuberculosis through further laboratory and imaging examinations. To our knowledge, there have been only a few reports about WAS/XLT with tuberculosis. INTERVENTIONS Both patients received anti-infection therapy, platelet transfusions, and intravenous immunoglobulins. Moreover, Patient 2 also received antituberculosis treatment with ethambutol and amoxicillin-clavulanate. OUTCOMES The clinical symptoms and hematological parameters of these 2 patients were significantly improved. Regrettably, both patients discontinued the treatment for financial reasons. LESSONS Our report expands the pathogenic mutation spectrum of WAS gene and emphasizes the importance of molecular genetic testing in diagnosing WAS. Furthermore, researching and reporting rare cases of WAS from different populations will facilitate diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Haifeng Liu
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| | | | | | - Lvyan Tao
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| | - Yu Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| | - Xiaoli He
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| | - Yuantao Zhou
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| | - Xiaoning Liu
- Department of Pharmacy, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yan Wang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics
| |
Collapse
|
10
|
Zhang L, Li YY, Tang X, Zhao X. Faecal microbial dysbiosis in children with Wiskott-Aldrich syndrome. Scand J Immunol 2019; 91:e12805. [PMID: 31267543 DOI: 10.1111/sji.12805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disease caused by a mutation in the WAS gene that encodes the WAS protein (WASp); up to 5-10% of these patients develop inflammatory bowel disease (IBD). The mechanisms by which WASp deficiency causes IBD are unclear. Intestinal microbial dysbiosis and imbalances in host immune responses play important roles in the pathogenesis of polygenetic IBD; however, few studies have conducted detailed examination of the microbial alterations and their relationship with IBD in WAS. Here, we collected faecal samples from 19 children (all less than 2 years old) with WAS and samples from WASp-KO mice with IBD and subjected them to 16S ribosomal RNA sequencing. We found that microbial community richness and structure in WAS children were different from those in controls; WAS children revealed reduced microbial community richness and diversity. Relative abundance of Bacteroidetes and Verrucomicrobiain in WAS children was significantly lower, while that of Proteobacteria was markedly higher. WASp-KO mice revealed a significantly decreased abundance of Firmicutes. Faecal microbial dysbiosis caused by WASp deficiency is similar to that observed for polygenetic IBD, suggesting that WASp may play crucial function in microbial homoeostasis and that microbial dysbiosis may contribute to IBD in WAS. These microbial alterations may be useful targets for monitoring and therapeutically managing intestinal inflammation in WAS.
Collapse
Affiliation(s)
- Liang Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Ying Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Mouse Models for Food Allergies: Where Do We Stand? Cells 2019; 8:cells8060546. [PMID: 31174293 PMCID: PMC6627293 DOI: 10.3390/cells8060546] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Food allergies are a steadily increasing health and economic problem. Immunologically, food allergic reactions are caused by pathological, allergen-specific Th2 responses resulting in IgE-mediated mast cell degranulation and associated inflammatory reactions. Clinically, food allergies are characterized by local inflammation of the mouth mucosa, the face, the throat, the gastrointestinal tract, are frequently paralleled by skin reactions, and can result in life-threatening anaphylactic reactions. To better understand food allergies and establish novel treatment options, mouse models are indispensable. This review discusses the available mouse food allergy models, dividing them into four categories: (1) adjuvant-free mouse models, (2) mouse models relying on adjuvants to establish allergen-specific Th2 responses, (3) mouse models using genetically-modified mouse strains to allow for easier sensitization, and (4) humanized mouse models in which different immunodeficient mouse strains are reconstituted with human immune or stem cells to investigate humanized immune responses. While most of the available mouse models can reproducibly portray the immunological parameters of food allergy (Th2 immune responses, IgE production and mast cell activation/expansion), so far, the recreation of the clinical parameters has proven more difficult. Therefore, up to now none of the available mouse models can reproduce the complete human pathology.
Collapse
|
12
|
Sun X, Wei Y, Lee PP, Ren B, Liu C. The role of WASp in T cells and B cells. Cell Immunol 2019; 341:103919. [PMID: 31047647 DOI: 10.1016/j.cellimm.2019.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is a form of primary immunodeficiency (PIDs) resulting from mutations of the gene that encodes Wiskott-Aldrich syndrome protein (WASp). WASp is the first identified and most widely studied protein belonging to the actin nucleation-promoting factor family and plays significant role in integrating and transforming signals from critical receptors on the cell surface to actin remodeling. WASp functions in immune defense and homeostasis through the regulation of actin cytoskeleton-dependent cellular processes as well as processes uncoupled with actin polymerization like nuclear transcription programs. In this article, we review the mechanisms of WASp activation through an understanding of its structure. We further discuss the role of WASp in adaptive immunity, paying special attention to some recent findings on the crucial role of WASp in the formation of immunological synapse, the regulation of T follicular helper (Tfh) cells and in the prevention of autoimmunity.
Collapse
Affiliation(s)
- Xizi Sun
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yin Wei
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Pamela P Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Boxu Ren
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China.
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
13
|
Csekő K, Beckers B, Keszthelyi D, Helyes Z. Role of TRPV1 and TRPA1 Ion Channels in Inflammatory Bowel Diseases: Potential Therapeutic Targets? Pharmaceuticals (Basel) 2019; 12:E48. [PMID: 30935063 PMCID: PMC6630403 DOI: 10.3390/ph12020048] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel diseases (IBD) have long been recognized to be accompanied by pain resulting in high morbidity. Transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) ion channels located predominantly on the capsaicin-sensitive sensory neurons play a complex role in hyperalgesia and neurogenic inflammation. This review provides an overview of their expression and role in intestinal inflammation, in particular colitis, that appears to be virtually inconsistent based on the thorough investigations of the last twenty years. However, preclinical results with pharmacological interventions, as well as scarcely available human studies, more convincingly point out the potential therapeutic value of TRPV1 and TRPA1 antagonists in colitis and visceral hypersensitivity providing future therapeutical perspectives through a complex, unique mechanism of action for drug development in IBD.
Collapse
Affiliation(s)
- Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School and Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary.
| | - Bram Beckers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center (MUMC+), 6202 AZ Maastricht, The Netherlands.
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center (MUMC+), 6202 AZ Maastricht, The Netherlands.
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6202 AZ Maastricht, The Netherlands.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and Molecular Pharmacology Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary.
- PharmInVivo Ltd., H-7629 Pécs, Hungary.
| |
Collapse
|
14
|
Sawai CM, Serpas L, Neto AG, Jang G, Rashidfarrokhi A, Kolbeck R, Sanjuan MA, Reizis B, Sisirak V. Plasmacytoid Dendritic Cells Are Largely Dispensable for the Pathogenesis of Experimental Inflammatory Bowel Disease. Front Immunol 2018; 9:2475. [PMID: 30410494 PMCID: PMC6209677 DOI: 10.3389/fimmu.2018.02475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition caused by an aberrant immune response to microbial components of the gastrointestinal tract. Plasmacytoid dendritic cells (pDCs) are innate immune cells specialized in the production of type I interferons and were recently implicated in the pathogenesis of autoimmune disorders such as lupus and scleroderma. While pDCs were shown to infiltrate intestinal mucosa of IBD patients and proposed to participate in intestinal inflammation, their net contribution to the disease remains unclear. We addressed this question by targeting the pDC-specific transcription factor TCF4 (E2-2) in experimental IBD caused by deficiency of Wiskott-Aldrich syndrome protein (WASP) or of interleukin-10 (IL-10). Monoallelic Tcf4 deletion, which was previously shown to abrogate experimental lupus, did not affect autoimmunity manifestations or colitis in WASP-deficient animals. Furthermore, conditional biallelic Tcf4 targeting resulted in a near-complete pDC ablation, yet had no effect on the development of colitis in IL-10-deficient mice. Our results suggest that, in contrast to other inflammatory and autoimmune diseases, pDCs do not play a major role in the pathogenesis of intestinal inflammation during IBD.
Collapse
Affiliation(s)
- Catherine M Sawai
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,INSERM, ACTION Laboratory, University of Bordeaux, Bordeaux, France
| | - Lee Serpas
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Antonio Galvao Neto
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Geunhyo Jang
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Roland Kolbeck
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| | - Miguel A Sanjuan
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Vanja Sisirak
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,CNRS-UMR, Immunoconcept, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
15
|
Abstract
Immunoglobulin E-mediated food allergy is rapidly developing into a global health problem. Publicly available therapeutic intervention strategies are currently restricted to allergen avoidance and emergency treatments. To gain a better understanding of the disease pathophysiology so that new therapies can be developed, major research efforts have been put into studying food allergy in mice. Animal models should reflect the human pathology as closely as possible to allow for a rapid translation of basic science observations to the bedside. In this regard, experimental models of food allergy provide significant challenges for research because of discrepancies between the presentation of disease in humans and mice. The goal of this review is to give a summary of commonly used murine disease models and to discuss how they relate to the human condition. We will focus on epicutaneous sensitization models, on mouse strains that sensitize spontaneously to food as seen in humans, and on models in humanized animals. In summary, expanding the research toolbox of experimental food allergy provides an important step toward closing gaps in our understanding of the derailing immune mechanism that underlies the human disease. The availability of additional experimental models will provide exciting opportunities to discover new intervention points for the treatment of food allergies. (Cell Mol Gastroenterol Hepatol 2018;x:x).
Collapse
Key Words
- Allergen Challenge
- Allergen Sensitization
- Anaphylaxis
- EPIT, epicutaneous immunotherapy
- Epictutaneous Sensitization
- FCER1A, high-affinity immunoglobulin epsilon receptor subunit alpha
- FCERIA
- FcεRI, high-affinity immunoglobulin E receptor
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HSC, hematopoietic stem cell
- Humanized Model
- IL, interleukin
- Ig, immunoglobulin
- IgE
- LCT, long chain triglycerides
- MCPT, mouse mast cell protease
- MCT, medium chain triglycerides
- Murine Models of Food Allergy
- OIT, oral immunotherapy
- PBMC, peripheral blood mononuclear cell
- Spontaneous Sensitization
- TSLP, thymic stromal lymphopoietin
- Th, T helper
- Treg, regulatory T cell
- WASP, Wiskott–Aldrich syndrome protein
Collapse
|
16
|
Biswas A, Shouval DS, Griffith A, Goettel JA, Field M, Kang YH, Konnikova L, Janssen E, Redhu NS, Thrasher AJ, Chatila T, Kuchroo VK, Geha RS, Notarangelo LD, Pai SY, Horwitz BH, Snapper SB. WASP-mediated regulation of anti-inflammatory macrophages is IL-10 dependent and is critical for intestinal homeostasis. Nat Commun 2018; 9:1779. [PMID: 29725003 PMCID: PMC5934380 DOI: 10.1038/s41467-018-03670-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/03/2018] [Indexed: 01/01/2023] Open
Abstract
Mutations in Wiskott–Aldrich syndrome protein (WASP) cause autoimmune sequelae including colitis. Yet, how WASP mediates mucosal homeostasis is not fully understood. Here we show that WASP-mediated regulation of anti-inflammatory macrophages is critical for mucosal homeostasis and immune tolerance. The generation and function of anti-inflammatory macrophages are defective in both human and mice in the absence of WASP. Expression of WASP specifically in macrophages, but not in dendritic cells, is critical for regulation of colitis development. Importantly, transfer of WT anti-inflammatory macrophages prevents the development of colitis. DOCK8-deficient macrophages phenocopy the altered macrophage properties associated with WASP deficiency. Mechanistically, we show that both WASP and DOCK8 regulates macrophage function by modulating IL-10-dependent STAT3 phosphorylation. Overall, our study indicates that anti-inflammatory macrophage function and mucosal immune tolerance require both WASP and DOCK8, and that IL-10 signalling modulates a WASP-DOCK8 complex. Deficiency in Wiskott-Aldrich syndrome protein (WASP) has been associated with autoimmune colitis, but the underlying mechanism is still unclear. Here the authors show that WASP deficiency is associated with defective WASP/DOCK8 complex formation, altered IL-10 signalling, and impaired anti-inflammatory macrophage functions.
Collapse
Affiliation(s)
- Amlan Biswas
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.,Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts, 02115, USA.,VEO-IBD Consortium, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Dror S Shouval
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.,VEO-IBD Consortium, 300 Longwood Avenue, Boston, MA, 02115, USA.,Division of Pediatric Gastroenterology and Nutrition, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, 52621, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Alexandra Griffith
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.,VEO-IBD Consortium, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.,Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts, 02115, USA.,VEO-IBD Consortium, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Michael Field
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.,VEO-IBD Consortium, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yu Hui Kang
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.,Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts, 02115, USA.,VEO-IBD Consortium, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Liza Konnikova
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.,Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts, 02115, USA.,VEO-IBD Consortium, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Erin Janssen
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts, 02115, USA.,Division of Immunology, Boston Children's Hospital, Boston, 1 Blackfan Circle, Massachusetts, 02115, USA
| | - Naresh Singh Redhu
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA.,Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts, 02115, USA.,VEO-IBD Consortium, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Adrian J Thrasher
- Great Ormond Street Hospital NHS Trust, London and Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Talal Chatila
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts, 02115, USA.,Division of Immunology, Boston Children's Hospital, Boston, 1 Blackfan Circle, Massachusetts, 02115, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, 60 Fenwood Road, Boston, Massachusetts, 02115, USA
| | - Raif S Geha
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts, 02115, USA.,Division of Immunology, Boston Children's Hospital, Boston, 1 Blackfan Circle, Massachusetts, 02115, USA
| | - Luigi D Notarangelo
- Clinical Immunology and Microbiology, NIAID, National Institutes of Health, 10 Center Drive, MSC 1456, Bethesda, Maryland, 20892-9806, USA
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children's Hospital Boston, 1 Blackfan Circle, Boston, Massachusetts, 02115, USA
| | - Bruce H Horwitz
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts, 02115, USA.,VEO-IBD Consortium, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, 02115, Massachusetts, USA.,Division of Emergency Medicine, Boston Children's Hospital, Boston, 300 Longwood Avenue, Boston, Massacusetts, 02115, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA. .,VEO-IBD Consortium, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Division of Gastroenterology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
17
|
Kuznetsov NV, Almuzzaini B, Kritikou JS, Baptista MAP, Oliveira MMS, Keszei M, Snapper SB, Percipalle P, Westerberg LS. Nuclear Wiskott-Aldrich syndrome protein co-regulates T cell factor 1-mediated transcription in T cells. Genome Med 2017; 9:91. [PMID: 29078804 PMCID: PMC5660450 DOI: 10.1186/s13073-017-0481-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/11/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Wiskott-Aldrich syndrome protein (WASp) family of actin-nucleating factors are present in the cytoplasm and in the nucleus. The role of nuclear WASp for T cell development remains incompletely defined. METHODS We performed WASp chromatin immunoprecipitation and deep sequencing (ChIP-seq) in thymocytes and spleen CD4+ T cells. RESULTS WASp was enriched at genic and intergenic regions and associated with the transcription start sites of protein-coding genes. Thymocytes and spleen CD4+ T cells showed 15 common WASp-interacting genes, including the gene encoding T cell factor (TCF)12. WASp KO thymocytes had reduced nuclear TCF12 whereas thymocytes expressing constitutively active WASpL272P and WASpI296T had increased nuclear TCF12, suggesting that regulated WASp activity controlled nuclear TCF12. We identify a putative DNA element enriched in WASp ChIP-seq samples identical to a TCF1-binding site and we show that WASp directly interacted with TCF1 in the nucleus. CONCLUSIONS These data place nuclear WASp in proximity with TCF1 and TCF12, essential factors for T cell development.
Collapse
Affiliation(s)
- Nikolai V Kuznetsov
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Bader Almuzzaini
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden.,King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences Medical Genomic Research Department, MNGHA, Riyadh, Saudi Arabia
| | - Joanna S Kritikou
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Marisa A P Baptista
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden.,Institute for Virology and Immunobiology, University of Würzburg, 97078, Würzburg, Germany
| | - Mariana M S Oliveira
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Marton Keszei
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Scott B Snapper
- Gastroenterology Division, Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden.,Biology Program, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden.
| |
Collapse
|
18
|
Zitomersky NL, Demers M, Martinod K, Gallant M, Cifuni SM, Biswas A, Snapper S, Wagner DD. ADAMTS13 Deficiency Worsens Colitis and Exogenous ADAMTS13 Administration Decreases Colitis Severity in Mice. TH OPEN 2017; 1:e11-e23. [PMID: 29376146 PMCID: PMC5782810 DOI: 10.1055/s-0037-1603927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background
Inflammatory bowel disease (IBD) affects 1.6 million people in the United States. IBD is associated with an increased risk of thrombosis, which rises with disease activity. The pathogenesis of IBD and its increased thrombotic risk is not completely understood. Ultra large von Willebrand factor (ULVWF) multimers are secreted from activated endothelium, leading to recruitment of platelets and leukocytes. A disintegrin and metalloproteinase with thrombospondin type I repeats motif 13 (ADAMTS13) cleaves highly adhesive ULVWF into smaller, less bioactive, multimers, releasing them into circulation. Mice deficient in ADAMTS13 (ADAMTS13
−/−
) have heightened inflammatory and thrombotic responses.
Objectives
We hypothesized that upon colitis induction, ADAMTS13
−/−
mice would have more severe symptoms compared with wild-type (WT) mice, and rhADAMTS13 administration to mice with colitis would improve their condition.
Results
Dextran sodium sulfate–induced colitis was worse in ADAMTS13
−/−
mice than WT. ADAMTS13
−/−
showed increased weight loss, worse anemia, and increased clinical and histologic colitis severity, compared with WT mice. ADAMTS13
−/−
mice had increased VWF release, with accumulation at inflamed colonic sites. Also, the majority of mice showed one or more submucosal colonic thrombi. ADAMTS13 deficiency worsened colitis and propagated intestinal inflammation, most likely through increased platelet–leukocyte recruitment by VWF. Treatment of WT mice with rhADAMTS13 decreased colitis severity without worsening anemia. Additionally, several immune-mediated chronic murine colitis models, and inflamed colon tissue specimens from IBD patients, showed increased VWF release at inflamed sites, suggesting a generalizability of our findings.
Conclusion
Measuring VWF/ADAMTS13 levels could have clinical utility. When applicable, the administration of ADAMTS13, in addition to primary treatment, may improve outcomes for IBD patients.
Collapse
Affiliation(s)
- Naamah L Zitomersky
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Melanie Demers
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Kimberly Martinod
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Maureen Gallant
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Stephen M Cifuni
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Amlan Biswas
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States
| | - Scott Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States.,Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Denisa D Wagner
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, United States.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, United States
| |
Collapse
|
19
|
Rosen MJ, Karns R, Vallance JE, Bezold R, Waddell A, Collins MH, Haberman Y, Minar P, Baldassano RN, Hyams JS, Baker SS, Kellermayer R, Noe JD, Griffiths AM, Rosh JR, Crandall WV, Heyman MB, Mack DR, Kappelman MD, Markowitz J, Moulton DE, Leleiko NS, Walters TD, Kugathasan S, Wilson KT, Hogan SP, Denson LA. Mucosal Expression of Type 2 and Type 17 Immune Response Genes Distinguishes Ulcerative Colitis From Colon-Only Crohn's Disease in Treatment-Naive Pediatric Patients. Gastroenterology 2017; 152:1345-1357.e7. [PMID: 28132889 PMCID: PMC5406257 DOI: 10.1053/j.gastro.2017.01.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS There is controversy regarding the role of the type 2 immune response in the pathogenesis of ulcerative colitis (UC)-few data are available from treatment-naive patients. We investigated whether genes associated with a type 2 immune response in the intestinal mucosa are up-regulated in treatment-naive pediatric patients with UC compared with patients with Crohn's disease (CD)-associated colitis or without inflammatory bowel disease (IBD), and whether expression levels are associated with clinical outcomes. METHODS We used a real-time reverse-transcription quantitative polymerase chain reaction array to analyze messenger RNA (mRNA) expression patterns in rectal mucosal samples from 138 treatment-naive pediatric patients with IBD and macroscopic rectal disease, as well as those from 49 children without IBD (controls), enrolled in a multicenter prospective observational study from 2008 to 2012. Results were validated in real-time reverse-transcription quantitative polymerase chain reaction analyses of rectal RNA from an independent cohort of 34 pediatric patients with IBD and macroscopic rectal disease and 17 controls from Cincinnati Children's Hospital Medical Center. RESULTS We measured significant increases in mRNAs associated with a type 2 immune response (interleukin [IL]5 gene, IL13, and IL13RA2) and a type 17 immune response (IL17A and IL23) in mucosal samples from patients with UC compared with patients with colon-only CD. In a regression model, increased expression of IL5 and IL17A mRNAs distinguished patients with UC from patients with colon-only CD (P = .001; area under the receiver operating characteristic curve, 0.72). We identified a gene expression pattern in rectal tissues of patients with UC, characterized by detection of IL13 mRNA, that predicted clinical response to therapy after 6 months (odds ratio [OR], 6.469; 95% confidence interval [CI], 1.553-26.94), clinical response after 12 months (OR, 6.125; 95% CI, 1.330-28.22), and remission after 12 months (OR, 5.333; 95% CI, 1.132-25.12). CONCLUSIONS In an analysis of rectal tissues from treatment-naive pediatric patients with IBD, we observed activation of a type 2 immune response during the early course of UC. We were able to distinguish patients with UC from those with colon-only CD based on increased mucosal expression of genes that mediate type 2 and type 17 immune responses. Increased expression at diagnosis of genes that mediate a type 2 immune response is associated with response to therapy and remission in pediatric patients with UC.
Collapse
Affiliation(s)
- Michael J. Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Jefferson E. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ramona Bezold
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Amanda Waddell
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Margaret H. Collins
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
,Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Yael Haberman
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
,Pediatric Gastroenterology Unit, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Phillip Minar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Robert N. Baldassano
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jeffrey S. Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children’s Medical Center, Hartford, Connecticut
| | - Susan S. Baker
- Digestive Diseases and Nutrition Center, Women and Children’s Hospital of Buffalo, Buffalo, New York
| | - Richard Kellermayer
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX
| | - Joshua D. Noe
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne M. Griffiths
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Canada
| | - Joel R. Rosh
- Goryeb Children’s Hospital/Atlantic Health, Icahn School of Medicine at Mount Sinai, USA
| | - Wallace V. Crandall
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children’s Hospital, Columbus, Ohio
| | - Melvin B. Heyman
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of California, San Francisco
| | - David R. Mack
- Department of Pediatrics and CHEO IBD Centre, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Michael D. Kappelman
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James Markowitz
- Division of Pediatric Gastroenterology and Nutrition, Cohen Children’s Medical Center of New York, New Hyde Park, New York
| | - Dedrick E. Moulton
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - Neal S. Leleiko
- Division of Pediatric Gastroenterology, Nutrition and Liver Diseases, Hasbro Children’s Hospital, Providence, Rhode Island
| | - Thomas D. Walters
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Canada
| | - Subra Kugathasan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Simon P. Hogan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
,Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
20
|
Lexmond WS, Goettel JA, Lyons JJ, Jacobse J, Deken MM, Lawrence MG, DiMaggio TH, Kotlarz D, Garabedian E, Sackstein P, Nelson CC, Jones N, Stone KD, Candotti F, Rings EH, Thrasher AJ, Milner JD, Snapper SB, Fiebiger E. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest 2016; 126:4030-4044. [PMID: 27643438 PMCID: PMC5096801 DOI: 10.1172/jci85129] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 08/16/2016] [Indexed: 12/26/2022] Open
Abstract
In addition to the infectious consequences of immunodeficiency, patients with Wiskott-Aldrich syndrome (WAS) often suffer from poorly understood exaggerated immune responses that result in autoimmunity and elevated levels of serum IgE. Here, we have shown that WAS patients and mice deficient in WAS protein (WASP) frequently develop IgE-mediated reactions to common food allergens. WASP-deficient animals displayed an adjuvant-free IgE-sensitization to chow antigens that was most pronounced for wheat and soy and occurred under specific pathogen-free as well as germ-free housing conditions. Conditional deletion of Was in FOXP3+ Tregs resulted in more severe Th2-type intestinal inflammation than that observed in mice with global WASP deficiency, indicating that allergic responses to food allergens are dependent upon loss of WASP expression in this immune compartment. While WASP-deficient Tregs efficiently contained Th1- and Th17-type effector differentiation in vivo, they failed to restrain Th2 effector responses that drive allergic intestinal inflammation. Loss of WASP was phenotypically associated with increased GATA3 expression in effector memory FOXP3+ Tregs, but not in naive-like FOXP3+ Tregs, an effect that occurred independently of increased IL-4 signaling. Our results reveal a Treg-specific role for WASP that is required for prevention of Th2 effector cell differentiation and allergic sensitization to dietary antigens.
Collapse
Affiliation(s)
- Willem S. Lexmond
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeremy A. Goettel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan J. Lyons
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Justin Jacobse
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Marion M. Deken
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Monica G. Lawrence
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Thomas H. DiMaggio
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Daniel Kotlarz
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Paul Sackstein
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Celeste C. Nelson
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Nina Jones
- Clinical Research Directorate/Clinical Monitoring Research Program (CMRP), Leidos Biomedical Research Inc., National Cancer Institute (NCI) Campus at Frederick, Frederick, Maryland, USA
| | - Kelly D. Stone
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Fabio Candotti
- Genetics and Molecular Biology Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Edmond H.H.M. Rings
- Departments of Pediatrics, Erasmus University, Erasmus Medical Center, Rotterdam and Leiden University, University Medical Center Leiden, Leiden, Netherlands
| | - Adrian J. Thrasher
- Great Ormond Street Hospital NHS Trust, London and Institute of Child Health, University College London, London, United Kingdom
| | - Joshua D. Milner
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Scott B. Snapper
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Edda Fiebiger
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Mizoguchi A, Takeuchi T, Himuro H, Okada T, Mizoguchi E. Genetically engineered mouse models for studying inflammatory bowel disease. J Pathol 2015; 238:205-19. [PMID: 26387641 DOI: 10.1002/path.4640] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/05/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Takahito Takeuchi
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Hidetomo Himuro
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Toshiyuki Okada
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Emiko Mizoguchi
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
22
|
Du HQ, Zhang X, An YF, Ding Y, Zhao XD. Effects of Wiskott-Aldrich Syndrome Protein Deficiency on IL-10-Producing Regulatory B Cells in Humans and Mice. Scand J Immunol 2015; 81:483-93. [PMID: 25728049 DOI: 10.1111/sji.12282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/12/2015] [Indexed: 12/25/2022]
Abstract
The Wiskott-Aldrich syndrome protein (WASp) is an important regulator of the actin cytoskeleton and is required for immune cell function. WASp deficiency causes a marked reduction in major mature peripheral B cell subsets, particularly marginal zone (MZ) B cells. We hypothesized that WASp deficiency may also lead to a reduction of regulatory B cells (known as B10 cells) belonging to a novel subset of B cells. And in consideration of the key role of B10 cells play in maintaining peripheral tolerance, we conjectured that a deficit of these cells could contribute to the autoimmunity in patients with Wiskott-Aldrich syndrome (WAS). The effects of WASp deficiency on B10 cells have been reported by only one group, which used an antigen-induced arthritis model. To add more information, we measured the percentage of B10 cells, regulatory T cells (Tregs) and Th1 cells in WASp knockout (WASp KO) mice. We also measured the percentage of B10 cells in patients with WAS by flow cytometry. Importantly, we used the non-induced autoimmune WASp KO mouse model to investigate the association between B10 cell frequency and the Treg/Th1 balance. We found that the percentage of B10 cells was reduced in both mice (steady state and inflammatory state) and in humans and that the lower B10 population correlated with an imbalance in the Treg/Th1 ratio in old WASp KO mice with autoimmune colitis. These findings suggest that WASp plays a crucial role in B10 cell development and that WASp-deficient B10 cells may contribute to autoimmunity in WAS.
Collapse
Affiliation(s)
- H-Q Du
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - X Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Y-F An
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Y Ding
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - X-D Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Abstract
Inflammatory bowel disease (IBD) is a multifactoral disease caused by dysregulated immune responses to commensal or pathogenic microbes in the intestine, resulting in chronic intestinal inflammation. An emerging population of patients with IBD occurring before the age of 5 represent a unique form of disease, termed Very Early Onset (VEO)-IBD, which is phenotypically- and genetically-distinct from older-onset IBD. VEO-IBD is associated with increased disease severity, aggressive progression and poor responsiveness to most conventional therapies. Further investigation into the causes and pathogenesis of VEO-IBD will help improve treatment strategies, and may lead to a better understanding of the mechanisms that are essential to maintain intestinal health or provoke the development of targeted therapeutic strategies to limit intestinal disease. Here we discuss the phenotypic nature of VEO-IBD, the recent identification of novel gene variants associated with disease, and functional immunologic studies interrogating the contribution of specific genetic variants to the development of chronic intestinal inflammation.
Collapse
Key Words
- inflammatory bowel disease
- very early onset inflammatory bowel disease
- whole exome sequencing
- mucosal immunology
- adam17, a disintegrin and metalloproteinase domain 17
- cgd, chronic granulomatous disease
- col7a1, collagen, type vii, α1
- cvid, common variable immunodeficiency
- foxp3, forkhead box protein 3
- gucy2, guanylate cyclase 2
- gwas, genomewide association studies
- ibd, inflammatory bowel disease
- il, interleukin
- ilc, innate lymphoid cells
- ilc3, group 3 innate lymphoid cells
- iga, immunoglobulin a
- ikbkg, inhibitor of κ light polypeptide gene enhancer in b cells, kinase of, γ
- ipex, immunodysregulation, polyendocrinopathy, and enteropathy, x-linked
- mhcii, major histocompatibility complex class ii
- nemo, nuclear factor-κb essential modulator
- rag, recombination-activating gene
- stat, signal transducer and activator of transcription
- tnf, tumor necrosis factor
- treg, regulatory t cell
- ttc7a, tetratricopeptide repeat domain-containing protein 7a
- veo-ibd, very early onset inflammatory bowel disease
- wasp, wiskott-aldrich syndrome protein
- wes, whole exome sequencing
- xiap, x-linked inhibitor of apoptosis protein
Collapse
|
24
|
Moran CJ, Klein C, Muise AM, Snapper SB. Very early-onset inflammatory bowel disease: gaining insight through focused discovery. Inflamm Bowel Dis 2015; 21:1166-75. [PMID: 25895007 PMCID: PMC6165626 DOI: 10.1097/mib.0000000000000329] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pathogenesis of pediatric inflammatory bowel disease (IBD) is only partially understood. Strong evidence implicates a strong genetic component including high monozygotic twin concordance and familial disease phenotype concordance rates. Genome-wide association studies have identified associations between >160 genetic loci and the risk for developing IBD. The roles of implicated genes are largely immune-mediated, although other functions include cellular migration, oxidative stress, and carbohydrate metabolism. Additionally, growing literature describes monogenic causes of IBD that frequently present as infantile or very early-onset IBD. The interplay between IBD risk single nucleotide polymorphisms and rare genetic variants has yet to be determined. Studying patients with very early-onset IBD may elicit genetic factors that could be applied to broader populations of IBD. This review describes what is known about the genetic causes of very early-onset IBD and genetic strategies that may unravel more of the genetic causes of IBD.
Collapse
Affiliation(s)
- Christopher J. Moran
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, MassGeneral Hospital for Children, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Christoph Klein
- Dr von Hauner Children’s Hospital, Ludwig Maximilians University, Munich, Germany
| | - Aleixo M. Muise
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Scott B. Snapper
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Children’s Hospital Boston, Boston, Massachusetts
- Division of Gastroenterology and Hepatology, Brigham & Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Sadhukhan S, Sarkar K, Taylor M, Candotti F, Vyas YM. Nuclear role of WASp in gene transcription is uncoupled from its ARP2/3-dependent cytoplasmic role in actin polymerization. THE JOURNAL OF IMMUNOLOGY 2014; 193:150-60. [PMID: 24872192 DOI: 10.4049/jimmunol.1302923] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Defects in Wiskott-Aldrich Syndrome protein (WASp) underlie development of WAS, an X-linked immunodeficiency and autoimmunity disorder of childhood. Nucleation-promoting factors (NPFs) of the WASp family generate F-actin in the cytosol via the VCA (verprolin-homology, cofilin-homology, and acidic) domain and support RNA polymerase II-dependent transcription in the nucleus. Whether nuclear-WASp requires the integration of its actin-related protein (ARP)2/3-dependent cytoplasmic function to reprogram gene transcription, however, remains unresolved. Using the model of human TH cell differentiation, we find that WASp has a functional nuclear localizing and nuclear exit sequences, and accordingly, its effects on transcription are controlled mainly at the level of its nuclear entry and exit via the nuclear pore. Human WASp does not use its VCA-dependent, ARP2/3-driven, cytoplasmic effector mechanisms to support histone H3K4 methyltransferase activity in the nucleus of TH1-skewed cells. Accordingly, an isolated deficiency of nuclear-WASp is sufficient to impair the transcriptional reprogramming of TBX21 and IFNG promoters in TH1-skewed cells, whereas an isolated deficiency of cytosolic-WASp does not impair this process. In contrast, nuclear presence of WASp in TH2-skewed cells is small, and its loss does not impair transcriptional reprogramming of GATA3 and IL4 promoters. Our study unveils an ARP2/3:VCA-independent function of nuclear-WASp in TH1 gene activation that is uncoupled from its cytoplasmic role in actin polymerization.
Collapse
Affiliation(s)
- Sanjoy Sadhukhan
- Division of Pediatric Hematology-Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Koustav Sarkar
- Division of Pediatric Hematology-Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15213; Division of Pediatric Hematology-Oncology, University of Iowa Children's Hospital, Iowa City, IA 52242; and
| | - Matthew Taylor
- Division of Pediatric Hematology-Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Fabio Candotti
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yatin M Vyas
- Division of Pediatric Hematology-Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15213; Division of Pediatric Hematology-Oncology, University of Iowa Children's Hospital, Iowa City, IA 52242; and
| |
Collapse
|
26
|
Gut microbiome and anticancer immune response: really hot Sh*t! Cell Death Differ 2014; 22:199-214. [PMID: 24832470 DOI: 10.1038/cdd.2014.56] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023] Open
Abstract
The impact of gut microbiota in eliciting innate and adaptive immune responses beneficial for the host in the context of effective therapies against cancer has been highlighted recently. Chemotherapeutic agents, by compromising, to some extent, the intestinal integrity, increase the gut permeability and selective translocation of Gram-positive bacteria in secondary lymphoid organs. There, anticommensal pathogenic Th17 T-cell responses are primed, facilitating the accumulation of Th1 helper T cells in tumor beds after chemotherapy as well as tumor regression. Importantly, the redox equilibrium of myeloid cells contained in the tumor microenvironment is also influenced by the intestinal microbiota. Hence, the anticancer efficacy of alkylating agents (such as cyclophosphamide) and platinum salts (oxaliplatin, cis-platin) is compromised in germ-free mice or animals treated with antibiotics. These findings represent a paradigm shift in our understanding of the mode of action of many compounds having an impact on the host-microbe mutualism.
Collapse
|
27
|
Low D, Nguyen DD, Mizoguchi E. Animal models of ulcerative colitis and their application in drug research. Drug Des Devel Ther 2013; 7:1341-57. [PMID: 24250223 PMCID: PMC3829622 DOI: 10.2147/dddt.s40107] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The specific pathogenesis underlying inflammatory bowel disease is complex, and it is even more difficult to decipher the pathophysiology to explain for the similarities and differences between two of its major subtypes, Crohn's disease and ulcerative colitis (UC). Animal models are indispensable to pry into mechanistic details that will facilitate better preclinical drug/therapy design to target specific components involved in the disease pathogenesis. This review focuses on common animal models that are particularly useful for the study of UC and its therapeutic strategy. Recent reports of the latest compounds, therapeutic strategies, and approaches tested on UC animal models are also discussed.
Collapse
Affiliation(s)
- Daren Low
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Deanna D Nguyen
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for the Study of inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emiko Mizoguchi
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for the Study of inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Low D, Nguyen DD, Mizoguchi E. Animal models of ulcerative colitis and their application in drug research. DRUG DESIGN DEVELOPMENT AND THERAPY 2013. [PMID: 24250223 DOI: 10.2147/dddt.s40107.ecollection] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The specific pathogenesis underlying inflammatory bowel disease is complex, and it is even more difficult to decipher the pathophysiology to explain for the similarities and differences between two of its major subtypes, Crohn's disease and ulcerative colitis (UC). Animal models are indispensable to pry into mechanistic details that will facilitate better preclinical drug/therapy design to target specific components involved in the disease pathogenesis. This review focuses on common animal models that are particularly useful for the study of UC and its therapeutic strategy. Recent reports of the latest compounds, therapeutic strategies, and approaches tested on UC animal models are also discussed.
Collapse
Affiliation(s)
- Daren Low
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
29
|
Abstract
BACKGROUND Wiskott-Aldrich syndrome protein-deficient patients and mice are immunodeficient and can develop inflammatory bowel disease. The intestinal microbiome is critical to the development of colitis in most animal models, in which Helicobacter spp. have been implicated in disease pathogenesis. We sought to determine the role of Helicobacter spp. in colitis development in Wiskott-Aldrich syndrome protein-deficient (WKO) mice. METHODS Feces from WKO mice raised under specific pathogen-free conditions were evaluated for the presence of Helicobacter spp., after which a subset of mice were rederived in Helicobacter spp.-free conditions. Helicobacter spp.-free WKO animals were subsequently infected with Helicobacter bilis. RESULTS Helicobacter spp. were detected in feces from WKO mice. After rederivation in Helicobacter spp.-free conditions, WKO mice did not develop spontaneous colitis but were susceptible to radiation-induced colitis. Moreover, a T-cell transfer model of colitis dependent on Wiskott-Aldrich syndrome protein-deficient innate immune cells also required Helicobacter spp. colonization. Helicobacter bilis infection of rederived WKO mice led to typhlitis and colitis. Most notably, several H. bilis-infected animals developed dysplasia with 10% demonstrating colon carcinoma, which was not observed in uninfected controls. CONCLUSIONS Spontaneous and T-cell transfer, but not radiation-induced, colitis in WKO mice is dependent on the presence of Helicobacter spp. Furthermore, H. bilis infection is sufficient to induce typhlocolitis and colon cancer in Helicobacter spp.-free WKO mice. This animal model of a human immunodeficiency with chronic colitis and increased risk of colon cancer parallels what is seen in human colitis and implicates specific microbial constituents in promoting immune dysregulation in the intestinal mucosa.
Collapse
|
30
|
Ey B, Eyking A, Klepak M, Salzman NH, Göthert JR, Rünzi M, Schmid KW, Gerken G, Podolsky DK, Cario E. Loss of TLR2 worsens spontaneous colitis in MDR1A deficiency through commensally induced pyroptosis. THE JOURNAL OF IMMUNOLOGY 2013; 190:5676-88. [PMID: 23636052 DOI: 10.4049/jimmunol.1201592] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Variants of the multidrug resistance gene (MDR1/ABCB1) have been associated with increased susceptibility to severe ulcerative colitis (UC). In this study, we investigated the role of TLR/IL-1R signaling pathways including the common adaptor MyD88 in the pathogenesis of chronic colonic inflammation in MDR1A deficiency. Double- or triple-null mice lacking TLR2, MD-2, MyD88, and MDR1A were generated in the FVB/N background. Deletion of TLR2 in MDR1A deficiency resulted in fulminant pancolitis with early expansion of CD11b(+) myeloid cells and rapid shift toward TH1-dominant immune responses in the lamina propria. Colitis exacerbation in TLR2/MDR1A double-knockout mice required the unaltered commensal microbiota and the LPS coreceptor MD-2. Blockade of IL-1β activity by treatment with IL-1R antagonist (IL-1Ra; Anakinra) inhibited colitis acceleration in TLR2/MDR1A double deficiency; intestinal CD11b(+)Ly6C(+)-derived IL-1β production and inflammation entirely depended on MyD88. TLR2/MDR1A double-knockout CD11b(+) myeloid cells expressed MD-2/TLR4 and hyperresponded to nonpathogenic Escherichia coli or LPS with reactive oxygen species production and caspase-1 activation, leading to excessive cell death and release of proinflammatory IL-1β, consistent with pyroptosis. Inhibition of reactive oxygen species-mediated lysosome degradation suppressed LPS hyperresponsiveness. Finally, active UC in patients carrying the TLR2-R753Q and MDR1-C3435T polymorphisms was associated with increased nuclear expression of caspase-1 protein and cell death in areas of acute inflammation, compared with active UC patients without these variants. In conclusion, we show that the combined defect of two UC susceptibility genes, MDR1A and TLR2, sets the stage for spontaneous and uncontrolled colitis progression through MD-2 and IL-1R signaling via MyD88, and we identify commensally induced pyroptosis as a potential innate immune effector in severe UC pathogenesis.
Collapse
Affiliation(s)
- Birgit Ey
- Division of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shimizu M, Kanegane H, Wada T, Motoyoshi Y, Morio T, Candotti F, Yachie A. Aberrant glycosylation of IgA in Wiskott-Aldrich syndrome and X-linked thrombocytopenia. J Allergy Clin Immunol 2013; 131:587-90.e1-3. [PMID: 23107152 PMCID: PMC3563712 DOI: 10.1016/j.jaci.2012.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 08/20/2012] [Accepted: 08/24/2012] [Indexed: 01/16/2023]
Affiliation(s)
- Masaki Shimizu
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics, School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yaeko Motoyoshi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Fabio Candotti
- Disorders of Immunity Section, Genetics and Molecular Biology Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Akihiro Yachie
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
32
|
Nguyen DD, Wurbel MA, Goettel JA, Eston MA, Ahmed OS, Marin R, Boden EK, Villablanca EJ, Paidassi H, Ahuja V, Reinecker HC, Fiebiger E, Lacy-Hulbert A, Horwitz BH, Mora JR, Snapper SB. Wiskott-Aldrich syndrome protein deficiency in innate immune cells leads to mucosal immune dysregulation and colitis in mice. Gastroenterology 2012; 143:719-729.e2. [PMID: 22710191 PMCID: PMC3760724 DOI: 10.1053/j.gastro.2012.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/03/2012] [Accepted: 06/05/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS Immunodeficiency and autoimmune sequelae, including colitis, develop in patients and mice deficient in Wiskott-Aldrich syndrome protein (WASP), a hematopoietic cell-specific intracellular signaling molecule that regulates the actin cytoskeleton. Development of colitis in WASP-deficient mice requires lymphocytes; transfer of T cells is sufficient to induce colitis in immunodeficient mice. We investigated the interactions between innate and adaptive immune cells in mucosal regulation during development of T cell-mediated colitis in mice with WASP-deficient cells of the innate immune system. METHODS Naïve and/or regulatory CD4(+) T cells were transferred from 129 SvEv mice into RAG-2-deficient (RAG-2 KO) mice or mice lacking WASP and RAG-2 (WRDKO). Animals were observed for the development of colitis; effector and regulatory functions of innate immune and T cells were analyzed with in vivo and in vitro assays. RESULTS Transfer of unfractionated CD4(+) T cells induced severe colitis in WRDKO, but not RAG-2 KO, mice. Naïve wild-type T cells had higher levels of effector activity and regulatory T cells had reduced suppressive function when transferred into WRDKO mice compared with RAG-2 KO mice. Regulatory T-cell proliferation, generation, and maintenance of FoxP3 expression were reduced in WRDKO recipients and associated with reduced numbers of CD103(+) tolerogenic dendritic cells and levels of interleukin-10. Administration of interleukin-10 prevented induction of colitis following transfer of T cells into WRDKO mice. CONCLUSIONS Defective interactions between WASP-deficient innate immune cells and normal T cells disrupt mucosal regulation, potentially by altering the functions of tolerogenic dendritic cells, production of interleukin-10, and homeostasis of regulatory T cells.
Collapse
Affiliation(s)
- Deanna D Nguyen
- Gastrointestinal Unit and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Marc-Andre Wurbel
- Harvard Medical School, Boston, Massachusetts; Department of Gastroenterology/Nutrition, Children's Hospital, Boston, Massachusetts
| | - Jeremy A Goettel
- Harvard Medical School, Boston, Massachusetts; Department of Gastroenterology/Nutrition, Children's Hospital, Boston, Massachusetts
| | - Michelle A Eston
- Gastrointestinal Unit and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts
| | - Osub S Ahmed
- Department of Gastroenterology/Nutrition, Children's Hospital, Boston, Massachusetts
| | - Romela Marin
- Gastrointestinal Unit and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts
| | - Elisa K Boden
- Gastrointestinal Unit and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Eduardo J Villablanca
- Gastrointestinal Unit and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Helena Paidassi
- Harvard Medical School, Boston, Massachusetts; Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Vineet Ahuja
- Gastrointestinal Unit and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Hans-Christian Reinecker
- Gastrointestinal Unit and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Edda Fiebiger
- Harvard Medical School, Boston, Massachusetts; Department of Gastroenterology/Nutrition, Children's Hospital, Boston, Massachusetts
| | - Adam Lacy-Hulbert
- Harvard Medical School, Boston, Massachusetts; Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Bruce H Horwitz
- Harvard Medical School, Boston, Massachusetts; Division of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - J Rodrigo Mora
- Gastrointestinal Unit and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Scott B Snapper
- Gastrointestinal Unit and the Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Department of Gastroenterology/Nutrition, Children's Hospital, Boston, Massachusetts; Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
33
|
Mizoguchi A. Animal models of inflammatory bowel disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:263-320. [PMID: 22137435 DOI: 10.1016/b978-0-12-394596-9.00009-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is medicated by genetic, immune, and environmental factors. At least 66 different kinds of animal models have been established to study IBD, which are classified primarily into chemically induced, cell-transfer, congenial mutant, and genetically engineered models. These IBD models have provided significant contributions to not only dissect the mechanism but also develop novel therapeutic strategies for IBD. In addition, recent advances on genetically engineered techniques such as cell-specific and inducible knockout as well as knockin mouse systems have brought novel concepts on IBD pathogenesis to the fore. Further, mouse models, which lack some IBD susceptibility genes, have suggested more complicated mechanism of IBD than previously predicted. This chapter summarizes the distinct feature of each murine IBD model and discusses the previous and current lessons from the IBD models.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Department of Pathology, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Shimizu M, Nikolov NP, Ueno K, Ohta K, Siegel RM, Yachie A, Candotti F. Development of IgA nephropathy-like glomerulonephritis associated with Wiskott-Aldrich syndrome protein deficiency. Clin Immunol 2011; 142:160-6. [PMID: 22079330 DOI: 10.1016/j.clim.2011.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/15/2011] [Accepted: 10/04/2011] [Indexed: 01/13/2023]
Abstract
Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder caused by mutations in the WAS gene. Glomerulonephritis is a frequent complication, however, histopathological data from affected patients is scarce because the thrombocytopenia that affects most patients is a contraindication to renal biopsies. We found that WASp-deficient mice develop proliferative glomerulonephritis reminiscent of human IgA nephropathy (IgAN). We examined whether increased aberrant IgA production is associated with the development of glomerulonephritis in WASp-deficient mice. Serum IgA and IgA production by splenic B cells was increased in WASp-deficient mice compared to wild-type (WT) mice. A lectin-binding study revealed a reduced ratio of sialylated and galactosylated IgA in the sera from old WASp-deficient mice. Circulating IgA-containing immune complexes showed significantly higher titers in WASp-deficient mice compared to WT mice. These results indicate that the increased IgA production and aberrant glycosylation of IgA may be critically involved in the pathogenesis of glomerulonephritis in WAS.
Collapse
Affiliation(s)
- M Shimizu
- Disorders of Immunity Section, Genetics and Molecular Biology Branch, NHGRI, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Decoding inflammatory bowel disease through the lens of immunodeficiency. Mucosal Immunol 2011. [DOI: 10.1038/mi.2011.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Saleh M, Elson CO. Experimental inflammatory bowel disease: insights into the host-microbiota dialog. Immunity 2011; 34:293-302. [PMID: 21435584 DOI: 10.1016/j.immuni.2011.03.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease appears to result from an abnormal host immune response to the intestinal microbiota. Experimental models have allowed the dissection of the complex dialog between the host and its microbiota. Through genetic manipulation of the host genome the immune compartments, cells, molecules, and genes that are critical for maintenance of intestinal homeostasis are being identified. Genetic association studies in humans have identified over 100 susceptibility loci. Although there is remarkable coherence between the experimental model and the human genetic data, a full understanding of the mechanisms involved in genetic susceptibility to IBD and of gene-gene and gene-environmental interactions will require a "next generation" of experimental models.
Collapse
Affiliation(s)
- Maya Saleh
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3G 0B1.
| | | |
Collapse
|
37
|
Ramasamy S, Nguyen DD, Eston M, Alam SN, Moss AK, Ebrahimi F, Biswas B, Mostafa G, Chen KT, Kaliannan K, Yammine H, Narisawa S, Millán JL, Warren HS, Hohmann EL, Mizoguchi E, Reinecker HC, Bhan AK, Snapper SB, Malo MS, Hodin RA. Intestinal alkaline phosphatase has beneficial effects in mouse models of chronic colitis. Inflamm Bowel Dis 2011; 17:532-42. [PMID: 20645323 PMCID: PMC3154118 DOI: 10.1002/ibd.21377] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The brush border enzyme intestinal alkaline phosphatase (IAP) functions as a gut mucosal defense factor and is protective against dextran sulfate sodium (DSS)-induced acute injury in rats. The present study evaluated the potential therapeutic role for orally administered calf IAP (cIAP) in two independent mouse models of chronic colitis: 1) DSS-induced chronic colitis, and 2) chronic spontaneous colitis in Wiskott-Aldrich Syndrome protein (WASP)-deficient (knockout) mice that is accelerated by irradiation. METHODS The wildtype (WT) and IAP knockout (IAP-KO) mice received four cycles of 2% DSS ad libitum for 7 days. Each cycle was followed by a 7-day DSS-free interval during which mice received either cIAP or vehicle in the drinking water. The WASP-KO mice received either vehicle or cIAP for 6 weeks beginning on the day of irradiation. RESULTS Microscopic colitis scores of DSS-treated IAP-KO mice were higher than DSS-treated WT mice (52±3.8 versus 28.8±6.6, respectively, P<0.0001). cIAP treatment attenuated the disease in both groups (KO=30.7±6.01, WT=18.7±5.0, P<0.05). In irradiated WASP-KO mice cIAP also attenuated colitis compared to control groups (3.3±0.52 versus 6.2±0.34, respectively, P<0.001). Tissue myeloperoxidase activity and proinflammatory cytokines were significantly decreased by cIAP treatment. CONCLUSIONS Endogenous IAP appears to play a role in protecting the host against chronic colitis. Orally administered cIAP exerts a protective effect in two independent mouse models of chronic colitis and may represent a novel therapy for human IBD.
Collapse
Affiliation(s)
- Sundaram Ramasamy
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Deanna D. Nguyen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Michelle Eston
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Sayeda Nasrin Alam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Angela K. Moss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Farzad Ebrahimi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Brishti Biswas
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Golam Mostafa
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Kathryn T. Chen
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Kanakaraju Kaliannan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Halim Yammine
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Sonoko Narisawa
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - José Luis Millán
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - H. Shaw Warren
- Infectious Disease Unit, Departments of Pediatrics and Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Elizabeth L. Hohmann
- Infectious Disease Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Emiko Mizoguchi
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Hans-Christian Reinecker
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Atul K. Bhan
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Scott B. Snapper
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Madhu S. Malo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Corresponding Author: Madhu S. Malo, M.D., Ph.D., Department of Surgery, Massachusetts General Hospital, Jackson 812, 55 fruit Street, Boston, MA 02114, Telephone: (617) 726 1956, Fax: (617) 726 3114,
| | - Richard A. Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
38
|
Wurbel MA, McIntire MG, Dwyer P, Fiebiger E. CCL25/CCR9 interactions regulate large intestinal inflammation in a murine model of acute colitis. PLoS One 2011; 6:e16442. [PMID: 21283540 PMCID: PMC3026821 DOI: 10.1371/journal.pone.0016442] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/17/2010] [Indexed: 12/13/2022] Open
Abstract
Background & Aims CCL25/CCR9 is a non-promiscuous chemokine/receptor pair and a key regulator of leukocyte migration to the small intestine. We investigated here whether CCL25/CCR9 interactions also play a role in the regulation of inflammatory responses in the large intestine. Methods Acute inflammation and recovery in wild-type (WT) and CCR9−/− mice was studied in a model of dextran sulfate sodium (DSS)-induced colitis. Distribution studies and phenotypic characterization of dendritic cell subsets and macrophage were performed by flow cytometry. Inflammatory bowel disease (IBD) scores were assessed and expression of inflammatory cytokines was studied at the mRNA and the protein level. Results CCL25 and CCR9 are both expressed in the large intestine and are upregulated during DSS colitis. CCR9−/− mice are more susceptible to DSS colitis than WT littermate controls as shown by higher mortality, increased IBD score and delayed recovery. During recovery, the CCR9−/− colonic mucosa is characterized by the accumulation of activated macrophages and elevated levels of Th1/Th17 inflammatory cytokines. Activated plasmacytoid dendritic cells (DCs) accumulate in mesenteric lymph nodes (MLNs) of CCR9−/− animals, altering the local ratio of DC subsets. Upon re-stimulation, T cells isolated from these MLNs secrete significantly higher levels of TNFα, IFNγ, IL2, IL-6 and IL-17A while down modulating IL-10 production. Conclusions Our results demonstrate that CCL25/CCR9 interactions regulate inflammatory immune responses in the large intestinal mucosa by balancing different subsets of dendritic cells. These findings have important implications for the use of CCR9-inhibitors in therapy of human IBD as they indicate a potential risk for patients with large intestinal inflammation.
Collapse
Affiliation(s)
- Marc-Andre Wurbel
- Division of Gastroenterology and Nutrition, Children's Hospital Boston, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
39
|
Taylor MD, Sadhukhan S, Kottangada P, Ramgopal A, Sarkar K, D'Silva S, Selvakumar A, Candotti F, Vyas YM. Nuclear role of WASp in the pathogenesis of dysregulated TH1 immunity in human Wiskott-Aldrich syndrome. Sci Transl Med 2010; 2:37ra44. [PMID: 20574068 DOI: 10.1126/scitranslmed.3000813] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The clinical symptomatology in the X-linked Wiskott-Aldrich syndrome (WAS), a combined immunodeficiency and autoimmune disease resulting from WAS protein (WASp) deficiency, reflects the underlying coexistence of an impaired T helper 1 (TH1) immunity alongside intact TH2 immunity. This suggests a role for WASp in patterning T(H) subtype immunity, yet the molecular basis for the TH1-TH2 imbalance in human WAS is unknown. We have discovered a nuclear role for WASp in the transcriptional regulation of the TH1 regulator gene TBX21 at the chromatin level. In primary TH1-differentiating cells, a fraction of WASp is found in the nucleus, where it is recruited to the proximal promoter locus of the TBX21 gene, but not to the core promoter of GATA3 (a TH2 regulator gene) or RORc (a TH17 regulator gene). Genome-wide mapping demonstrates association of WASp in vivo with the gene-regulatory network that orchestrates TH1 cell fate choice in the human TH cell genome. Functionally, nuclear WASp associates with H3K4 trimethyltransferase [RBBP5 (retinoblastoma-binding protein 5)] and H3K9/H3K36 tridemethylase [JMJD2A (Jumonji domain-containing protein 2A)] proteins, and their enzymatic activity in vitro and in vivo is required for achieving transcription-permissive chromatin dynamics at the TBX21 proximal promoter in primary differentiating TH1 cells. During TH1 differentiation, the loss of WASp accompanies decreased enrichment of RBBP5 and, in a subset of WAS patients, also of filamentous actin at the TBX21 proximal promoter locus. Accordingly, human WASp-deficient TH cells, from natural mutation or RNA interference-mediated depletion, demonstrate repressed TBX21 promoter dynamics when driven under TH1-differentiating conditions. These chromatin derangements accompany deficient T-BET messenger RNA and protein expression and impaired TH1 function, defects that are ameliorated by reintroducing WASp. Our findings reveal a previously unappreciated role of WASp in the epigenetic control of T-BET transcription and provide a new mechanism for the pathogenesis of WAS by linking aberrant histone methylation at the TBX21 promoter to dysregulated adaptive immunity.
Collapse
Affiliation(s)
- Matthew D Taylor
- Division of Pediatric Hematology-Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Marks DJB, Seymour CR, Sewell GW, Rahman FZ, Smith AM, McCartney SA, Bloom SL. Inflammatory bowel diseases in patients with adaptive and complement immunodeficiency disorders. Inflamm Bowel Dis 2010; 16:1984-92. [PMID: 20848466 DOI: 10.1002/ibd.21280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Crohn's disease and ulcerative colitis are idiopathic chronic inflammatory diseases that primarily affect the gastrointestinal tract. The underlying causes remain poorly understood, but there is a growing body of evidence advocating a likely primary pathogenic role for immunodeficiency in the development of Crohn's lesions. Concordantly, a number of congenital immunodeficiencies disrupting the cellular innate immune system strongly predispose to noninfectious, Crohn's-like inflammatory bowel disease. There are case reports and series suggesting that the same may be true for some of the congenital adaptive and complement immunodeficiencies. This review considers and critiques these potential associations.
Collapse
|
41
|
Tommasini A, Pirrone A, Palla G, Taddio A, Martelossi S, Crovella S, Ventura A. The universe of immune deficiencies in Crohn's disease: a new viewpoint for an old disease? Scand J Gastroenterol 2010; 45:1141-9. [PMID: 20497046 DOI: 10.3109/00365521.2010.492529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Crohn's disease (CD) is generally considered a multifactorial disorder, since different genetic and environmental factors are thought to play a role in its pathogenesis. Recently, genome wide linkage studies allowed to identify the association of several loci with the increased risk of CD, although it is still unclear how they interact with environmental factors in causing the disease. The fact that many CD-risk-related genes are involved in the function of phagocytes seems in agreement with the well known role of these cells in CD histopathology. Functional defects in cytokine production or in clearance of bacteria in CD patients have recently been reported. Growing evidence that CD could arise from primary phagocyte immunodeficiency is also coming from the study of cases with early onset in infancy. We review such evidences starting from selected cases and discuss the clinical implications of these findings.
Collapse
Affiliation(s)
- Alberto Tommasini
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo and University of Trieste, Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Systemic autoimmunity and defective Fas ligand secretion in the absence of the Wiskott-Aldrich syndrome protein. Blood 2010; 116:740-7. [PMID: 20457871 DOI: 10.1182/blood-2009-08-237560] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autoimmunity is a surprisingly common complication of primary immunodeficiencies, yet the molecular mechanisms underlying this clinical observation are not well understood. One widely known example is provided by Wiskott-Aldrich syndrome (WAS), an X-linked primary immunodeficiency disorder caused by mutations in the gene encoding the WAS protein (WASp) with a high incidence of autoimmunity in affected patients. WASp deficiency affects T-cell antigen receptor (TCR) signaling and T-cell cytokine production, but its role in TCR-induced apoptosis, one of the mechanisms of peripheral immunologic tolerance, has not been investigated. We find that WASp-deficient mice produce autoantibodies and develop proliferative glomerulonephritis with immune complex deposition as they age. We also find that CD4(+) T lymphocytes from WASp-deficient mice undergo reduced apoptosis after restimulation through the TCR. While Fas-induced cell death is normal, WASp deficiency affects TCR-induced secretion of Fas ligand (FasL) and other components of secretory granules by CD4(+) T cells. These results describe a novel role of WASp in regulating TCR-induced apoptosis and FasL secretion and suggest that WASp-deficient mice provide a good model for the study of autoimmune manifestations of WAS and the development of more specific therapies for these complications.
Collapse
|
43
|
Morales-Tirado V, Sojka DK, Katzman SD, Lazarski CA, Finkelman FD, Urban JF, Fowell DJ. Critical requirement for the Wiskott-Aldrich syndrome protein in Th2 effector function. Blood 2010; 115:3498-507. [PMID: 20032499 PMCID: PMC2867263 DOI: 10.1182/blood-2009-07-235754] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 11/29/2009] [Indexed: 01/30/2023] Open
Abstract
Patients with Wiskott-Aldrich syndrome (WAS) have numerous immune cell deficiencies, but it remains unclear how abnormalities in individual cell types contribute to the pathologies of WAS. In T cells, the WAS protein (WASp) regulates actin polymerization and transcription, and plays a role in the dynamics of the immunologic synapse. To examine how these events influence CD4 function, we isolated the WASp deficiency to CD4(+) T cells by adoptive transfer into wild-type mice to study T-cell priming and effector function. WAS(-/-) CD4(+) T cells mediated protective T-helper 1 (Th1) responses to Leishmania major in vivo, but were unable to support Th2 immunity to Nippostrongylus brasiliensis or L major. Mechanistically, WASp was not required for Th2 programming but was required for Th2 effector function. WAS(-/-) CD4(+) T cells up-regulated IL-4 and GATA3 mRNA and secreted IL-4 protein during Th2 differentiation. In contrast, cytokine transcription was uncoupled from protein production in WAS(-/-) Th2-primed effectors. WAS(-/-) Th2s failed to produce IL-4 protein on restimulation despite elevated IL-4/GATA3 mRNA. Moreover, dominant-negative WASp expression in WT effector T cells blocked IL-4 production, but had no effect on IFNgamma. Thus WASp plays a selective, posttranscriptional role in Th2 effector function.
Collapse
MESH Headings
- Animals
- GATA3 Transcription Factor/biosynthesis
- GATA3 Transcription Factor/genetics
- GATA3 Transcription Factor/immunology
- Humans
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-4/biosynthesis
- Interleukin-4/genetics
- Interleukin-4/immunology
- Leishmania major/immunology
- Leishmaniasis, Cutaneous/genetics
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Nippostrongylus/immunology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Strongylida Infections/genetics
- Strongylida Infections/immunology
- Strongylida Infections/metabolism
- Th1 Cells/immunology
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Transcription, Genetic/genetics
- Transcription, Genetic/immunology
- Up-Regulation/genetics
- Up-Regulation/immunology
- Wiskott-Aldrich Syndrome/genetics
- Wiskott-Aldrich Syndrome/immunology
- Wiskott-Aldrich Syndrome/metabolism
- Wiskott-Aldrich Syndrome Protein/genetics
- Wiskott-Aldrich Syndrome Protein/immunology
- Wiskott-Aldrich Syndrome Protein/metabolism
Collapse
Affiliation(s)
- Vanessa Morales-Tirado
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Lyubimova A, Garber JJ, Upadhyay G, Sharov A, Anastasoaie F, Yajnik V, Cotsarelis G, Dotto GP, Botchkarev V, Snapper SB. Neural Wiskott-Aldrich syndrome protein modulates Wnt signaling and is required for hair follicle cycling in mice. J Clin Invest 2010; 120:446-56. [PMID: 20071778 DOI: 10.1172/jci36478] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/19/2009] [Indexed: 12/20/2022] Open
Abstract
The Rho family GTPases Cdc42 and Rac1 are critical regulators of the actin cytoskeleton and are essential for skin and hair function. Wiskott-Aldrich syndrome family proteins act downstream of these GTPases, controlling actin assembly and cytoskeletal reorganization, but their role in epithelial cells has not been characterized in vivo. Here, we used a conditional knockout approach to assess the role of neural Wiskott-Aldrich syndrome protein (N-WASP), the ubiquitously expressed Wiskott-Aldrich syndrome-like (WASL) protein, in mouse skin. We found that N-WASP deficiency in mouse skin led to severe alopecia, epidermal hyperproliferation, and ulceration, without obvious effects on epidermal differentiation and wound healing. Further analysis revealed that the observed alopecia was likely the result of a progressive and ultimately nearly complete block in hair follicle (HF) cycling by 5 months of age. N-WASP deficiency also led to abnormal proliferation of skin progenitor cells, resulting in their depletion over time. Furthermore, N-WASP deficiency in vitro and in vivo correlated with decreased GSK-3beta phosphorylation, decreased nuclear localization of beta-catenin in follicular keratinocytes, and decreased Wnt-dependent transcription. Our results indicate a critical role for N-WASP in skin function and HF cycling and identify a link between N-WASP and Wnt signaling. We therefore propose that N-WASP acts as a positive regulator of beta-catenin-dependent transcription, modulating differentiation of HF progenitor cells.
Collapse
Affiliation(s)
- Anna Lyubimova
- Gastrointestinal Unit and Center for Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Clara Abraham
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
46
|
Zhang J, Dong B, Siminovitch KA. Contributions of Wiskott-Aldrich syndrome family cytoskeletal regulatory adapters to immune regulation. Immunol Rev 2009; 232:175-94. [PMID: 19909364 DOI: 10.1111/j.1600-065x.2009.00846.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytoskeletal structure and dynamic rearrangement are integrally involved in coupling external stimuli to the orchestrated network of molecular interactions and cellular responses required for T-cell effector function. Members of the Wiskott-Aldrich syndrome protein (WASp) family are now widely recognized as cytoskeletal scaffolding adapters that coordinate the transmission of stimulatory signals to downstream induction of actin remodeling and cytoskeletal-dependent T-cell responses. In this review, we discuss the structural and functional properties of the WASp family members, with an emphasis on the roles of these proteins in the molecular pathways underpinning T-cell activation. The contributions of WASp family proteins and the cytoskeletal reorganization they evoke to expression of specific T-cell effector functions and the implications of such activity to normal immune responses and to the immunologic deficits manifested by Wiskott-Aldrich syndrome patients are also described.
Collapse
Affiliation(s)
- Jinyi Zhang
- Department of Medicine, University of Toronto, Mount Sinai Hospital Samuel Lunenfeld Research Institute, Toronto, ON, Canada
| | | | | |
Collapse
|
47
|
Matharu KS, Mizoguchi E, Cotoner CA, Nguyen DD, Mingle B, Iweala OI, McBee ME, Stefka AT, Prioult G, Haigis KM, Bhan AK, Snapper SB, Murakami H, Schauer DB, Reinecker HC, Mizoguchi A, Nagler CR. Toll-like receptor 4-mediated regulation of spontaneous Helicobacter-dependent colitis in IL-10-deficient mice. Gastroenterology 2009; 137:1380-90.e1-3. [PMID: 19596011 PMCID: PMC2757440 DOI: 10.1053/j.gastro.2009.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The commensal microbiota is believed to have an important role in regulating immune responsiveness and preventing intestinal inflammation. Intestinal microbes produce signals that regulate inflammation via Toll-like receptor (TLR) signaling, but the mechanisms of this process are poorly understood. We investigated the role of the anti-inflammatory cytokine interleukin (IL)-10 in this signaling pathway using a mouse model of colitis. METHODS Clinical, histopathologic, and functional parameters of intestinal inflammation were evaluated in TLR4(-/-), IL-10(-/-), and TLR4(-/-) x IL-10(-/-) mice that were free of specific pathogens and in TLR4(-/-) x IL-10(-/-) mice following eradication and reintroduction of Helicobacter hepaticus. Regulatory T-cell (Treg) function was evaluated by crossing each of the lines with transgenic mice that express green fluorescent protein under control of the endogenous regulatory elements of Foxp3. Apoptotic cells in the colonic lamina propria were detected by a TUNEL assay. RESULTS TLR4-mediated signals have 2 interrelated roles in promoting inflammation in TLR4(-/-) x IL-10(-/-) mice. In the absence of TLR4-mediated signals, secretion of proinflammatory and immunoregulatory cytokines is dysregulated. Tregs (Foxp3(+)) that secrete interferon-gamma and IL-17 accumulate in the colonic lamina propria of TLR4(-/-) x IL-10(-/-) mice and do not prevent inflammation. Aberrant control of epithelial cell turnover results in the persistence of antigen-presenting cells that contain apoptotic epithelial fragments in the colonic lamina propria of Helicobacter-infected TLR4(-/-) mice. CONCLUSIONS In mice that lack both IL-10- and TLR4-mediated signals, aberrant regulatory T-cell function and dysregulated control of epithelial homeostasis combine to exacerbate intestinal inflammation.
Collapse
Affiliation(s)
- Kabir S. Matharu
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA
| | - Emiko Mizoguchi
- Gastrointestinal Unit, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA
| | - Carmen Alonso Cotoner
- Gastrointestinal Unit, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA
| | - Deanna D. Nguyen
- Gastrointestinal Unit, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA
| | - Bethany Mingle
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA
| | - Onyinye I. Iweala
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA
| | - Megan E. McBee
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Andrew T. Stefka
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA
| | - Guenolee Prioult
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Nestle Research Center, Lausanne 26, Switzerland
| | - Kevin M. Haigis
- Molecular Pathology/Cancer Center, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA
| | - Atul K. Bhan
- Experimental Pathology Unit, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA
| | - Scott B. Snapper
- Gastrointestinal Unit, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA
| | - Hidehiro Murakami
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Ehime University School of Medicine, Ehime 791 0295 Japan
| | - David B. Schauer
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hans-Christian Reinecker
- Gastrointestinal Unit, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA
| | - Atsushi Mizoguchi
- Experimental Pathology Unit, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA
| | - Cathryn R. Nagler
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston 02114 and Charlestown 02129 MA
| |
Collapse
|
48
|
Bouma G, Burns SO, Thrasher AJ. Wiskott-Aldrich Syndrome: Immunodeficiency resulting from defective cell migration and impaired immunostimulatory activation. Immunobiology 2009; 214:778-90. [PMID: 19628299 PMCID: PMC2738782 DOI: 10.1016/j.imbio.2009.06.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulation of the actin cytoskeleton is crucial for many aspects of correct and cooperative functioning of immune cells, such as migration, antigen uptake and cell activation. The Wiskott-Aldrich Syndrome protein (WASp) is an important regulator of actin cytoskeletal rearrangements and lack of this protein results in impaired immune function. This review discusses recent new insights of the role of WASp at molecular and cellular level and evaluates how WASp deficiency affects important immunological features and how defective immune cell function contributes to compromised host defence.
Collapse
Affiliation(s)
- Gerben Bouma
- Centre for Immunodeficiency, UCL Institute of Child Health, London, UK.
| | | | | |
Collapse
|
49
|
Ey B, Eyking A, Gerken G, Podolsky DK, Cario E. TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury. J Biol Chem 2009; 284:22332-22343. [PMID: 19528242 DOI: 10.1074/jbc.m901619200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1alpha-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair.
Collapse
Affiliation(s)
- Birgit Ey
- Division of Gastroenterology and Hepatology, University Hospital of Essen, and Medical School, University of Duisburg-Essen, 45147 Essen, Germany
| | - Annette Eyking
- Division of Gastroenterology and Hepatology, University Hospital of Essen, and Medical School, University of Duisburg-Essen, 45147 Essen, Germany
| | - Guido Gerken
- Division of Gastroenterology and Hepatology, University Hospital of Essen, and Medical School, University of Duisburg-Essen, 45147 Essen, Germany
| | - Daniel K Podolsky
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Elke Cario
- Division of Gastroenterology and Hepatology, University Hospital of Essen, and Medical School, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
50
|
Pessach IM, Notarangelo LD. X-linked primary immunodeficiencies as a bridge to better understanding X-chromosome related autoimmunity. J Autoimmun 2009; 33:17-24. [PMID: 19361956 DOI: 10.1016/j.jaut.2009.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/03/2009] [Accepted: 03/11/2009] [Indexed: 12/30/2022]
Abstract
Recent studies indicate that genes located on the X-chromosome play a major and unique role in autoimmunity. The fact that most X-linked primary immune deficiencies carry significant autoimmune manifestations greatly supports this notion. Autoimmunity and immune deficiency have been considered two opposite extremes resulting from immune dysregulation and failure of immune development and/or function, respectively. Growing evidence has been accumulating to indicate that autoimmune phenomena occur in patients suffering from primary immune deficiency (PID), and the molecular and cellular mechanisms that interconnect these conditions are being unraveled. The study of rare single-gene disorders associated with significant autoimmunity may shed light on the pathophysiology of more complex multifactorial and polygenic autoimmune disorders. In this regard, primary immunodeficiencies represent unique "experiments of Nature" that illustrate the critical role played by single-gene products in the development, function and homeostasis of the immune system. In this review we will focus on the clinical features and on the cellular and molecular pathophysiology of the known X-linked PID in which autoimmune manifestations are more common, in the attempt to understand what single-gene defects can teach us on the role that key immune pathways and cellular processes may play to prevent autoimmunity.
Collapse
Affiliation(s)
- Itai M Pessach
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|