1
|
Lear S, Tafi R, Di Biasio VA, Halkowycz P, Kamran R, Miura J, Gibson TS, Li J, Bleck B, Dall'Armi C, Demartis A, Henninot A. De novo discovery of cyclic peptide inhibitors of IL-11 signaling. Bioorg Med Chem 2025; 119:118017. [PMID: 39756345 DOI: 10.1016/j.bmc.2024.118017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025]
Abstract
Interleukin-11 (IL-11), a member of the IL-6 cytokine family, has potential pro-inflammatory and pro-fibrotic roles in pulmonary, hepatic, cardiovascular, renal and intestinal disease pathogenesis, including oncogenesis. The potential for therapeutic intervention in these disease spaces has therefore made the IL-11 signaling axis an attractive target in drug discovery, and antibody inhibitors of IL-11 signaling are currently under evaluation in Phase I/II clinical trials. While lower molecular weight small molecule and peptide inhibitors may offer the potential for improved tissue penetration, developability and manufacturing cost compared with a protein therapeutic, reports of such chemical matter in the literature are limited. In this work, a series of cyclic peptides derived from phage display biopanning campaigns against both IL-11 and its cognate receptor IL-11Rα are presented. The most active IL-11 binder (peptide 4, KD 140 nM) exhibited inhibition of IL-11/IL-11Rα dimerization in a biochemical AlphaLISA assay (Ki 300 nM), and alanine scanning was carried out on this sequence to identify residues important for target binding and inhibitory activity. Further structural optimization yielded lead peptide 15 (Ki 180 nM), which exhibited at least 70-fold greater activity than IL-11 inhibitors previously reported in the literature. The de novo peptide macrocycles presented serve as a robust starting point for development of therapeutic inhibitors of the IL-11/IL-11Rα interaction.
Collapse
Affiliation(s)
- Sam Lear
- Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA 92121, USA.
| | - Rosalba Tafi
- Display Technologies Unit, IRBM S.p.A., Via Pontina km 30,600, 00071 Pomezia, RM, Italy
| | - Valentina A Di Biasio
- Display Technologies Unit, IRBM S.p.A., Via Pontina km 30,600, 00071 Pomezia, RM, Italy
| | - Petro Halkowycz
- Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA 92121, USA
| | - Ruhi Kamran
- Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA 92121, USA
| | - Joanne Miura
- Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA 92121, USA
| | - Tony S Gibson
- Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA 92121, USA
| | - Jing Li
- Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA 92121, USA
| | - Bertram Bleck
- Takeda Development Center Americas, Inc., 500 Kendall Street, Cambridge, MA 02142, USA
| | - Claudia Dall'Armi
- Display Technologies Unit, IRBM S.p.A., Via Pontina km 30,600, 00071 Pomezia, RM, Italy
| | - Anna Demartis
- Display Technologies Unit, IRBM S.p.A., Via Pontina km 30,600, 00071 Pomezia, RM, Italy
| | - Antoine Henninot
- Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA 92121, USA
| |
Collapse
|
2
|
Liebing E, Krug SM, Neurath MF, Siegmund B, Becker C. Wall of Resilience: How the Intestinal Epithelium Prevents Inflammatory Onslaught in the Gut. Cell Mol Gastroenterol Hepatol 2024; 19:101423. [PMID: 39461590 PMCID: PMC11720114 DOI: 10.1016/j.jcmgh.2024.101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
The intestinal epithelium forms the boundary between the intestinal immune system in the lamina propria and the outside world, the intestinal lumen, which contains a diverse array of microbial and environmental antigens. Composed of specialized cells, this epithelial monolayer has an exceptional turnover rate. Differentiated epithelial cells are released into the intestinal lumen within a few days, at the villus tip, a process that requires strict regulation. Dysfunction of the epithelial barrier increases the intestinal permeability and paves the way for luminal antigens to pass into the intestinal serosa. Stem cells at the bottom of Lieberkühn crypts provide a constant supply of mature epithelial cells. Differentiated intestinal epithelial cells exhibit a diverse array of mechanisms that enable communication with surrounding cells, fortification against microorganisms, and orchestration of nutrient absorption and hormonal balance. Furthermore, tight junctions regulate paracellular permeability properties, and their disruption can lead to an impairment of the intestinal barrier, allowing inflammation to develop or further progress. Intestinal epithelial cells provide a communication platform through which they maintain homeostasis with a spectrum of entities including immune cells, neuronal cells, and connective tissue cells. This homeostasis can be disrupted in disease, such as inflammatory bowel disease. Patients suffering from inflammatory bowel disease show an impaired gut barrier, dysregulated cellular communication, and aberrant proliferation and demise of cells. This review summarizes the individual cellular and molecular mechanisms pivotal for upholding the integrity of the intestinal epithelial barrier and shows how these can be disrupted in diseases, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Eva Liebing
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany.
| |
Collapse
|
3
|
Xu M, Feng G, Fang J. Microcapsules based on biological macromolecules for intestinal health: A review. Int J Biol Macromol 2024; 276:133956. [PMID: 39029830 DOI: 10.1016/j.ijbiomac.2024.133956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Intestinal dysfunction is becoming increasingly associated with neurological and endocrine issues, raising concerns about its impact on world health. With the introduction of several breakthrough technologies for detecting and treating intestinal illnesses, significant progress has been made in the previous few years. On the other hand, traditional intrusive diagnostic techniques are expensive and time-consuming. Furthermore, the efficacy of conventional drugs (not capsules) is reduced since they are more likely to degrade before reaching their target. In this context, microcapsules based on different types of biological macromolecules have been used to encapsulate active drugs and sensors to track intestinal ailments and address these issues. Several biomacromolecules/biomaterials (natural protein, alginate, chitosan, cellulose and RNA etc.) are widely used for make microcapsules for intestinal diseases, and can significantly improve the therapeutic effect and reduce adverse reactions. This article systematically summarizes microencapsulated based on biomacromolecules material for intestinal health control and efficacy enhancement. It also discusses the application and mechanism research of microencapsulated biomacromolecules drugs in reducing intestinal inflammation, in addition to covering the preparation techniques of microencapsulated drug delivery systems used for intestinal health. Microcapsule delivery systems' limits and potential applications for intestinal disease diagnosis, treatment, and surveillance were highlighted.
Collapse
Affiliation(s)
- Minhui Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| |
Collapse
|
4
|
Garbers C, Lokau J. Cytokines of the interleukin-6 family as emerging targets in inflammatory bowel disease. Expert Opin Ther Targets 2024; 28:57-65. [PMID: 38217849 DOI: 10.1080/14728222.2024.2306341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is an umbrella term that includes different chronic inflammatory diseases of the gastrointestinal tract, most commonly Crohn's disease and ulcerative colitis. IBD affects more than 6 million people worldwide and constitutes not only a debilitating disease for the patients, but also a significant factor for society due to costs for health care and reduced working capacity. Despite the introduction of biologicals for the treatment of IBD, the identification of novel targets that could lead to novel therapeutics is still needed. AREAS COVERED In this review, we summarize current knowledge about the interleukin-6 family of cytokines as potential therapeutic targets for improving the therapy of patients with IBD. We discuss cytokines like IL-6 itself for which therapeutics such as inhibitory monoclonal antibodies have already entered the clinics, but also focus on other family members whose therapeutic potential has not been explored yet. EXPERT OPINION The different cytokines of the IL-6 family offer multiple therapeutic targets that can potentially be used to treat patients with inflammatory bowel disease, but unwanted side effects like inhibition of epithelial regeneration have to be considered.
Collapse
Affiliation(s)
- Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Juliane Lokau
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Hartley VL, Qaqish AM, Wood MJ, Studnicka BT, Iwai K, Liu TC, MacDuff DA. HOIL1 Regulates Group 3 Innate Lymphoid Cells in the Colon and Protects against Systemic Dissemination, Colonic Ulceration, and Lethality from Citrobacter rodentium Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1823-1834. [PMID: 37902285 PMCID: PMC10841105 DOI: 10.4049/jimmunol.2300351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
Heme-oxidized IRP2 ubiquitin ligase-1 (HOIL1)-deficient patients experience chronic intestinal inflammation and diarrhea as well as increased susceptibility to bacterial infections. HOIL1 is a component of the linear ubiquitin chain assembly complex that regulates immune signaling pathways, including NF-κB-activating pathways. We have shown previously that HOIL1 is essential for survival following Citrobacter rodentium gastrointestinal infection of mice, but the mechanism of protection by HOIL1 was not examined. C. rodentium is an important murine model for human attaching and effacing pathogens, enteropathogenic and enterohemorrhagic Escherichia coli that cause diarrhea and foodborne illnesses and lead to severe disease in children and immunocompromised individuals. In this study, we found that C. rodentium infection resulted in severe colitis and dissemination of C. rodentium to systemic organs in HOIL1-deficient mice. HOIL1 was important in the innate immune response to limit early replication and dissemination of C. rodentium. Using bone marrow chimeras and cell type-specific knockout mice, we found that HOIL1 functioned in radiation-resistant cells and partly in radiation-sensitive cells and in myeloid cells to limit disease, but it was dispensable in intestinal epithelial cells. HOIL1 deficiency significantly impaired the expansion of group 3 innate lymphoid cells and their production of IL-22 during C. rodentium infection. Understanding the role HOIL1 plays in type 3 inflammation and in limiting the pathogenesis of attaching and effacing lesion-forming bacteria will provide further insight into the innate immune response to gastrointestinal pathogens and inflammatory disorders.
Collapse
Affiliation(s)
- Victoria L. Hartley
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Arwa M. Qaqish
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Matthew J. Wood
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Brian T. Studnicka
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Donna A. MacDuff
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
7
|
Sweeney M, O’Fee K, Villanueva-Hayes C, Rahman E, Lee M, Vanezis K, Andrew I, Lim WW, Widjaja A, Barton PJR, Cook SA. Cardiomyocyte-Restricted Expression of IL11 Causes Cardiac Fibrosis, Inflammation, and Dysfunction. Int J Mol Sci 2023; 24:12989. [PMID: 37629170 PMCID: PMC10455677 DOI: 10.3390/ijms241612989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Cardiac fibrosis is a common pathological process in heart disease, representing a therapeutic target. Transforming growth factor β (TGFβ) is the canonical driver of cardiac fibrosis and was recently shown to be dependent on interleukin 11 (IL11) for its profibrotic effects in fibroblasts. In the opposite direction, recombinant human IL11 has been reported as anti-fibrotic and anti-inflammatory in the mouse heart. In this study, we determined the effects of IL11 expression in cardiomyocytes on cardiac pathobiology and function. We used the Cre-loxP system to generate a tamoxifen-inducible mouse with cardiomyocyte-restricted murine Il11 expression. Using protein assays, bulk RNA-sequencing, and in vivo imaging, we analyzed the effects of IL11 on myocardial fibrosis, inflammation, and cardiac function, challenging previous reports suggesting the cardioprotective potential of IL11. TGFβ stimulation of cardiomyocytes caused Il11 upregulation. Compared to wild-type controls, Il11-expressing hearts demonstrated severe cardiac fibrosis and inflammation that was associated with the upregulation of cytokines, chemokines, complement factors, and increased inflammatory cells. IL11 expression also activated a program of endothelial-to-mesenchymal transition and resulted in left ventricular dysfunction. Our data define species-matched IL11 as strongly profibrotic and proinflammatory when secreted from cardiomyocytes and further establish IL11 as a disease factor.
Collapse
Affiliation(s)
- Mark Sweeney
- 1MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK
- Wellcome Trust/NIHR 4i Clinical Research Fellow, Imperial College, London W12 0NN, UK
| | - Katie O’Fee
- 1MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK
| | - Chelsie Villanueva-Hayes
- 1MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK
| | - Ekhlas Rahman
- 1MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK
| | - Michael Lee
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Konstantinos Vanezis
- 1MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Ivan Andrew
- 1MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK
| | - Wei-Wen Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Anissa Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Paul J. R. Barton
- 1MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK
| | - Stuart A. Cook
- 1MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| |
Collapse
|
8
|
Wu H, Sun P, Lv C, Zhao X, Liu M, Zhou Q, Tang J, Yang L, Liang A. Effects of IL-11/IL-11 Receptor Alpha on Proliferation and Steroidogenesis in Ovarian Granulosa Cells of Dairy Cows. Cells 2023; 12:cells12040673. [PMID: 36831340 PMCID: PMC9954560 DOI: 10.3390/cells12040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Granulosa cells (GCs) are essential for follicular growth, oocyte maturation, and steroidogenesis in the ovaries. Interleukin (IL)-11 is known to play a crucial role in the decidualization of the uterus, however, the expression of the IL-11 system (IL-11, IL-11Rα, and gp130) in the bovine ovary and its exact role in GCs have not been extensively studied. In this study, we identified the IL-11 signaling receptor complex in the bovine ovary and investigated the regulatory effects and underlying mechanism of IL-11Rα on the proliferation and steroidogenesis of GCs. We observed that the IL-11 complex was highly expressed in the GCs of large follicles. IL-11Rα knockdown significantly inhibited GC proliferation by inducing cell cycle arrest at the G1 phase, along with a significant downregulation of proliferating cell nuclear antigen (PCNA) and Cyclin D1 (CCND1) protein, and induced GC apoptosis by significantly upregulating the ratio of BCL-2-associated X protein (BAX) and B-cell lymphoma-2 (BCL-2). In addition, IL-11Rα knockdown attenuated the Janus kinase (JAK) 1-signal transducer and activator of transcription 3 (STAT3) signaling, which is related to cell proliferation and apoptosis. Furthermore, the enzyme-linked immunosorbent assay (ELISA) indicated that IL-11Rα silencing decreased the basal and forskolin (FSK)-stimulated secretions of estradiol and progesterone in GC culture medium concomitantly with a remarkable decrease in cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and steroidogenic acute regulatory protein (StAR). We subsequently determined that this reduction in steroidogenesis was in parallel with the decrease in phosphorylations of protein kinase A (PKA) substrates, cAMP-response element binding protein (CREB), extracellular regulated protein kinase (ERK) 1/2, and p38 mitogen-activated protein kinase (MAPK). Taken together, these data indicate that the effects of IL-11/IL-11Rα on the proliferation and steroidogenesis in bovine GCs is mediated by the JAK1-STAT3, PKA-CREB, p38MAPK, and ERK1/2 signaling pathways. Our findings provide important insights into the local action of the IL-11 system in regulating ovarian function.
Collapse
Affiliation(s)
- Hanxiao Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peihao Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ce Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinzhe Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingxiao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qunli Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jiaomei Tang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
9
|
Gomez-Bris R, Saez A, Herrero-Fernandez B, Rius C, Sanchez-Martinez H, Gonzalez-Granado JM. CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:2696. [PMID: 36769019 PMCID: PMC9916759 DOI: 10.3390/ijms24032696] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for the chronic immune-mediated idiopathic inflammation of the gastrointestinal tract, manifesting as Crohn's disease (CD) or ulcerative colitis (UC). IBD is characterized by exacerbated innate and adaptive immunity in the gut in association with microbiota dysbiosis and the disruption of the intestinal barrier, resulting in increased bacterial exposure. In response to signals from microorganisms and damaged tissue, innate immune cells produce inflammatory cytokines and factors that stimulate T and B cells of the adaptive immune system, and a prominent characteristic of IBD patients is the accumulation of inflammatory T-cells and their proinflammatory-associated cytokines in intestinal tissue. Upon antigen recognition and activation, CD4 T-cells differentiate towards a range of distinct phenotypes: T helper(h)1, Th2, Th9, Th17, Th22, T follicular helper (Tfh), and several types of T-regulatory cells (Treg). T-cells are generated according to and adapt to microenvironmental conditions and participate in a complex network of interactions among other immune cells that modulate the further progression of IBD. This review examines the role of the CD4 T-cells most relevant to IBD, highlighting how these cells adapt to the environment and interact with other cell populations to promote or inhibit the development of IBD.
Collapse
Affiliation(s)
- Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Cristina Rius
- Department of History of Science and Information Science, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- UISYS Research Unit, University of Valencia, 46010 Valencia, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Hector Sanchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
10
|
Interleukin 11 confers resistance to dextran sulfate sodium-induced colitis in mice. iScience 2023; 26:105934. [PMID: 36685040 PMCID: PMC9852934 DOI: 10.1016/j.isci.2023.105934] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Intestinal homeostasis is tightly regulated by epithelial cells, leukocytes, and stromal cells, and its dysregulation is associated with inflammatory bowel diseases. Interleukin (IL)-11, a member of the IL-6 family of cytokines, is produced by inflammatory fibroblasts during acute colitis. However, the role of IL-11 in the development of colitis is still unclear. Herein, we showed that IL-11 ameliorated DSS-induced acute colitis in mouse models. We found that deletion of Il11ra1 or Il11 rendered mice highly susceptible to DSS-induced colitis compared to the respective control mice. The number of apoptotic epithelial cells was increased in DSS-treated Il11ra1- or Il11-deficient mice. Moreover, we showed that IL-11 production was regulated by reactive oxygen species (ROS) produced by lysozyme M-positive myeloid cells. These findings indicate that fibroblast-produced IL-11 plays an important role in protecting the mucosal epithelium in acute colitis. Myeloid cell-derived ROS contribute to the attenuation of colitis through the production of IL-11.
Collapse
|
11
|
Fernandes D, Andreyev J. The Role of the Human Gut Microbiome in Inflammatory Bowel Disease and Radiation Enteropathy. Microorganisms 2022; 10:1613. [PMID: 36014031 PMCID: PMC9415405 DOI: 10.3390/microorganisms10081613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
The human gut microbiome plays a key role in regulating host physiology. In a stable state, both the microbiota and the gut work synergistically. The overall homeostasis of the intestinal flora can be affected by multiple factors, including disease states and the treatments given for those diseases. In this review, we examine the relatively well-characterised abnormalities that develop in the microbiome in idiopathic inflammatory bowel disease, and compare and contrast them to those that are found in radiation enteropathy. We discuss how these changes may exert their effects at a molecular level, and the possible role of manipulating the microbiome through the use of a variety of therapies to reduce the severity of the underlying condition.
Collapse
Affiliation(s)
- Darren Fernandes
- The Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln LN2 5QY, UK
| | - Jervoise Andreyev
- The Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln LN2 5QY, UK
- The Biomedical Research Centre, Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
12
|
Tissue Niches Formed by Intestinal Mesenchymal Stromal Cells in Mucosal Homeostasis and Immunity. Int J Mol Sci 2022; 23:ijms23095181. [PMID: 35563571 PMCID: PMC9100044 DOI: 10.3390/ijms23095181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract is the largest mucosal surface in our body and accommodates the majority of the total lymphocyte population. Being continuously exposed to both harmless antigens and potentially threatening pathogens, the intestinal mucosa requires the integration of multiple signals for balancing immune responses. This integration is certainly supported by tissue-resident intestinal mesenchymal cells (IMCs), yet the molecular mechanisms whereby IMCs contribute to these events remain largely undefined. Recent studies using single-cell profiling technologies indicated a previously unappreciated heterogeneity of IMCs and provided further knowledge which will help to understand dynamic interactions between IMCs and hematopoietic cells of the intestinal mucosa. In this review, we focus on recent findings on the immunological functions of IMCs: On one hand, we discuss the steady-state interactions of IMCs with epithelial cells and hematopoietic cells. On the other hand, we summarize our current knowledge about the contribution of IMCs to the development of intestinal inflammatory conditions, such as infections, inflammatory bowel disease, and fibrosis. By providing a comprehensive list of cytokines and chemokines produced by IMCs under homeostatic and inflammatory conditions, we highlight the significant immunomodulatory and tissue niche forming capacities of IMCs.
Collapse
|
13
|
Sarmento A, Simões CD. Gut Microbiota Dysbiosis and Chronic Intestinal Inflammation. COMPREHENSIVE GUT MICROBIOTA 2022:423-441. [DOI: 10.1016/b978-0-12-819265-8.00057-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology. Nat Rev Gastroenterol Hepatol 2021; 18:787-803. [PMID: 34211157 DOI: 10.1038/s41575-021-00473-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
IL-6 family cytokines are defined by the common use of the signal-transducing receptor chain glycoprotein 130 (gp130). Increasing evidence indicates that these cytokines are essential in the regulation of metabolic homeostasis as well as in the pathophysiology of multiple gastrointestinal and liver disorders, thus making them attractive therapeutic targets. Over the past few years, therapies modulating gp130 signalling have grown exponentially in several clinical settings including obesity, cancer and inflammatory bowel disease. A newly engineered gp130 cytokine, IC7Fc, has shown promising preclinical results for the treatment of type 2 diabetes, obesity and liver steatosis. Moreover, drugs that modulate gp130 signalling have shown promise in refractory inflammatory bowel disease in clinical trials. A deeper understanding of the main roles of the IL-6 family of cytokines during homeostatic and pathological conditions, their signalling pathways, sources of production and target cells will be crucial to the development of improved treatments. Here, we review the current state of the role of these cytokines in hepatology and gastroenterology and discuss the progress achieved in translating therapeutics targeting gp130 signalling into clinical practice.
Collapse
|
15
|
Fung KY, Louis C, Metcalfe RD, Kosasih CC, Wicks IP, Griffin MDW, Putoczki TL. Emerging roles for IL-11 in inflammatory diseases. Cytokine 2021; 149:155750. [PMID: 34689057 DOI: 10.1016/j.cyto.2021.155750] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
Interleukin-11 (IL-11) is a cytokine that has been strongly implicated in the pathogenesis of fibrotic diseases and solid malignancies. Elevated IL-11 expression is also associated with several non-malignant inflammatory diseases where its function remains less well-characterized. Here, we summarize current literature surrounding the contribution of IL-11 to the pathogenesis of autoimmune inflammatory diseases, including rheumatoid arthritis, multiple sclerosis, diabetes and systemic sclerosis, as well as other chronic inflammatory conditions such as periodontitis, asthma, chronic obstructive pulmonary disease, psoriasis and colitis.
Collapse
Affiliation(s)
- Ka Yee Fung
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| | - Cynthia Louis
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia
| | - Riley D Metcalfe
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Clara C Kosasih
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Ian P Wicks
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Rheumatology Unit, The Royal Melbourne Hospital, Victoria 3050, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| |
Collapse
|
16
|
Evaluation of E. coli Nissle1917 derived metabolites in modulating key mediator genes of the TLR signaling pathway. BMC Res Notes 2021; 14:156. [PMID: 33902702 PMCID: PMC8077910 DOI: 10.1186/s13104-021-05568-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Objective Gut-microbiota plays key roles in many aspects like the health and illness of humans. It's well proved that modification of gut microbiota by probiotics is useful for improving inflammatory bowel disease (IBD) conditions. According to recent studies, different types of bacterial metabolites can affect immune cells and inflammation conditions. The present study aimed to evaluate the anti-inflammatory effects of metabolites of E. coli Nissle1917. Results The cell-free supernatant could modulate TNF-α production and affected many crucial mediators in the Toll-like receptor (TLR) signaling pathway. Also, supernatant showed significant dose-dependent properties in this regard. In this study, the TLR signaling pathway was found among probable mechanisms by which probiotics can affect inflammatory situations. These findings provide additional evidence on the use of probiotic metabolites for inhibiting and down-regulating numerous key mediator factors in the TLR signaling pathway. Aberrant or dysfunctional TLR signaling contributes to the development of acute and chronic intestinal inflammatory pathways in IBD. Therefore, finding a component that can affect this process might be considered for therapeutic targets in IBD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05568-x.
Collapse
|
17
|
Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, Ueha S, Yamazaki S, Kawauchi M, Nakamura E, Nishiyama C, Kojima Y, Adachi-Akahane S, Hasegawa M, Nakayama M, Oshima M, Yagita H, Shibuya K, Mikami T, Inohara N, Matsushima K, Tada N, Nakano H. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun 2021; 12:2281. [PMID: 33863879 PMCID: PMC8052408 DOI: 10.1038/s41467-021-22450-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-11 is a member of the IL-6 family of cytokines and is involved in multiple cellular responses, including tumor development. However, the origin and functions of IL-11-producing (IL-11+) cells are not fully understood. To characterize IL-11+ cells in vivo, we generate Il11 reporter mice. IL-11+ cells appear in the colon in murine tumor and acute colitis models. Il11ra1 or Il11 deletion attenuates the development of colitis-associated colorectal cancer. IL-11+ cells express fibroblast markers and genes associated with cell proliferation and tissue repair. IL-11 induces the activation of colonic fibroblasts and epithelial cells through phosphorylation of STAT3. Human cancer database analysis reveals that the expression of genes enriched in IL-11+ fibroblasts is elevated in human colorectal cancer and correlated with reduced recurrence-free survival. IL-11+ fibroblasts activate both tumor cells and fibroblasts via secretion of IL-11, thereby constituting a feed-forward loop between tumor cells and fibroblasts in the tumor microenvironment. The stromal fibroblast population in the colon is composed of heterogeneous and distinct cell subtypes that play a crucial role in the development of colitis and colon cancer. Here the authors generate IL-11 reporter mice and characterize the origin and phenotype of inflammatory IL-11+ fibroblasts in colitis and colon cancer preclinical models.
Collapse
Affiliation(s)
- Takashi Nishina
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan.
| | - Yutaka Deguchi
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Daisuke Ohshima
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan
| | - Wakami Takeda
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan.,Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Mika Kawauchi
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Eri Nakamura
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Chiharu Nishiyama
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Yuko Kojima
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Mizuho Hasegawa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mizuho Nakayama
- WPI Nano Life Science Institute (WPI-Nano LSI), Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanobu Oshima
- WPI Nano Life Science Institute (WPI-Nano LSI), Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazutoshi Shibuya
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Naohiro Inohara
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Norihiro Tada
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan. .,Host Defense Research Center, Toho University School of Medicine, Tokyo, Japan.
| |
Collapse
|
18
|
Cook SA, Schafer S. Hiding in Plain Sight: Interleukin-11 Emerges as a Master Regulator of Fibrosis, Tissue Integrity, and Stromal Inflammation. Annu Rev Med 2020; 71:263-276. [PMID: 31986085 DOI: 10.1146/annurev-med-041818-011649] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin (IL)-11 is upregulated in a wide variety of fibro-inflammatory diseases such as systemic sclerosis, rheumatoid arthritis, pulmonary fibrosis, inflammatory bowel disease, kidney disease, drug-induced liver injury, and nonalcoholic steatohepatitis. IL-11 is a member of the IL-6 cytokine family and has several distinct properties that define its unique and nonredundant roles in disease. The IL-11 receptor is highly expressed on stromal, epithelial and polarized cells, where noncanonical IL-11 signaling drives the three pathologies common to all fibro-inflammatory diseases-myofibroblast activation, parenchymal cell dysfunction, and inflammation-while also inhibiting tissue regeneration. This cytokine has been little studied, and publications on IL-11 peaked in the early 1990s, when it was largely misunderstood. Here we describe recent advances in our understanding of IL-11 biology, outline how misconceptions as to its function came about, and highlight the large potential of therapies targeting IL-11 signaling for treating human disease.
Collapse
Affiliation(s)
- Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 169857 Singapore, Singapore; , .,National Heart Research Institute Singapore, National Heart Centre Singapore, 169609 Singapore, Singapore.,National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom.,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 169857 Singapore, Singapore; , .,National Heart Research Institute Singapore, National Heart Centre Singapore, 169609 Singapore, Singapore
| |
Collapse
|
19
|
Sabzevary-Ghahfarokhi M, Soltani A, Luzza F, Larussa T, Rahimian G, Shirzad H, Bagheri N. The protective effects of resveratrol on ulcerative colitis via changing the profile of Nrf2 and IL-1β protein. Mol Biol Rep 2020; 47:6941-6947. [PMID: 32888128 DOI: 10.1007/s11033-020-05753-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) with increasing incidence and prevalence in developed countries. The presence of inflammatory cytokines is considered the main detrimental factor in severe types of IBD. The Nrf2 transcription factor plays an important role in reducing the expression of inflammatory agents such as interleukin (IL)-1β and increasing reparative factors such as IL-11. Resveratrol, a plant-derived phenolic compound, reduces the damage in chronic experimentally induced colitis. Twenty patients with UC and also 20 healthy controls were recruited in this study. The proteins expression of Nrf2 and IL-1β was assessed in colonic biopsies by Western blotting. Caco-2 cells were challenged with TNF-α (in vitro simulation of UC), in the presence or not of 190 nM (24 h) and 75 nM (48 h) Resveratrol. Then, Nrf2 and IL-1β in gene and protein expression were measured by real time-PCR and Western blotting in different treatments. Finally, IL-11 proteins expression was measured in culture supernatant by ELISA. A significant increase of IL-1β protein was detected in inflamed colonic tissues from UC patients compared with the control individuals. In Caco-2 cells challenged with TNF-α, protein expression of IL-1β and p-Nrf2 showed an increase, while gene expression of Nrf2 did not show a significant difference. After treatment with Resveratrol, both IL-1β mRNA and protein levels were reduced, while IL-11 protein levels showed any increase. The p-Nrf2 is a dominant form which is prevalent in inflamed tissues from UC patients. Resveratrol can reverse the inflammatory effects of TNF-α by reducing IL-1β and increasing IL-11 production.
Collapse
Affiliation(s)
- Milad Sabzevary-Ghahfarokhi
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Francesco Luzza
- Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100, Catanzaro, Italy
| | - Tiziana Larussa
- Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100, Catanzaro, Italy
| | - Ghorbanali Rahimian
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
20
|
Thomson CA, Nibbs RJ, McCoy KD, Mowat AM. Immunological roles of intestinal mesenchymal cells. Immunology 2020; 160:313-324. [PMID: 32181492 DOI: 10.1111/imm.13191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
The intestine is continuously exposed to an enormous variety and quantity of antigens and innate immune stimuli derived from both pathogens and harmless materials, such as food and commensal bacteria. Accordingly, the intestinal immune system is uniquely adapted to ensure appropriate responses to the different kinds of challenge; maintaining tolerance to harmless antigens in the steady-state, whilst remaining poised to deal with potential pathogens. To accomplish this, leucocytes of the intestinal immune system have to adapt to a constantly changing environment and interact with many different non-leucocytic intestinal cell types, including epithelial and endothelial cells, neurons, and a heterogenous network of intestinal mesenchymal cells (iMC). These interactions are intricately involved in the generation of protective immunity, the elaboration of inflammatory responses, and the development of inflammatory conditions, such as inflammatory bowel diseases. Here we discuss recent insights into the immunological functions of iMC under homeostatic and inflammatory conditions, focusing particularly on iMC in the mucosa and submucosa, and highlighting how an appreciation of the immunology of iMC may help understand the pathogenesis and treatment of disease.
Collapse
Affiliation(s)
- Carolyn A Thomson
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert J Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Allan Mcl Mowat
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
21
|
Lim WW, Ng B, Widjaja A, Xie C, Su L, Ko N, Lim SY, Kwek XY, Lim S, Cook SA, Schafer S. Transgenic interleukin 11 expression causes cross-tissue fibro-inflammation and an inflammatory bowel phenotype in mice. PLoS One 2020; 15:e0227505. [PMID: 31917819 PMCID: PMC6952089 DOI: 10.1371/journal.pone.0227505] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 01/19/2023] Open
Abstract
Interleukin 11 (IL11) is a profibrotic cytokine, secreted by myofibroblasts and damaged epithelial cells. Smooth muscle cells (SMCs) also secrete IL11 under pathological conditions and express the IL11 receptor. Here we examined the effects of SMC-specific, conditional expression of murine IL11 in a transgenic mouse (Il11SMC). Within days of transgene activation, Il11SMC mice developed loose stools and progressive bleeding and rectal prolapse, which was associated with a 65% mortality by two weeks. The bowel of Il11SMC mice was inflamed, fibrotic and had a thickened wall, which was accompanied by activation of ERK and STAT3. In other organs, including the heart, lung, liver, kidney and skin there was a phenotypic spectrum of fibro-inflammation, together with consistent ERK activation. To investigate further the importance of stromal-derived IL11 in the inflammatory bowel phenotype we used a second model with fibroblast-specific expression of IL11, the Il11Fib mouse. This additional model largely phenocopied the Il11SMC bowel phenotype. These data show that IL11 secretion from the stromal niche is sufficient to drive inflammatory bowel disease in mice. Given that IL11 expression in colonic stromal cells predicts anti-TNF therapy failure in patients with ulcerative colitis or Crohn's disease, we suggest IL11 as a therapeutic target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Wei-Wen Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Benjamin Ng
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Anissa Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Chen Xie
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Nicole Ko
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sze-Yun Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Xiu-Yi Kwek
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Stella Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Stuart Alexander Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart and Lung Institute, Imperial College London, London, England, United Kingdom
- MRC-London Institute of Medical Sciences, London, England, United Kingdom
| | - Sebastian Schafer
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
22
|
Li Y, Wu Q, Jin Y, Yang Q. Antiviral activity of interleukin-11 as a response to porcine epidemic diarrhea virus infection. Vet Res 2019; 50:111. [PMID: 31864417 PMCID: PMC6925494 DOI: 10.1186/s13567-019-0729-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/04/2019] [Indexed: 11/11/2022] Open
Abstract
Interleukin-11 (IL-11), a well-known anti-inflammatory factor, provides protection from intestinal epithelium damage caused by physical or chemical factors. However, little is known of the role of IL-11 during viral infections. In this study, IL-11 expression at mRNA and protein levels were found to be high in Vero cells and the jejunum of piglets during porcine epidemic diarrhea virus (PEDV) infection, while IL-11 expression was found to be positively correlated with the level of viral infection. Pretreatment with recombinant porcine IL-11 (pIL-11) was found to suppress PEDV replication in Vero E6 cells, while IL-11 knockdown promoted viral infection. Furthermore, pIL-11 was found to inhibit viral infection by preventing PEDV-mediated apoptosis of cells by activating the IL-11/STAT3 signaling pathway. Conversely, application of a STAT3 phosphorylation inhibitor significantly antagonized the anti-apoptosis function of pIL-11 and counteracted its inhibition of PEDV. Our data suggest that IL-11 is a newfound PEDV-inducible cytokine, and its production enhances the anti-apoptosis ability of epithelial cells against PEDV infection. The potential of IL-11 to be used as a novel therapeutic against devastating viral diarrhea in piglets deserves more attention and study.
Collapse
Affiliation(s)
- Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qingxin Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuxin Jin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
23
|
Disson O, Blériot C, Jacob JM, Serafini N, Dulauroy S, Jouvion G, Fevre C, Gessain G, Thouvenot P, Eberl G, Di Santo JP, Peduto L, Lecuit M. Peyer's patch myeloid cells infection by Listeria signals through gp38 + stromal cells and locks intestinal villus invasion. J Exp Med 2018; 215:2936-2954. [PMID: 30355616 PMCID: PMC6219733 DOI: 10.1084/jem.20181210] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/05/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes (Lm) crosses the intestinal villus epithelium via goblet cells (GCs) upon the interaction of Lm surface protein InlA with its receptor E-cadherin. Here, we show that Lm infection accelerates intestinal villus epithelium renewal while decreasing the number of GCs expressing luminally accessible E-cadherin, thereby locking Lm portal of entry. This novel innate immune response to an enteropathogen is triggered by the infection of Peyer's patch CX3CR1+ cells and the ensuing production of IL-23. It requires STAT3 phosphorylation in epithelial cells in response to IL-22 and IL-11 expressed by lamina propria gp38+ stromal cells. Lm-induced IFN-γ signaling and STAT1 phosphorylation in epithelial cells is also critical for Lm-associated intestinal epithelium response. GC depletion also leads to a decrease in colon mucus barrier thickness, thereby increasing host susceptibility to colitis. This study unveils a novel innate immune response to an enteropathogen, which implicates gp38+ stromal cells and locks intestinal villus invasion, but favors colitis.
Collapse
Affiliation(s)
- Olivier Disson
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1117, Paris, France
| | - Camille Blériot
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1117, Paris, France
| | - Jean-Marie Jacob
- Institut Pasteur, Stroma, Inflammation and Tissue Repair Unit, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1224, Paris, France
| | - Nicolas Serafini
- Institut Pasteur, Innate Immunity Unit, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Sophie Dulauroy
- Institut National de la Santé et de la Recherche Médicale U1224, Paris, France.,Institut Pasteur, Microenvironnement and Immunity Unit, Paris, France
| | - Grégory Jouvion
- Institut Pasteur, Human Histopathology and Animal Models Unit, Paris, France
| | - Cindy Fevre
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1117, Paris, France
| | - Grégoire Gessain
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1117, Paris, France
| | - Pierre Thouvenot
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1117, Paris, France
| | - Gérard Eberl
- Institut National de la Santé et de la Recherche Médicale U1224, Paris, France.,Institut Pasteur, Microenvironnement and Immunity Unit, Paris, France
| | - James P Di Santo
- Institut Pasteur, Innate Immunity Unit, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Lucie Peduto
- Institut Pasteur, Stroma, Inflammation and Tissue Repair Unit, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1224, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France .,Institut National de la Santé et de la Recherche Médicale U1117, Paris, France.,Paris Descartes University, Department of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, APHP, Institut Imagine, Paris, France
| |
Collapse
|
24
|
Choksi YA, Reddy VK, Singh K, Barrett CW, Short SP, Parang B, Keating CE, Thompson JJ, Verriere TG, Brown RE, Piazuelo MB, Bader DM, Washington MK, Mittal MK, Brand T, Gobert AP, Coburn LA, Wilson KT, Williams CS. BVES is required for maintenance of colonic epithelial integrity in experimental colitis by modifying intestinal permeability. Mucosal Immunol 2018; 11:1363-1374. [PMID: 29907869 PMCID: PMC6162166 DOI: 10.1038/s41385-018-0043-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/31/2018] [Accepted: 04/15/2018] [Indexed: 02/04/2023]
Abstract
Blood vessel epicardial substance (BVES), or POPDC1, is a tight junction-associated transmembrane protein that modulates epithelial-to-mesenchymal transition (EMT) via junctional signaling pathways. There have been no in vivo studies investigating the role of BVES in colitis. We hypothesized that BVES is critical for maintaining colonic epithelial integrity. At baseline, Bves-/- mouse colons demonstrate increased crypt height, elevated proliferation, decreased apoptosis, altered intestinal lineage allocation, and dysregulation of tight junctions with functional deficits in permeability and altered intestinal immunity. Bves-/- mice inoculated with Citrobacter rodentium had greater colonic injury, increased colonic and mesenteric lymph node bacterial colonization, and altered immune responses after infection. We propose that increased bacterial colonization and translocation result in amplified immune responses and worsened injury. Similarly, dextran sodium sulfate (DSS) treatment resulted in greater histologic injury in Bves-/- mice. Two different human cell lines (Caco2 and HEK293Ts) co-cultured with enteropathogenic E. coli showed increased attaching/effacing lesions in the absence of BVES. Finally, BVES mRNA levels were reduced in human ulcerative colitis (UC) biopsy specimens. Collectively, these studies suggest that BVES plays a protective role both in ulcerative and infectious colitis and identify BVES as a critical protector of colonic mucosal integrity.
Collapse
Affiliation(s)
- Yash A Choksi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vishruth K Reddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kshipra Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Caitlyn W Barrett
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sarah P Short
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bobak Parang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cody E Keating
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua J Thompson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Thomas G Verriere
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel E Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Blanca Piazuelo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Bader
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mukul K Mittal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Thomas Brand
- Developmental Dynamics, Heart Science Centre, Imperial College London, London, UK
| | - Alain P Gobert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori A Coburn
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, USA
| | - Keith T Wilson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Christopher S Williams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
25
|
Sabzevary-Ghahfarokhi M, Shohan M, Shirzad H, Rahimian G, Bagheri N, Soltani A, Deris F, Ghatreh-Samani M, Razmara E. The expression analysis of Fra-1 gene and IL-11 protein in Iranian patients with ulcerative colitis. BMC Immunol 2018; 19:17. [PMID: 29914371 PMCID: PMC6006762 DOI: 10.1186/s12865-018-0257-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Fra-1 (fosl1) belongs to the activator protein1 (AP-1) family inducing IL-11 expression in oxidative stress condition. IL-11 plays a pivotal role in protecting epithelial barriers integrity. In this study, we investigated the Fra-1 gene expression in the inflamed mucosa of patients with ulcerative colitis (UC) as well as its relation to IL-11 expression. MATERIALS AND METHODS We enrolled 20 patients and 20 healthy controls with definite UC based on the clinical criteria. Fra-1 gene expression in inflamed and non-inflamed colonic biopsies was determined by real-time polymerase chain reaction (RT-PCR). The IL-11 protein concentration was measured by Enzyme-Linked Immunosorbent Assay (ELISA) method. Pearson correlation was applied to calculate the relation between Fra-1 and IL-11. RESULTS An increased level of Fra-1 gene expression was observed in patients with mild ulcerative colitis. The protein concentration of IL-11 was also increased in mild UC patients. Conversely, a significant decrease of IL-11 protein level was detected in severe UC patients compared to control group. CONCLUSION Oxidative stress in inflamed intestinal biopsies can induce fra-1 gene expression. Our findings suggest that Fra-1 transcription factor leads to the production of IL-11 protein in UC patients.
Collapse
Affiliation(s)
- Milad Sabzevary-Ghahfarokhi
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mojtaba Shohan
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Ghorbanali Rahimian
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Deris
- Department of Epidemiology and Biostatistics, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Ghatreh-Samani
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
26
|
Lu Y, Li X, Liu S, Zhang Y, Zhang D. Toll-like Receptors and Inflammatory Bowel Disease. Front Immunol 2018; 9:72. [PMID: 29441063 PMCID: PMC5797585 DOI: 10.3389/fimmu.2018.00072] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/11/2018] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is one relapsing and lifelong disease that affects millions of patients worldwide. Increasing evidence has recently highlighted immune-system dysfunction, especially toll-like receptors (TLRs)-mediated innate immune dysfunction, as central players in the pathogenesis of IBD. TLRs and TLR-activated signaling pathways are involved not only in the pathogenesis but also in the efficacy of treatment of IBD. By understanding these molecular mechanisms, we might develop a strategy for relieving the experience of long-lasting suffering of those patients and improving their quality of life. The purpose of this review article is to summarize the potential mechanisms of TLR signaling pathways in IBD and the novel potential therapeutic strategies against IBD.
Collapse
Affiliation(s)
- Yue Lu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinrui Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shanshan Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yifan Zhang
- Center for Infectious and Inflammation Diseases, Texas A&M University, Houston, TX, United States
| | - Dekai Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Center for Infectious and Inflammation Diseases, Texas A&M University, Houston, TX, United States
| |
Collapse
|
27
|
Monhasery N, Moll J, Cuman C, Franke M, Lamertz L, Nitz R, Görg B, Häussinger D, Lokau J, Floss DM, Piekorz R, Dimitriadis E, Garbers C, Scheller J. Transcytosis of IL-11 and Apical Redirection of gp130 Is Mediated by IL-11α Receptor. Cell Rep 2016; 16:1067-1081. [PMID: 27425614 DOI: 10.1016/j.celrep.2016.06.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/08/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-11 signaling is involved in various processes, including epithelial intestinal cell regeneration and embryo implantation. IL-11 signaling is initiated upon binding of IL-11 to IL-11R1 or IL-11R2, two IL-11α-receptor splice variants, and gp130. Here, we show that IL-11 signaling via IL-11R1/2:gp130 complexes occurs on both the apical and basolateral sides of polarized cells, whereas IL-6 signaling via IL-6R:gp130 complexes is restricted to the basolateral side. We show that basolaterally supplied IL-11 is transported and released to the apical extracellular space via transcytosis in an IL-11R1-dependent manner. By contrast, IL-6R and IL-11R2 do not promote transcytosis. In addition, we show that transcytosis of IL-11 is dependent on the intracellular domain of IL-11R1 and that synthetic transfer of the intracellular domain of IL-11R1 to IL-6R promotes transcytosis of IL-6. Our data define IL-11R as a cytokine receptor with transcytotic activity by which IL-11 and IL-6:soluble IL-6R complexes are transported across cellular barriers.
Collapse
Affiliation(s)
- Niloufar Monhasery
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Jens Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Carly Cuman
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168 VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, 3168 VIC, Australia
| | - Manuel Franke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Larissa Lamertz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Rebecca Nitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3168 VIC, Australia
| | - Juliane Lokau
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Roland Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Eva Dimitriadis
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168 VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, 3168 VIC, Australia
| | - Christoph Garbers
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
28
|
Mühl H. STAT3, a Key Parameter of Cytokine-Driven Tissue Protection during Sterile Inflammation - the Case of Experimental Acetaminophen (Paracetamol)-Induced Liver Damage. Front Immunol 2016; 7:163. [PMID: 27199988 PMCID: PMC4852172 DOI: 10.3389/fimmu.2016.00163] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
Acetaminophen (APAP, N-acetyl-p-aminophenol, or paracetamol) overdosing is a prevalent cause of acute liver injury. While clinical disease is initiated by overt parenchymal hepatocyte necrosis in response to the analgetic, course of intoxication is substantially influenced by associated activation of innate immunity. This process is supposed to be set in motion by release of danger-associated molecular patterns (DAMPs) from dying hepatocytes and is accompanied by an inflammatory cytokine response. Murine models of APAP-induced liver injury emphasize the complex role that DAMPs and cytokines play in promoting either hepatic pathogenesis or resolution and recovery from intoxication. Whereas the function of key inflammatory cytokines is controversially discussed, a subclass of specific cytokines capable of efficiently activating the hepatocyte signal transducer and activator of transcription (STAT)-3 pathway stands out as being consistently protective in murine models of APAP intoxication. Those include foremost interleukin (IL)-6, IL-11, IL-13, and IL-22. Above all, activation of STAT3 under the influence of these cytokines has the capability to drive hepatocyte compensatory proliferation, a key principle of the regenerating liver. Herein, the role of these specific cytokines during experimental APAP-induced liver injury is highlighted and discussed in a broader perspective. In hard-to-treat or at-risk patients, standard therapy may fail and APAP intoxication can proceed toward a fatal condition. Focused administration of recombinant STAT3-activating cytokines may evolve as novel therapeutic approach under those ill-fated conditions.
Collapse
Affiliation(s)
- Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt am Main , Frankfurt am Main , Germany
| |
Collapse
|
29
|
DeCoffe D, Quin C, Gill SK, Tasnim N, Brown K, Godovannyi A, Dai C, Abulizi N, Chan YK, Ghosh S, Gibson DL. Dietary Lipid Type, Rather Than Total Number of Calories, Alters Outcomes of Enteric Infection in Mice. J Infect Dis 2016; 213:1846-56. [PMID: 27067195 DOI: 10.1093/infdis/jiw084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/18/2016] [Indexed: 12/19/2022] Open
Abstract
Dietary lipids modulate immunity, yet the means by which specific fatty acids affect infectious disease susceptibility remains unclear. Deciphering lipid-induced immunity is critical to understanding the balance required for protecting against pathogens while avoiding chronic inflammatory diseases. To understand how specific lipids alter susceptibility to enteric infection, we fed mice isocaloric, high-fat diets composed of corn oil (rich in n-6 polyunsaturated fatty acids [n-6 PUFAs]), olive oil (rich in monounsaturated fatty acids), or milk fat (rich in saturated fatty acids) with or without fish oil (rich in n-3 PUFAs). After 5 weeks of dietary intervention, mice were challenged with Citrobacter rodentium, and pathological responses were assessed. Olive oil diets resulted in little colonic pathology associated with intestinal alkaline phosphatase, a mucosal defense factor that detoxifies lipopolysaccharide. In contrast, while both corn oil and milk fat diets resulted in inflammation-induced colonic damage, only milk fat induced compensatory protective responses, including short chain fatty acid production. Fish oil combined with milk fat, unlike unsaturated lipid diets, had a protective effect associated with intestinal alkaline phosphatase activity. Overall, these results reveal that dietary lipid type, independent of the total number of calories associated with the dietary lipid, influences the susceptibility to enteric damage and the benefits of fish oil during infection.
Collapse
Affiliation(s)
- Daniella DeCoffe
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Candice Quin
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Sandeep K Gill
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Nishat Tasnim
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Kirsty Brown
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Artem Godovannyi
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Chuanbin Dai
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Nijiati Abulizi
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Yee Kwan Chan
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia, Kelowna, Canada
| |
Collapse
|
30
|
Integrating Immunologic Signaling Networks: The JAK/STAT Pathway in Colitis and Colitis-Associated Cancer. Vaccines (Basel) 2016; 4:vaccines4010005. [PMID: 26938566 PMCID: PMC4810057 DOI: 10.3390/vaccines4010005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cytokines are believed to be crucial mediators of chronic intestinal inflammation in inflammatory bowel diseases (IBD) such as Crohn's disease (CD) and ulcerative colitis (UC). Many of these cytokines trigger cellular effects and functions through signaling via janus kinase (JAK) and signal transducer and activator of transcription (STAT) molecules. In this way, JAK/STAT signaling controls important events like cell differentiation, secretion of cytokines or proliferation and apoptosis in IBD in both adaptive and innate immune cells. Moreover, JAK/STAT signaling, especially via the IL-6/STAT3 axis, is believed to be involved in the transition of inflammatory lesions to tumors leading to colitis-associated cancer (CAC). In this review, we will introduce the main cellular players and cytokines that contribute to pathogenesis of IBD by JAK/STAT signaling, and will highlight the integrative function that JAK/STATs exert in this context as well as their divergent role in different cells and processes. Moreover, we will explain current concepts of the implication of JAK/STAT signaling in CAC and finally discuss present and future therapies for IBD that interfere with JAK/STAT signaling.
Collapse
|
31
|
Abstract
IL-11 is a member of the IL-6 family of cytokines. While it was discovered over 20 years ago, we have very little understanding of the role of IL-11 during normal homeostasis and disease. Recently, IL-11 has gained interest for its newly recognized role in the pathogenesis of diseases that are attributed to deregulated mucosal homeostasis, including gastrointestinal cancers. IL-11 can increase the tumorigenic capacity of cells, including survival of the cell or origin, proliferation of cancerous cells and survival of metastatic cells at distant organs. Here we outline our current understanding of IL-11 biology and recent advances in our understanding of its role in cancer. We advocate that inhibition of IL-11 signaling may represent an emerging therapeutic opportunity for numerous cancers.
Collapse
Affiliation(s)
- Tracy L Putoczki
- The Walter & Eliza Hall Institute of Medical Research & Department of Medical Biology, University of Melbourne, Parkville Victoria 3052, Australia
| | | |
Collapse
|
32
|
Hainzl E, Stockinger S, Rauch I, Heider S, Berry D, Lassnig C, Schwab C, Rosebrock F, Milinovich G, Schlederer M, Wagner M, Schleper C, Loy A, Urich T, Kenner L, Han X, Decker T, Strobl B, Müller M. Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:5011-24. [PMID: 26432894 PMCID: PMC4635564 DOI: 10.4049/jimmunol.1402565] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
In the intestinal tract, IL-22 activates STAT3 to promote intestinal epithelial cell (IEC) homeostasis and tissue healing. The mechanism has remained obscure, but we demonstrate that IL-22 acts via tyrosine kinase 2 (Tyk2), a member of the Jak family. Using a mouse model for colitis, we show that Tyk2 deficiency is associated with an altered composition of the gut microbiota and exacerbates inflammatory bowel disease. Colitic Tyk2(-/-) mice have less p-STAT3 in colon tissue and their IECs proliferate less efficiently. Tyk2-deficient primary IECs show reduced p-STAT3 in response to IL-22 stimulation, and expression of IL-22-STAT3 target genes is reduced in IECs from healthy and colitic Tyk2(-/-) mice. Experiments with conditional Tyk2(-/-) mice reveal that IEC-specific depletion of Tyk2 aggravates colitis. Disease symptoms can be alleviated by administering high doses of rIL-22-Fc, indicating that Tyk2 deficiency can be rescued via the IL-22 receptor complex. The pivotal function of Tyk2 in IL-22-dependent colitis was confirmed in Citrobacter rodentium-induced disease. Thus, Tyk2 protects against acute colitis in part by amplifying inflammation-induced epithelial IL-22 signaling to STAT3.
Collapse
Affiliation(s)
- Eva Hainzl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - Silvia Stockinger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria;
| | - Isabella Rauch
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Susanne Heider
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - David Berry
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria; Biomodels Austria, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - Clarissa Schwab
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | - Felix Rosebrock
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Gabriel Milinovich
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | | | - Michael Wagner
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Christa Schleper
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | - Alexander Loy
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Tim Urich
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria; Institute for Clinical Pathology, Medical University Vienna, 1090 Vienna, Austria; Unit of Pathology of Laboratory Animals, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria; and
| | - Xiaonan Han
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria; Biomodels Austria, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria;
| |
Collapse
|
33
|
van Driel B, Wang G, Liao G, Halibozek PJ, Keszei M, O'Keeffe MS, Bhan AK, Wang N, Terhorst C. The cell surface receptor Slamf6 modulates innate immune responses during Citrobacter rodentium-induced colitis. Int Immunol 2015; 27:447-57. [PMID: 25957267 PMCID: PMC4560040 DOI: 10.1093/intimm/dxv029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 04/28/2015] [Indexed: 12/21/2022] Open
Abstract
The homophilic cell surface receptors CD150 (Slamf1) and CD352 (Slamf6) are known to modulate adaptive immune responses. Although the Th17 response was enhanced in Slamf6(-/-) C57BL/6 mice upon oral infection with Citrobacter rodentium, the pathologic consequences are indistinguishable from an infection of wild-type C57BL/6 mice. Using a reporter-based binding assay, we show that Slamf6 can engage structures on the outer cell membrane of several Gram(-) bacteria. Therefore, we examined whether Slamf6, like Slamf1, is also involved in innate responses to bacteria and regulates peripheral inflammation by assessing the outcome of C. rodentium infections in Rag(-/-) mice. Surprisingly, the pathology and immune responses in the lamina propria of C. rodentium-infected Slamf6(-/-) Rag(-/-) mice were markedly reduced as compared with those of Rag(-/-) mice. Infiltration of inflammatory phagocytes into the lamina propria was consistently lower in Slamf6(-/-) Rag(-/-) mice than in Rag(-/-) animals. Concomitant with the reduced systemic translocation of the bacteria was an enhanced production of IL-22, suggesting that Slamf6 suppresses a mucosal protective program. Furthermore, administering a mAb (330) that inhibits bacterial interactions with Slamf6 to Rag(-/-) mice ameliorated the infection compared with a control antibody. We conclude that Slamf6-mediated interactions of colonic innate immune cells with specific Gram(-) bacteria reduce mucosal protection and enhance inflammation, contributing to lethal colitis that is caused by C. rodentium infections in Rag(-/-) mice.
Collapse
Affiliation(s)
- Boaz van Driel
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02115, MA, USA
| | - Guoxing Wang
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02115, MA, USA
| | - Gongxian Liao
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02115, MA, USA
| | - Peter J Halibozek
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02115, MA, USA
| | - Marton Keszei
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02115, MA, USA
| | - Michael S O'Keeffe
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02115, MA, USA
| | - Atul K Bhan
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, MA, USA
| | - Ninghai Wang
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02115, MA, USA
| | - Cox Terhorst
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston 02115, MA, USA
| |
Collapse
|
34
|
Bergstrom KSB, Morampudi V, Chan JM, Bhinder G, Lau J, Yang H, Ma C, Huang T, Ryz N, Sham HP, Zarepour M, Zaph C, Artis D, Nair M, Vallance BA. Goblet Cell Derived RELM-β Recruits CD4+ T Cells during Infectious Colitis to Promote Protective Intestinal Epithelial Cell Proliferation. PLoS Pathog 2015; 11:e1005108. [PMID: 26285214 PMCID: PMC4540480 DOI: 10.1371/journal.ppat.1005108] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/23/2015] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli and related food and waterborne pathogens pose significant threats to human health. These attaching/effacing microbes infect the apical surface of intestinal epithelial cells (IEC), causing severe diarrheal disease. Colonizing the intestinal luminal surface helps segregate these microbes from most host inflammatory responses. Based on studies using Citrobacter rodentium, a related mouse pathogen, we speculate that hosts rely on immune-mediated changes in IEC, including goblet cells to defend against these pathogens. These changes include a CD4+ T cell-dependent increase in IEC proliferation to replace infected IEC, as well as altered production of the goblet cell-derived mucin Muc2. Another goblet cell mediator, REsistin-Like Molecule (RELM)-β is strongly induced within goblet cells during C. rodentium infection, and was detected in the stool as well as serum. Despite its dramatic induction, RELM-β’s role in host defense is unclear. Thus, wildtype and RELM-β gene deficient mice (Retnlb-/-) were orally infected with C. rodentium. While their C. rodentium burdens were only modestly elevated, infected Retnlb-/- mice suffered increased mortality and mucosal ulceration due to deep pathogen penetration of colonic crypts. Immunostaining for Ki67 and BrDU revealed Retnlb-/- mice were significantly impaired in infection-induced IEC hyper-proliferation. Interestingly, exposure to RELM-β did not directly increase IEC proliferation, rather RELM-β acted as a CD4+ T cell chemoattractant. Correspondingly, Retnlb-/- mice showed impaired CD4+ T cell recruitment to their infected colons, along with reduced production of interleukin (IL)-22, a multifunctional cytokine that directly increased IEC proliferation. Enema delivery of RELM-β to Retnlb-/- mice restored CD4+ T cell recruitment, concurrently increasing IL-22 levels and IEC proliferation, while reducing mucosal pathology. These findings demonstrate that RELM-β and goblet cells play an unexpected, yet critical role in recruiting CD4+ T cells to the colon to protect against an enteric pathogen, in part via the induction of increased IEC proliferation. Food and water-borne bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC) target the epithelial cells that line the inner surface of their host’s intestines, causing inflammation and diarrhea. While professional immune cells including T lymphocytes are well known for promoting host defense, we hypothesized that as the cells in closest contact with these bacterial pathogens, intestinal epithelial cells also play an active and essential role in protecting the host during infection. Infecting mice with Citrobacter rodentium, a mouse specific relative of EHEC, we noted a dramatic upregulation in the expression and secretion of the mediator RELM-β by a subset of epithelial cells called goblet cells. Compared to wildtype mice, mice lacking RELM-β showed less epithelial cell proliferation and suffered significantly more intestinal damage during infection. Rather than directly causing epithelial cell proliferation, we found RELM-β instead recruited T lymphocytes to the infected intestine. Upon reaching the intestine, the T lymphocytes produced the cytokine interleukin-22, which directly increased epithelial cell proliferation. Taken together, these findings indicate that epithelial/goblet cells play a critical role in orchestrating the host response to an intestinal pathogen, by recruiting T lymphocytes and by promoting epithelial proliferation to limit the intestinal damage suffered during infection.
Collapse
Affiliation(s)
- Kirk S. B. Bergstrom
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, Canada
| | - Vijay Morampudi
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, Canada
| | - Justin M. Chan
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, Canada
| | - Ganive Bhinder
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, Canada
| | - Jennifer Lau
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, Canada
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, Canada
| | - Caixia Ma
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, Canada
| | - Tina Huang
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, Canada
| | - Natasha Ryz
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, Canada
| | - Ho Pan Sham
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, Canada
| | - Maryam Zarepour
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, Canada
| | - Colby Zaph
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford Weill Department of Medicine, West Cornell Medical College, Cornell University, New York, New York, United States of America
| | - Meera Nair
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California, United States of America
| | - Bruce A. Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, Vancouver, Canada
- * E-mail:
| |
Collapse
|
35
|
Spontaneous and transgenic rodent models of inflammatory bowel disease. Lab Anim Res 2015; 31:47-68. [PMID: 26155200 PMCID: PMC4490147 DOI: 10.5625/lar.2015.31.2.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a multifactorial disorder with many different putative influences mediating disease onset, severity, progression and diminution. Spontaneous natural IBD is classically expressed as Crohn's Disease (CD) and Ulcerative Colitis (UC) commonly found in primates; lymphoplasmocytic enteritis, eosinophilic gastritis and colitis, and ulcerative colitis with neuronal hyperplasia in dogs; and colitis in horses. Spontaneous inflammatory bowel disease has been noted in a number of rodent models which differ in genetic strain background, induced mutation, microbiota influences and immunopathogenic pathways. Histological lesions in Crohn's Disease feature noncaseating granulomatous inflammation while UC lesions typically exhibit ulceration, lamina propria inflammatory infiltrates and lack of granuloma development. Intestinal inflammation caused by CD and UC is also associated with increased incidence of intestinal neoplasia. Transgenic murine models have determined underlying etiological influences and appropriate therapeutic targets in IBD. This literature review will discuss current opinion and findings in spontaneous IBD, highlight selected transgenic rodent models of IBD and discuss their respective pathogenic mechanisms. It is very important to provide accommodation of induced putative deficits in activities of daily living and to assess discomfort and pain levels in the face of significant morbidity and/or mortality in these models. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis, and evaluating ways in which they influence disease expression represent potential investigative approaches with the greatest potential for new discoveries.
Collapse
|
36
|
Nguyen PM, Putoczki TL, Ernst M. STAT3-Activating Cytokines: A Therapeutic Opportunity for Inflammatory Bowel Disease? J Interferon Cytokine Res 2015; 35:340-50. [PMID: 25760898 PMCID: PMC4426323 DOI: 10.1089/jir.2014.0225] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/15/2015] [Indexed: 01/08/2023] Open
Abstract
The gastrointestinal tract is lined by a single layer of epithelial cells that secrete mucus toward the lumen, which collectively separates the immune sentinels in the underlying lamina propria from the intestinal microflora to prevent aberrant immune responses. Inflammatory bowel disease (IBD) describes a group of autoimmune diseases that arise from defects in epithelial barrier function and, as a consequence, aberrant production of inflammatory cytokines. Among these, interleukin (IL)-6, IL-11, and IL-22 are elevated in human IBD patients and corresponding mouse models and, through activation of the JAK/STAT3 pathway, can both propagate and ameliorate disease. In particular, cytokine-mediated activation of STAT3 in the epithelial lining cells affords cellular protection, survival, and proliferation, thereby affording therapeutic opportunities for the prevention and treatment of colitis. In this review, we focus on recent insights gained from therapeutic modulation of the activities of IL-6, IL-11, and IL-22 in models of IBD and advocate a cautionary approach with these cytokines to minimize their tumor-promoting activities on neoplastic epithelium.
Collapse
Affiliation(s)
- Paul M. Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Tracy L. Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
37
|
|
38
|
Backert I, Koralov SB, Wirtz S, Kitowski V, Billmeier U, Martini E, Hofmann K, Hildner K, Wittkopf N, Brecht K, Waldner M, Rajewsky K, Neurath MF, Becker C, Neufert C. STAT3 activation in Th17 and Th22 cells controls IL-22-mediated epithelial host defense during infectious colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3779-91. [PMID: 25187663 DOI: 10.4049/jimmunol.1303076] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The Citrobacter rodentium model mimics the pathogenesis of infectious colitis and requires sequential contributions from different immune cell populations, including innate lymphoid cells (ILCs) and CD4(+) lymphocytes. In this study, we addressed the role of STAT3 activation in CD4(+) cells during host defense in mice against C. rodentium. In mice with defective STAT3 in CD4(+) cells (Stat3(ΔCD4)), the course of infection was unchanged during the innate lymphoid cell-dependent early phase, but significantly altered during the lymphocyte-dependent later phase. Stat3(ΔCD4) mice exhibited intestinal epithelial barrier defects, including downregulation of antimicrobial peptides, increased systemic distribution of bacteria, and prolonged reduction in the overall burden of C. rodentium infection. Immunomonitoring of lamina propria cells revealed loss of virtually all IL-22-producing CD4(+) lymphocytes, suggesting that STAT3 activation was required for IL-22 production not only in Th17 cells, but also in Th22 cells. Notably, the defective host defense against C. rodentium in Stat3(∆CD4) mice could be fully restored by specific overexpression of IL-22 through a minicircle vector-based technology. Moreover, expression of a constitutive active STAT3 in CD4(+) cells shaped strong intestinal epithelial barrier function in vitro and in vivo through IL-22, and it promoted protection from enteropathogenic bacteria. Thus, our work indicates a critical role of STAT3 activation in Th17 and Th22 cells for control of the IL-22-mediated host defense, and strategies expanding STAT3-activated CD4(+) lymphocytes may be considered as future therapeutic options for improving intestinal barrier function in infectious colitis.
Collapse
Affiliation(s)
- Ingo Backert
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY 10016; and
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Vera Kitowski
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Ulrike Billmeier
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Eva Martini
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Katharina Hofmann
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Kai Hildner
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Nadine Wittkopf
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Katrin Brecht
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Maximilian Waldner
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Markus F Neurath
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Christoph Becker
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Clemens Neufert
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany;
| |
Collapse
|
39
|
Abstract
Citrobacter rodentium is a mucosal pathogen of mice that shares several pathogenic mechanisms with enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC), which are two clinically important human gastrointestinal pathogens. Thus, C. rodentium has long been used as a model to understand the molecular basis of EPEC and EHEC infection in vivo. In this Review, we discuss recent studies in which C. rodentium has been used to study mucosal immunology, including the deregulation of intestinal inflammatory responses during bacteria-induced colitis and the role of the intestinal microbiota in mediating resistance to colonization by enteric pathogens. These insights should help to elucidate the roles of mucosal inflammatory responses and the microbiota in the virulence of enteric pathogens.
Collapse
|
40
|
Nackiewicz D, Dan M, He W, Kim R, Salmi A, Rütti S, Westwell-Roper C, Cunningham A, Speck M, Schuster-Klein C, Guardiola B, Maedler K, Ehses JA. TLR2/6 and TLR4-activated macrophages contribute to islet inflammation and impair beta cell insulin gene expression via IL-1 and IL-6. Diabetologia 2014; 57:1645-54. [PMID: 24816367 DOI: 10.1007/s00125-014-3249-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/08/2014] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Inflammation contributes to pancreatic beta cell dysfunction in type 2 diabetes. Toll-like receptor (TLR)-2 and -4 ligands are increased systemically in recently diagnosed type 2 diabetes patients, and TLR2- and TLR4-deficient mice are protected from the metabolic consequences of a high-fat diet. Here we investigated the role of macrophages in TLR2/6- and TLR4-mediated effects on islet inflammation and beta cell function. METHODS Genetic and pharmacological approaches were used to determine the effects of TLR2/6 and TLR4 ligands on mouse islets, human islets and purified rat beta cells. Islet macrophages were depleted and sorted by flow cytometry and the effects of TLR2/6- and TLR4-activated bone-marrow-derived macrophages (BMDMs) on beta cell function were assessed. RESULTS Macrophages contributed to TLR2/6- and TLR4-induced islet Il1a/IL1A and Il1b/IL1B mRNA expression in mouse and human islets and IL-1β secretion from human islets. TLR2/6 and TLR4 ligands also reduced insulin gene expression; however, this occurred in a non-beta cell autonomous manner. TLR2/6- and TLR4-activated BMDMs reduced beta cell insulin secretion partly via reducing Ins1, Ins2, and Pdx1 mRNA expression. Antagonism of the IL-1 receptor and neutralisation of IL-6 completely reversed the effects of activated macrophages on beta cell gene expression. CONCLUSIONS/INTERPRETATION We conclude that islet macrophages are major contributors to islet IL-1β secretion in response to TLR2/6 and TLR4 ligands. BMDMs stimulated with TLR2/6 and TLR4 ligands reduce insulin secretion from pancreatic beta cells, partly via IL-1β- and IL-6-mediated decreased insulin gene expression.
Collapse
Affiliation(s)
- Dominika Nackiewicz
- Department of Surgery, Faculty of Medicine, The University of British Columbia, Child and Family Research Institute, 950 W 28th Ave, Vancouver, BC, Canada, V5Z 4H4
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yang L, Wang R, Gao Y, Xu X, Fu K, Wang S, Li Y, Peng R. The protective role of interleukin-11 against neutron radiation injury in mouse intestines via MEK/ERK and PI3K/Akt dependent pathways. Dig Dis Sci 2014; 59:1406-14. [PMID: 24452839 DOI: 10.1007/s10620-013-3015-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/23/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neutron irradiation (IR) has been proven to cause more serious damage than gamma IR. Preventing and curing neutron IR damage remains an urgent issue. AIMS The objective of this study was to investigate the radioprotective effects of IL-11 against neutron IR-induced damage in small intestine of mice. METHODS Mice were exposed to 3-Gy neutron IR whole body and then treated with 500 μg/kg interleukin-11 (IL-11) intraperitoneally every day. Mice were observed at various time-points over 1-5 days after IR. IEC-6 cells were exposed to 4 Gy neutron IR, and 100 ng/mL rhIL-11 was added to culture medium. Cell proliferation activity was estimated by MTT assay and rates of apoptosis were estimated by flow cytometry. RESULTS IL-11 slightly alleviated the incidence of diarrhea in the mice and promoted intestinal epithelia regeneration. In the in vitro study, neutron IR activated extracellular signal-regulated kinase (ERK)1/2 phosphorylation in intestinal epithelial cells constitutively, which was initially suppressed and then activated later by IL-11. The MEK-specific inhibitor U0126 could antagonize the positive effect of IL-11 on cell growth. Phosphatidylinositol 3-kinase (PI3K)/Akt pathway activation was suppressed after neutron IR, but could be triggered by IL-11 to protect the cells. The PI3K inhibitor LY294002 suppressed the positive effect of IL-11 on cell growth, and antagonized the protective effect of IL-11 against cell death after neutron IR. CONCLUSION IL-11 increases cell proliferation after neutron IR in MEK and PI3K-dependent signaling pathways, but protects cells against death only in the PI3K-dependent signaling pathway.
Collapse
Affiliation(s)
- Leilei Yang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang L, Wang R, Gao Y, Xu X, Fu K, Wang S, Li Y, Peng R, Hou X. The protective role of interleukin-11 against neutron radiation injury in mouse intestines via MEK/ERK and PI3K/Akt dependent pathways. Dig Dis Sci 2014. [PMID: 24452839 DOI: 10.1007/s10620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Neutron irradiation (IR) has been proven to cause more serious damage than gamma IR. Preventing and curing neutron IR damage remains an urgent issue. AIMS The objective of this study was to investigate the radioprotective effects of IL-11 against neutron IR-induced damage in small intestine of mice. METHODS Mice were exposed to 3-Gy neutron IR whole body and then treated with 500 μg/kg interleukin-11 (IL-11) intraperitoneally every day. Mice were observed at various time-points over 1-5 days after IR. IEC-6 cells were exposed to 4 Gy neutron IR, and 100 ng/mL rhIL-11 was added to culture medium. Cell proliferation activity was estimated by MTT assay and rates of apoptosis were estimated by flow cytometry. RESULTS IL-11 slightly alleviated the incidence of diarrhea in the mice and promoted intestinal epithelia regeneration. In the in vitro study, neutron IR activated extracellular signal-regulated kinase (ERK)1/2 phosphorylation in intestinal epithelial cells constitutively, which was initially suppressed and then activated later by IL-11. The MEK-specific inhibitor U0126 could antagonize the positive effect of IL-11 on cell growth. Phosphatidylinositol 3-kinase (PI3K)/Akt pathway activation was suppressed after neutron IR, but could be triggered by IL-11 to protect the cells. The PI3K inhibitor LY294002 suppressed the positive effect of IL-11 on cell growth, and antagonized the protective effect of IL-11 against cell death after neutron IR. CONCLUSION IL-11 increases cell proliferation after neutron IR in MEK and PI3K-dependent signaling pathways, but protects cells against death only in the PI3K-dependent signaling pathway.
Collapse
Affiliation(s)
- Leilei Yang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lu P, Sodhi CP, Hackam DJ. Toll-like receptor regulation of intestinal development and inflammation in the pathogenesis of necrotizing enterocolitis. ACTA ACUST UNITED AC 2013; 21:81-93. [PMID: 24365655 DOI: 10.1016/j.pathophys.2013.11.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) are a structurally related family of molecules that respond to a wide variety of endogenous and exogenous ligands, and which serve as important components of the innate immune system. While TLRs have established roles in host defense, these molecules have also been shown to play important roles in the development of various disease states. A particularly important example of the role of TLRs in disease induction includes necrotizing enterocolitis (NEC), which is the most common gastrointestinal disease in preterm infants, and which is associated with extremely high morbidity and mortality rates. The development of NEC is thought to reflect an abnormal interaction between microorganisms and the immature intestinal epithelium, and emerging evidence has clearly placed the spotlight on an important and exciting role for TLRs, particularly TLR4, in NEC pathogenesis. In premature infants, TLR4 signaling within the small intestinal epithelium regulates apoptosis, proliferation and migration of enterocytes, affects the differentiation of goblet cells, and reduces microcirculatory perfusion, which in combination result in the development of NEC. This review will explore the signaling properties of TLRs on hematopoietic and non-hematopoietic cells, and will examine the role of TLR4 signaling in the development of NEC. In addition, the effects of dampening TLR4 signaling using synthetic and endogenous TLR4 inhibitors and active components from amniotic fluid and human milk on NEC severity will be reviewed. In so doing, we hope to present a balanced approach to the understanding of the role of TLRs in both immunity and disease pathogenesis, and to dissect the precise roles for TLR4 in both the cause and therapeutic intervention of necrotizing enterocolitis.
Collapse
Affiliation(s)
- Peng Lu
- Departments of Surgery, University of Pittsburgh School of Medicine, United States
| | - Chhinder P Sodhi
- Departments of Surgery, University of Pittsburgh School of Medicine, United States; Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, United States
| | - David J Hackam
- Departments of Surgery, University of Pittsburgh School of Medicine, United States; Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC, United States.
| |
Collapse
|
44
|
Valatas V, Vakas M, Kolios G. The value of experimental models of colitis in predicting efficacy of biological therapies for inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol 2013; 305:G763-85. [PMID: 23989010 DOI: 10.1152/ajpgi.00004.2013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During the last decade, biological therapies have an increasing share in the modern therapeutics of various diseases including inflammatory bowel diseases (IBD). Animal models of IBD have often been used to identify the targets of biological therapies, to test their relevance to disease pathogenesis, to assess their therapeutic efficacy in vivo, and to check for drug toxicity. In the field of inflammatory diseases the majority of biologics under development have failed to reach the clinic. This review examines the ability of preclinical data from animal models of IBD to predict success or failure of biologics in human IBD. Specifically, it describes the murine models of IBD, the mechanism of disease induction, the phenotype of the disease, its relevance to human IBD, and the specific immunological features of disease pathogenesis in each model and mainly compares the results of the phase II and III trials of biologics in IBD with preclinical data obtained from studies in animal models. Finally, it examines the possible reasons for low success in translation from bench to bedside and offers some suggestions to improve translation rates.
Collapse
Affiliation(s)
- Vassilis Valatas
- Dept. of Gastroenterology, Univ. Hospital of Heraklion, PO Box 1352, Voutes, Heraklion, GR-71100, Crete, Greece.
| | | | | |
Collapse
|
45
|
Abstract
Intestinal epithelial cells were once thought to be inert, non-responsive cells that simply acted as a physical barrier that prevents the contents of the intestinal lumen from accessing the underlying tissue. However, it is now clear that these cells express a full repertoire of Toll- and Nod-like receptors, and that their activation by components of the microbiota is vital for the development of a functional epithelium, maintenance of barrier integrity, and defense against pathogenic organisms. Additionally, mounting evidence suggests that epithelial sensing of bacteria plays a significant role in the management of the numbers and types of microbes present in the gut microbiota via the production of antimicrobial peptides and other microbe-modulatory products. This is a critical process, as it is now becoming apparent that alterations in the composition of the microbiota can predispose an individual to a wide variety of chronic diseases. In this review, we will discuss the bacterial pattern recognition receptors that are known to be expressed by the intestinal epithelium, and how each of them individually contributes to these vital protective functions. Moreover, we will review what is known about the communication between epithelial cells and various classes of underlying leukocytes, and discuss how they interact with the microbiota to form a three-part relationship that maintains homeostasis in the gut.
Collapse
|
46
|
Putoczki TL, Thiem S, Loving A, Busuttil RA, Wilson NJ, Ziegler PK, Nguyen PM, Preaudet A, Farid R, Edwards KM, Boglev Y, Luwor RB, Jarnicki A, Horst D, Boussioutas A, Heath JK, Sieber OM, Pleines I, Kile BT, Nash A, Greten FR, McKenzie BS, Ernst M. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 2013; 24:257-71. [PMID: 23948300 DOI: 10.1016/j.ccr.2013.06.017] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/17/2013] [Accepted: 06/27/2013] [Indexed: 02/08/2023]
Abstract
Among the cytokines linked to inflammation-associated cancer, interleukin (IL)-6 drives many of the cancer "hallmarks" through downstream activation of the gp130/STAT3 signaling pathway. However, we show that the related cytokine IL-11 has a stronger correlation with elevated STAT3 activation in human gastrointestinal cancers. Using genetic mouse models, we reveal that IL-11 has a more prominent role compared to IL-6 during the progression of sporadic and inflammation-associated colon and gastric cancers. Accordingly, in these models and in human tumor cell line xenograft models, pharmacologic inhibition of IL-11 signaling alleviated STAT3 activation, suppressed tumor cell proliferation, and reduced the invasive capacity and growth of tumors. Our results identify IL-11 signaling as a potential therapeutic target for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Tracy L Putoczki
- Ludwig Institute for Cancer Research, Melbourne, VIC 3050, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
SIGIRR, a negative regulator of TLR/IL-1R signalling promotes Microbiota dependent resistance to colonization by enteric bacterial pathogens. PLoS Pathog 2013; 9:e1003539. [PMID: 23950714 PMCID: PMC3738496 DOI: 10.1371/journal.ppat.1003539] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 06/20/2013] [Indexed: 11/19/2022] Open
Abstract
Enteric bacterial pathogens such as enterohemorrhagic E. coli (EHEC) and Salmonella Typhimurium target the intestinal epithelial cells (IEC) lining the mammalian gastrointestinal tract. Despite expressing innate Toll-like receptors (TLRs), IEC are innately hypo-responsive to most bacterial products. This is thought to prevent maladaptive inflammatory responses against commensal bacteria, but it also limits antimicrobial responses by IEC to invading bacterial pathogens, potentially increasing host susceptibility to infection. One reason for the innate hypo-responsiveness of IEC is their expression of Single Ig IL-1 Related Receptor (SIGIRR), a negative regulator of interleukin (IL)-1 and TLR signaling. To address whether SIGIRR expression and the innate hypo-responsiveness of IEC impacts on enteric host defense, Sigirr deficient (−/−) mice were infected with the EHEC related pathogen Citrobacter rodentium. Sigirr −/− mice responded with accelerated IEC proliferation and strong pro-inflammatory and antimicrobial responses but surprisingly, Sigirr −/− mice proved dramatically more susceptible to infection than wildtype mice. Through haematopoietic transplantation studies, it was determined that SIGIRR expression by non-haematopoietic cells (putative IEC) regulated these responses. Moreover, the exaggerated responses were found to be primarily dependent on IL-1R signaling. Whilst exploring the basis for their susceptibility, Sigirr −/− mice were found to be unusually susceptible to intestinal Salmonella Typhimurium colonization, developing enterocolitis without the typical requirement for antibiotic based removal of competing commensal microbes. Strikingly, the exaggerated antimicrobial responses seen in Sigirr −/− mice were found to cause a rapid and dramatic loss of commensal microbes from the infected intestine. This depletion appears to reduce the ability of the microbiota to compete for space and nutrients (colonization resistance) with the invading pathogens, leaving the intestine highly susceptible to pathogen colonization. Thus, SIGIRR expression by IEC reflects a strategy that sacrifices maximal innate responsiveness by IEC in order to promote commensal microbe based colonization resistance against bacterial pathogens. Despite being in close contact with billions of commensal bacteria, the epithelial cells that line the intestine develop very weak innate inflammatory responses to bacterial products. The goal of this study was to explore why these cells respond so poorly, and how increasing their innate responsiveness would impact on host defense against invading bacterial pathogens. We show that a negative regulator of innate signaling called SIGIRR, limits the inflammatory responses of the intestine to bacteria. Following infection by the bacterial pathogen Citrobacter rodentium, the intestines of mice lacking SIGIRR showed exaggerated inflammatory, antimicrobial and proliferative responses. Through transplantation studies, we showed it was SIGIRR expression by intestinal epithelial cells that limits these responses, and that the exaggerated responses were driven by cytokine signaling through the interleukin-1 receptor. Despite their exaggerated responses, SIGIRR deficient mice proved extremely susceptible to infection by C. rodentium and other intestinal bacterial pathogens. We found the exaggerated inflammatory responses rapidly depleted intestinal commensal microbes, reducing their ability to outcompete invading pathogens for space and nutrients (colonization resistance). Our study thus clarifies that the hypo-responsiveness of epithelial cells plays an unexpected but critical role in host defense, by promoting commensal microbe based competition against enteric pathogens.
Collapse
|
48
|
Monteleone G, Pallone F, Caprioli F. Investigational cytokine-targeted therapies for ulcerative colitis. Expert Opin Investig Drugs 2013; 22:1123-32. [PMID: 23802627 DOI: 10.1517/13543784.2013.813931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Up to one-third of patients with ulcerative colitis (UC) do not respond to standard medications, including mesalamine, steroids and thiopurines. The recognition that UC-related pathological process is the result of an altered balance between inflammatory and counter-regulatory signals, mostly mediated by cytokines, has led to the development of novel compounds, which are now ready to move into clinical practice. This article summarizes the recent data on the development and use of compounds either inhibiting inflammatory cytokines or enhancing the activity of counter-regulatory cytokines in patients with UC and murine models of UC. AREAS COVERED A PubMed search was performed using the following keywords: 'ulcerative colitis', 'therapy', 'treatment' and 'cytokine'. In addition, ongoing clinical trials were checked and compounds were searched on the website of pharmaceutical companies. EXPERT OPINION Several investigational cytokine-based therapies have provided promising results in attenuating clinical activity in patients with UC and mice with experimental colitis. However, clinical and immunological heterogeneity of UC patients, therapy-related side effects and redundant biological functions of cytokines represent potential pitfalls and should be considered in optimizing therapeutic strategies.
Collapse
Affiliation(s)
- Giovanni Monteleone
- University of Rome "Tor Vergata", Department of Systems Medicine, Via Montpellier 1, Rome, 00133, Italy.
| | | | | |
Collapse
|
49
|
Kokkinopoulos I. 670 nm LED ameliorates inflammation in the CFH(-/-) mouse neural retina. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 122:24-31. [PMID: 23584451 DOI: 10.1016/j.jphotobiol.2013.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/12/2013] [Accepted: 03/17/2013] [Indexed: 12/27/2022]
Abstract
Para-inflammation in the neural retina is thought to contribute to the onset of some age-related retinal diseases. Continuous innate immune system activation, manifests in progressive chronic inflammation, macrophage invasion and cell loss, resulting in visual loss. We have previously shown that mitochondrial function is augmented following 670 nm LED exposure, leading to reduced retinal inflammation. Here, it was asked whether 670 nm LED regulates para-inflammation in an aged-related macular degeneration mouse model. Mutant CFH(-/-) mice were exposed to four 90 s exposures over 2 days for 1 week and 8 weeks. These regimes significantly reduced activated macrophage number, TNF-alpha and MIF protein expression levels. Immuno-reactivity to C3, C3b and calcitonin, all markers of inflammatory status were also altered. Finally, innate immune proteins, TLR 2 and 4, showed a marked decrease in protein expression. These findings support the notion that 670 nm LED regulates innate immunity, alleviating inflammation in the neural retina of an age-related macular degeneration mouse model.
Collapse
Affiliation(s)
- Ioannis Kokkinopoulos
- School of Biomedical and Health Sciences, Wolfson Centre for Age-Related Diseases, King's College London, UK.
| |
Collapse
|
50
|
Ghosh S, DeCoffe D, Brown K, Rajendiran E, Estaki M, Dai C, Yip A, Gibson DL. Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis. PLoS One 2013; 8:e55468. [PMID: 23405155 PMCID: PMC3566198 DOI: 10.1371/journal.pone.0055468] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/23/2012] [Indexed: 01/03/2023] Open
Abstract
Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses resulting in sepsis. We conclude that as an anti-inflammatory agent, ω-3 PUFA supplementation during infection may prove detrimental when host inflammatory responses are critical for survival.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Daniella DeCoffe
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Kirsty Brown
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ethendhar Rajendiran
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Mehrbod Estaki
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Chuanbin Dai
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ashley Yip
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- * E-mail:
| |
Collapse
|