1
|
Wang S, Li Y, Wang Z, Geng C, Chen P, Li Z, Li C, Bai X. Constructing a mitochondrial-related genes model based on machine learning for predicting the prognosis and therapeutic effect in colorectal cancer. Discov Oncol 2025; 16:661. [PMID: 40317411 PMCID: PMC12049353 DOI: 10.1007/s12672-025-02462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
The role of mitochondria in tumorigenesis and progression is has been increasingly demonstrated by numerous studies, but its prognostic value in colorectal cancer (CRC) remains unclear. To address this, we developed a mitochondrial-related gene prognostic model using 101 combinations of 10 machine learning algorithms. Patients in the high-risk group exhibited significantly shorter overall survival time. The high-risk group exhibited elevated tumor immune dysfunction and exclusion score, indicating diminished immunotherapy efficacy. To address the suboptimal treatment outcomes in these patients, we identified PYR-41 and pentostatin as potential therapeutic agents, which are anticipated to enhance therapeutic efficacy in the high-risk group. Additionally, four biomarkers (HSPA1A, CHDH, TRAP1, CDC25C) were validated by quantitative real-time PCR, with significant expression differences between normal intestinal epithelial cells and colon cancer cells. Our prognostic model provides accurate CRC outcome prediction and guides personalized therapeutic strategies.
Collapse
Affiliation(s)
- Shaoke Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yien Li
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Zhihui Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Changhui Geng
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Peng Chen
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Zhengang Li
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Chenxu Li
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xuefeng Bai
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
2
|
Lan X, Li W, Zhao K, Wang J, Li S, Zhao H. Revisiting the role of cancer-associated fibroblasts in tumor microenvironment. Front Immunol 2025; 16:1582532. [PMID: 40313969 PMCID: PMC12043473 DOI: 10.3389/fimmu.2025.1582532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are integral components of the tumor microenvironment playing key roles in tumor progression, metastasis, and therapeutic resistance. However, challenges persist in understanding their heterogeneity, origin, and functional diversity. One major obstacle is the lack of standardized naming conventions for CAF subpopulations, with current systems failing to capture their full complexity. Additionally, the identification of CAFs is hindered by the absence of specific biomarkers, limiting the precision of diagnostic and therapeutic strategies. In vitro culture conditions often fail to maintain the in vivo characteristics of CAFs, which complicates their study and the translation of findings to clinical practice. Although current detection methods, such as antibodies, mRNA probes, and single-cell transcriptomics, offer insights into CAF biology, they lack standardization and fail to provide reliable quantitative measures. Furthermore, the dynamic interactions between CAFs, tumor cells, and immune cells within the TME remain insufficiently understood, and the role of CAFs in immune evasion and therapy resistance is an area of ongoing research. Understanding how CAFs influence drug resistance and the immune response is essential for developing more effective cancer therapies. This review aims to provide an in-depth analysis of the challenges in CAF research, propose future research directions, and emphasize the need for improved CAF-targeted therapeutic strategies. By addressing these gaps, it seeks to highlight the potential of CAFs as targets for overcoming therapeutic resistance and enhancing the efficacy of cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Sui Y, Hoshi N, Okamoto N, Inoue Y, Funatsu T, Ku Y, Ooi M, Watanabe D, Miyazaki H, Agawa M, Nakamura H, Ohgaki R, Kanai Y, Yang H, Kodama Y. The role of LAT1 in AOM/DSS-induced colorectal tumorigenesis. Biochem Biophys Res Commun 2025; 751:151446. [PMID: 39922055 DOI: 10.1016/j.bbrc.2025.151446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Amino acid transporters are essential for supplying nutrients to cells and are implicated in tumor progression. L-type amino acid transporter 1 (LAT1) is reported to be overexpressed in various cancers, affecting tumor development. However, the exact mechanisms by which LAT1 affects colorectal cancer (CRC) arising from a chronic inflammatory background are not yet fully understood. This study aimed to explore the role of LAT1 in CRC. Mice with intestinal epithelium-specific deletions of LAT1 (LAT1fl/fl; vil-cre) were treated with azoxymethane (AOM)/dextran sulfate sodium (DSS) in a colitis-associated cancer (CAC) model. Our results demonstrated that LAT1 was detected in normal colon crypts and highly expressed in AOM/DSS-induced tumor tissue. During the chronic colitis phase, weight loss was more prominent in LAT1fl/fl; vil-cre mice, compared with that in LAT1fl/fl mice. IL-1β and IL-6 expressions significantly increased in LAT1-deleted tumors; however, no overall difference in colon tumor number or size was observed between LAT1fl/fl and LAT1fl/fl; vil-cre mice. Accordingly, cell proliferation and apoptotic cell number were similar when comparing LAT1-deleted tumors with those with sufficient LAT1. Our findings indicated that LAT1 might not phenotypically affect overall colonic tumor development in this model; however, it affected the chronic colitis phase and inflammatory status within the tumors. These findings suggest that severe inflammation in tumors might have compensated for tumor growth in defects of amino acid supplementation through LAT1 deficiency, and provide insights into the potential of LAT1-targeted therapies for clinical CRC treatment.
Collapse
Affiliation(s)
- Yunlong Sui
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China; Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Namiko Hoshi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan; Division of Integrated Analyses of Bioresource and Health Care, Kobe University Graduate School of Medicine, Hyogo, 650-0047, Japan.
| | - Norihiro Okamoto
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Yuta Inoue
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Takumi Funatsu
- Division of Integrated Analyses of Bioresource and Health Care, Kobe University Graduate School of Medicine, Hyogo, 650-0047, Japan
| | - Yuna Ku
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Makoto Ooi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Daisuke Watanabe
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Haruka Miyazaki
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Misaki Agawa
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Hirotaka Nakamura
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, 565-0871, Japan
| | - Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| |
Collapse
|
4
|
Tripathi S, Sharma Y, Kumar D. Unveiling the link between chronic inflammation and cancer. Metabol Open 2025; 25:100347. [PMID: 39876904 PMCID: PMC11772974 DOI: 10.1016/j.metop.2025.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The highly nuanced transition from an inflammatory process to tumorigenesis is of great scientific interest. While it is well known that environmental stimuli can cause inflammation, less is known about the oncogenic modifications that chronic inflammation in the tissue microenvironment can bring about, as well as how these modifications can set off pro-tumorigenic processes. It is clear that no matter where the environmental factors come from, maintaining an inflammatory microenvironment encourages carcinogenesis. In addition to encouraging angiogenesis and metastatic processes, sustaining the survival and proliferation of malignant transformed cells, and possibly altering the efficacy of therapeutic agents, inflammation can negatively regulate the antitumoral adaptive and innate immune responses. Because chronic inflammation has multiple pathways involved in tumorigenesis and metastasis, it has gained recognition as a marker of cancer and a desirable target for cancer therapy. Recent advances in our knowledge of the molecular mechanisms that drive cancer's progression demonstrate that inflammation promotes tumorigenesis and metastasis while suppressing anti-tumor immunity. In many solid tumor types, including breast, lung, and liver cancer, inflammation stimulates the activation of oncogenes and impairs the body's defenses against the tumor. Additionally, it alters the microenvironment of the tumor. As a tactical approach to cancer treatment, these findings have underscored the importance of targeting inflammatory pathways. This review highlights the role of inflammation in cancer development and metastasis, focusing on its impact on tumor progression, immune suppression, and therapy resistance. It examines current anti-inflammatory strategies, including NSAIDs, cytokine modulators, and STAT3 inhibitors, while addressing their potential and limitations. The review emphasizes the need for further research to unravel the complex mechanisms linking inflammation to cancer progression and identify molecular targets for specific cancer subtypes.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
5
|
Long C, Li X, Liu J, Mo X, Zhong H, Tang W, Yu J. Exploring the Role of Epithelial-Mesenchymal Transition During Colorectal Cancer Peritoneal Metastasis: Update on Their Mechanisms. J Biochem Mol Toxicol 2025; 39:e70166. [PMID: 39871529 DOI: 10.1002/jbt.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Colorectal cancer is a common malignant tumor worldwide. The prognosis of patients with colorectal cancer peritoneal metastasis is very poor. The study of the specific mechanisms of colorectal cancer peritoneal metastasis plays an important role in the treatment of patients with this disease. The mechanisms of colorectal cancer peritoneal metastasis are mainly pathological and biological. Biologically, the epithelial-mesenchymal transition process is an important precursor to tumor cell metastasis. Therefore, it is necessary to study the mechanisms of colorectal cancer peritoneal metastasis, especially the epithelial-mesenchymal transition, to identify new methods for the prevention and treatment of colorectal cancer peritoneal cancer, reduce the incidence of colorectal cancer peritoneal metastasis, and improve patient prognosis.
Collapse
Affiliation(s)
- Chenyan Long
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Medical College of Cancer, Guangxi Medical University, Nanning, China
| | - Xiang Li
- Medical College of Cancer, Guangxi Medical University, Nanning, China
| | - Jungang Liu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Medical College of Cancer, Guangxi Medical University, Nanning, China
| | - Xianwei Mo
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Medical College of Cancer, Guangxi Medical University, Nanning, China
| | - Huage Zhong
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Medical College of Cancer, Guangxi Medical University, Nanning, China
| | - Weizhong Tang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Medical College of Cancer, Guangxi Medical University, Nanning, China
| | - Junfeng Yu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Medical College of Cancer, Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Cui JY, Ma J, Gao XX, Sheng ZM, Pan ZX, Shi LH, Zhang BG. Unraveling the role of cancer-associated fibroblasts in colorectal cancer. World J Gastrointest Oncol 2024; 16:4565-4578. [PMID: 39678792 PMCID: PMC11577382 DOI: 10.4251/wjgo.v16.i12.4565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
Within the intricate milieu of colorectal cancer (CRC) tissues, cancer-associated fibroblasts (CAFs) act as pivotal orchestrators, wielding considerable influence over tumor progression. This review endeavors to dissect the multifaceted functions of CAFs within the realm of CRC, thereby highlighting their indispensability in fostering CRC malignant microenvironment and indicating the development of CAFs-targeted therapeutic interventions. Through a comprehensive synthesis of current knowledge, this review delineates insights into CAFs-mediated modulation of cancer cell proliferation, invasiveness, immune evasion, and neovascularization, elucidating the intricate web of interactions that sustain the pro-tumor metabolism and secretion of multiple factors. Additionally, recognizing the high level of heterogeneity within CAFs is crucial, as they encompass a range of subtypes, including myofibroblastic CAFs, inflammatory CAFs, antigen-presenting CAFs, and vessel-associated CAFs. Innovatively, the symbiotic relationship between CAFs and the intestinal microbiota is explored, shedding light on a novel dimension of CRC pathogenesis. Despite remarkable progress, the orchestrated dynamic functions of CAFs remain incompletely deciphered, underscoring the need for continued research endeavors for therapeutic advancements in CRC management.
Collapse
Affiliation(s)
- Jia-Yu Cui
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jing Ma
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Xin-Xin Gao
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zhi-Mei Sheng
- Affiliated Hospital of Shandong Second Medical University, Department of Pathology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zi-Xin Pan
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Li-Hong Shi
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Bao-Gang Zhang
- Department of Pathology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
7
|
Ma Q, Meng M, Zhou X, Guo W, Feng K, Huang T, Cai YD. Identification of Key Genes in Fetal Gut Development at Single-Cell Level by Exploiting Machine Learning Techniques. Proteomics 2024; 24:e202400104. [PMID: 39324223 DOI: 10.1002/pmic.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The study of fetal gut development is critical due to its substantial influence on immediate neonatal and long-term adult health. Current research largely focuses on microbiome colonization, gut immunity, and barrier function, alongside the impact of external factors on these phenomena. Limited research has been dedicated to the categorization of developing fetal gut cells. Our study aimed to enhance our understanding of fetal gut development by employing advanced machine-learning techniques on single-cell sequencing data. This dataset consisted of 62,849 samples, each characterized by 33,694 distinct gene features. Four feature ranking algorithms were utilized to sort features according to their significance, resulting in four feature lists. Then, these lists were fed into an incremental feature selection method to extract essential genes, classification rules, and build efficient classifiers. Several important genes were recognized by multiple feature ranking algorithms, such as FGG, MDK, RBP1, RBP2, IGFBP7, and SPON2. These features were key in differentiating specific developing intestinal cells, including epithelial, immune, mesenchymal, and vasculature cells of the colon, duo jejunum, and ileum cells. The classification rules showed special gene expression patterns on some intestinal cell types and the efficient classifiers can be useful tools for identifying intestinal cells.
Collapse
Affiliation(s)
- QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Mei Meng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XianChao Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
8
|
Zhang X, Tang B, Luo J, Yang Y, Weng Q, Fang S, Zhao Z, Tu J, Chen M, Ji J. Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope. Mol Cancer 2024; 23:255. [PMID: 39543600 PMCID: PMC11566504 DOI: 10.1186/s12943-024-02130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/19/2024] [Indexed: 11/17/2024] Open
Abstract
Normal life requires cell division to produce new cells, but cell death is necessary to maintain balance. Dysregulation of cell death can lead to the survival and proliferation of abnormal cells, promoting tumor development. Unlike apoptosis, necrosis, and autophagy, the newly recognized forms of regulated cell death (RCD) cuproptosis, ferroptosis, and PANoptosis provide novel therapeutic strategies for tumor treatment. Increasing research indicates that the death of tumor and immune cells mediated by these newly discovered forms of cell death can regulate the tumor microenvironment (TME) and influence the effectiveness of tumor immunotherapy. This review primarily elucidates the molecular mechanisms of cuproptosis, ferroptosis, and PANoptosis and their complex effects on tumor cells and the TME. This review also summarizes the exploration of nanoparticle applications in tumor therapy based on in vivo and in vitro evidence derived from the induction or inhibition of these new RCD pathways.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Bufu Tang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinhua Luo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Yang Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Qiaoyou Weng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Jianfei Tu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| |
Collapse
|
9
|
Khan A, Zhang Y, Ma N, Shi J, Hou Y. NF-κB role on tumor proliferation, migration, invasion and immune escape. Cancer Gene Ther 2024; 31:1599-1610. [PMID: 39033218 DOI: 10.1038/s41417-024-00811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Nuclear factor kappa-B (NF-κB) is a nuclear transcription factor that plays a key factor in promoting inflammation, which can lead to the development of cancer in a long-lasting inflammatory environment. The activation of NF-κB is essential in the initial phases of tumor development and progression, occurring in both pre-malignant cells and cells in the microenvironment such as phagocytes, T cells, and B cells. In addition to stimulating angiogenesis, inhibiting apoptosis, and promoting the growth of tumor cells, NF-κB activation also causes the epithelial-mesenchymal transition, and tumor immune evasion. Therapeutic strategies that focus on immune checkpoint molecules have revolutionized cancer treatment by enabling the immune system to activate immunological responses against tumor cells. This review focused on understanding the NF-κB signaling pathway in the context of cancer.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Yao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Ningna Ma
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China.
| |
Collapse
|
10
|
Cao Y, Yi Y, Han C, Shi B. NF-κB signaling pathway in tumor microenvironment. Front Immunol 2024; 15:1476030. [PMID: 39493763 PMCID: PMC11530992 DOI: 10.3389/fimmu.2024.1476030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
The genesis and progression of tumors are multifaceted processes influenced by genetic mutations within the tumor cells and the dynamic interplay with their surrounding milieu, which incessantly impacts the course of cancer. The tumor microenvironment (TME) is a complex and dynamic entity that encompasses not only the tumor cells but also an array of non-cancerous cells, signaling molecules, and the extracellular matrix. This intricate network is crucial in tumor progression, metastasis, and response to treatments. The TME is populated by diverse cell types, including immune cells, fibroblasts, endothelial cells, alongside cytokines and growth factors, all of which play roles in either suppressing or fostering tumor growth. Grasping the nuances of the interactions within the TME is vital for the advancement of targeted cancer therapies. Consequently, a thorough understanding of the alterations of TME and the identification of upstream regulatory targets have emerged as a research priority. NF-κB transcription factors, central to inflammation and innate immunity, are increasingly recognized for their significant role in cancer onset and progression. This review emphasizes the crucial influence of the NF-κB signaling pathway within the TME, underscoring its roles in the development and advancement of cancer. By examining the interactions between NF-κB and various components of the TME, targeting the NF-κB pathway appears as a promising cancer treatment approach.
Collapse
Affiliation(s)
- Yaning Cao
- Department of Blood Transfusion, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - Yanan Yi
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Chongxu Han
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingwei Shi
- Department of Blood Transfusion, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| |
Collapse
|
11
|
Wang J, Zhang Y, Chen X, Sheng Q, Yang J, Zhu Y, Wang Y, Yan F, Fang J. Single-Cell Transcriptomics Reveals Cellular Heterogeneity and Drivers in Serrated Pathway-Driven Colorectal Cancer Progression. Int J Mol Sci 2024; 25:10944. [PMID: 39456726 PMCID: PMC11507054 DOI: 10.3390/ijms252010944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Serrated lesions are common precancerous pathways in colorectal cancer (CRC), but the process by which they progress to malignancy remains unclear. We aimed to elucidate this progression through a single-cell RNA landscape. We conducted single-cell RNA sequencing on three normal colonic tissues and fifteen SLs (including HPs, SSLs, SSLD, and TSAs) and integrated these data with datasets containing tumor samples. We identified three invasive malignant epithelial cell subtypes related to CRC progression: SLC1, SLC2, and tumor cell. SLC1, specific to SSLs, is involved in cell proliferation and shows a continuum of malignancy in gene expression. TSA-specific SLC2 exhibited FOXQ1 upregulation and active EMT, indicating invasiveness. The trajectory analysis showed that HPs do not progress to cancer, and different SL types are linked to the MSI status of advanced CRCs. We validated molecular drivers in premalignant lesions and later carcinogenesis. In the tumor microenvironment, CAF and pre-CAF fibroblast subtypes associated with progression were identified. During the premalignant stage, SLC1 triggered CD8+ T cell responses, while at the advanced stage, CAFs promoted tumor invasion and metastasis via FN1-CD44, influencing tumor progression and the treatment response. Our findings highlight transcriptional changes across serrated pathway stages, aiding in early CRC diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fangrong Yan
- School of Science, China Pharmaceutical University, Nanjing 211198, China; (J.W.); (Y.Z.); (X.C.); (Q.S.); (J.Y.); (Y.Z.); (Y.W.)
| | - Jingya Fang
- School of Science, China Pharmaceutical University, Nanjing 211198, China; (J.W.); (Y.Z.); (X.C.); (Q.S.); (J.Y.); (Y.Z.); (Y.W.)
| |
Collapse
|
12
|
Urbaniec-Stompór J, Michalak M, Godlewski J. Correlating Ultrastructural Changes in the Invasion Area of Colorectal Cancer with CT and MRI Imaging. Int J Mol Sci 2024; 25:9905. [PMID: 39337393 PMCID: PMC11432200 DOI: 10.3390/ijms25189905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The cancer invasion of the large intestine, a destructive process that begins within the mucous membrane, causes cancer cells to gradually erode specific layers of the intestinal wall. The normal tissues of the intestine are progressively replaced by a tumour mass, leading to the impairment of the large intestine's proper morphology and function. At the ultrastructural level, the disintegration of the extracellular matrix (ECM) by cancer cells triggers the activation of inflammatory cells (macrophages) and connective tissue cells (myofibroblasts) in this area. This accumulation and the functional interactions between these cells form the tumour microenvironment (TM). The constant modulation of cancer cells and cancer-associated fibroblasts (CAFs) creates a specific milieu akin to non-healing wounds, which induces colon cancer cell proliferation and promotes their survival. This review focuses on the processes occurring at the "front of cancer invasion", with a particular focus on the role of the desmoplastic reaction in neoplasm development. It then correlates the findings from the microscopic observation of the cancer's ultrastructure with the potential of modern radiological imaging, such as computer tomography (CT) and magnetic resonance imaging (MRI), which visualizes the tumour, its boundaries, and the tissue reactions in the large intestine.
Collapse
Affiliation(s)
- Joanna Urbaniec-Stompór
- Department of Diagnostic Imaging, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, 10228 Olsztyn, Poland
| | - Maciej Michalak
- Department of Diagnostic Imaging, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, 10228 Olsztyn, Poland
- Department of Oncology, Faculty of Medical Sciences, University of Warmia and Mazury, 10228 Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Faculty of Medical Sciences, University of Warmia and Mazury, 10082 Olsztyn, Poland
- Clinical Surgical Oncology Department, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre, 10228 Olsztyn, Poland
| |
Collapse
|
13
|
Yin J, Zhu W, Feng S, Yan P, Qin S. The role of cancer-associated fibroblasts in the invasion and metastasis of colorectal cancer. Front Cell Dev Biol 2024; 12:1375543. [PMID: 39139454 PMCID: PMC11319178 DOI: 10.3389/fcell.2024.1375543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and has ranked the third leading cause in cancerassociated death globally. Metastasis is the leading cause of death in colorectal cancer patients. The role of tumor microenvironment (TME) in colorectal cancer metastasis has received increasing attention. As the most abundant cell type in the TME of solid tumors, cancer-associated fibroblasts (CAFs) have been demonstrated to have multiple functions in advancing tumor growth and metastasis. They can remodel the extracellular matrix (ECM) architecture, promote epithelial-mesenchymal transition (EMT), and interact with cancer cells or other stromal cells by secreting growth factors, cytokines, chemokines, and exosomes, facilitating tumor cell invasion into TME and contributing to distant metastasis. This article aims to analyze the sources and heterogeneity of CAFs in CRC, as well as their role in invasion and metastasis, in order to provide new insights into the metastasis mechanism of CRC and its clinical applications.
Collapse
Affiliation(s)
- Jinjin Yin
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Zhu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Senling Feng
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pengke Yan
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shumin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
14
|
Yang M. Interaction between intestinal flora and gastric cancer in tumor microenvironment. Front Oncol 2024; 14:1402483. [PMID: 38835386 PMCID: PMC11148328 DOI: 10.3389/fonc.2024.1402483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Gastric Cancer (GC) is a prevalent malignancy globally and is the third leading cause of cancer-related deaths. Recent researches focused on the correlation between intestinal flora and GC. Studies indicate that bacteria can influence the development of gastrointestinal tumors by releasing bacterial extracellular vesicles (BEVs). The Tumor microenvironment (TME) plays an important role in tumor survival, with the interaction between intestinal flora, BEVs, and TME directly impacting tumor progression. Moreover, recent studies have demonstrated that intestinal microflora and BEVs can modify TME to enhance the effectiveness of antitumor drugs. This review article provides an overview and comparison of the biological targets through which the intestinal microbiome regulates TME, laying the groundwork for potential applications in tumor diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Mingjin Yang
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Sánchez-Ramírez D, Mendoza-Rodríguez MG, Alemán OR, Candanedo-González FA, Rodríguez-Sosa M, Montesinos-Montesinos JJ, Salcedo M, Brito-Toledo I, Vaca-Paniagua F, Terrazas LI. Impact of STAT-signaling pathway on cancer-associated fibroblasts in colorectal cancer and its role in immunosuppression. World J Gastrointest Oncol 2024; 16:1705-1724. [PMID: 38764833 PMCID: PMC11099434 DOI: 10.4251/wjgo.v16.i5.1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed and deadliest types of cancer worldwide. CRC displays a desmoplastic reaction (DR) that has been inversely associated with poor prognosis; less DR is associated with a better prognosis. This reaction generates excessive connective tissue, in which cancer-associated fibroblasts (CAFs) are critical cells that form a part of the tumor microenvironment. CAFs are directly involved in tumorigenesis through different mechanisms. However, their role in immunosuppression in CRC is not well understood, and the precise role of signal transducers and activators of transcription (STATs) in mediating CAF activity in CRC remains unclear. Among the myriad chemical and biological factors that affect CAFs, different cytokines mediate their function by activating STAT signaling pathways. Thus, the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors. Here, we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
Collapse
Affiliation(s)
- Damián Sánchez-Ramírez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Mónica G Mendoza-Rodríguez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Omar R Alemán
- Department of Biology, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fernando A Candanedo-González
- Department of Pathology, National Medical Center Century XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Mauricio Salcedo
- Unidad de Investigacion en Biomedicina y Oncologia Genomica, Instituto Mexciano del Seguro Social, Mexico City 07300, Mexico
| | - Ismael Brito-Toledo
- Servicio de Colon y Recto, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Luis I Terrazas
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| |
Collapse
|
16
|
Li X, Chen Y, Lu R, Hu M, Gu L, Huang Q, Meng W, Zhu H, Fan C, Zhou Z, Mo X. Colorectal cancer cells secreting DKK4 transform fibroblasts to promote tumour metastasis. Oncogene 2024; 43:1506-1521. [PMID: 38519641 PMCID: PMC11090838 DOI: 10.1038/s41388-024-03008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Wnt/β-catenin signalling is aberrantly activated in most colorectal cancer (CRC) and is one key driver involved in the initiation and progression of CRC. However, mutations of APC gene in CRC patients retain certain activity of APC protein with decreased β-catenin signalling and DKK4 expression significantly upregulates and represses Wnt/β-catenin signalling in human CRC tissues, suggesting that a precisely modulated activation of the Wnt/β-catenin pathway is essential for CRC formation and progression. The underlying reasons why a specifically reduced degree, not a fully activating degree, of β-catenin signalling in CRC are unclear. Here, we showed that a soluble extracellular inhibitor of Wnt/β-catenin signalling, DKK4, is an independent factor for poor outcomes in CRC patients. DKK4 secreted from CRC cells inactivates β-catenin in fibroblasts to induce the formation of stress fibre-containing fibroblasts and myofibroblasts in culture conditions and in mouse CRC xenograft tissues, resulting in restricted expansion in tumour masses at primary sites and enhanced CRC metastasis in mouse models. Reduced β-catenin activity by a chemical inhibitor MSAB promoted the CRC metastasis. Our findings demonstrate why reduced β-catenin activity is needed for CRC progression and provide a mechanism by which interactions between CRC cells and stromal cells affect disease promotion.
Collapse
Affiliation(s)
- Xue Li
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yulin Chen
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ran Lu
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Hu
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiaorong Huang
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wentong Meng
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyan Zhu
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuanwen Fan
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Digestive Surgery and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Digestive Surgery and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xianming Mo
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Dupuy J, Cogo E, Fouché E, Guéraud F, Pierre F, Plaisancié P. Epithelial-mesenchymal interaction protects normal colonocytes from 4-HNE-induced phenotypic transformation. PLoS One 2024; 19:e0302932. [PMID: 38669265 PMCID: PMC11051638 DOI: 10.1371/journal.pone.0302932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Recent studies have shown that epithelial-stromal interactions could play a role in the development of colorectal cancer. Here, we investigated the role of fibroblasts in the transformation of normal colonocytes induced by 4-HNE. METHODS Normal Co colonocytes and nF fibroblasts from the same mouse colon were exposed, in monoculture (m) or coculture (c), to 4-HNE (5 μM) twice weekly for 3 weeks. Gene expression was then analysed and the ability of Co colonocytes to grow in anchorage-independent conditions was tested in soft agar. Fibroblasts previously treated or not with 4-HNE were also seeded in culture inserts positioned above the agar layers to allow paracrine exchanges with colonocytes. RESULTS First, 60% of the genes studied were modulated by coculture in Co colonocytes, with notably increased expression of BMP receptors. Furthermore, while 4-HNE increased the ability of monoculture-treated Co colonocytes to form colonies, this effect was not observed in coculture-treated Co colonocytes. Adding a selective BMPR1 inhibitor during the treatment phase abolished the protective effect of coculture. Conversely, addition of a BMP4 agonist to the medium of monoculture-treated Co colonocytes prevented phenotypic transformation by 4-HNE. Second, the presence of nF(m)-HNE fibroblasts during the soft agar assay increased the number and size of Co(m) colonocyte colonies, regardless of whether these cells had been previously treated with 4-HNE in monoculture. For soft agar assays performed with nF(c) and Co(c) cells initially treated in coculture, only the reassociation between Co(c)-HNE and nF(c)-HNE resulted in a small increase in the number of colonies. CONCLUSIONS During the exposure phase, the epithelial-mesenchymal interaction protected colonocytes from 4-HNE-induced phenotypic transformation via activation of the BMP pathway. This intercellular dialogue also limited the ability of fibroblasts to subsequently promote colonocyte-anchorage-independent growth. In contrast, fibroblasts pre-exposed to 4-HNE in monoculture strongly increased the ability of Co(m) colonocytes to form colonies.
Collapse
Affiliation(s)
- Jacques Dupuy
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Emma Cogo
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Edwin Fouché
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Françoise Guéraud
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Fabrice Pierre
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Pascale Plaisancié
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
18
|
Rieder F, Mukherjee PK, Massey WJ, Wang Y, Fiocchi C. Fibrosis in IBD: from pathogenesis to therapeutic targets. Gut 2024; 73:854-866. [PMID: 38233198 PMCID: PMC10997492 DOI: 10.1136/gutjnl-2023-329963] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Intestinal fibrosis resulting in stricture formation and obstruction in Crohn's disease (CD) and increased wall stiffness leading to symptoms in ulcerative colitis (UC) is among the largest unmet needs in inflammatory bowel disease (IBD). Fibrosis is caused by a multifactorial and complex process involving immune and non-immune cells, their soluble mediators and exposure to luminal contents, such as microbiota and environmental factors. To date, no antifibrotic therapy is available. Some progress has been made in creating consensus definitions and measurements to quantify stricture morphology for clinical practice and trials, but approaches to determine the degree of fibrosis within a stricture are still lacking. OBJECTIVE We herein describe the current state of stricture pathogenesis, measuring tools and clinical trial endpoints development. DESIGN Data presented and discussed in this review derive from the past and recent literature and the authors' own research and experience. RESULTS AND CONCLUSIONS Significant progress has been made in better understanding the pathogenesis of fibrosis, but additional studies and preclinical developments are needed to define specific therapeutic targets.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William J Massey
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Zhang Q, Lou Y, Fang H, Sun S, Jin R, Ji Y, Chen Z. Cancer‑associated fibroblasts under therapy‑induced senescence in the tumor microenvironment (Review). Exp Ther Med 2024; 27:150. [PMID: 38476922 PMCID: PMC10928991 DOI: 10.3892/etm.2024.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/16/2024] [Indexed: 03/14/2024] Open
Abstract
Current cancer treatments target tumor cells; however, the tumor microenvironment (TME) induces therapeutic resistance, tumor development and metastasis, thus rendering these treatments ineffective. Research on the TME has therefore concentrated on nonmalignant cells. Cancer-associated fibroblasts (CAFs) are a major TME component, which contribute to cancer progression due to their diverse origins, phenotypes and functions, including cancer cell invasion and migration, extracellular matrix remodeling, tumor metabolism modulation and therapeutic resistance. Standard cancer treatment typically exacerbates the senescence-associated secretory phenotype (SASP) of senescent cancer cells and nonmalignant cells that actively leak proinflammatory signals in the TME. Therapy-induced senescence may impair cancer cell activity and compromise treatment responsiveness. CAFs and SASP are well-studied in the formation and progression of cancer. The present review discusses the current data on CAF senescence caused by anticancer treatment and assesses how senescence-like CAFs affect tumor formation. The development of senolytic medication for aging stromal cells is also highlighted. Combining cancer therapies with senolytics may boost therapeutic effects and provide novel possibilities for research.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Oncology, First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yijie Lou
- Department of Oncology, First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Hao Fang
- Department of Oncology, First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shaopeng Sun
- Department of Oncology, First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Rijuan Jin
- Department of Oncology, First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yunxi Ji
- Department of General Practice, First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310003, P.R. China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Institute of Cancer Research, First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
20
|
Pang L, Xiang F, Yang H, Shen X, Fang M, Li R, Long Y, Li J, Yu Y, Pang B. Single-cell integrative analysis reveals consensus cancer cell states and clinical relevance in breast cancer. Sci Data 2024; 11:289. [PMID: 38472225 DOI: 10.1038/s41597-024-03127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
High heterogeneity and complex interactions of malignant cells in breast cancer has been recognized as a driver of cancer progression and therapeutic failure. However, complete understanding of common cancer cell states and their underlying driver factors remain scarce and challenging. Here, we revealed seven consensus cancer cell states recurring cross patients by integrative analysis of single-cell RNA sequencing data of breast cancer. The distinct biological functions, the subtype-specific distribution, the potential cells of origin and the interrelation of consensus cancer cell states were systematically elucidated and validated in multiple independent datasets. We further uncovered the internal regulons and external cell components in tumor microenvironments, which contribute to the consensus cancer cell states. Using the state-specific signature, we also inferred the abundance of cells with each consensus cancer cell state by deconvolution of large breast cancer RNA-seq cohorts, revealing the association of immune-related state with better survival. Our study provides new insights for the cancer cell state composition and potential therapeutic strategies of breast cancer.
Collapse
Affiliation(s)
- Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Fengyu Xiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Huan Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xinyue Shen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Ming Fang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Ran Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yongjin Long
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiali Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yonghuan Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Bo Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
21
|
Saadh MJ, Mohamed AH, Almoyad MAA, Allela OQB, Amin AH, Malquisto AA, Jin WT, Sârbu I, AlShamsi F, Elsaid FG, Akhavan-Sigari R. Dual role of mesenchymal stem/stromal cells and their cell-free extracellular vesicles in colorectal cancer. Cell Biochem Funct 2024; 42:e3962. [PMID: 38491792 DOI: 10.1002/cbf.3962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/18/2024]
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer-related deaths. However, the surgical control of the CRC progression is difficult, and in most cases, the metastasis leads to cancer-related mortality. Mesenchymal stem/stromal cells (MSCs) with potential translational applications in regenerative medicine have been widely researched for several years. MSCs could affect tumor development through secreting exosomes. The beneficial properties of stem cells are attributed to their cell-cell interactions as well as the secretion of paracrine factors in the tissue microenvironment. For several years, exosomes have been used as a cell-free therapy to regulate the fate of tumor cells in a tumor microenvironment. This review discusses the recent advances and current understanding of assessing MSC-derived exosomes for possible cell-free therapy in CRC.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, Iraq
| | - Muhammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Mushait, Saudi Arabia
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - April Ann Malquisto
- Abuyog Community College, Abuyog Leyte, Philippines
- ESL Science Teacher, Tacloban City, Tacloban, Philippines
- Department of Art Sciences and Education, Tacloban City, Philippines
| | - Wong Tze Jin
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Sarawak, Malaysia
- Institute for Mathematical Research, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, Romania
| | - Faisal AlShamsi
- Dubai Health Authority, Primary Health Care Department, Dubai, United Arab Emirates
| | - Fahmy Gad Elsaid
- Biology Department, College of Science, King Khalid University, Asir, Abha, Al-Faraa, Saudi Arabia
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
22
|
Ren B, Yang Y, Lv Y, Liu K. Survival outcome and prognostic factors for early-onset and late-onset metastatic colorectal cancer: a population based study from SEER database. Sci Rep 2024; 14:4377. [PMID: 38388566 PMCID: PMC10883940 DOI: 10.1038/s41598-024-54972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024] Open
Abstract
Colorectal cancer is the third most common cancer worldwide and there has been a concerning increase in the incidence rate of colorectal cancer among individuals under the age of 50. This study compared the survival outcome between early-onset and late-onset metastatic colorectal cancer to find the differences and identify their prognostic factors. We obtained patient data from SEER database. Survival outcome was estimated using Kaplan-Meier survival curves and compared using the log-rank test. Univariate and multivariate analyses were conducted utilizing COX models to identify their independent prognostic factors. A total of 10,036 early-onset metastatic colorectal (EOCRC) cancer patients and 56,225 late-onset metastatic colorectal cancer (LOCRC) patients between 2010 and 2019 were included in this study. EOCRC has more survival benefits than LOCRC. Tumor primary location (p < 0.001), the location of metastasis (p < 0.001) and treatment modalities (p < 0.001) affect the survival outcomes between these two groups of patients. Female patients had better survival outcomes in EOCRC group (p < 0.001), but no difference was found in LOCRC group (p = 0.57). In conclusion, our study demonstrated that EOCRC patients have longer survival time than LOCRC patients. The sex differences in survival of metastatic colorectal cancer patients are associated with patients' age. These findings contribute to a better understanding of the differences between metastatic EOCRC and LOCRC, and can help inform the development of more precise treatment guidelines to improve prognosis.
Collapse
Affiliation(s)
- Bingyi Ren
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yichen Yang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Kang Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
23
|
Abudukelimu S, de Miranda NFCC, Hawinkels LJAC. Fibroblasts in Orchestrating Colorectal Tumorigenesis and Progression. Cell Mol Gastroenterol Hepatol 2024; 17:821-826. [PMID: 38307492 PMCID: PMC10966773 DOI: 10.1016/j.jcmgh.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are an abundant component of the tumor microenvironment and have been shown to possess critical functions in tumor progression. Although their roles predominantly have been described as tumor-promoting, more recent findings have identified subsets of CAFs with tumor-restraining functions. Accumulating evidence underscores large heterogeneity in fibroblast subsets in which distinct subsets differentially impact the initiation, progression, and metastasis of colorectal cancer. In this review, we summarize and discuss the evolving role of CAFs in colorectal cancer, highlighting the ongoing controversies regarding their distinct origins and multifaceted functions. In addition, we explore how CAFs can confer resistance to current therapies and the challenges of developing effective CAF-directed therapies. Taken together, we believe that, in this rapidly evolving field, it is crucial first to understand CAF dynamics comprehensively, and to bridge existing knowledge gaps regarding CAF heterogeneity and plasticity before further exploring the clinical targeting of CAFs.
Collapse
Affiliation(s)
- Subinuer Abudukelimu
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
24
|
Ataei A, Azizi M, Hajisadeghi S, Madani M, Khorami M, Hassantash S, Saeidpour Masouleh S, Barati G. The Therapeutic Effects of Mesenchymal Stem Cells and their Secretome on Oral Squamous Cell Carcinoma. Curr Mol Med 2024; 24:1195-1207. [PMID: 37366360 DOI: 10.2174/1566524023666230627151809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Oral cancers are prevalent in the human population, particularly in unindustrialized countries. In 90 % of oral cancers, the tumors arise from squamous cells, which is called oral squamous cell carcinoma (OSCC). Despite new treatment strategies, the morbidity and mortality rates are still high. Current treatment options including surgery, chemotherapy, and radiotherapy are not effective in the treatment of the tumor. Cell therapy with mesenchymal stem cells (MSCs) is considered one of the leading strategies in cancer treatment. However, the field of MSC therapy in OSCC is immature and ongoing studies are being conducted in experimental and pre-clinical studies. Here, we reviewed these studies to figure out whether the use of MSCs could be worthwhile in OSCC therapy or not. Both native and engineered MSCs as well as their secretome have been used in the treatment of OSCC. It seems that genetically modified MSCs or their secretome could inhibit the tumorigenesis of OSCC. However, further pre-clinical studies are required to come to a conclusion.
Collapse
Affiliation(s)
- Atefe Ataei
- Department of Periodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Azizi
- Department of Periodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Samira Hajisadeghi
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mojan Madani
- Orthodontics Department, Dental Faculty, Arak UNDUniversity of Medical Sciences, Arak, Iran
| | - Mozhgan Khorami
- Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Hassantash
- Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghasem Barati
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Stem Cell Technology Research Center, Tehran, Iran
| |
Collapse
|
25
|
Furuhashi S, Bustos MA, Mizuno S, Ryu S, Naeini Y, Bilchik AJ, Hoon DSB. Spatial profiling of cancer-associated fibroblasts of sporadic early onset colon cancer microenvironment. NPJ Precis Oncol 2023; 7:118. [PMID: 37964075 PMCID: PMC10645739 DOI: 10.1038/s41698-023-00474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
The incidence of sporadic early-onset colon cancer (EOCC) has increased worldwide. The molecular mechanisms in the tumor and the tumor microenvironment (TME) in EOCC are not fully understood. The aim of this study is to unravel unique spatial transcriptomic and proteomic profiles in tumor epithelial cells and cancer-associated fibroblasts (CAFs). Here, we divide the sporadic colon cancer tissue samples with transcriptomic data into patients diagnosed with EOCC (<50 yrs) and late-onset colon cancer (LOCC, ≥50 yrs) and then, analyze the data using CIBERSORTx deconvolution software. EOCC tumors are more enriched in CAFs with fibroblast associated protein positive expression (FAP(+)) than LOCC tumors. EOCC patients with higher FAP mRNA levels in CAFs have shorter OS (Log-rank test, p < 0.029). Spatial transcriptomic analysis of 112 areas of interest, using NanoString GeoMx digital spatial profiling, demonstrate that FAP(+) CAFs at the EOCC tumor invasive margin show a significant upregulation of WNT signaling and higher mRNA/protein levels of fibroblast growth factor 20 (FGF20). Tumor epithelial cells at tumor invasive margin of EOCC tumors neighboring FAP(+) CAFs show significantly higher mRNA/protein levels of fibroblast growth factor receptor (FGFR2) and PI3K/Akt signaling activation. NichNET analysis show a potential interaction between FGF20 and FGFFR2. The role of FGF20 in activating FGFR2/pFGFR2 and AKT/pAKT was validated in-vitro. In conclusion, we identify a unique FAP(+) CAF population that showed WNT signaling upregulation and increased FGF20 levels; while neighbor tumor cells show the upregulation/activation of FGFR2-PI3K/Akt signaling at the tumor invasive margin of EOCC tumors.
Collapse
Affiliation(s)
- Satoru Furuhashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI), Providence Saint John's Health Center (SJHC), Santa Monica, CA, 90404, USA
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI), Providence Saint John's Health Center (SJHC), Santa Monica, CA, 90404, USA
| | - Shodai Mizuno
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI), Providence Saint John's Health Center (SJHC), Santa Monica, CA, 90404, USA
| | - Suyeon Ryu
- Department of Genome Sequencing Center, SJCI, Providence SJHC, Santa Monica, CA, 90404, USA
| | - Yalda Naeini
- Department of Surgical Pathology, Providence SJHC, Santa Monica, CA, 90404, USA
| | - Anton J Bilchik
- Department of Gastrointestinal and Hepatobiliary Surgery, Providence SJHC, Santa Monica, CA, 90404, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI), Providence Saint John's Health Center (SJHC), Santa Monica, CA, 90404, USA.
- Department of Genome Sequencing Center, SJCI, Providence SJHC, Santa Monica, CA, 90404, USA.
| |
Collapse
|
26
|
Zhou RW, Harpaz N, Itzkowitz SH, Parsons RE. Molecular mechanisms in colitis-associated colorectal cancer. Oncogenesis 2023; 12:48. [PMID: 37884500 PMCID: PMC10603140 DOI: 10.1038/s41389-023-00492-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
Sustained chronic inflammation of the large intestine leads to tissue damage and repair, which is associated with an increased incidence of colitis-associated colorectal cancer (CAC). The genetic makeup of CAC is somewhat similar to sporadic colorectal carcinoma (sCRC), but there are differences in the sequence and timing of alterations in the carcinogenesis process. Several models have been developed to explain the development of CAC, particularly the "field cancerization" model, which proposes that chronic inflammation accelerates mutagenesis and selects for the clonal expansion of phenotypically normal, pro-tumorigenic cells. In contrast, the "Big Bang" model posits that tumorigenic clones with multiple driver gene mutations emerge spontaneously. The details of CAC tumorigenesis-and how they differ from sCRC-are not yet fully understood. In this Review, we discuss recent genetic, epigenetic, and environmental findings related to CAC pathogenesis in the past five years, with a focus on unbiased, high-resolution genetic profiling of non-dysplastic field cancerization in the context of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Royce W Zhou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Molecular Medicine Program, Internal Medicine Residency Program, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Noam Harpaz
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven H Itzkowitz
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ramon E Parsons
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Li X, Qi Q, Li Y, Miao Q, Yin W, Pan J, Zhao Z, Chen X, Yang F, Zhou X, Huang M, Wang C, Deng L, Huang D, Qi M, Fan S, Zhang Y, Qiu S, Deng W, Liu T, Chen M, Ye W, Zhang D. TCAF2 in Pericytes Promotes Colorectal Cancer Liver Metastasis via Inhibiting Cold-Sensing TRPM8 Channel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302717. [PMID: 37635201 PMCID: PMC10602580 DOI: 10.1002/advs.202302717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Hematogenous metastasis is the main approach for colorectal cancer liver metastasis (CRCLM). However, as the gatekeepers in the tumor vessels, the role of TPCs in hematogenous metastasis remains largely unknown, which may be attributed to the lack of specific biomarkers for TPC isolation. Here, microdissection combined with a pericyte medium-based approach is developed to obtain TPCs from CRC patients. Proteomic analysis reveals that TRP channel-associated factor 2 (TCAF2), a partner protein of the transient receptor potential cation channel subfamily M member 8 (TRPM8), is overexpressed in TPCs from patients with CRCLM. TCAF2 in TPCs is correlated with liver metastasis, short overall survival, and disease-free survival in CRC patients. Gain- and loss-of-function experiments validate that TCAF2 in TPCs promotes tumor cell motility, epithelial-mesenchymal transition (EMT), and CRCLM, which is attenuated in pericyte-conditional Tcaf2-knockout mice. Mechanistically, TCAF2 inhibits the expression and activity of TRPM8, leading to Wnt5a secretion in TPCs, which facilitates EMT via the activation of the STAT3 signaling pathway in tumor cells. Menthol, a TRPM8 agonist, significantly suppresses Wnt5a secretion in TPCs and CRCLM. This study reveals the previously unidentified pro-metastatic effects of TPCs from the perspective of cold-sensory receptors, providing a promising diagnostic biomarker and therapeutic target for CRCLM.
Collapse
Affiliation(s)
- Xiaobo Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular BiologyClinical Translational Center for Targeted DrugDepartment of PharmacologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Yong Li
- College of PharmacyJinan UniversityGuangzhou510632China
- School of PharmacyNorth Sichuan Medical CollegeNanchong637100China
| | - Qun Miao
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Wenqian Yin
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Jinghua Pan
- Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Zhan Zhao
- Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Xiaoying Chen
- Department of BiophysicsKidney Disease Center of First Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Fan Yang
- Department of BiophysicsKidney Disease Center of First Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Xiaofeng Zhou
- MOE Key Laboratory of Tumor Molecular BiologyClinical Translational Center for Targeted DrugDepartment of PharmacologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Maohua Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Chenran Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Lijuan Deng
- Formula‐Pattern Research CenterSchool of Traditional Chinese MedicineJinan UniversityGuangzhou510632China
| | - Dandan Huang
- The Sixth Affiliated Hospital of Sun Yet‐Sen UniversityGuangzhou510655China
| | - Ming Qi
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Shuran Fan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Yiran Zhang
- Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Shenghui Qiu
- Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Weiqing Deng
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Tongzheng Liu
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Minfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| |
Collapse
|
28
|
Potenza A, Balestrieri C, Spiga M, Albarello L, Pedica F, Manfredi F, Cianciotti BC, De Lalla C, Botrugno OA, Faccani C, Stasi L, Tassi E, Bonfiglio S, Scotti GM, Redegalli M, Biancolini D, Camisa B, Tiziano E, Sirini C, Casucci M, Iozzi C, Abbati D, Simeoni F, Lazarevic D, Elmore U, Fiorentini G, Di Lullo G, Casorati G, Doglioni C, Tonon G, Dellabona P, Rosati R, Aldrighetti L, Ruggiero E, Bonini C. Revealing and harnessing CD39 for the treatment of colorectal cancer and liver metastases by engineered T cells. Gut 2023; 72:1887-1903. [PMID: 37399271 DOI: 10.1136/gutjnl-2022-328042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/02/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Colorectal tumours are often densely infiltrated by immune cells that have a role in surveillance and modulation of tumour progression but are burdened by immunosuppressive signals, which might vary from primary to metastatic stages. Here, we deployed a multidimensional approach to unravel the T-cell functional landscape in primary colorectal cancers (CRC) and liver metastases, and genome editing tools to develop CRC-specific engineered T cells. DESIGN We paired high-dimensional flow cytometry, RNA sequencing and immunohistochemistry to describe the functional phenotype of T cells from healthy and neoplastic tissue of patients with primary and metastatic CRC and we applied lentiviral vectors (LV) and CRISPR/Cas9 genome editing technologies to develop CRC-specific cellular products. RESULTS We found that T cells are mainly localised at the front edge and that tumor-infiltrating T cells co-express multiple inhibitory receptors, which largely differ from primary to metastatic sites. Our data highlighted CD39 as the major driver of exhaustion in both primary and metastatic colorectal tumours. We thus simultaneously redirected T-cell specificity employing a novel T-cell receptor targeting HER-2 and disrupted the endogenous TCR genes (TCR editing (TCRED)) and the CD39 encoding gene (ENTPD1), thus generating TCREDENTPD1KOHER-2-redirected lymphocytes. We showed that the absence of CD39 confers to HER-2-specific T cells a functional advantage in eliminating HER-2+ patient-derived organoids in vitro and in vivo. CONCLUSION HER-2-specific CD39 disrupted engineered T cells are promising advanced medicinal products for primary and metastatic CRC.
Collapse
Affiliation(s)
- Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Balestrieri
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Spiga
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pedica
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudia De Lalla
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Oronza A Botrugno
- Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Faccani
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorena Stasi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bonfiglio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Maria Scotti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Redegalli
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Donatella Biancolini
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Camisa
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tiziano
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Sirini
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Iozzi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Simeoni
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ugo Elmore
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido Fiorentini
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Di Lullo
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Tonon
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Rosati
- Vita-Salute San Raffaele University, Milan, Italy
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Aldrighetti
- Vita-Salute San Raffaele University, Milan, Italy
- Hepatobiliary Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
29
|
He K, Wang Z, Luo M, Li B, Ding N, Li L, He B, Wang H, Cao J, Huang C, Yang J, Chen HN. Metastasis organotropism in colorectal cancer: advancing toward innovative therapies. J Transl Med 2023; 21:612. [PMID: 37689664 PMCID: PMC10493031 DOI: 10.1186/s12967-023-04460-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/19/2023] [Indexed: 09/11/2023] Open
Abstract
Distant metastasis remains a leading cause of mortality among patients with colorectal cancer (CRC). Organotropism, referring to the propensity of metastasis to target specific organs, is a well-documented phenomenon in CRC, with the liver, lungs, and peritoneum being preferred sites. Prior to establishing premetastatic niches within host organs, CRC cells secrete substances that promote metastatic organotropism. Given the pivotal role of organotropism in CRC metastasis, a comprehensive understanding of its molecular underpinnings is crucial for biomarker-based diagnosis, innovative treatment development, and ultimately, improved patient outcomes. In this review, we focus on metabolic reprogramming, tumor-derived exosomes, the immune system, and cancer cell-organ interactions to outline the molecular mechanisms of CRC organotropic metastasis. Furthermore, we consider the prospect of targeting metastatic organotropism for CRC therapy.
Collapse
Affiliation(s)
- Kai He
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ning Ding
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Li
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Han Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiangjun Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Hai-Ning Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
30
|
Liu Y, Ji Y, Jiang R, Fang C, Shi G, Cheng L, Zuo Y, Ye Y, Su X, Li J, Wang H, Wang Y, Lin Y, Dai L, Zhang S, Deng H. Reduced smooth muscle-fibroblasts transformation potentially decreases intestinal wound healing and colitis-associated cancer in ageing mice. Signal Transduct Target Ther 2023; 8:294. [PMID: 37553378 PMCID: PMC10409725 DOI: 10.1038/s41392-023-01554-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/24/2023] [Accepted: 06/24/2023] [Indexed: 08/10/2023] Open
Abstract
Cancer and impaired tissue wound healing with ageing are closely related to the quality of life of the elderly population. Given the increased incidence of cancer and the population ageing trend globally, it is very important to explore how ageing impairs tissue wound healing and spontaneous cancer. In a murine model of DSS-induced acute colitis and AOM/DSS-induced colitis-associated cancer (CAC), we found ageing significantly decreases intestinal wound healing and simultaneous CAC initiation, although ageing does not affect the incidence of AOM-induced, sporadic non-inflammatory CRC. Mechanistically, reduced fibroblasts were observed in the colitis microenvironment of ageing mice. Through conditional lineage tracing, an important source of fibroblasts potentially derived from intestinal smooth muscle cells (ISMCs) was identified orchestrating intestinal wound healing and CAC initiation in young mice. However, the number of transformed fibroblasts from ISMCs significantly decreased in ageing mice, accompanied by decreased intestinal wound healing and decreased CAC initiation. ISMCs-fibroblasts transformation in young mice and reduction of this transformation in ageing mice were also confirmed by ex-vivo intestinal muscular layer culture experiments. We further found that activation of YAP/TAZ in ISMCs is required for the transformation of ISMCs into fibroblasts. Meanwhile, the reduction of YAP/TAZ activation in ISMCs during intestinal wound healing was observed in ageing mice. Conditional knockdown of YAP/TAZ in ISMCs of young mice results in reduced fibroblasts in the colitis microenvironment, decreased intestinal wound healing and decreased CAC initiation, similar to the phenotype of ageing mice. In addition, the data from intestine samples derived from inflammatory bowel disease (IBD) patients show that activation of YAP/TAZ also occurs in ISMCs from these patients. Collectively, our work reveals an important role of the ageing stromal microenvironment in intestinal wound healing and CAC initiation. Furthermore, our work also identified a potential source of fibroblasts involved in colitis and CAC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Ruiyi Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Lin Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yinan Zuo
- Respiratory Microbiome Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yixin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Xiaolan Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yuan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yi Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China.
| |
Collapse
|
31
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
32
|
Egan H, Treacy O, Lynch K, Leonard NA, O'Malley G, Reidy E, O'Neill A, Corry SM, De Veirman K, Vanderkerken K, Egan LJ, Ritter T, Hogan AM, Redmond K, Peng L, Che J, Gatlin W, Jayaraman P, Sheehan M, Canney A, Hynes SO, Kerr EM, Dunne PD, O'Dwyer ME, Ryan AE. Targeting stromal cell sialylation reverses T cell-mediated immunosuppression in the tumor microenvironment. Cell Rep 2023; 42:112475. [PMID: 37167967 DOI: 10.1016/j.celrep.2023.112475] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/03/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Immunosuppressive tumor microenvironments (TMEs) reduce the effectiveness of immune responses in cancer. Mesenchymal stromal cells (MSCs), precursors to cancer-associated fibroblasts (CAFs), promote tumor progression by enhancing immune cell suppression in colorectal cancer (CRC). Hyper-sialylation of glycans promotes immune evasion in cancer through binding of sialic acids to their receptors, Siglecs, expressed on immune cells, which results in inhibition of effector functions. The role of sialylation in shaping MSC/CAF immunosuppression in the TME is not well characterized. In this study, we show that tumor-conditioned stromal cells have increased sialyltransferase expression, α2,3/6-linked sialic acid, and Siglec ligands. Tumor-conditioned stromal cells and CAFs induce exhausted immunomodulatory CD8+ PD1+ and CD8+ Siglec-7+/Siglec-9+ T cell phenotypes. In vivo, targeting stromal cell sialylation reverses stromal cell-mediated immunosuppression, as shown by infiltration of CD25 and granzyme B-expressing CD8+ T cells in the tumor and draining lymph node. Targeting stromal cell sialylation may overcome immunosuppression in the CRC TME.
Collapse
Affiliation(s)
- Hannah Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin Lynch
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Niamh A Leonard
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Grace O'Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aoise O'Neill
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Shania M Corry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Kim De Veirman
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence J Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aisling M Hogan
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Department of Colorectal Surgery, Galway University Hospital, Galway, Ireland
| | - Keara Redmond
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Li Peng
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | - Jenny Che
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | | | | | - Margaret Sheehan
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Aoife Canney
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Sean O Hynes
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland; Discipline of Pathology, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Cancer Research UK Beatson Institute, Glasgow, UK
| | - Michael E O'Dwyer
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Blood Cancer Network of Ireland (BCNI), Galway, Ireland; Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
33
|
Novoa Díaz MB, Carriere P, Gentili C. How the interplay among the tumor microenvironment and the gut microbiota influences the stemness of colorectal cancer cells. World J Stem Cells 2023; 15:281-301. [PMID: 37342226 PMCID: PMC10277969 DOI: 10.4252/wjsc.v15.i5.281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
34
|
Cao Y. Neural induction drives body axis formation during embryogenesis, but a neural induction-like process drives tumorigenesis in postnatal animals. Front Cell Dev Biol 2023; 11:1092667. [PMID: 37228646 PMCID: PMC10203556 DOI: 10.3389/fcell.2023.1092667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Characterization of cancer cells and neural stem cells indicates that tumorigenicity and pluripotency are coupled cell properties determined by neural stemness, and tumorigenesis represents a process of progressive loss of original cell identity and gain of neural stemness. This reminds of a most fundamental process required for the development of the nervous system and body axis during embryogenesis, i.e., embryonic neural induction. Neural induction is that, in response to extracellular signals that are secreted by the Spemann-Mangold organizer in amphibians or the node in mammals and inhibit epidermal fate in ectoderm, the ectodermal cells lose their epidermal fate and assume the neural default fate and consequently, turn into neuroectodermal cells. They further differentiate into the nervous system and also some non-neural cells via interaction with adjacent tissues. Failure in neural induction leads to failure of embryogenesis, and ectopic neural induction due to ectopic organizer or node activity or activation of embryonic neural genes causes a formation of secondary body axis or a conjoined twin. During tumorigenesis, cells progressively lose their original cell identity and gain of neural stemness, and consequently, gain of tumorigenicity and pluripotency, due to various intra-/extracellular insults in cells of a postnatal animal. Tumorigenic cells can be induced to differentiation into normal cells and integrate into normal embryonic development within an embryo. However, they form tumors and cannot integrate into animal tissues/organs in a postnatal animal because of lack of embryonic inducing signals. Combination of studies of developmental and cancer biology indicates that neural induction drives embryogenesis in gastrulating embryos but a similar process drives tumorigenesis in a postnatal animal. Tumorigenicity is by nature the manifestation of aberrant occurrence of pluripotent state in a postnatal animal. Pluripotency and tumorigenicity are both but different manifestations of neural stemness in pre- and postnatal stages of animal life, respectively. Based on these findings, I discuss about some confusion in cancer research, propose to distinguish the causality and associations and discriminate causal and supporting factors involved in tumorigenesis, and suggest revisiting the focus of cancer research.
Collapse
Affiliation(s)
- Ying Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
35
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
36
|
Ben Hamouda S, Essafi-Benkhadir K. Interplay between Signaling Pathways and Tumor Microenvironment Components: A Paradoxical Role in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065600. [PMID: 36982677 PMCID: PMC10057671 DOI: 10.3390/ijms24065600] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The study of the tumor microenvironment (TME) has become an important part of colorectal cancer (CRC) research. Indeed, it is now accepted that the invasive character of a primary CRC is determined not only by the genotype of the tumor cells, but also by their interactions with the extracellular environment, which thereby orchestrates the development of the tumor. In fact, the TME cells are a double-edged sword as they play both pro- and anti-tumor roles. The interaction of the tumor-infiltrating cells (TIC) with the cancer cells induces the polarization of the TIC, exhibiting an antagonist phenotype. This polarization is controlled by a plethora of interconnected pro- and anti-oncogenic signaling pathways. The complexity of this interaction and the dual function of these different actors contribute to the failure of CRC control. Thus, a better understanding of such mechanisms is of great interest and provides new opportunities for the development of personalized and efficient therapies for CRC. In this review, we summarize the signaling pathways linked to CRC and their implication in the development or inhibition of the tumor initiation and progression. In the second part, we enlist the major components of the TME and discuss the complexity of their cells functions.
Collapse
|
37
|
Villéger R, Chulkina M, Mifflin RC, Markov NS, Trieu J, Sinha M, Johnson P, Saada JI, Adegboyega PA, Luxon BA, Beswick EJ, Powell DW, Pinchuk IV. Loss of alcohol dehydrogenase 1B in cancer-associated fibroblasts: contribution to the increase of tumor-promoting IL-6 in colon cancer. Br J Cancer 2023; 128:537-548. [PMID: 36482184 PMCID: PMC9938173 DOI: 10.1038/s41416-022-02066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increases in IL-6 by cancer-associated fibroblasts (CAFs) contribute to colon cancer progression, but the mechanisms involved in the increase of this tumor-promoting cytokine are unknown. The aim of this study was to identify novel targets involved in the dysregulation of IL-6 expression by CAFs in colon cancer. METHODS Colonic normal (N), hyperplastic, tubular adenoma, adenocarcinoma tissues, and tissue-derived myo-/fibroblasts (MFs) were used in these studies. RESULTS Transcriptomic analysis demonstrated a striking decrease in alcohol dehydrogenase 1B (ADH1B) expression, a gene potentially involved in IL-6 dysregulation in CAFs. ADH1B expression was downregulated in approximately 50% of studied tubular adenomas and all T1-4 colon tumors, but not in hyperplastic polyps. ADH1B metabolizes alcohols, including retinol (RO), and is involved in the generation of all-trans retinoic acid (atRA). LPS-induced IL-6 production was inhibited by either RO or its byproduct atRA in N-MFs, but only atRA was effective in CAFs. Silencing ADH1B in N-MFs significantly upregulated LPS-induced IL-6 similar to those observed in CAFs and lead to the loss of RO inhibitory effect on inducible IL-6 expression. CONCLUSION Our data identify ADH1B as a novel potential mesenchymal tumor suppressor, which plays a critical role in ADH1B/retinoid-mediated regulation of tumor-promoting IL-6.
Collapse
Affiliation(s)
- Romain Villéger
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Marina Chulkina
- Department of Medicine at PennState Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Randy C Mifflin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
| | - Nikolay S Markov
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Judy Trieu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
| | - Mala Sinha
- Institute for Translational Sciences, UTMB, Galveston, TX, 77555, USA
| | - Paul Johnson
- Department of Surgery, UTMB, Galveston, TX, 77555, USA
| | - Jamal I Saada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
| | - Patrick A Adegboyega
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO, 63106, USA
| | - Bruce A Luxon
- Institute for Translational Sciences, UTMB, Galveston, TX, 77555, USA
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Don W Powell
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA
- Department of Neuroscience and Cell Biology, UTMB, Galveston, TX, 77555, USA
| | - Irina V Pinchuk
- Department of Medicine at PennState Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
38
|
Zheng N, Wen R, Zhou L, Meng Q, Zheng K, Li Z, Cao F, Zhang W. Multiregion single cell analysis reveals a novel subtype of cancer-associated fibroblasts located in the hypoxic tumor microenvironment in colorectal cancer. Transl Oncol 2023; 27:101570. [PMID: 36371957 PMCID: PMC9660844 DOI: 10.1016/j.tranon.2022.101570] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a critical role in shaping tumor progression and determining the outcome of the therapeutic response. In this study, we aimed to generate a comprehensive cellular landscape of the colorectal cancer (CRC) TME. METHODS We generated a comprehensive single-cell atlas by collecting CRC cases that have been uploaded to the online database and conducting an in-depth secondary analysis. We then carried out spatial transcriptomic sequencing and multiple immunohistochemical analyses to verify the results of the single-cell analysis. Moreover, we applied our findings to the TCGA database and used tissue microarray (TMA) on CRC tissue specimens to validate clinical prognosis. FINDINGS We re-analyzed the transcriptomes of 23785 cells, revealing a pattern of cell heterogeneity in the tumor region, leading-edge region, and non-tumor region. A subtype of COL11A1+INHBA+ tumor-resident cancer-associated fibroblasts (CAFs) was identified, and marker genes, transcription factors, and tissue-specific expression differences were noted and suggested to have potential roles in promoting cancer. We further confirmed that COL11A1+INHBA+ tumor-resident CAFs are mainly located in the hypoxic TME and we propose that they interact with CD44+ CRC cells via INHBA. Elevation of INHBA in CRC is associated with a poor prognosis. INTERPRETATION Our results demonstrated a single cell landscape of CRC in different regions and identified in hypoxic TME a special subtype of CAFs producing INHBA, which promotes CRC development and correlates with poor prognosis. This special subtype of CAFs is a candidate target for translational research.
Collapse
Affiliation(s)
- Nanxin Zheng
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rongbo Wen
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Leqi Zhou
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qingying Meng
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Kuo Zheng
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhixuan Li
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.
| | - Fuao Cao
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
39
|
Xue C, Gao Y, Li X, Zhang M, Yang Y, Han Q, Sun Z, Bai C, Zhao RC. Mesenchymal stem cells derived from adipose accelerate the progression of colon cancer by inducing a MT-CAFs phenotype via TRPC3/NF-KB axis. STEM CELL RESEARCH & THERAPY 2022; 13:335. [PMID: 35870973 PMCID: PMC9308187 DOI: 10.1186/s13287-022-03017-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/10/2022] [Indexed: 12/02/2022]
Abstract
Background There is increasing evidence that mesenchymal stem cells (MSCs) help shape the tumor microenvironment and promote tumor progression, and ion channels might play a critical role in this process. The objective of the present study was to explore the function and mechanism of MT-CAFs on progression of colon cancer. Methods Here, a gene chip was used for a general analysis of gene expression changes in MSC-transformed CAF cells (MT-CAFs). Bioinformatic tool and western blot screened out the ion channel protein TRPC3 with significantly increased expression, and identify the function through two-photon microscope. The progression of cancer was detected via MTS, transwell and Wound Healing. ELISA deected the secretion of inflammation factors. TRPC3/NF-KB axis was identified by western blot and immunofluorescence. Results TRPC3 can caused calcium influx, which further activated the NF-KB signaling pathway. Knockdown or inhibition of TRPC3 in MSCs significantly reduced the activation of NF-KB, and decreased the growth, migration, and invasion of MT-CAFs. After TRPC3 knockdown, the ability of MT- CAFs to promote tumor migration and invasion was impaired. Conversely, the upregulation of TRPC3 expression in MT-CAFs had the opposite effect. In vivo, TRPC3 expressed on MSCs also contributed to the tumorigenesis and progression of cancer cells. In addition, the Oncomine and GEPIA databases showed that TRPC3 expression is higher in colon cancer tissues compared with normal colon tissues, and was positively correlated with the expression of the CAF genes alpha-smooth muscle (α-SMA/ACTA2) and fibroblast activation protein Alpha. The disease-free survival of patients with positive TRPC3 expression in MSCs was significantly shorter than those with negative expression. Conclusions These results indicate that TRPC3 expressed on MT-CAFs plays a critical role in tumor progression via the NF-KB signaling pathway, and is correlated with poor prognosis in colon cancer patients. Therefore, TRPC3 may be a novel therapeutic target for the treatment of colon cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03017-5.
Collapse
|
40
|
Liu J, Yu F, Liu Z, Wang X, Li J. A Robust Prognostic Signature of Tumor Microenvironment in Colorectal Cancer. Cancer Biother Radiopharm 2022; 37:963-975. [PMID: 34551265 DOI: 10.1089/cbr.2021.0171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Colorectal cancer (CRC) has been a major public health problem. Tumor microenvironment (TME) greatly contributes to the heterogeneity of CRC and is crucial for the regulation of CRC progression. The authors' study aimed to develop a robust prognostic signature for CRC patients based on TME-related genes. Materials and Methods: Gene expression data and clinicopathologic information of CRC patients were collected from Gene Expression Omnibus and The Cancer Genome Atlas databases. TME-related genes with prognostic value were identified by Cox regression and bootstrap method. The authors used the prognostic genes to construct a robust prognostic model using the least absolute shrinkage and selection operator (LASSO) regression method. The immune and stromal cell abundance of CRC samples were estimated by a microenvironment cell populations-counter method. Results: Based on a training set that comprised 893 CRC samples and 4775 TME-related genes, they established a prognostic model consisting of 25 TME-related genes. With specific risk score formulae, the prognostic model divided CRC patients into high-risk and low-risk subgroups with significantly different survival, which were further confirmed in validation cohorts consisting of other 473 CRC cases or subpopulation of specific stages. The result of time-dependent receiver operating characteristic analysis demonstrated strong predictive accuracy of the prognostic model both in training and validation cohorts. Multivariate Cox regression analysis showed that the 25-gene signature was an independent prognostic factor for overall survival, which was validated through clinical subgroups analysis. Further analysis revealed that CRC samples of high-risk group was abundant of stromal-relevant processes and had a significantly higher proportion of fibroblasts and endothelial cells infiltration. Conclusion: The authors established a robust prognostic signature of 25 TME-related genes which may be an effective tool for prognostic prediction and CRC patient stratification to assist in making treatment decisions.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Fei Yu
- Emergency Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, P.R. China
| | - Zhao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jianming Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
41
|
Li X, Wu Y, Tian T. TGF-β Signaling in Metastatic Colorectal Cancer (mCRC): From Underlying Mechanism to Potential Applications in Clinical Development. Int J Mol Sci 2022; 23:14436. [PMID: 36430910 PMCID: PMC9698504 DOI: 10.3390/ijms232214436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is a serious public health issue, and it has the leading incidence and mortality among malignant tumors worldwide. CRC patients with metastasis in the liver, lung or other distant sites always have poor prognosis. Thus, there is an urgent need to discover the underlying mechanisms of metastatic colorectal cancer (mCRC) and to develop optimal therapy for mCRC. Transforming growth factor-β (TGF-β) signaling plays a significant role in various physiologic and pathologic processes, and aberrant TGF-β signal transduction contributes to mCRC progression. In this review, we summarize the alterations of the TGF-β signaling pathway in mCRC patients, the functional mechanisms of TGF-β signaling, its promotion of epithelial-mesenchymal transition, its facilitation of angiogenesis, its suppression of anti-tumor activity of immune cells in the microenvironment and its contribution to stemness of CRC cells. We also discuss the possible applications of TGF-β signaling in mCRC diagnosis, prognosis and targeted therapies in clinical trials. Hopefully, these research advances in TGF-β signaling in mCRC will improve the development of new strategies that can be combined with molecular targeted therapy, immunotherapy and traditional therapies to achieve better efficacy and benefit mCRC patients in the near future.
Collapse
Affiliation(s)
| | | | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
42
|
Yu L, Zhang MM, Hou JG. Molecular and cellular pathways in colorectal cancer: apoptosis, autophagy and inflammation as key players. Scand J Gastroenterol 2022; 57:1279-1290. [PMID: 35732586 DOI: 10.1080/00365521.2022.2088247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal carcinogenesis (CRC) is one of the most aggressive forms of cancer, particularly in developing countries. It accounts for the second and third-highest reason for cancer-induced lethality in women and men respectively. CRC involves genetic and epigenetic modifications in colonic epithelium, leading to colon adenocarcinoma. The current review highlights the pathogenic mechanisms and multifactorial etiology of CRC, influenced by apoptosis, inflammation, and autophagy pathways. METHODS We have carried out a selective literature review on mechanisms contributing to the pathogenesis of CRC. RESULTS Resistance to senescence and apoptosis of the mesenchymal cells, which play a key role in intestinal organogenesis, morphogenesis and homeostasis, appears important for sporadic CRC. Additionally, inflammation-associated tumorigenesis is a key incident in CRC, supported by immune disruptors, adaptive and innate immune traits, environmental factors, etc. involving oxidative stress, DNA damage and epigenetic modulations. The self-digesting mechanism, autophagy, also plays a twin role in CRC through the participation of LC3/LC3-II, Beclin-1, ATG5, other autophagy proteins, and Inflammatory Bowel Disease (IBD) susceptibility genes. It facilitates the promotion of effective surveillance pathways and stimulates the generation of malignant tumor cells. The autophagy and apoptotic pathways undergo synergistic or antagonistic interactions in CRC and bear a critical association with IBD that results from the pro-neoplastic effects of persistent intestinal inflammation. Conversely, pro-inflammatory factors stimulate tumor growth and angiogenesis and inhibit apoptosis, suppressing anti-tumor activities. CONCLUSION Hence, research attempts for the development of potential therapies for CRC are in progress, primarily based on combinatorial approaches targeting apoptosis, inflammation, and autophagy.
Collapse
Affiliation(s)
- Lei Yu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Miao-Miao Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Ji-Guang Hou
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Ye Y, Zhang X, Su D, Ren Y, Cheng F, Yao Y, Shi G, Ji Y, Chen S, Shi P, Dai L, Su X, Deng H. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn's colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res Ther 2022; 13:465. [PMID: 36076306 PMCID: PMC9461110 DOI: 10.1186/s13287-022-03157-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are chronic relapsing-remitting inflammatory diseases of the gastrointestinal tract that are typically categorized into two subtypes: Crohn's disease (CD) and ulcerative colitis (UC). Although MSCs therapy has achieved encouraging outcomes in IBD therapy, objective responses are limited in colon fibrosis stenosis owing to the complicated microenvironment of CD and MSCs heterogeneity of quality. Here, we chose IFN-γ and kynurenic acid (KYNA) to overcome the low response and heterogeneity of human adipose-derived MSCs (hADSCs) to treat IBD and expand the therapeutic effects based on the excellent ability of IFN-γ and KYNA to promote indoleamine 2,3-dioxygenase-1 (IDO-1) signaling, providing a potential protocol to treat IBD and fibrosis disease. METHODS hADSCs were isolated, cultured, and identified from human abdominal adipose tissue. The CD pathology-like acute colitis and chronic colon fibrosis rat model was induced by 2,4,6-trinitrobenzen sulfonic acid (TNBS). hADSCs were pretreated in vitro with IFN-γ and KYNA and then were transplanted intravenously at day 1 and 3 of TNBS administration in colitis along with at day 1, 15, and 29 of TNBS administration in chronic colonic fibrosis. Therapeutic efficacy was evaluated by body weights, disease activity index, pathological staining, real-time PCR, Western blot, and flow cytometry. For knockout of IDO-1, hADSCs were transfected with IDO-1-targeting small gRNA carried on a CRISPR-Cas9-lentivirus vector. RESULTS hADSCs treated with IFN-γ and KYNA significantly upregulated the expression and secretion of IDO-1, which has effectively ameliorated CD pathology-like colitis injury and fibrosis. Notably, the ability of hADSCs with IDO-1 knockout to treat colitis was significantly impaired and diminished the protective effects of the primed hADSCs with IFN-γ and KYNA. CONCLUSION Inflammatory cytokines IFN-γ- and KYNA-treated hADSCs more effectively alleviate TNBS-induced colitis and colonic fibrosis through an IDO-1-dependent manner. Primed hADSCs are a promising new strategy to improve the therapeutic efficacy of MSCs and worth further research.
Collapse
Affiliation(s)
- Yixin Ye
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaomei Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dongsheng Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yushuang Ren
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yunqi Yao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yanhong Ji
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Shuang Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Pengyi Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
44
|
Sazonovs A, Stevens CR, Venkataraman GR, Yuan K, Avila B, Abreu MT, Ahmad T, Allez M, Ananthakrishnan AN, Atzmon G, Baras A, Barrett JC, Barzilai N, Beaugerie L, Beecham A, Bernstein CN, Bitton A, Bokemeyer B, Chan A, Chung D, Cleynen I, Cosnes J, Cutler DJ, Daly A, Damas OM, Datta LW, Dawany N, Devoto M, Dodge S, Ellinghaus E, Fachal L, Farkkila M, Faubion W, Ferreira M, Franchimont D, Gabriel SB, Ge T, Georges M, Gettler K, Giri M, Glaser B, Goerg S, Goyette P, Graham D, Hämäläinen E, Haritunians T, Heap GA, Hiltunen M, Hoeppner M, Horowitz JE, Irving P, Iyer V, Jalas C, Kelsen J, Khalili H, Kirschner BS, Kontula K, Koskela JT, Kugathasan S, Kupcinskas J, Lamb CA, Laudes M, Lévesque C, Levine AP, Lewis JD, Liefferinckx C, Loescher BS, Louis E, Mansfield J, May S, McCauley JL, Mengesha E, Mni M, Moayyedi P, Moran CJ, Newberry RD, O'Charoen S, Okou DT, Oldenburg B, Ostrer H, Palotie A, Paquette J, Pekow J, Peter I, Pierik MJ, Ponsioen CY, Pontikos N, Prescott N, Pulver AE, Rahmouni S, Rice DL, Saavalainen P, Sands B, Sartor RB, Schiff ER, Schreiber S, Schumm LP, Segal AW, Seksik P, Shawky R, et alSazonovs A, Stevens CR, Venkataraman GR, Yuan K, Avila B, Abreu MT, Ahmad T, Allez M, Ananthakrishnan AN, Atzmon G, Baras A, Barrett JC, Barzilai N, Beaugerie L, Beecham A, Bernstein CN, Bitton A, Bokemeyer B, Chan A, Chung D, Cleynen I, Cosnes J, Cutler DJ, Daly A, Damas OM, Datta LW, Dawany N, Devoto M, Dodge S, Ellinghaus E, Fachal L, Farkkila M, Faubion W, Ferreira M, Franchimont D, Gabriel SB, Ge T, Georges M, Gettler K, Giri M, Glaser B, Goerg S, Goyette P, Graham D, Hämäläinen E, Haritunians T, Heap GA, Hiltunen M, Hoeppner M, Horowitz JE, Irving P, Iyer V, Jalas C, Kelsen J, Khalili H, Kirschner BS, Kontula K, Koskela JT, Kugathasan S, Kupcinskas J, Lamb CA, Laudes M, Lévesque C, Levine AP, Lewis JD, Liefferinckx C, Loescher BS, Louis E, Mansfield J, May S, McCauley JL, Mengesha E, Mni M, Moayyedi P, Moran CJ, Newberry RD, O'Charoen S, Okou DT, Oldenburg B, Ostrer H, Palotie A, Paquette J, Pekow J, Peter I, Pierik MJ, Ponsioen CY, Pontikos N, Prescott N, Pulver AE, Rahmouni S, Rice DL, Saavalainen P, Sands B, Sartor RB, Schiff ER, Schreiber S, Schumm LP, Segal AW, Seksik P, Shawky R, Sheikh SZ, Silverberg MS, Simmons A, Skeiceviciene J, Sokol H, Solomonson M, Somineni H, Sun D, Targan S, Turner D, Uhlig HH, van der Meulen AE, Vermeire S, Verstockt S, Voskuil MD, Winter HS, Young J, Duerr RH, Franke A, Brant SR, Cho J, Weersma RK, Parkes M, Xavier RJ, Rivas MA, Rioux JD, McGovern DPB, Huang H, Anderson CA, Daly MJ. Large-scale sequencing identifies multiple genes and rare variants associated with Crohn's disease susceptibility. Nat Genet 2022; 54:1275-1283. [PMID: 36038634 PMCID: PMC9700438 DOI: 10.1038/s41588-022-01156-2] [Show More Authors] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/12/2022] [Indexed: 01/18/2023]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of loci associated with Crohn's disease (CD). However, as with all complex diseases, robust identification of the genes dysregulated by noncoding variants typically driving GWAS discoveries has been challenging. Here, to complement GWASs and better define actionable biological targets, we analyzed sequence data from more than 30,000 patients with CD and 80,000 population controls. We directly implicate ten genes in general onset CD for the first time to our knowledge via association to coding variation, four of which lie within established CD GWAS loci. In nine instances, a single coding variant is significantly associated, and in the tenth, ATG4C, we see additionally a significantly increased burden of very rare coding variants in CD cases. In addition to reiterating the central role of innate and adaptive immune cells as well as autophagy in CD pathogenesis, these newly associated genes highlight the emerging role of mesenchymal cells in the development and maintenance of intestinal inflammation.
Collapse
Affiliation(s)
- Aleksejs Sazonovs
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Christine R Stevens
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Kai Yuan
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brandon Avila
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria T Abreu
- Crohn's and Colitis Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Matthieu Allez
- Hopital Saint-Louis, APHP, Universite de Paris, INSERM U1160, Paris, France
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Crohn's and Colitis Center, Massachusetts General Hospital, Boston, MA, USA
| | - Gil Atzmon
- Department for Human Biology, University of Haifa, Haifa, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Jeffrey C Barrett
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- The Institute for Aging Research, The Nathan Shock Center of Excellence in the Basic Biology of Aging and the Paul F. Glenn Center for the Biology of Human Aging Research at Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Laurent Beaugerie
- Gastroenterology Department, Sorbonne Universite, Saint Antoine Hospital, Paris, France
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Alain Bitton
- McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Bernd Bokemeyer
- Department of Internal Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andrew Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Womens Hospital, Boston, MA, USA
| | | | | | - Jacques Cosnes
- Professeur Chef de Service chez APHP and Universite Paris-6, Paris, France
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Allan Daly
- Human Genetics Informatics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Lisa W Datta
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noor Dawany
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcella Devoto
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- University of Rome Sapienza, Rome, Italy
- IRGB - CNR, Cagliari, Italy
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Sheila Dodge
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eva Ellinghaus
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Laura Fachal
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | | | | | | | - Stacey B Gabriel
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tian Ge
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | | | - Kyle Gettler
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mamta Giri
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Philippe Goyette
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
| | - Daniel Graham
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Eija Hämäläinen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marc Hoeppner
- Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Peter Irving
- Department of Gastroenterology, Guys and Saint Thomas Hospital, London, UK
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Vivek Iyer
- Human Genetics Informatics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Chaim Jalas
- Director of Genetic Resources and Services, Center for Rare Jewish Genetic Disorders, Bonei Olam, Brooklyn, NY, USA
| | - Judith Kelsen
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamed Khalili
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Barbara S Kirschner
- Department of Gastroenterology, University of Chicago Medicine, Chicago, IL, USA
| | - Kimmo Kontula
- Department of Medicine, Helsinki University Hospital, and Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Jukka T Koskela
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Subra Kugathasan
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Christopher A Lamb
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Chloé Lévesque
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - James D Lewis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Crohn's and Colitis Foundation, New York, NY, USA
| | | | - Britt-Sabina Loescher
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - John Mansfield
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sandra May
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jacob L McCauley
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Emebet Mengesha
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Myriam Mni
- University of Liège, ULG, Liège, Belgium
| | | | | | | | | | - David T Okou
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Institut National de Sante Publique (INSP), Abidjan, Côte d'Ivoire
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Harry Ostrer
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aarno Palotie
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jean Paquette
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
| | - Joel Pekow
- Department of Gastroenterology, University of Chicago Medicine, Chicago, IL, USA
| | - Inga Peter
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marieke J Pierik
- Department of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | | | - Natalie Prescott
- Department of Medical and Molecular Genetics, Kings College London, London, UK
| | - Ann E Pulver
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Daniel L Rice
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Päivi Saavalainen
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Bruce Sands
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Stefan Schreiber
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - L Philip Schumm
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | | | - Philippe Seksik
- Gastroenterology Department, Sorbonne Universite, Saint Antoine Hospital, Paris, France
| | - Rasha Shawky
- IBD BioResource, NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Shehzad Z Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Alison Simmons
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jurgita Skeiceviciene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Universite, Saint Antoine Hospital, Paris, France
| | - Matthew Solomonson
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hari Somineni
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Dylan Sun
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Stephan Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Turner
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Biomedical Research Centre, Nuffield Department of Clinical Medicine, Experimental Medicine Division, University of Oxford, Oxford, UK
- Department of Pediatrics, John Radcliffe Hospital, Oxford, UK
| | - Andrea E van der Meulen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Séverine Vermeire
- University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sare Verstockt
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Michiel D Voskuil
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Andre Franke
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Steven R Brant
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Crohn's Colitis Center of New Jersey, Department of Medicine, Rutgers Robert Wood Johnson Medical School and Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, New Brunswick and Piscataway, NJ, USA
| | - Judy Cho
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Miles Parkes
- Department of Gastroenterology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Kurt Isselbacher Professor of Medicine at Harvard Medical School, Cambridge, MA, USA
- Core Institute Member, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Immunology Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - John D Rioux
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Carl A Anderson
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Mark J Daly
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
45
|
Chen J, Zhu H, Yin Y, Jia S, Luo X. Colorectal cancer: Metabolic interactions reshape the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2022; 1877:188797. [DOI: 10.1016/j.bbcan.2022.188797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023]
|
46
|
Study of the colonic epithelial-mesenchymal dialogue through establishment of two activated or not mesenchymal cell lines: Activated and resting ones differentially modulate colonocytes in co-culture. PLoS One 2022; 17:e0273858. [PMID: 36040985 PMCID: PMC9426876 DOI: 10.1371/journal.pone.0273858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Continuous and rapid renewal of the colonic epithelium is crucial to resist the plethora of luminal deleterious agents. Subepithelial fibroblasts contribute to this turnover by regulating epithelial proliferation and differentiation. However, when intestinal homeostasis is disturbed, fibroblasts can acquire an activated phenotype and play a major role in the progression of intestinal pathologies. To evaluate the involvement of fibroblasts in the regulation of colonocytes under homeostatic or pathological conditions, we established resting and activated conditionally immortalized fibroblast cell lines (nF and mF) from mouse colonic mucosa. We then studied the epithelial-mesenchymal interactions between activated or resting fibroblasts and the normal mouse colonocytes (Co) using a co-culture model. Both fibroblastic cell lines were characterized by RT-qPCR, western blot and immunofluorescence assay. Our results showed that nF and mF cells were positive for fibroblastic markers such as vimentin and collagen 1, and negative for cytokeratin 18 and E-cadherin, attesting to their fibroblastic type. They also expressed proteins characteristic of the epithelial stem cell niche such as Grem1, CD90 or Wnt5a. Only rare nF fibroblasts were positive for α-SMA, whereas all mF fibroblasts strongly expressed this marker, supporting that mF cells were activated fibroblasts/myofibroblasts. In coculture, nF fibroblasts and Co cells strongly interacted via paracrine exchanges resulting in BMP4 production in nF fibroblasts, activation of BMP signaling in Co colonocytes, and decreased growth of colonocytes. Activated-type mF fibroblasts did not exert the same effects on Co cells, allowing colonocytes free to proliferate. In conclusion, these two colonic fibroblast lines, associated with Co cells in coculture, should allow to better understand the role of mesenchymal cells in the preservation of homeostasis and the development of intestinal pathologies.
Collapse
|
47
|
Novoa Díaz MB, Martín MJ, Gentili C. Tumor microenvironment involvement in colorectal cancer progression via Wnt/β-catenin pathway: Providing understanding of the complex mechanisms of chemoresistance. World J Gastroenterol 2022; 28:3027-3046. [PMID: 36051330 PMCID: PMC9331520 DOI: 10.3748/wjg.v28.i26.3027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) continues to be one of the main causes of death from cancer because patients progress unfavorably due to resistance to current therapies. Dysregulation of the Wnt/β-catenin pathway plays a fundamental role in the genesis and progression of several types of cancer, including CRC. In many subtypes of CRC, hyperactivation of the β-catenin pathway is associated with mutations of the adenomatous polyposis coli gene. However, it can also be associated with other causes. In recent years, studies of the tumor microenvironment (TME) have demonstrated its importance in the development and progression of CRC. In this tumor nest, several cell types, structures, and biomolecules interact with neoplastic cells to pave the way for the spread of the disease. Cross-communications between tumor cells and the TME are then established primarily through paracrine factors, which trigger the activation of numerous signaling pathways. Crucial advances in the field of oncology have been made in the last decade. This Minireview aims to actualize what is known about the central role of the Wnt/β-catenin pathway in CRC chemoresistance and aggressiveness, focusing on cross-communication between CRC cells and the TME. Through this analysis, our main objective was to increase the understanding of this complex disease considering a more global context. Since many treatments for advanced CRC fail due to mechanisms involving chemoresistance, the data here exposed and analyzed are of great interest for the development of novel and effective therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| | - María Julia Martín
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS)-INQUISUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| |
Collapse
|
48
|
Karami Fath M, Anjomrooz M, Taha SR, Shariat Zadeh M, Sahraei M, Atbaei R, Fazlollahpour Naghibi A, Payandeh Z, Rahmani Z, Barati G. The therapeutic effect of exosomes from mesenchymal stem cells on colorectal cancer: Toward cell-free therapy. Pathol Res Pract 2022; 237:154024. [PMID: 35905664 DOI: 10.1016/j.prp.2022.154024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022]
Abstract
Colorectal cancer (CRC) is known for its high mortality rate and affects more men than women. The treatment requires invasive surgical interventions, however, the progression of CRC metastasis is difficult to control in most cases. Mesenchymal stem cells (MSCs) with their outstanding characteristics have been widely used in the treatment of degenerative diseases as well as cancers. They affect the tumor microenvironment through either cell-cell interactions or communications with their secretome. While stem cells may represent a dual role in tumor proliferation and progression, exosomes have attracted much attention as a cell-free therapy in CRC treatment. Exosomes derived from native or genetically modified MSCs, as well as exosomal microRNAs (miRNAs), have been evaluated on CRC progression. Moreover, MSC-derived exosomes have been used as a carrier to deliver anticancer agents in colorectal cancer. In this review, we overview and discuss the current knowledge in both stem cell-based and cell-free exosome therapy of CRC.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Taha
- Faculty of Medicine, Islamic Azad University, Tehran Branch, Tehran, Iran
| | | | - Mahya Sahraei
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Raihaneh Atbaei
- Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | | | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Sweden
| | - Zobeir Rahmani
- Faculty of Paramedical, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
49
|
Becker WR, Nevins SA, Chen DC, Chiu R, Horning AM, Guha TK, Laquindanum R, Mills M, Chaib H, Ladabaum U, Longacre T, Shen J, Esplin ED, Kundaje A, Ford JM, Curtis C, Snyder MP, Greenleaf WJ. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nat Genet 2022; 54:985-995. [PMID: 35726067 PMCID: PMC9279149 DOI: 10.1038/s41588-022-01088-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
Abstract
To chart cell composition and cell state changes that occur during the transformation of healthy colon to precancerous adenomas to colorectal cancer (CRC), we generated single-cell chromatin accessibility profiles and single-cell transcriptomes from 1,000 to 10,000 cells per sample for 48 polyps, 27 normal tissues and 6 CRCs collected from patients with or without germline APC mutations. A large fraction of polyp and CRC cells exhibit a stem-like phenotype, and we define a continuum of epigenetic and transcriptional changes occurring in these stem-like cells as they progress from homeostasis to CRC. Advanced polyps contain increasing numbers of stem-like cells, regulatory T cells and a subtype of pre-cancer-associated fibroblasts. In the cancerous state, we observe T cell exhaustion, RUNX1-regulated cancer-associated fibroblasts and increasing accessibility associated with HNF4A motifs in epithelia. DNA methylation changes in sporadic CRC are strongly anti-correlated with accessibility changes along this continuum, further identifying regulatory markers for molecular staging of polyps.
Collapse
Affiliation(s)
- Winston R Becker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Program in Biophysics, Stanford University, Stanford, CA, USA
| | - Stephanie A Nevins
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek C Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Roxanne Chiu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron M Horning
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tuhin K Guha
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rozelle Laquindanum
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Meredith Mills
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hassan Chaib
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Uri Ladabaum
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Teri Longacre
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Jeanne Shen
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Edward D Esplin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - James M Ford
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
50
|
Joanito I, Wirapati P, Zhao N, Nawaz Z, Yeo G, Lee F, Eng CLP, Macalinao DC, Kahraman M, Srinivasan H, Lakshmanan V, Verbandt S, Tsantoulis P, Gunn N, Venkatesh PN, Poh ZW, Nahar R, Oh HLJ, Loo JM, Chia S, Cheow LF, Cheruba E, Wong MT, Kua L, Chua C, Nguyen A, Golovan J, Gan A, Lim WJ, Guo YA, Yap CK, Tay B, Hong Y, Chong DQ, Chok AY, Park WY, Han S, Chang MH, Seow-En I, Fu C, Mathew R, Toh EL, Hong LZ, Skanderup AJ, DasGupta R, Ong CAJ, Lim KH, Tan EKW, Koo SL, Leow WQ, Tejpar S, Prabhakar S, Tan IB. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat Genet 2022; 54:963-975. [PMID: 35773407 PMCID: PMC9279158 DOI: 10.1038/s41588-022-01100-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/16/2022] [Indexed: 12/12/2022]
Abstract
The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. We defined the intrinsic epithelial axis of colorectal cancer and propose a refined ‘IMF’ classification with five subtypes, combining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F). A single-cell transcriptomic analysis of 63 patients with colorectal cancer classifies tumor cells into two epithelial subtypes. An improved tumor classification based on epithelial subtype, microsatellite stability and fibrosis reveals differences in pathway activation and metastasis.
Collapse
Affiliation(s)
- Ignasius Joanito
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pratyaksha Wirapati
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nancy Zhao
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zahid Nawaz
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Grace Yeo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fiona Lee
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National Cancer Centre, Singapore, Singapore
| | - Christine L P Eng
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National Cancer Centre, Singapore, Singapore
| | | | - Merve Kahraman
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Harini Srinivasan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,National Cancer Centre, Singapore, Singapore
| | | | - Sara Verbandt
- Molecular Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Petros Tsantoulis
- Hôpitaux Universitaires de Genève, Geneva, Switzerland.,University of Geneva, Geneva, Switzerland
| | - Nicole Gunn
- National Cancer Centre, Singapore, Singapore
| | - Prasanna Nori Venkatesh
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zhong Wee Poh
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Rahul Nahar
- MSD International GmbH (Singapore Branch), Singapore, Singapore
| | | | - Jia Min Loo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shumei Chia
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Elsie Cheruba
- National University of Singapore, Singapore, Singapore
| | | | - Lindsay Kua
- National Cancer Centre, Singapore, Singapore
| | | | | | | | - Anna Gan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wan-Jun Lim
- National Cancer Centre, Singapore, Singapore
| | - Yu Amanda Guo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Choon Kong Yap
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Brenda Tay
- National Cancer Centre, Singapore, Singapore
| | - Yourae Hong
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Dawn Qingqing Chong
- National Cancer Centre, Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Aik-Yong Chok
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Shuting Han
- National Cancer Centre, Singapore, Singapore
| | - Mei Huan Chang
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Isaac Seow-En
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Cherylin Fu
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Ronnie Mathew
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Ee-Lin Toh
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore.,EL Toh Colorectal & Minimally Invasive Surgery, Singapore, Singapore
| | - Lewis Z Hong
- MSD International GmbH (Singapore Branch), Singapore, Singapore
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chin-Ann Johnny Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, Singapore.,Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore
| | - Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Emile K W Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Si-Lin Koo
- National Cancer Centre, Singapore, Singapore
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Shyam Prabhakar
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Iain Beehuat Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,National Cancer Centre, Singapore, Singapore. .,Duke-National University of Singapore Medical School, Singapore, Singapore.
| |
Collapse
|