1
|
Rai C, Priyadarshini P. Whey protein hydrolysates improve high-fat-diet-induced obesity by modulating the brain-peripheral axis of GLP-1 through inhibition of DPP-4 function in mice. Eur J Nutr 2023; 62:2489-2507. [PMID: 37154934 DOI: 10.1007/s00394-023-03162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE Obesity is a growing global health concern. Recent literature indicates a prominent role of glucagon-like peptide-1 (GLP-1) in glucose metabolism and food intake. The synergistic action of GLP-1 in the gut and brain is responsible for its satiety-inducing effect, suggesting that upregulation of active GLP-1 levels could be an alternative strategy to combat obesity. Dipeptidyl peptidase-4 (DPP-4) is an exopeptidase known to inactivate GLP-1, suggesting that its inhibition could be a crucial strategy for effectively extending the half-life of endogenous GLP-1. Peptides derived from partial hydrolysis of dietary proteins are gaining traction due to their inhibitory activity on DPP-4. METHODS Whey protein hydrolysate from bovine milk (bmWPH) was produced using simulated in situ digestion, purified using RP-HPLC, and characterized for DPP-4 inhibition. The antiadipogenic and antiobesity activity of bmWPH was then studied in 3T3-L1 preadipocytes and high-fat diet-induced obesity (HFD) mice model, respectively. RESULTS The dose-dependent inhibitory effect of bmWPH on the catalytic activity of DPP-4 was observed. Additionally, bmWPH suppressed adipogenic transcription factors and DPP-4 protein levels, leading to a negative effect on preadipocyte differentiation. In an HFD mice model, co-administration of WPH for 20 weeks downregulated adipogenic transcription factors, resulting in a concomitant reduction in whole body weight and adipose tissues. Mice fed with bmWPH also showed a marked reduction in DPP-4 levels in WAT, liver, and serum. Furthermore, HFD mice fed with bmWPH exhibited increased serum and brain GLP levels, which led to a significant decrease in food intake. CONCLUSION In conclusion, bmWPH reduces body weight in HFD mice by suppressing appetite through GLP-1, a satiety-inducing hormone, in both the brain and peripheral circulation. This effect is achieved through modulation of both the catalytic and non-catalytic activity of DPP-4.
Collapse
Affiliation(s)
- Chaitra Rai
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poornima Priyadarshini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Development of a red fluorescent protein-based cGMP indicator applicable for live-cell imaging. Commun Biol 2022; 5:833. [PMID: 36064581 PMCID: PMC9445041 DOI: 10.1038/s42003-022-03790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
Cyclic guanosine 3', 5'-monophosphate (cGMP) is a second messenger that regulates a variety of physiological processes. Here, we develop a red fluorescent protein-based cGMP indicator, "Red cGull". The fluorescence intensity of Red cGull increase more than sixfold in response to cGMP. The features of this indicator include an EC50 of 0.33 μM for cGMP, an excitation and emission peak at 567 nm and 591 nm, respectively. Live-cell imaging analysis reveal the utility of Red cGull for dual-colour imaging and its ability to be used in conjunction with optogenetics tools. Using enteroendocrine cell lines, Red cGull detects an increase in cGMP following the application of L-arginine. An increase in intracellular cGMP is found to be inhibited by Ca2+, and L-arginine-mediated hormone secretion is not potentiated. We propose that Red cGull will facilitate future research in cell signalling in relation to cGMP and its interplay with other signalling molecules.
Collapse
|
3
|
Aygun H. Exendin-4 increases absence-like seizures and anxiety-depression-like behaviors in WAG/Rij rats. Epilepsy Behav 2021; 123:108246. [PMID: 34385055 DOI: 10.1016/j.yebeh.2021.108246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
AIM Epilepsy is a neurological condition affecting millions of people worldwide. Glucagon-like peptide-1 (GLP-1) is a gut hormone, and its neuroprotective effect was investigated in previous studies. In this study, the effects of exendin-4, a GLP-1 receptor agonist, were studied in genetic absence epileptic Wistar Albino Glaxo/Rijswijk rats (WAG/Rij). WAG/Rij rat is a genetic model of the absence epilepsy and depression-like comorbidity. METHOD We examined the effects of exendin-4 (10, 50 and 100 µg/kg) on the absence seizures (Electrocorticography [ECoG] recordings), anxiety level (open-field test [OF]), and depression-like levels (forced swimming test [FST]) in the WAG/Rij rats. Basal ECoG recording was performed for all rats. Then, exendin-4 (10, 50 or 100 µg/kg) was administered intraperitoneally and ECoG recording was made for 180 min. After ECoG recording, forced swimming test and open-field test were applied. RESULTS Administration of 10, 50, or 100 µg/kg exendin-4 increased the duration and number of spike-wave discharges (SWDs) considerably without changing the amplitude. The 100 µg/kg dose of exendin-4 was the most effective in increasing the total duration of SWDs. Additionally, all exendin-4 doses increased anxiety level in OF and depression-like level in FST. CONCLUSION Our results showed that exendin-4 increased SWD incidence and anxiety- and depression-like behaviors in the WAG/Rij rats. Besides, it was also found that high doses caused the most proabsence effect.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey.
| |
Collapse
|
4
|
Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021; 13:nu13030883. [PMID: 33803183 PMCID: PMC8000029 DOI: 10.3390/nu13030883] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract can assess the nutrient composition of ingested food. The nutrient-sensing mechanisms in specialised epithelial cells lining the gastrointestinal tract, the enteroendocrine cells, trigger the release of gut hormones that provide important local and central feedback signals to regulate nutrient utilisation and feeding behaviour. The evidence for nutrient-stimulated secretion of two of the most studied gut hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), along with the known cellular mechanisms in enteroendocrine cells recruited by nutrients, will be the focus of this review. The mechanisms involved range from electrogenic transporters, ion channel modulation and nutrient-activated G-protein coupled receptors that converge on the release machinery controlling hormone secretion. Elucidation of these mechanisms will provide much needed insight into postprandial physiology and identify tractable dietary approaches to potentially manage nutrition and satiety by altering the secreted gut hormone profile.
Collapse
|
5
|
González-García I, Milbank E, Diéguez C, López M, Contreras C. Glucagon, GLP-1 and Thermogenesis. Int J Mol Sci 2019; 20:ijms20143445. [PMID: 31337027 PMCID: PMC6678955 DOI: 10.3390/ijms20143445] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Brown adipose tissue (BAT) thermogenesis is a conserved mechanism to maintain body temperature in mammals. However, since BAT contribution to energy expenditure can represent a relevant modulator of metabolic homeostasis, many studies have focused on the nervous system and endocrine factors that control the activity of this tissue. There is long-established evidence that the counter-regulatory hormone glucagon negatively influences energy balance, enhances satiety, and increases energy expenditure. Despite compelling evidence showing that glucagon has direct action on BAT thermogenesis, recent findings are questioning this conventional attribute of glucagon action. Glucagon like peptide-1 (GLP-1) is an incretin secreted by the intestinal tract which strongly decreases feeding, and, furthermore, improves metabolic parameters associated with obesity and diabetes. Therefore, GLP-1 receptors (GLP-1-R) have emerged as a promising target in the treatment of metabolic disorders. In this short review, we will summarize the latest evidence in this regard, as well as the current therapeutic glucagon- and GLP-1-based approaches to treating obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
| | - Edward Milbank
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Carlos Diéguez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Miguel López
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Chapelot D, Charlot K. Physiology of energy homeostasis: Models, actors, challenges and the glucoadipostatic loop. Metabolism 2019; 92:11-25. [PMID: 30500561 DOI: 10.1016/j.metabol.2018.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
The aim of this review is to discuss the physiology of energy homeostasis (EH), which is a debated concept. Thus, we will see that the set-point theory is highly challenged and that other models integrating an anticipative component, such as energy allostasis, seem more relevant to experimental reports and life preservation. Moreover, the current obesity epidemic suggests that EH is poorly efficient in the modern human dietary environment. Non-homeostatic phenomena linked to hedonism and reward seem to profoundly impair EH. In this review, the apparent failed homeostatic responses to energy challenges such as exercise, cafeteria diet, overfeeding and diet-induced weight loss, as well as their putative determinants, are analyzed to highlight the mechanisms of EH. Then, the hormonal, neuronal, and metabolic factors of energy intake or energy expenditure are briefly presented. Last, this review focuses on the contributions of two of the most pivotal and often overlooked determinants of EH: the availability of endogenous energy and the pattern of energy intake. A glucoadipostatic loop model is finally proposed to link energy stored in adipose tissue to EH through changes in eating behavior via leptin and sympathetic nervous system activity.
Collapse
Affiliation(s)
- Didier Chapelot
- Université Paris 13, Centre de Recherche en Epidémiologie et Statistique, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Inserm (U1153), Inra (U1125), Cnam, Bobigny, France.
| | - Keyne Charlot
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Brétigny-sur-Orge, France
| |
Collapse
|
7
|
Al-Najim W, Docherty NG, le Roux CW. Food Intake and Eating Behavior After Bariatric Surgery. Physiol Rev 2018; 98:1113-1141. [PMID: 29717927 DOI: 10.1152/physrev.00021.2017] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity is an escalating global chronic disease. Bariatric surgery is a very efficacious treatment for obesity and its comorbidities. Alterations to gastrointestinal anatomy during bariatric surgery result in neurological and physiological changes affecting hypothalamic signaling, gut hormones, bile acids, and gut microbiota, which coalesce to exert a profound influence on eating behavior. A thorough understanding of the mechanisms underlying eating behavior is essential in the management of patients after bariatric surgery. Studies investigating candidate mechanisms have expanded dramatically in the last decade. Herein we review the proposed mechanisms governing changes in eating behavior, food intake, and body weight after bariatric surgery. Additive or synergistic effects of both conditioned and unconditioned factors likely account for the complete picture of changes in eating behavior. Considered application of strategies designed to support the underlying principles governing changes in eating behavior holds promise as a means of optimizing responses to surgery and long-term outcomes.
Collapse
Affiliation(s)
- Werd Al-Najim
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| |
Collapse
|
8
|
Petunina NA, Telnova MЕ. Diabetes and obesity. The role of agonists glucagon-like peptide-1 of in the treatment of type 2 diabetes. DIABETES MELLITUS 2018. [DOI: 10.14341/dm9623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significant number of patients with type 2 diabetes mellitus are obese. It is known that even glucose intolerance, as well as diabetes, can lead to vascular complications. At the same time, weight loss can reduce the risk of type 2 diabetes in obese and pre-diabetic patients. According to available data, a significant decrease in the incretin effect is observed in patients with type 2 diabetes and obese individuals. Thus, a decrease in the incretin effect leads to a violation of the insulin response to the intake of carbohydrates, and, consequently, an increase in the level of glucose in the blood. It was also found that the decrease in the incretin effect in patients with type 2 diabetes can be associated with a lower secretion of glucagon-like peptide-1. The interest is represented by groups of antidiabetic drugs capable of regulating glycemia by affecting the secretion of insulin and glucagon, depending on its level. Such drugs include glucagon-like peptide-1 receptor agonists.
The article shows the advantage of prolonged action in patients with type 2 diabetes and obesity of the glucagon-like peptide 1 receptor agonists (albiglutide, dulaglutide, exenatide with slow release) dosing 1 time a week.
Collapse
|
9
|
Brown JD, McAnally D, Ayala JE, Burmeister MA, Morfa C, Smith L, Ayala JE. Oleoylethanolamide modulates glucagon-like peptide-1 receptor agonist signaling and enhances exendin-4-mediated weight loss in obese mice. Am J Physiol Regul Integr Comp Physiol 2018; 315:R595-R608. [PMID: 29949410 PMCID: PMC6230892 DOI: 10.1152/ajpregu.00459.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 02/08/2023]
Abstract
Long-acting glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists (GLP-1RA), such as exendin-4 (Ex4), promote weight loss. On the basis of a newly discovered interaction between GLP-1 and oleoylethanolamide (OEA), we tested whether OEA enhances GLP-1RA-mediated anorectic signaling and weight loss. We analyzed the effect of GLP-1+OEA and Ex4+OEA on canonical GLP-1R signaling and other proteins/pathways that contribute to the hypophagic action of GLP-1RA (AMPK, Akt, mTOR, and glycolysis). We demonstrate that OEA enhances canonical GLP-1R signaling when combined with GLP-1 but not with Ex4. GLP-1 and Ex4 promote phosphorylation of mTOR pathway components, but OEA does not enhance this effect. OEA synergistically enhanced GLP-1- and Ex4-stimulated glycolysis but did not augment the hypophagic action of GLP-1 or Ex4 in lean or diet-induced obese (DIO) mice. However, the combination of Ex4+OEA promoted greater weight loss in DIO mice than Ex4 or OEA alone during a 7-day treatment. This was due in part to transient hypophagia and increased energy expenditure, phenotypes also observed in Ex4-treated DIO mice. Thus, OEA augments specific GLP-1RA-stimulated signaling but appears to work in parallel with Ex4 to promote weight loss in DIO mice. Elucidating cooperative mechanisms underlying Ex4+OEA-mediated weight loss could, therefore, be leveraged toward more effective obesity therapies.
Collapse
Affiliation(s)
- Jacob D Brown
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona , Orlando, Florida
| | - Danielle McAnally
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona , Orlando, Florida
| | - Jennifer E Ayala
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona , Orlando, Florida
| | - Melissa A Burmeister
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona , Orlando, Florida
| | - Camilo Morfa
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona , Orlando, Florida
| | - Layton Smith
- Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona , Orlando, Florida
| | - Julio E Ayala
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona , Orlando, Florida
| |
Collapse
|
10
|
Basolo A, Burkholder J, Osgood K, Graham A, Bundrick S, Frankl J, Piaggi P, Thearle MS, Krakoff J. Exenatide has a pronounced effect on energy intake but not energy expenditure in non-diabetic subjects with obesity: A randomized, double-blind, placebo-controlled trial. Metabolism 2018; 85:116-125. [PMID: 29596853 PMCID: PMC6062468 DOI: 10.1016/j.metabol.2018.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 01/08/2023]
Abstract
AIMS Exenatide is a glucagon-like peptide 1 (GLP-1) mimetic which induces weight loss predominantly, it is presumed, via decreased food intake. However, circulating GLP-1 is also a determinant of energy expenditure. We sought to quantify the effect of exenatide on energy expenditure (EE) and energy intake. MATERIALS AND METHODS In this single-center, randomized double-blind placebo controlled trial, we randomized 80 healthy, non-diabetic volunteers with obesity (46 women, age: 34.4 ± 8.7 y, body fat by DXA: 44.2 ± 7.8%) to subcutaneous exenatide 10 μg twice daily or placebo. Subjects were admitted to our clinical research unit for measurement of 24 h-EE in a whole-room indirect calorimeter and ad libitum food intake using an automated vending machine paradigm before and after randomization. Furthermore, energy expenditure and ad libitum food intake measures were repeated at 24-week after readmission for 7-day inpatient stay. Body weight was obtained weekly for up to 5 weeks and was recorded at each monthly follow up visit up to 24 weeks. RESULTS Prior to randomization, participants over ate during the 3-day vending machine period in the whole study group (114.6 ± 35.2%), expressed as percentage of weight maintaining energy needs (WMEN) with those who were eventually randomized to exenatide overeating more (121.6 ± 37.7%) compared to placebo group (107.6 ± 31.5%). In the exenatide group, ad libitum absolute energy intake decreased by 1016.1 ± 724.5 kcal/day (95% CI: -1250.9 to -781.2) versus a 245.1 ± 710.5 kcal/day (95% CI: -475.4 to -14.7) decrease in placebo (Δ = -624.8 Kcal/day, p < 0.0001) whereas the reduction in ad libitum caloric intake relative to WMEN was a more modest 366.8 ± 752.1 kcal/day (95% CI: -614.0 to -119.6) decrease compared to 8.0 ± 860.1 kcal/day (95% CI: -286.8 to 270.8) reduction in placebo (Δ = -382.3 Kcal/day, p = 0.03). The decrease was uniform across all macronutrients groups. No differences in 24hEE or substrate oxidation rates were found. In the exenatide group, body weight decreased more over the 5 weeks (β = -0.039 kg/week, p = 0.02) and was lower compared to placebo at the end of fifth week (-1.48 ± 0.77 kg; 95% CI: -3.02 to 0.05, p = 0.06). At the 24-week follow up, there was no difference in energy intake between exenatide group and placebo group and the treatment group decreased 24-h EE more compared to placebo (β = -160.6 Kcal/day, 95% CI: -307.6 to 13.6, p = 0.03) compared to their pre-randomization measurement. However, this reduction was not present after adjustment for changes in FM and FFM (β = -87 kcal/day, p = 0.14). No difference was observed in body weight (Δ = -1.72 kg, 95% CI: -5.77 to 2.30, p = 0.39) in exenatide versus placebo over 24 weeks. CONCLUSION Compared with placebo, exenatide decreased early ad libitum energy intake but did not change 24 h-EE. However, the reduction was more modest in relative versus absolute terms (i.e. below that needed for WMEN). Thus, although rate of weight change was greater in the exenatide treated subjects at 5 weeks, the absolute difference in weight was not significant. These findings indicate that although exenatide reduces food intake, it may be more beneficial in blunting overeating and thus may serve to more prevent weight regain following initial weight loss.
Collapse
Affiliation(s)
- Alessio Basolo
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 North 16th Street, Phoenix, AZ 85016, United States.
| | - Joshua Burkholder
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 North 16th Street, Phoenix, AZ 85016, United States
| | - Kristy Osgood
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 North 16th Street, Phoenix, AZ 85016, United States
| | - Alexis Graham
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 North 16th Street, Phoenix, AZ 85016, United States
| | - Sarah Bundrick
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 North 16th Street, Phoenix, AZ 85016, United States.
| | - Joseph Frankl
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 North 16th Street, Phoenix, AZ 85016, United States.
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 North 16th Street, Phoenix, AZ 85016, United States.
| | - Marie S Thearle
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 North 16th Street, Phoenix, AZ 85016, United States.
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 North 16th Street, Phoenix, AZ 85016, United States.
| |
Collapse
|
11
|
Mietlicki-Baase EG, Liberini CG, Workinger JL, Bonaccorso RL, Borner T, Reiner DJ, Koch-Laskowski K, McGrath LE, Lhamo R, Stein LM, De Jonghe BC, Holz GG, Roth CL, Doyle RP, Hayes MR. A vitamin B12 conjugate of exendin-4 improves glucose tolerance without associated nausea or hypophagia in rodents. Diabetes Obes Metab 2018; 20:1223-1234. [PMID: 29327400 PMCID: PMC5899935 DOI: 10.1111/dom.13222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
AIMS While pharmacological glucagon-like peptide-1 receptor (GLP-1R) agonists are FDA-approved for treating type 2 diabetes mellitus (T2DM) and obesity, a major side effect is nausea/malaise. We recently developed a conjugate of vitamin B12 (B12) bound to the GLP-1R agonist exendin-4 (Ex4), which displays enhanced proteolytic stability and retention of GLP-1R agonism. Here, we evaluate whether the conjugate (B12-Ex4) can improve glucose tolerance without producing anorexia and malaise. MATERIALS AND METHODS We evaluated the effects of systemic B12-Ex4 and unconjugated Ex4 on food intake and body weight change, oral glucose tolerance and nausea/malaise in male rats, and on intraperitoneal glucose tolerance in mice. To evaluate whether differences in the profile of effects of B12-Ex4 vs unconjugated Ex4 are the result of altered CNS penetrance, rats received systemic injections of fluorescein-Ex4 (Flex), Cy5-B12 or Cy5-B12-Ex4 and brain penetrance was evaluated using confocal microscopy. Uptake of systemically administered Cy5-B12-Ex4 in insulin-containing pancreatic beta cells was also examined. RESULTS B12-Ex4 conjugate improves glucose tolerance, but does not elicit the malaise and anorexia produced by unconjugated Ex4. While Flex robustly penetrates into the brain (dorsal vagal complex, paraventricular hypothalamus), Cy5-B12 and Cy5-B12-Ex4 fluorescence were not observed centrally, supporting an absence of CNS penetrance, in line with observed reduction in CNS-associated Ex4 side effects. Cy5-B12-Ex4 colocalizes with insulin in the pancreas, suggesting direct pancreatic action as a potential mechanism underlying the hypoglycaemic effects of B12-Ex4. CONCLUSION These novel findings highlight the potential clinical utility of B12-Ex4 conjugates as possible future T2DM therapeutics with reduced incidence of adverse effects.
Collapse
Affiliation(s)
| | - Claudia G. Liberini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| | - David J. Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kieran Koch-Laskowski
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lauren E. McGrath
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rinzin Lhamo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lauren M. Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Bart C. De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| | - George G. Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210
| | - Christian L. Roth
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA
| | - Robert P. Doyle
- Department of Chemistry, Syracuse University, Syracuse, NY 13244
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210
- Address correspondence to: Dr. Matthew R. Hayes, University of Pennsylvania, 125 South 31 St., Philadelphia, PA 19104, 215-573-6070, ; Dr. Robert P. Doyle, Syracuse University, 111 College Place, Syracuse, NY 13244, 315-443-3584,
| | - Matthew R. Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
- Address correspondence to: Dr. Matthew R. Hayes, University of Pennsylvania, 125 South 31 St., Philadelphia, PA 19104, 215-573-6070, ; Dr. Robert P. Doyle, Syracuse University, 111 College Place, Syracuse, NY 13244, 315-443-3584,
| |
Collapse
|
12
|
GLP-1 receptor agonist liraglutide exerts central action to induce β-cell proliferation through medulla to vagal pathway in mice. Biochem Biophys Res Commun 2018; 499:618-625. [DOI: 10.1016/j.bbrc.2018.03.199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 01/17/2023]
|
13
|
Bomba M, Granzotto A, Castelli V, Massetti N, Silvestri E, Canzoniero LMT, Cimini A, Sensi SL. Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice. Neurobiol Aging 2017; 64:33-43. [PMID: 29331730 DOI: 10.1016/j.neurobiolaging.2017.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
Abstract
Modulation of insulin-dependent signaling is emerging as a valuable therapeutic tool to target neurodegeneration. In the brain, the activation of insulin receptors promotes cell growth, neuronal repair, and protection. Altered brain insulin signaling participates in the cognitive decline seen in Alzheimer's disease patients and the aging brain. Glucagon-like peptide-1 (GLP-1) regulates insulin secretion and, along with GLP-1 analogues, enhances neurotrophic signaling and counteracts cognitive deficits in preclinical models of neurodegeneration. Moreover, recent evidence indicates that GLP-1 modulates the activity of the brain-derived neurotrophic factor (BDNF). In this study, in adult wild-type mice, here employed as a model of mid-life brain aging, we evaluated the effects of a 2-month treatment with exenatide, a GLP-1 analogue. We found that exenatide promotes the enhancement of long-term memory performances. Biochemical and imaging analyses show that the drug promotes the activation of the BDNF-TrkB neurotrophic axis and inhibits apoptosis by decreasing p75NTR-mediated signaling. The study provides preclinical evidence for the use of exenatide to delay age-dependent cognitive decline.
Collapse
Affiliation(s)
- Manuela Bomba
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Alberto Granzotto
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Noemi Massetti
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Elena Silvestri
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Lorella M T Canzoniero
- Division of Pharmacology, Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, USA; National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Stefano L Sensi
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy; Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy; Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders, University of California - Irvine, Irvine, USA.
| |
Collapse
|
14
|
Gumuslu E, Cine N, Ertan M, Mutlu O, Komsuoglu Celikyurt I, Ulak G. Exenatide upregulates gene expression of glucagon-like peptide-1 receptor and nerve growth factor in streptozotocin/nicotinamide-induced diabetic mice. Fundam Clin Pharmacol 2017; 32:174-180. [DOI: 10.1111/fcp.12329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/15/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Esen Gumuslu
- Department of Medical Genetics; Medical Faculty; Kocaeli University; Kocaeli 41380 Turkey
| | - Naci Cine
- Department of Medical Genetics; Medical Faculty; Kocaeli University; Kocaeli 41380 Turkey
| | - Merve Ertan
- Department of Medical Genetics; Medical Faculty; Kocaeli University; Kocaeli 41380 Turkey
| | - Oguz Mutlu
- Department of Medical Pharmacology; Psychopharmacology Lab.; Medical Faculty; Kocaeli University; Kocaeli 41380 Turkey
| | - Ipek Komsuoglu Celikyurt
- Department of Medical Pharmacology; Psychopharmacology Lab.; Medical Faculty; Kocaeli University; Kocaeli 41380 Turkey
| | - Guner Ulak
- Department of Medical Pharmacology; Psychopharmacology Lab.; Medical Faculty; Kocaeli University; Kocaeli 41380 Turkey
| |
Collapse
|
15
|
Jalewa J, Sharma MK, Gengler S, Hölscher C. A novel GLP-1/GIP dual receptor agonist protects from 6-OHDA lesion in a rat model of Parkinson's disease. Neuropharmacology 2017; 117:238-248. [DOI: 10.1016/j.neuropharm.2017.02.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/25/2022]
|
16
|
Bodnaruc AM, Prud’homme D, Blanchet R, Giroux I. Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review. Nutr Metab (Lond) 2016; 13:92. [PMID: 27990172 PMCID: PMC5148911 DOI: 10.1186/s12986-016-0153-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/30/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The positive influences of glucagon-like peptide-1 (GLP-1) on blood glucose homeostasis, appetite sensations, and food intake provide a strong rationale for its therapeutic potential in the nutritional management of obesity and type 2 diabetes. AIM To summarize GLP-1 physiology and the nutritional modulation of its secretion in the context of obesity and type 2 diabetes management. FINDINGS GLP-1 is mainly synthesized and secreted by enteroendocrine L-cells of the gastrointestinal tract. Its secretion is partly mediated by the direct nutrient sensing by G-protein coupled receptors which specifically bind to monosaccharides, peptides and amino-acids, monounsaturated and polyunsaturated fatty acids as well as to short chain fatty acids. Foods rich in these nutrients, such as high-fiber grain products, nuts, avocados and eggs also seem to influence GLP-1 secretion and may thus promote associated beneficial outcomes in healthy individuals as well as individuals with type 2 diabetes or with other metabolic disturbances. CONCLUSION The stimulation of endogenous GLP-1 secretion by manipulating the composition of the diet may be a relevant strategy for obesity and type 2 diabetes management. A better understanding of the dose-dependent effects as well as the synergistic effects of nutrients and whole foods is needed in order to develop recommendations to appropriately modify the diet to enhance GLP-1 beneficial effects.
Collapse
Affiliation(s)
- Alexandra M. Bodnaruc
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, 35, University Private, Room 050F, K1N 6N5 Ottawa, ON Canada
- Institut de Recherche de l’Hôpital Montfort, Institut du savoir, 745 Montreal Road, Room 202, K1K 0T2 Ottawa, ON Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 35 University Private, Room 050F, K1N 6N5 Ottawa, ON Canada
| | - Denis Prud’homme
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, 35, University Private, Room 050F, K1N 6N5 Ottawa, ON Canada
- Institut de Recherche de l’Hôpital Montfort, Institut du savoir, 745 Montreal Road, Room 202, K1K 0T2 Ottawa, ON Canada
| | - Rosanne Blanchet
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 35 University Private, Room 050F, K1N 6N5 Ottawa, ON Canada
| | - Isabelle Giroux
- Institut de Recherche de l’Hôpital Montfort, Institut du savoir, 745 Montreal Road, Room 202, K1K 0T2 Ottawa, ON Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private, Room 116, K1N 6N5 Ottawa, ON Canada
| |
Collapse
|
17
|
Ramírez-López MT, Arco R, Decara J, Vázquez M, Noemí Blanco R, Alén F, Suárez J, Gómez de Heras R, Rodríguez de Fonseca F. Exposure to a Highly Caloric Palatable Diet during the Perinatal Period Affects the Expression of the Endogenous Cannabinoid System in the Brain, Liver and Adipose Tissue of Adult Rat Offspring. PLoS One 2016; 11:e0165432. [PMID: 27806128 PMCID: PMC5091916 DOI: 10.1371/journal.pone.0165432] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022] Open
Abstract
Recent studies have linked gestational exposure to highly caloric diets with a disrupted endogenous cannabinoid system (ECS). In the present study, we have extended these studies by analyzing the impact of the exposure to a palatable diet during gestation and lactation on a) the adult expression of endocannabinoid-related behaviors, b) the metabolic profile of adult offspring and c) the mRNA expression of the signaling machinery of the ECS in the hypothalamus, the liver and the adipose tissue of adult offspring of both sexes. Exposure to a palatable diet resulted in a) sex-dimorphic and perinatal diet specific feeding behaviors, including the differential response to the inhibitory effects of the cannabinoid receptor inverse agonist AM251, b) features of metabolic syndrome including increased adiposity, hyperleptinemia, hypertriglyceridemia and hypercholesterolemia and c) tissue and sex-specific changes in the expression of both CB1 and CB2 receptors and in that of the endocannabinoid-degrading enzymes FAAH and MAGL, being the adipose tissue the most affected organ analyzed. Since the effects were observed in adult animals that were weaned while consuming a normal diet, the present results indicate that the ECS is one of the targets of maternal programming of the offspring energy expenditure. These results clearly indicate that the maternal diet has long-term effects on the development of pups through multiple alterations of signaling homeostatic pathways that include the ECS. The potential relevance of these alterations for the current obesity epidemic is discussed.
Collapse
Affiliation(s)
- María Teresa Ramírez-López
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Campus de Somosaguas s/n, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Raquel Arco
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010, Málaga, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010, Málaga, Spain
| | - Mariam Vázquez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010, Málaga, Spain
| | - Rosario Noemí Blanco
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Campus de Somosaguas s/n, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Francisco Alén
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010, Málaga, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010, Málaga, Spain
| | - Raquel Gómez de Heras
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Campus de Somosaguas s/n, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010, Málaga, Spain
| |
Collapse
|
18
|
Ten Kulve JS, Veltman DJ, van Bloemendaal L, Groot PFC, Ruhé HG, Barkhof F, Diamant M, Ijzerman RG. Endogenous GLP1 and GLP1 analogue alter CNS responses to palatable food consumption. J Endocrinol 2016; 229:1-12. [PMID: 26769912 DOI: 10.1530/joe-15-0461] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/14/2016] [Indexed: 01/08/2023]
Abstract
Glucagon-like peptide-1 (GLP1) affects appetite, supposedly mediated via the central nervous system (CNS). In this study, we investigate whether modulation of CNS responses to palatable food consumption may be a mechanism by which GLP1 contributes to the central regulation of feeding. Using functional MRI, we determined the effects of endogenous GLP1 and treatment with the GLP1 analogue liraglutide on CNS activation to chocolate milk receipt. Study 1 included 20 healthy lean individuals and 20 obese patients with type 2 diabetes (T2DM). Scans were performed on two occasions: during infusion of the GLP1 receptor antagonist exendin 9-39 (blocking actions of endogenous GLP1) and during placebo infusion. Study 2 was a randomised, cross-over intervention study carried out in 20 T2DM patients, comparing treatment with liraglutide to insulin, after 10 days and 12 weeks. Compared with lean individuals, T2DM patients showed reduced activation to chocolate milk in right insula (P = 0.04). In lean individuals, blockade of endogenous GLP1 effects inhibited activation in bilateral insula (P ≤ 0.03). Treatment in T2DM with liraglutide, vs insulin, increased activation to chocolate milk in right insula and caudate nucleus after 10 days (P ≤ 0.03); however, these effects ceased to be significant after 12 weeks. Our findings in healthy lean individuals indicate that endogenous GLP1 is involved in the central regulation of feeding by affecting central responsiveness to palatable food consumption. In obese T2DM, treatment with liraglutide may improve the observed deficit in responsiveness to palatable food, which may contribute to the induction of weight loss observed during treatment. However, no long-term effects of liraglutide were observed.
Collapse
Affiliation(s)
- Jennifer S Ten Kulve
- Diabetes Center/Department of Internal MedicineVU University Medical Center, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of PsychiatryVU University Medical Center, Amsterdam, The Netherlands
| | - Liselotte van Bloemendaal
- Diabetes Center/Department of Internal MedicineVU University Medical Center, Amsterdam, The Netherlands
| | - Paul F C Groot
- Department of RadiologyAcademic Medical Center, Amsterdam, The Netherlands
| | - Henricus G Ruhé
- Department of PsychiatryAcademic Medical Center, Amsterdam, The Netherlands University of GroningenUniversity Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineVU University Medical Center, Amsterdam, The Netherlands
| | - Michaela Diamant
- Diabetes Center/Department of Internal MedicineVU University Medical Center, Amsterdam, The Netherlands
| | - Richard G Ijzerman
- Diabetes Center/Department of Internal MedicineVU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Rondanelli M, Perna S, Astrone P, Grugnetti A, Solerte SB, Guido D. Twenty-four-week effects of liraglutide on body composition, adherence to appetite, and lipid profile in overweight and obese patients with type 2 diabetes mellitus. Patient Prefer Adherence 2016; 10:407-13. [PMID: 27069358 PMCID: PMC4818054 DOI: 10.2147/ppa.s97383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Liraglutide has well-known effects on glucose patterns. However, its several other metabolic properties are still controversial. Given this background, the aims of the present study are to evaluate the effects of 24-week liraglutide treatment on body composition, appetite, and lipid profile in overweight and obese type 2 diabetes mellitus (T2DM) patients. METHODS A cohort study was carried out on overweight and obese T2DM patients with glycosylated hemoglobin A1c equal to 6% (42 mmol/mol)-10% (86 mmol/mol), under a 3-month treatment (at least) with maximal dose of metformin as stable regime, by adding liraglutide at doses up to 3 mg/d. Body composition markers were measured by dual-energy X-ray densitometry at baseline and after 24 weeks of liraglutide treatment. Glucose control was monitored by glucose, glycosylated hemoglobin A1c, insulin, and homeostasis model assessment. Finally, the appetite sensation and plasma lipids were also evaluated. RESULTS Twenty-eight subjects (male/female: 16/12, mean age: 58.75±9.33 years, body mass index: 34.13±5.46 kg/m(2)) were evaluated. Accounting for the adjustment for age, sex, and duration of diabetes, we noted significant decreases in body mass index (-0.86 kg/m(2), P=0.024), fat mass (-2.01 kg, P=0.015), fat mass index (-0.71 kg/m(2), P=0.014), android fat (-1.72%, P=0.022), trunk fat (-1.52%, P=0.016), and waist circumference (-6.86 cm, P<0.001) from the baseline values. Haber score was increased by 3.82 units (P=0.009), and the number of metabolic syndrome risk factors was decreased (-0.69 units, P=0.012). The glucose control variables and total cholesterol/high-density lipoprotein cholesterol ratio also showed significant decreases from baseline values. CONCLUSION The 24-week liraglutide treatment leads to the reduction of fat mass, android fat, trunk fat, and appetite by improving the lipid profile, glucose control, and insulin sensitivity.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Endocrinology and Nutrition Unit, Section of Human Nutrition, Department of Public Health, Experimental and Forensic Medicine, Agency for Elderly People Services, Santa Margherita Hospital, University of Pavia, Pavia, Italy
| | - Simone Perna
- Endocrinology and Nutrition Unit, Section of Human Nutrition, Department of Public Health, Experimental and Forensic Medicine, Agency for Elderly People Services, Santa Margherita Hospital, University of Pavia, Pavia, Italy
- Correspondence: Simone Perna, Endocrinology and Nutrition Unit, Section of Human Nutrition and Dietetics, Department of Public Health, Experimental and Forensic Medicine, Agency for Elderly People Services, Santa Margherita Hospital, University of Pavia, Via Emilia 12, Pavia, Italy, Tel +39 0382 381706, Email
| | - Paolo Astrone
- Section of Geriatrics and Gerontology, Department of Internal Medicine, Agency for Elderly People Services, Santa Margherita Hospital, University of Pavia, Pavia, Italy
| | - Annalisa Grugnetti
- Section of Geriatrics and Gerontology, Department of Internal Medicine, Agency for Elderly People Services, Santa Margherita Hospital, University of Pavia, Pavia, Italy
| | - Sebastiano Bruno Solerte
- Section of Geriatrics and Gerontology, Department of Internal Medicine, Agency for Elderly People Services, Santa Margherita Hospital, University of Pavia, Pavia, Italy
| | - Davide Guido
- Medical and Genomics Statistics Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Biostatistics and Clinical Epidemiology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Finan B, Clemmensen C, Müller TD. Emerging opportunities for the treatment of metabolic diseases: Glucagon-like peptide-1 based multi-agonists. Mol Cell Endocrinol 2015; 418 Pt 1:42-54. [PMID: 26151488 DOI: 10.1016/j.mce.2015.07.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/24/2015] [Accepted: 07/02/2015] [Indexed: 12/18/2022]
Abstract
Obesity is a pathogenic gateway to the metabolic syndrome and the complications thereof, thus interventions aimed at preventing or reversing the metabolic derangements underlying obesity hold great therapeutic promise. However, the complexity of energy balance regulation, combined with the heterologous pathophysiology of human obesity, renders effective medicinal intervention very difficult. Indeed, the search for the silver bullet in anti-obesity medicines has been laden with drugs of underwhelming efficacy and unacceptable side effects. This can partly be the consequence that many of these drug interventions have been historically directed at single molecular targets. New multi-molecular combination therapies have shown promising clinical outcomes in terms of weight loss, yet multi-functional single molecules may offer even more advantages than adjunctive co-treatments. Single molecules with integrated activities derived from multiple hormones involved in the physiological control of metabolism have emerged as one of the more promising candidates for reversing obesity. The inclusion of glucagon-like peptide-1 (GLP-1) as one of the constituents is a unifying factor amongst the majority of these unimolecular multi-agonists. The scope of this review is to summarize the current preclinical and clinical landscape of GLP-1-based therapies, focusing on combinatorial therapies with a particular emphasis on single molecule compounds displaying multi-agonist properties.
Collapse
Affiliation(s)
- Brian Finan
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany.
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
21
|
Krieger JP, Langhans W, Lee SJ. Vagal mediation of GLP-1's effects on food intake and glycemia. Physiol Behav 2015; 152:372-80. [DOI: 10.1016/j.physbeh.2015.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022]
|
22
|
ten Kulve JS, Veltman DJ, van Bloemendaal L, Barkhof F, Deacon CF, Holst JJ, Konrad RJ, Sloan JH, Drent ML, Diamant M, IJzerman RG. Endogenous GLP-1 mediates postprandial reductions in activation in central reward and satiety areas in patients with type 2 diabetes. Diabetologia 2015; 58:2688-98. [PMID: 26385462 PMCID: PMC4630252 DOI: 10.1007/s00125-015-3754-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS The central nervous system (CNS) is a major player in the regulation of food intake. The gut hormone glucagon-like peptide-1 (GLP-1) has been proposed to have an important role in this regulation by relaying information about nutritional status to the CNS. We hypothesised that endogenous GLP-1 has effects on CNS reward and satiety circuits. METHODS This was a randomised, crossover, placebo-controlled intervention study, performed in a university medical centre in the Netherlands. We included patients with type 2 diabetes and healthy lean control subjects. Individuals were eligible if they were 40-65 years. Inclusion criteria for the healthy lean individuals included a BMI <25 kg/m(2) and normoglycaemia. Inclusion criteria for the patients with type 2 diabetes included BMI >26 kg/m(2), HbA1c levels between 42 and 69 mmol/mol (6.0-8.5%) and treatment for diabetes with only oral glucose-lowering agents. We assessed CNS activation, defined as blood oxygen level dependent (BOLD) signal, in response to food pictures in obese patients with type 2 diabetes (n = 20) and healthy lean individuals (n = 20) using functional magnetic resonance imaging (fMRI). fMRI was performed in the fasted state and after meal intake on two occasions, once during infusion of the GLP-1 receptor antagonist exendin 9-39, which was administered to block actions of endogenous GLP-1, and on the other occasion during saline (placebo) infusion. Participants were blinded for the type of infusion. The order of infusion was determined by block randomisation. The primary outcome was the difference in BOLD signal, i.e. in CNS activation, in predefined regions in the CNS in response to viewing food pictures. RESULTS All patients were included in the analyses. Patients with type 2 diabetes showed increased CNS activation in CNS areas involved in the regulation of feeding (insula, amygdala and orbitofrontal cortex) in response to food pictures compared with lean individuals (p ≤ 0.04). Meal intake reduced activation in the insula in response to food pictures in both groups (p ≤ 0.05), but this was more pronounced in patients with type 2 diabetes. Blocking actions of endogenous GLP-1 significantly prevented meal-induced reductions in bilateral insula activation in response to food pictures in patients with type 2 diabetes (p ≤ 0.03). CONCLUSIONS/INTERPRETATION Our findings support the hypothesis that endogenous GLP-1 is involved in postprandial satiating effects in the CNS of obese patients with type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT 01363609. Funding The study was funded in part by a grant from Novo Nordisk.
Collapse
Affiliation(s)
- Jennifer S ten Kulve
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
| | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Liselotte van Bloemendaal
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Carolyn F Deacon
- The NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- The NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - John H Sloan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Madeleine L Drent
- Department of Internal Medicine/Endocrine Section, VU University Medical Center, Amsterdam, the Netherlands
- Department of Clinical Neuropsychology, VU University, Amsterdam, the Netherlands
| | - Michaela Diamant
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Richard G IJzerman
- Department of Internal Medicine, Diabetes Center, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Trapp S, Cork SC. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation. Am J Physiol Regul Integr Comp Physiol 2015; 309:R795-804. [PMID: 26290108 DOI: 10.1152/ajpregu.00333.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/13/2015] [Indexed: 01/28/2023]
Abstract
Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation.
Collapse
Affiliation(s)
- Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Simon C Cork
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
24
|
Peripheral signals mediate the beneficial effects of gastric surgery in obesity. Gastroenterol Res Pract 2015; 2015:560938. [PMID: 25960740 PMCID: PMC4413036 DOI: 10.1155/2015/560938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/21/2015] [Indexed: 02/07/2023] Open
Abstract
Obesity is nowadays a public health problem both in the industrialized world and developing countries. The different treatments to fight against obesity are not very successful with the exception of gastric surgery. The mechanism behind the achievement of this procedure remains unclear although the modifications in the pattern of gastrointestinal hormones production appear to be responsible for the beneficial effect. The gastrointestinal tract has emerged in the last time as an endocrine organ in charge of response to the different stimulus related to nutritional status by the modulation of more than 30 signals acting at central level to modulate food intake and body weight. The production of some of these gastric derived signals has been proved to be altered in obesity (ghrelin, CCK, and GLP-1). In fact, bariatric surgery modifies the production of both gastrointestinal and adipose tissue peripheral signals beyond the gut microbiota composition. Through this paper the main peripheral signals altered in obesity will be reviewed together with their modifications after bariatric surgery.
Collapse
|
25
|
Ronveaux CC, Tomé D, Raybould HE. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. J Nutr 2015; 145:672-80. [PMID: 25833771 PMCID: PMC4381768 DOI: 10.3945/jn.114.206029] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/16/2015] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs). The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular localization according to feeding status rather than their protein concentrations. It is possible that several gut peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of noninvasive antiobesity treatments.
Collapse
Affiliation(s)
- Charlotte C Ronveaux
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA; and,Department of Nutrition and Physiology and Ingestive Behavior, AgroParisTech, Paris, France
| | - Daniel Tomé
- Department of Nutrition and Physiology and Ingestive Behavior, AgroParisTech, Paris, France
| | - Helen E Raybould
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA; and
| |
Collapse
|
26
|
Ma J, Lin TC, Liu W. Gastrointestinal hormones and polycystic ovary syndrome. Endocrine 2014; 47:668-78. [PMID: 24791734 DOI: 10.1007/s12020-014-0275-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/16/2014] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disease of women in reproductive age. It is characterized by anovulation and hyperandrogenism. Most often patients with PCOS have metabolic abnormalities such as dyslipidemia, insulin resistance, and glucose intolerance. It is not surprising that obesity is high prevalent in PCOS. Over 60 % of PCOS women are obese or overweight. Modulation of appetite and energy intake is essential to maintain energy balance and body weight. The gastrointestinal tract, where nutrients are digested and absorbed, plays a central role in energy homeostasis. The signals from the gastrointestinal tract arise from the stomach (ghrelin release), proximal small intestine (CCK release), and distal small intestine (GLP-1 and PYY) in response to food. These hormones are recognized as "appetite regulatory hormones." Weight loss is the key in the treatments of obese/overweight patients with PCOS. However, current non-pharmacologic management of body weight is hard to achieve. This review highlighted the gastrointestinal hormones, and discussed the potential strategies aimed at modifying hormones for treatment in PCOS.
Collapse
Affiliation(s)
- Jing Ma
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
27
|
The DPP-IV inhibitor linagliptin and GLP-1 induce synergistic effects on body weight loss and appetite suppression in the diet-induced obese rat. Eur J Pharmacol 2014; 741:254-63. [DOI: 10.1016/j.ejphar.2014.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 01/13/2023]
|
28
|
Wright FL, Rodgers RJ. Behavioural profile of exendin-4/naltrexone dose combinations in male rats during tests of palatable food consumption. Psychopharmacology (Berl) 2014; 231:3729-44. [PMID: 24682505 DOI: 10.1007/s00213-014-3507-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/12/2014] [Indexed: 12/25/2022]
Abstract
RATIONALE The glucagon-like peptide 1 receptor (GLP-1R) agonist exendin-4 potently suppresses food intake in animals and humans. However, little is known about the behavioural specificity of this effect either when administered alone or when co-administered with another anorectic agent. OBJECTIVES The present study characterises the effects of exendin-4, both alone and in combination with naltrexone, on behaviours displayed by male rats during tests with palatable mash. METHODS Experiment 1 examined the dose-response effects of exendin-4 (0.025-2.5 μg/kg, IP), while experiment 2 profiled the effects of low-dose combinations of the peptide (0.025 and 0.25 μg/kg) and naltrexone (0.1 mg/kg). RESULTS In experiment 1, exendin-4 dose dependently suppressed food intake as well as the frequency and rate of eating. However, these effects were accompanied by dose-dependent reductions in all active behaviours and, at 2.5 μg/kg, a large increase in resting and disruption of the behavioural satiety sequence (BSS). In experiment 2, while exendin-4 (0.25 μg/kg) and naltrexone each produced a significant reduction in intake and feeding behaviour (plus an acceleration in the BSS), co-treatment failed to produce stronger effects than those seen in response to either compound alone. CONCLUSION Similarities between the behavioural signature of exendin-4 and that previously reported for the emetic agent lithium chloride would suggest that exendin-4 anorexia is related to the aversive effects of the peptide. Furthermore, as low-dose combinations of the peptide with naltrexone failed to produce an additive/synergistic anorectic effect, this particular co-treatment strategy would not appear to have therapeutic significance.
Collapse
Affiliation(s)
- F L Wright
- Behavioural Neuroscience Laboratory, Institute of Psychological Sciences, University of Leeds, Leeds, LS2 9JT, UK, England
| | | |
Collapse
|
29
|
van Bloemendaal L, Ten Kulve JS, la Fleur SE, Ijzerman RG, Diamant M. Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS. J Endocrinol 2014; 221:T1-16. [PMID: 24323912 DOI: 10.1530/joe-13-0414] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The delivery of nutrients to the gastrointestinal tract after food ingestion activates the secretion of several gut-derived mediators, including the incretin hormone glucagon-like peptide 1 (GLP-1). GLP-1 receptor agonists (GLP-1RA), such as exenatide and liraglutide, are currently employed successfully in the treatment of patients with type 2 diabetes mellitus. GLP-1RA improve glycaemic control and stimulate satiety, leading to reductions in food intake and body weight. Besides gastric distension and peripheral vagal nerve activation, GLP-1RA induce satiety by influencing brain regions involved in the regulation of feeding, and several routes of action have been proposed. This review summarises the evidence for a physiological role of GLP-1 in the central regulation of feeding behaviour and the different routes of action involved. Also, we provide an overview of presently available data on pharmacological stimulation of GLP-1 pathways leading to alterations in CNS activity, reductions in food intake and weight loss.
Collapse
Affiliation(s)
- L van Bloemendaal
- Diabetes Centre, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Hurtado-Carneiro V, Roncero I, Egger SS, Wenger RH, Blazquez E, Sanz C, Alvarez E. PAS kinase is a nutrient and energy sensor in hypothalamic areas required for the normal function of AMPK and mTOR/S6K1. Mol Neurobiol 2014; 50:314-26. [PMID: 24445950 DOI: 10.1007/s12035-013-8630-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/24/2013] [Indexed: 12/14/2022]
Abstract
The complications caused by overweight, obesity and type 2 diabetes are one of the main problems that increase morbidity and mortality in developed countries. Hypothalamic metabolic sensors play an important role in the control of feeding and energy homeostasis. PAS kinase (PASK) is a nutrient sensor proposed as a regulator of glucose metabolism and cellular energy. The role of PASK might be similar to other known metabolic sensors, such as AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR). PASK-deficient mice resist diet-induced obesity. We have recently reported that AMPK and mTOR/S6K1 pathways are regulated in the ventromedial and lateral hypothalamus in response to nutritional states, being modulated by anorexigenic glucagon-like peptide-1 (GLP-1)/exendin-4 in lean and obese rats. We identified PASK in hypothalamic areas, and its expression was regulated under fasting/re-feeding conditions and modulated by exendin-4. Furthermore, PASK-deficient mice have an impaired activation response of AMPK and mTOR/S6K1 pathways. Thus, hypothalamic AMPK and S6K1 were highly activated under fasted/re-fed conditions. Additionally, in this study, we have observed that the exendin-4 regulatory effect in the activity of metabolic sensors was lost in PASK-deficient mice, and the anorexigenic properties of exendin-4 were significantly reduced, suggesting that PASK could be a mediator in the GLP-1 signalling pathway. Our data indicated that the PASK function could be critical for preserving the nutrient effect on AMPK and mTOR/S6K1 pathways and maintain the regulatory role of exendin-4 in food intake. Some of the antidiabetogenic effects of exendin-4 might be modulated through these processes.
Collapse
Affiliation(s)
- Verónica Hurtado-Carneiro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Plaza S. Ramón y Cajal, s/n, Madrid, 28040, Spain,
| | | | | | | | | | | | | |
Collapse
|
31
|
Ando T, Haraguchi A, Matsunaga T, Natsuda S, Yamasaki H, Usa T, Kawakami A. Liraglutide as a potentially useful agent for regulating appetite in diabetic patients with hypothalamic hyperphagia and obesity. Intern Med 2014; 53:1791-5. [PMID: 25130112 DOI: 10.2169/internalmedicine.53.1646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypothalamic hyperphagia and obesity are characterized by a lack of satiety and an abnormally high appetite that is difficult to control. We herein report the cases of two patients with hypothalamic hyperphagia and obesity with MRI-detectable hypothalamic lesions. These patients suffered from diabetes mellitus associated with an abnormal eating behavior and weight gain. Liraglutide was successfully used to treat their diabetes mellitus and suppress their abnormal appetites. Glucagon-like peptide-1 analogues, including liraglutide, are promising treatment options in patients with hypothalamic hyperphagia and obesity, as these agents enhance the hypothalamic input of the satiety signal, which is lacking in such patients.
Collapse
Affiliation(s)
- Takao Ando
- Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Madsbad S. The role of glucagon-like peptide-1 impairment in obesity and potential therapeutic implications. Diabetes Obes Metab 2014; 16:9-21. [PMID: 23617798 DOI: 10.1111/dom.12119] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/19/2013] [Accepted: 04/19/2013] [Indexed: 12/20/2022]
Abstract
The hormone glucagon-like peptide-1 (GLP-1) is released from the gut in response to food intake. It acts as a satiety signal, leading to reduced food intake, and also as a regulator of gastric emptying. Furthermore, GLP-1 functions as an incretin hormone, stimulating insulin release and inhibiting glucagon secretion from the pancreas in response to food ingestion. Evidence suggests that the action or effect of GLP-1 may be impaired in obese subjects, even in those with normal glucose tolerance. GLP-1 impairment may help explain the increased gastric emptying and decreased satiety signalling seen in obesity. Incretin impairment, probably associated with reduced insulinotropic potency of GLP-1, is also characteristic of type 2 diabetes (T2D). Therefore, it is possible that incretin impairment may contribute to the pathophysiological bridge between obesity and T2D. This review summarises current knowledge about the pathophysiology and consequences of GLP-1 and incretin impairment in obesity, and examines the evidence for an incretin-related link between obesity and T2D. It also considers the current literature surrounding the novel use of GLP-1 receptor agonists as a treatment for obesity in patients with normoglycaemia, prediabetes and T2D.
Collapse
Affiliation(s)
- S Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
| |
Collapse
|
33
|
Bogacka I, Roane DS, Xi X, Zhou J, Li B, Ryan DH, Martin RJ. Expression Levels of Genes Likely Involved in Glucose-sensing in the Obese Zucker Rat Brain. Nutr Neurosci 2013; 7:67-74. [PMID: 15279492 DOI: 10.1080/10284150410001710401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It has been suggested that certain cells in the brain, like pancreatic beta-cells, use glucose transporter-2 (GLUT-2), glucokinase and glucagon-like peptide-1 receptor (GLP-1R) to sense glucose in the service of multiple aspects of energy balance. The obese Zucker rat displays numerous disturbances in energy homeostasis and may provide a model of dysfunctional expression of genes related to nutrient control systems. Using real-time RT-PCR we measured gene expression for three of the pancreatic glucose-sensing markers and neuropeptide Y (NPY) in the medial, lateral hypothalamus and hindbrain of lean and obese Zucker rats of both genders. Additionally, we measured circulating levels of glucose, leptin, insulin, corticosterone and glucagon. The results indicate that GLUT-2 mRNA expression is decreased, whereas glucokinase is increased in the hindbrain of obese rats. NPY mRNA level is significantly higher, whereas GLP-1R is significantly lower in the medial hypothalamus in obese individuals. Gender-related differences were found in the hindbrain and medial hypothalamus for GLUT-2 and in the lateral hypothalamus for GLP-1R and they may be related to the fact that the female Zucker rats do not develop diabetes as readily as males. Furthermore, the hindbrain may be an important site for glucose-sensing where major phenotypic changes occur for glucose-sensing genes expression.
Collapse
Affiliation(s)
- Iwona Bogacka
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Treating obesity: is it all in the gut? Drug Discov Today 2013; 19:845-58. [PMID: 24291217 DOI: 10.1016/j.drudis.2013.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 11/22/2022]
Abstract
Obesity is a leading cause of preventable mortality worldwide, with current strategies for treatment including life-style changes, pharmacological intervention and bariatric surgery. With pharmacological intervention showing at best modest patient benefits, new treatments are required. Modulation of anorectic gut hormones could offer the potential to elicit the required life-changing level of efficacy only currently seen with bariatric surgery, and without the cardiovascular risk associated with a number of the current marketed therapies. This review will discuss the gut hormones glucagon-like peptide-1 (GLP-1), Ghrelin and cholecystokinin (CCK)--for which more advanced non-peptide chemical matter has been discovered acting through these hormone pathways and/or their receptors.
Collapse
|
35
|
Abstract
Obesity is a leading cause of morbidity and mortality worldwide. There is still a wide disparity between the necessity and availability of safe and effective antiobesity pharmacotherapies. Current drugs are associated with adverse effects and are limited in their efficacy. There is thus an urgent need for new antiobesity agents. Animal models are critical to the study of the biological mechanisms underpinning energy homeostasis and obesity and provide useful tools for the development of novel antiobesity agents. Our understanding of the complex neuronal and hormonal systems that regulate appetite and body weight has largely been based on studies in animals. This review describes the physiological basis of appetite, rodent models used in the development of antiobesity drugs, and potential future targets for novel antiobesity agents.
Collapse
Affiliation(s)
- A. Agahi
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - K. G. Murphy
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
36
|
Schlögl H, Kabisch S, Horstmann A, Lohmann G, Müller K, Lepsien J, Busse-Voigt F, Kratzsch J, Pleger B, Villringer A, Stumvoll M. Exenatide-induced reduction in energy intake is associated with increase in hypothalamic connectivity. Diabetes Care 2013; 36:1933-40. [PMID: 23462665 PMCID: PMC3687323 DOI: 10.2337/dc12-1925] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor agonists such as exenatide are known to influence neural activity in the hypothalamus of animals and to reduce energy intake. In humans, however, significant weight loss has been observed in only a subgroup of patients. Why only some individuals respond with weight loss and others do not remains unclear. In this functional magnetic resonance imaging (fMRI) study, we investigated differences in hypothalamic connectivity between "responders" (reduction in energy intake after exenatide infusion) and "nonresponders." RESEARCH DESIGN AND METHODS We performed a randomized, double-blinded, placebo-controlled, cross-over fMRI study with intravenous administration of exenatide in obese male volunteers. During brain scanning with continuous exenatide or placebo administration, participants rated food and nonfood images. After each scanning session, energy intake was measured using an ad libitum buffet. Functional hypothalamic connectivity was assessed by eigenvector centrality mapping, a measure of connectedness throughout the brain. RESULTS Responders showed significantly higher connectedness of the hypothalamus, which was specific for the food pictures condition, in the exenatide condition compared with placebo. Nonresponders did not show any significant exenatide-induced changes in hypothalamic connectedness. CONCLUSIONS Our results demonstrate a central hypothalamic effect of peripherally administered exenatide that occurred only in the group that showed an exenatide-dependent anorexigenic effect. These findings indicate that the hypothalamic response seems to be the crucial factor for the effect of exenatide on energy intake.
Collapse
Affiliation(s)
- Haiko Schlögl
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mul JD, Begg DP, Barrera JG, Li B, Matter EK, D'Alessio DA, Woods SC, Seeley RJ, Sandoval DA. High-fat diet changes the temporal profile of GLP-1 receptor-mediated hypophagia in rats. Am J Physiol Regul Integr Comp Physiol 2013; 305:R68-77. [PMID: 23616105 DOI: 10.1152/ajpregu.00588.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Overconsumption of a high-fat diet promotes weight gain that can result in obesity and associated comorbidities, including Type 2 diabetes mellitus. Consumption of a high-fat diet also alters gut-brain communication. Glucagon-like peptide 1 (GLP-1) is an important gastrointestinal signal that modulates both short- and long-term energy balance and is integral in maintenance of glucose homeostasis. In the current study, we investigated whether high-fat diets (40% or 81% kcal from fat) modulated the ability of the GLP-1 receptor (GLP-1r) agonists exendin-4 (Ex4) and liraglutide to reduce food intake and body weight. We observed that rats maintained on high-fat diets had a delayed acute anorexic response to peripheral administration of Ex4 or liraglutide compared with low-fat diet-fed rats (17% kcal from fat). However, once suppression of food intake in response to Ex4 or liraglutide started, the effect persisted for a longer time in the high-fat diet-fed rats compared with low-fat diet-fed rats. In contrast, centrally administered Ex4 suppressed food intake similarly between high-fat diet-fed and low-fat diet-fed rats. Chronic consumption of a high-fat diet did not change the pharmacokinetics of Ex4 but increased intestinal Glp1r expression and decreased hindbrain Glp1r expression. Taken together, these findings demonstrate that dietary composition alters the temporal profile of the anorectic response to exogenous GLP-1r agonists.
Collapse
Affiliation(s)
- Joram D Mul
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH 45327, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Obesity is a major worldwide health problem. The treatment options are severely limited. The development of novel anti-obesity drugs is fraught with efficacy and safety issues. Consequently, several investigational anti-obesity drugs have failed to gain marketing approval in recent years. Anorectic gut hormones offer a potentially safe and viable option for the treatment of obesity. The prospective utility of gut hormones has improved drastically in recent years with the development of longer acting analogues. Additionally, specific combinations of gut hormones have been demonstrated to have additive anorectic effects. This article reviews the current stage of anti-obesity drugs in development, focusing on gut hormone-based therapies.
Collapse
Affiliation(s)
- Anne K McGavigan
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | |
Collapse
|
39
|
Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Plácido A, Santos MS, Oliveira CR, Moreira PI. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2013; 1832:527-41. [PMID: 23314196 DOI: 10.1016/j.bbadis.2013.01.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/18/2012] [Accepted: 01/06/2013] [Indexed: 12/14/2022]
Abstract
According to World Health Organization estimates, type 2 diabetes (T2D) is an epidemic (particularly in under development countries) and a socio-economic challenge. This is even more relevant since increasing evidence points T2D as a risk factor for Alzheimer's disease (AD), supporting the hypothesis that AD is a "type 3 diabetes" or "brain insulin resistant state". Despite the limited knowledge on the molecular mechanisms and the etiological complexity of both pathologies, evidence suggests that neurodegeneration/death underlying cognitive dysfunction (and ultimately dementia) upon long-term T2D may arise from a complex interplay between T2D and brain aging. Additionally, decreased brain insulin levels/signaling and glucose metabolism in both pathologies further suggests that an effective treatment strategy for one disorder may be also beneficial in the other. In this regard, one such promising strategy is a novel successful anti-T2D class of drugs, the glucagon-like peptide-1 (GLP-1) mimetics (e.g. exendin-4 or liraglutide), whose potential neuroprotective effects have been increasingly shown in the last years. In fact, several studies showed that, besides improving peripheral (and probably brain) insulin signaling, GLP-1 analogs minimize cell loss and possibly rescue cognitive decline in models of AD, Parkinson's (PD) or Huntington's disease. Interestingly, exendin-4 is undergoing clinical trials to test its potential as an anti-PD therapy. Herewith, we aim to integrate the available data on the metabolic and neuroprotective effects of GLP-1 mimetics in the central nervous system (CNS) with the complex crosstalk between T2D-AD, as well as their potential therapeutic value against T2D-associated cognitive dysfunction.
Collapse
Affiliation(s)
- A I Duarte
- Life Sciences Department, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Parkes DG, Mace KF, Trautmann ME. Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1. Expert Opin Drug Discov 2012; 8:219-44. [PMID: 23231438 DOI: 10.1517/17460441.2013.741580] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The GLP-1 receptor agonist exenatide is synthetic exendin-4, a peptide originally isolated from the salivary secretions of the Gila monster. Exenatide was developed as a first-in-class diabetes therapy, with immediate- and extended-release formulations. In preclinical diabetes models, exenatide enhanced glucose-dependent insulin secretion, suppressed inappropriately elevated glucagon secretion, slowed gastric emptying, reduced body weight, enhanced satiety, and preserved pancreatic β-cell function. In clinical trials, both exenatide formulations reduced hyperglycemia in patients with type 2 diabetes mellitus (T2DM) and were associated with weight loss. AREAS COVERED This article reviews the development of exenatide from its discovery and preclinical investigations, to the elucidation of its pharmacological mechanisms of action in mammalian systems. The article also presents the pharmacokinetic profiling and toxicology studies of exenatide, as well as its validation in clinical trials. EXPERT OPINION GLP-1 receptor agonists represent a new paradigm for the treatment of patients with T2DM. By leveraging incretin physiology, a natural regulatory system that coordinates oral nutrient intake with mechanisms of metabolic control, these agents address multiple core defects in the pathophysiology of T2DM. Studies have identified unique benefits including improvements in glycemic control and weight, and the potential for beneficial effects on the cardiometabolic system without the increased risk of hypoglycemia associated with insulin therapy. Peptide hormone therapeutics can offer significant advantages over small molecule drug targets when it comes to specificity, potency, and more predictable side effects. As exemplified by exenatide, injectable peptides can be important drugs for the treatment of chronic diseases, such as T2DM.
Collapse
Affiliation(s)
- David G Parkes
- Amylin Pharmaceuticals, Inc., 9360 Towne Centre Drive, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
41
|
Dong CX, Brubaker PL. Ghrelin, the proglucagon-derived peptides and peptide YY in nutrient homeostasis. Nat Rev Gastroenterol Hepatol 2012; 9:705-15. [PMID: 23026903 DOI: 10.1038/nrgastro.2012.185] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulation of nutrient homeostasis is implicated in the current epidemics of obesity and type 2 diabetes mellitus. The maintenance of homeostasis in the setting of repeated cycles of feeding and fasting occurs through complex interactions between metabolic, hormonal and neural factors. Although pancreatic islets, the liver, muscle, adipocytes and the central nervous system are all key players in this network, the gastrointestinal tract is the first tissue exposed to ingested nutrients and thus has an important role. This Review focuses on several of the endocrine hormones released by the gastrointestinal tract prior to or during nutrient ingestion that have key roles in maintaining energy balance. These hormones include the gastric orexigenic hormone, ghrelin, and the distal L cell anorexigenic and metabolic hormones, glucagon-like peptide (GLP)-1, GLP-2, oxyntomodulin and peptide YY. Each of these hormones exerts a distinct set of biological actions to maintain nutrient homeostasis, the properties of which are currently, or might soon be, exploited in the clinic for the treatment of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Charlotte X Dong
- Department of Physiology, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | |
Collapse
|
42
|
Jessen L, Aulinger BA, Hassel JL, Roy KJ, Smith EP, Greer TM, Woods SC, Seeley RJ, D'Alessio DA. Suppression of food intake by glucagon-like peptide-1 receptor agonists: relative potencies and role of dipeptidyl peptidase-4. Endocrinology 2012; 153:5735-45. [PMID: 23033273 PMCID: PMC3512077 DOI: 10.1210/en.2012-1358] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Administration of the glucagon-like peptide-1 (GLP-1) receptor agonists GLP-1 and exendin-4 (Ex-4) directly into the central nervous system decreases food intake. But although Ex-4 potently suppresses food intake after peripheral administration, the effects of parenteral GLP-1 are variable and not as strong. A plausible explanation for these effects is the rapid inactivation of circulating GLP-1 by dipeptidyl peptidase-4 (DPP-4), an enzyme that does not alter Ex-4 activity. To test this hypothesis, we assessed the relative potency of Ex-4 and GLP-1 under conditions in which DPP-4 activity was reduced. Outbred rats, wild-type mice, and mice with a targeted deletion of DPP-4 (Dpp4(-/-)) were treated with GLP-1 alone or in combination with the DPP-4 inhibitor vildagliptin, Ex-4, or saline, and food intake was measured. GLP-1 alone, even at high doses, did not affect feeding in wild-type mice or rats but did reduce food intake when combined with vildagliptin or given to Dpp4(-/-) mice. Despite plasma clearance similar to DPP-4-protected GLP-1, equimolar Ex-4 caused greater anorexia than vildagliptin plus GLP-1. To determine whether supraphysiological levels of endogenous GLP-1 would suppress food intake if protected from DPP-4, rats with Roux-en-Y gastric bypass and significantly elevated postprandial plasma GLP-1 received vildagliptin or saline. Despite 5-fold greater postprandial GLP-1 in these animals, vildagliptin did not affect food intake in Roux-en-Y gastric bypass rats. Thus, in both mice and rats, peripheral GLP-1 reduces food intake significantly less than Ex-4, even when protected from DPP-4. These findings suggest distinct potencies of GLP-1 receptor agonists on food intake that cannot be explained by plasma pharmacokinetics.
Collapse
Affiliation(s)
- Lene Jessen
- Division of Endocrinology, University of Cincinnati, Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The receptive function of hypothalamic and brainstem centres to hormonal and nutrient signals affecting energy balance. Proc Nutr Soc 2012; 71:463-77. [PMID: 22931748 DOI: 10.1017/s0029665112000778] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hypothalamic arcuate nucleus (ARC) and the area postrema (AP) represent targets for hormonal and metabolic signals involved in energy homoeostasis, e.g. glucose, amylin, insulin, leptin, peptide YY (PYY), glucagon-like peptide 1 (GLP-1) and ghrelin. Orexigenic neuropeptide Y expressing ARC neurons are activated by food deprivation and inhibited by feeding in a nutrient-dependent manner. PYY and leptin also reverse or prevent fasting-induced activation of the ARC. Interestingly, hypothalamic responses to fasting are blunted in different models of obesity (e.g. diet-induced obesity (DIO) or late-onset obesity). The AP also responds to feeding-related signals. The pancreatic hormone amylin acts via the AP to control energy intake. Amylin-sensitive AP neurons are also glucose-responsive. Furthermore, diet-derived protein attenuates amylin responsiveness suggesting a modulation of AP sensitivity by macronutrient supply. This review gives an overview of the receptive function of the ARC and the AP to hormonal and nutritional stimuli involved in the control of energy balance and the possible implications in the context of obesity. Collectively, there is consistency between the neurophysiological actions of these stimuli and their effects on energy homoeostasis under experimental conditions. However, surprisingly little progress has been made in the development of effective pharmacological approaches against obesity. A promising way to improve effectiveness involves combination treatments (e.g. amylin/leptin agonists). Hormonal alterations (e.g. GLP-1 and PYY) are also considered to mediate body weight loss observed in obese patients receiving bariatric surgery. The effects of hormonal and nutritional signals and their interactions might hold the potential to develop poly-mechanistic therapeutic strategies against obesity.
Collapse
|
44
|
Swithers SE, Laboy AF, Clark K, Cooper S, Davidson TL. Experience with the high-intensity sweetener saccharin impairs glucose homeostasis and GLP-1 release in rats. Behav Brain Res 2012; 233:1-14. [PMID: 22561130 PMCID: PMC3378816 DOI: 10.1016/j.bbr.2012.04.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 12/26/2022]
Abstract
Previous work from our lab has demonstrated that experience with high-intensity sweeteners in rats leads to increased food intake, body weight gain and adiposity, along with diminished caloric compensation and decreased thermic effect of food. These changes may occur as a result of interfering with learned relations between the sweet taste of food and the caloric or nutritive consequences of consuming those foods. The present experiments determined whether experience with the high-intensity sweetener saccharin versus the caloric sweetener glucose affected blood glucose homeostasis. The results demonstrated that during oral glucose tolerance tests, blood glucose levels were more elevated in animals that had previously consumed the saccharin-sweetened supplements. In contrast, during glucose tolerance tests when a glucose solution was delivered directly into the stomach, no differences in blood glucose levels between the groups were observed. Differences in oral glucose tolerance responses were not accompanied by differences in insulin release; insulin release was similar in animals previously exposed to saccharin and those previously exposed to glucose. However, release of GLP-1 in response to an oral glucose tolerance test, but not to glucose tolerance tests delivered by gavage, was significantly lower in saccharin-exposed animals compared to glucose-exposed animals. Differences in both blood glucose and GLP-1 release in saccharin animals were rapid and transient, and suggest that one mechanism by which exposure to high-intensity sweeteners that interfere with a predictive relation between sweet tastes and calories may impair energy balance is by suppressing GLP-1 release, which could alter glucose homeostasis and reduce satiety.
Collapse
Affiliation(s)
- Susan E Swithers
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
45
|
Guo X, Mattar SG, Navia JA, Kassab GS. Response of gut hormones after implantation of a reversible gastric restrictive device in different animal models. J Surg Res 2012; 178:165-71. [PMID: 22459287 DOI: 10.1016/j.jss.2012.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/03/2012] [Accepted: 02/16/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Variable responses of gut hormones have been observed after bariatric procedures. The aim of the present study was to evaluate the ghrelin, glucagon-like peptide 1 (GLP-1), and leptin levels in nonobese canine and obese rat models after weight loss owing to a reversible gastric restriction (RGR) device. METHODS Mongrel dogs and obese Zucker rats were submitted to either surgical implantation or a sham operation and were followed up for 6 wk. The serum fasting ghrelin, GLP-1, and leptin levels in dogs were measured using enzyme-linked immunosorbent assay before and after surgical implantation and after implant removal. The protein expression of mucosa ghrelin, GLP-1, and leptin in the dog and rat stomach were measured using Western blotting. RESULTS The RGR implant in dogs and rats resulted in a significant decrease in food intake and body weight. In the nonobese dog, the serum ghrelin level and mucosa ghrelin expression were significantly increased after surgical implantation (P < 0.05) and tended to recover after implant removal. In the obese rat, mucosa ghrelin expression decreased by about 27% (P = 0.06) 6 wk after implantation. A lower serum leptin level in dogs and lower mucosa leptin expression in dogs and rats was observed after surgical implantation compared with the sham procedure (P < 0.05). The RGR implant had no influence on the serum GLP-1 level in dogs or mucosa GLP-1 expression in either animal model. CONCLUSIONS Our results showed that ghrelin levels are downregulated with short-term RGR implantation in obese rats but upregulated in nonobese dogs, implying that the energy balance could be an important determinant of ghrelin level. The marked suppression of leptin in both animal models might contribute to the weight-reducing effect of the RGR implant.
Collapse
Affiliation(s)
- Xiaomei Guo
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis School of Engineering and Technology, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
46
|
Erreger K, Davis AR, Poe AM, Greig NH, Stanwood GD, Galli A. Exendin-4 decreases amphetamine-induced locomotor activity. Physiol Behav 2012; 106:574-8. [PMID: 22465309 DOI: 10.1016/j.physbeh.2012.03.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 12/21/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is released in response to nutrient ingestion and is a regulator of energy metabolism and consummatory behaviors through both peripheral and central mechanisms. The GLP-1 receptor (GLP-1R) is widely distributed in the central nervous system, however little is known about how GLP-1Rs regulate ambulatory behavior. The abused psychostimulant amphetamine (AMPH) promotes behavioral locomotor activity primarily by inducing the release of the neurotransmitter dopamine. Here, we identify the GLP-1R agonist exendin-4 (Ex-4) as a modulator of behavioral activation by AMPH. We report that in rats a single acute administration of Ex-4 decreases both basal locomotor activity as well as AMPH-induced locomotor activity. Ex-4 did not induce behavioral responses reflecting anxiety or aversion. Our findings implicate GLP-1R signaling as a novel modulator of psychostimulant-induced behavior and therefore a potential therapeutic target for psychostimulant abuse.
Collapse
Affiliation(s)
- Kevin Erreger
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity. Br J Nutr 2012; 108:778-93. [PMID: 22409929 DOI: 10.1017/s0007114512000529] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal peptides are classically known as short-term signals, primarily inducing satiation and/or satiety. However, accumulating evidence has broadened this view, and their role in long-term energy homeostasis and the development of obesity has been increasingly recognised. In the present review, the recent research involving the role of satiation signals, especially ghrelin, cholecystokinin, glucagon-like peptide 1 and peptide YY, in the development and treatment of obesity will be discussed. Their activity, interactions and release profile vary constantly with changes in dietary and energy influences, intestinal luminal environment, body weight and metabolic status. Manipulation of gut peptides and nutrient sensors in the oral and postoral compartments through diet and/or changes in gut microflora or using multi-hormone 'cocktail' therapy are among promising approaches aimed at reducing excess food consumption and body-weight gain.
Collapse
|
48
|
Possible involvement of melanocortin-4-receptor and AMP-activated protein kinase in the interaction of glucagon-like peptide-1 and leptin on feeding in rats. Biochem Biophys Res Commun 2012; 420:36-41. [PMID: 22390932 DOI: 10.1016/j.bbrc.2012.02.109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/16/2012] [Indexed: 01/09/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) and leptin are anorectic hormones produced in the small intestine and white adipose tissue, respectively. Investigating how these hormones act together as an integrated anorectic signal is important to elucidate a mechanism to maintain energy balance. In the present study, coadministration of subthreshold GLP-1 and leptin dramatically reduced feeding in rats. Although coadministration of GLP-1 with leptin did not enhance leptin signal transduction in the hypothalamus, it significantly decreased phosphorylation of AMP-activated protein kinase (AMPK). In addition, coadministration of GLP-1 with leptin significantly increased proopiomelanocortin (POMC) mRNA levels. Considering that α-melanocortin stimulating hormone (α-MSH) is derived from POMC and functions through the melanocortin-4-receptor (MC4-R) as a key molecule involved in feeding reduction, the interaction of GLP-1 and leptin on feeding reduction may be mediated through the α-MSH/MC4-R system. As expected, the interaction of GLP-1 and leptin was abolished by intracerebroventricular preadministration of the MC4-R antagonists agouti-related peptide and SHU9119. Taken together, GLP-1 and leptin cooperatively reduce feeding at least in part via inhibition of AMPK following binding of α-MSH to MC4-R.
Collapse
|
49
|
Hurtado-Carneiro V, Sanz C, Roncero I, Vazquez P, Blazquez E, Alvarez E. Glucagon-like peptide 1 (GLP-1) can reverse AMP-activated protein kinase (AMPK) and S6 kinase (P70S6K) activities induced by fluctuations in glucose levels in hypothalamic areas involved in feeding behaviour. Mol Neurobiol 2012; 45:348-61. [PMID: 22311299 DOI: 10.1007/s12035-012-8239-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/13/2012] [Indexed: 11/26/2022]
Abstract
The anorexigenic peptide, glucagon-like peptide-1 (GLP-1), reduces glucose metabolism in the human hypothalamus and brain stem. The brain activity of metabolic sensors such as AMP-activated protein kinase (AMPK) responds to changes in glucose levels. The mammalian target of rapamycin (mTOR) and its downstream target, p70S6 kinase (p70S6K), integrate nutrient and hormonal signals. The hypothalamic mTOR/p70S6K pathway has been implicated in the control of feeding and the regulation of energy balances. Therefore, we investigated the coordinated effects of glucose and GLP-1 on the expression and activity of AMPK and p70S6K in the areas involved in the control of feeding. The effect of GLP-1 on the expression and activities of AMPK and p70S6K was studied in hypothalamic slice explants exposed to low- and high-glucose concentrations by quantitative real-time RT-PCR and by the quantification of active-phosphorylated protein levels by immunoblot. In vivo, the effects of exendin-4 on hypothalamic AMPK and p70S6K activation were analysed in male obese Zucker and lean controls 1 h after exendin-4 injection to rats fasted for 48 h or after re-feeding for 2-4 h. High-glucose levels decreased the expression of Ampk in the lateral hypothalamus and treatment with GLP-1 reversed this effect. GLP-1 treatment inhibited the activities of AMPK and p70S6K when the activation of these protein kinases was maximum in both the ventromedial and lateral hypothalamic areas. Furthermore, in vivo s.c. administration of exendin-4 modulated AMPK and p70S6K activities in those areas, in both fasted and re-fed obese Zucker and lean control rats.
Collapse
Affiliation(s)
- Verónica Hurtado-Carneiro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Complutense University, Ciudad Universitaria, sn, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Chaudhuri A, Ghanim H, Vora M, Sia CL, Korzeniewski K, Dhindsa S, Makdissi A, Dandona P. Exenatide exerts a potent antiinflammatory effect. J Clin Endocrinol Metab 2012; 97:198-207. [PMID: 22013105 PMCID: PMC3251936 DOI: 10.1210/jc.2011-1508] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Our objective was to determine whether exenatide exerts an antiinflammatory effect. RESEARCH DESIGN AND METHODS Twenty-four patients were prospectively randomized to be injected sc with either exenatide 10 μg twice daily [n = 12; mean age = 56 ± 3 yr; mean body mass index = 39.8 ± 2 kg/m(2); mean glycosylated hemoglobin (HbA1c) = 8.6 ± 0.4%] or placebo twice daily (n = 12; mean age = 54 ± 4 yr; mean body mass index = 39.1 ± 1.6 kg/m(2); mean HbA1c = 8.5 ± 0.3%) for 12 wk. Fasting blood samples were obtained at 0, 3, 6, and 12 wk. Blood samples were also collected for up to 6 h after a single dose of exenatide (5 μg) or placebo. RESULTS Fasting blood glucose fell from 139 ± 17 to 110 ± 9 mg/dl, HbA1c from 8.6 ± 0.4 to 7.4 ± 0.5% (P < 0.05), and free fatty acids by 21 ± 5% from baseline (P < 0.05) with exenatide. There was no weight loss. There was a significant reduction in reactive oxygen species generation and nuclear factor-κB binding by 22 ± 9 and 26 ± 7%, respectively, and the mRNA expression of TNFα, IL-1β, JNK-1, TLR-2, TLR-4, and SOCS-3 in mononuclear cells by 31 ± 12, 22 ± 10, 20 ± 11, 22 ± 9, 16 ± 7, and 31 ± 10%, respectively (P < 0.05 for all) after 12 wk of exenatide. After a single injection of exenatide, there was a reduction by 20 ± 7% in free fatty acids, 19 ± 7% in reactive oxygen species generation, 39 ± 11% in nuclear factor-κB binding, 18 ± 9% in TNFα expression, 26 ± 7% in IL-1β expression, 18 ± 7% in JNK-1 expression, 24 ± 12% in TLR-4 expression, and 23 ± 11% in SOCS-3 expression (P < 0.05 for all). The plasma concentrations of monocyte chemoattractant protein-1, matrix metalloproteinase-9, serum amyloid A, and IL-6 were suppressed after 12 wk exenatide treatment by 15 ± 7, 20 ± 11, 16 ± 7, and 22 ± 12%, respectively (P < 0.05 for all). CONCLUSIONS Exenatide exerts a rapid antiinflammatory effect at the cellular and molecular level. This may contribute to a potentially beneficial antiatherogenic effect. This effect was independent of weight loss.
Collapse
Affiliation(s)
- Ajay Chaudhuri
- Division of Endocrinology, Diabetes, and Metabolism, State University of New York at Buffalo, Buffalo, New York 14209, USA
| | | | | | | | | | | | | | | |
Collapse
|