1
|
Wang G, Li Z, Ni W, Ye H, Liu Y, Chen L, Wang L, Liu C, Chen J, Wang X, Ding X, Zhao L, Ge X, Wang Y, Ye Y, Kiwa T, Zang L, Wang J, Dai C, Liu B. A small molecule esculetin accelerates postprandial lipid clearance involving activation of C/EBPβ and CD36-mediated phagocytosis by adipose tissue macrophages. Theranostics 2025; 15:5910-5930. [PMID: 40365299 PMCID: PMC12068311 DOI: 10.7150/thno.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Rationale: Adipose tissue buffers dietary lipids to maintain postprandial lipid homeostasis. Adipose tissue macrophages (ATMs) mediate the phagocytosis of postprandial lipids from the exogenous diet, generating high-density lipoprotein (HDL) particles that facilitate lipid circulation and excretion. However, the underlying mechanisms remain poorly understood. This study investigates the effects of esculetin, a coumarin compound, on postprandial cholesterol circulation and excretion following a high-fat meal. Methods: Mice were fed a lipid-rich meal for three days to assess the effects of esculetin on postprandial lipid circulation, using serum lipid profiling and metabolomics analysis. Epididymal white adipose tissue (eWAT) removal and flow cytometry were performed to analyze ATMs and confirm their role in mediating esculetin's effects on postprandial lipemia. Epigenetic profiling, transcriptome analysis, chromatin immunoprecipitation, and Terahertz chemical microscopy were employed to elucidate the molecular targets and mechanisms of esculetin. Results: Esculetin significantly elevates postprandial HDL cholesterol levels to values comparable to pitavastatin and modifies serum metabolites involved in bile-mediated cholesterol excretion, leading to increased bile acid concentrations in the bile. This effect is mediated by an increased ratio and phagocytic activity of a subset of ATMs expressing the scavenger receptor CD36, as eWAT removal and CD36 blockade inhibit this response. Furthermore, esculetin enhances the uptake of oxidized LDL via CD36, as demonstrated in cultured macrophages, and induces epigenetic changes controlled by the key transcription factor C/EBPβ, accompanied by increased C/EBPβ binding to the Cd36 promoter. A direct interaction between esculetin and C/EBPβ was observed using Terahertz chemical microscopy. Additionally, the activation of C/EBPβ by esculetin in ATMs was confirmed in vivo. Conclusion: Esculetin accelerates postprandial lipid circulation by binding to C/EBPβ and enhancing CD36-dependent phagocytosis in ATMs.
Collapse
Affiliation(s)
- Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Zhaokai Li
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Heng Ye
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yang Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Changjiang Liu
- Interdisciplinary Science and Engineering in Health Systems, Institute of Academic and Research, Okayama University, Okayama, 700-8530, Japan
| | - Jingyu Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xue Ding
- Interdisciplinary Science and Engineering in Health Systems, Institute of Academic and Research, Okayama University, Okayama, 700-8530, Japan
| | - Longshan Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Xiaofeng Ge
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Yuanchao Ye
- Department of Medicine, University of Washington, 750 Republican Street, Seattle, WA, 98109, USA
| | - Toshihiko Kiwa
- Interdisciplinary Science and Engineering in Health Systems, Institute of Academic and Research, Okayama University, Okayama, 700-8530, Japan
| | - Linghe Zang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Jin Wang
- Interdisciplinary Science and Engineering in Health Systems, Institute of Academic and Research, Okayama University, Okayama, 700-8530, Japan
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen, 361015, China
| |
Collapse
|
2
|
Kakiyama G, Bai-Kamara N, Rodriguez-Agudo D, Takei H, Minowa K, Fuchs M, Biddinger S, Windle JJ, Subler MA, Murai T, Suzuki M, Nittono H, Sanyal A, Pandak WM. Liver specific transgenic expression of CYP7B1 attenuates early western diet-induced MASLD progression. J Lipid Res 2025; 66:100757. [PMID: 39952566 PMCID: PMC11954105 DOI: 10.1016/j.jlr.2025.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Effect of liver specific oxysterol 7α-hydroxylase (CYP7B1) overexpression on the Western diet (WD)-induced metabolic dysfunction-associated steatotic liver disease (MASLD) progression was studied in mice. Among various hepatic genes impacted during MASLD development, CYP7B1 is consistently suppressed in multiple MASLD mouse models and in human MASLD cohorts. CYP7B1 enzyme suppression leads to accumulations of bioactive oxysterols such as (25R)26-hydroxycholesterol (26HC) and 25-hydroxycholesterol (25HC). We challenged liver specific CYP7B1 transgenic (CYP7B1hep.tg) overexpressing mice with ad libitum WD feeding. Unlike their WT counterparts, WD-fed CYP7B1hep.tg mice developed no significant hepatotoxicity as evidenced by liver histology, lipid quantifications, and serum biomarker analyses. Hepatic 26HC and 25HC levels were maintained at the basal levels. The comparative gene expression/lipidomic analyses between WT and CYP7B1hep.tg mice revealed that chronically accumulated 26HC initiates LXR/PPAR-mediated hepatic fatty acid uptake and lipogenesis which surpasses fatty acid metabolism and export; compromising metabolic functions. In addition, major pathways related to oxidative stress, inflammation, and immune system including retinol metabolism, arachidonic acid metabolism, and linoleic acid metabolism were significantly impacted in the WD-fed WT mice. All pathways were unaltered in CYP7B1hep.tg mice liver. Furthermore, the nucleus of WT mouse liver but not of CYP7B1hep.tg mouse liver accumulated 26HC and 25HC in response to WD. These data strongly suggested that these two oxysterols are specifically important in nuclear transcriptional regulation for the described cytotoxic pathways. In conclusion, this study represents a "proof-of-concept" that maintaining normal mitochondrial cholesterol metabolism with hepatic CYP7B1 expression prevents oxysterol-driven liver toxicity; thus attenuating MASLD progression.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA.
| | - Nanah Bai-Kamara
- Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Meguro-ku, Tokyo, Japan
| | - Kei Minowa
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA; Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Sudha Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | - Arun Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| |
Collapse
|
3
|
von Voss L, Arora T, Assis J, Kuentzel KB, Arfelt KN, Nøhr MK, Grevengoed TJ, Arumugam M, Mandrup-Poulsen T, Rosenkilde MM. Sexual Dimorphism in the Immunometabolic Role of Gpr183 in Mice. J Endocr Soc 2024; 8:bvae188. [PMID: 39545055 PMCID: PMC11561910 DOI: 10.1210/jendso/bvae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/17/2024] Open
Abstract
Context Excessive eating and intake of a Western diet negatively affect the intestinal immune system, resulting in compromised glucose homeostasis and lower gut bacterial diversity. The G protein-coupled receptor GPR183 regulates immune cell migration and intestinal immune response and has been associated with tuberculosis, type 1 diabetes, and inflammatory bowel diseases. Objective We hypothesized that with these implications, GPR183 has an important immunometabolic role and investigated this using a global Gpr183 knockout mouse model. Methods Wild-type (WT) and Gpr183-deficient (Gpr183-/-) mice were fed a high-fat, high-sucrose diet (HFSD) for 15 weeks. We investigated changes in weight, body composition, fecal immunoglobulin A (IgA) levels, fecal microbiome, and glucose tolerance before and after the diet. Macrophage infiltration into visceral fat was determined by flow cytometry, and hepatic gene expression was measured. Results A sexual dimorphism was discovered, whereby female Gpr183-/- mice showed adverse metabolic outcomes compared to WT counterparts with inferior glucose tolerance, lower fecal IgA levels, and increased macrophage infiltration in visceral fat. In contrast, male Gpr183-/- mice had significantly lower fasting blood glucose after diet than male WT mice. Liver gene expression showed reduced inflammation and macrophage markers in Gpr183-/- livers, regardless of sex, while the pancreatic islet area did not differ between the groups. No conclusive differences were found after microbiome sequencing. Conclusion Gpr183 maintains metabolic homeostasis in female but not in male mice independent of diet. If confirmed in humans, future therapy targeting GPR183 should consider this sexual dimorphism.
Collapse
Affiliation(s)
- Liv von Voss
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Juliana Assis
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Immunotechnology, Lund University, SE 223 63 Lund, Sweden
| | - Katharina B Kuentzel
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Kristine N Arfelt
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Mark K Nøhr
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Trisha J Grevengoed
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Zhang C, Wang G, Yin X, Gou L, Guo M, Suo F, Zhuang T, Yuan Z, Liu Y, Gu M, Yao R. Hepatic protein phosphatase 1 regulatory subunit 3G alleviates obesity and liver steatosis by regulating the gut microbiota and bile acid metabolism. J Pharm Anal 2024; 14:100976. [PMID: 39263354 PMCID: PMC11388703 DOI: 10.1016/j.jpha.2024.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 09/13/2024] Open
Abstract
Intestinal dysbiosis and disrupted bile acid (BA) homeostasis are associated with obesity, but the precise mechanisms remain insufficiently explored. Hepatic protein phosphatase 1 regulatory subunit 3G (PPP1R3G) plays a pivotal role in regulating glycolipid metabolism; nevertheless, its obesity-combatting potency remains unclear. In this study, a substantial reduction was observed in serum PPP1R3G levels in high-body mass index (BMI) and high-fat diet (HFD)-exposed mice, establishing a positive correlation between PPP1R3G and non-12α-hydroxylated (non-12-OH) BA content. Additionally, hepatocyte-specific overexpression of Ppp1r3g (PPP1R3G HOE) mitigated HFD-induced obesity as evidenced by reduced weight, fat mass, and an improved serum lipid profile; hepatic steatosis alleviation was confirmed by normalized liver enzymes and histology. PPP1R3G HOE considerably impacted systemic BA homeostasis, which notably increased the non-12-OH BAs ratio, particularly lithocholic acid (LCA). 16S ribosomal DNA (16S rDNA) sequencing assay indicated that PPP1R3G HOE reversed HFD-induced gut dysbiosis by reducing the Firmicutes/Bacteroidetes ratio and Lactobacillus population, and elevating the relative abundance of Blautia, which exhibited a positive correlation with serum LCA levels. A fecal microbiome transplantation test confirmed that the anti-obesity effect of hepatic PPP1R3G was gut microbiota-dependent. Mechanistically, PPP1R3G HOE markedly suppressed hepatic cholesterol 7α-hydroxylase (CYP7A1) and sterol-12α-hydroxylase (CYP8B1), and concurrently upregulated oxysterol 7-α hydroxylase and G protein-coupled BA receptor 5 (TGR5) expression under HFD conditions. Furthermore, LCA administration significantly mitigated the HFD-induced obesity phenotype and elevated non-12-OH BA levels. These findings emphasize the significance of hepatic PPP1R3G in ameliorating diet-induced adiposity and hepatic steatosis through the gut microbiota-BA axis, which may serve as potential therapeutic targets for obesity-related disorders.
Collapse
Affiliation(s)
- Chu Zhang
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Gui Wang
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Xin Yin
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Lingshan Gou
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Mengyuan Guo
- Department of Geriatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Feng Suo
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Tao Zhuang
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Zhenya Yuan
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Yanan Liu
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Maosheng Gu
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Ruiqin Yao
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
5
|
Wang Y, Pandak WM, Hylemon PB, Min HK, Min J, Fuchs M, Sanyal AJ, Ren S. Cholestenoic acid as endogenous epigenetic regulator decreases hepatocyte lipid accumulation in vitro and in vivo. Am J Physiol Gastrointest Liver Physiol 2024; 326:G147-G162. [PMID: 37961761 PMCID: PMC11208024 DOI: 10.1152/ajpgi.00184.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023]
Abstract
Cholestenoic acid (CA) has been reported as an important biomarker of many severe diseases, but its physiological and pathological roles remain unclear. This study aimed to investigate the potential role of CA in hepatic lipid homeostasis. Enzyme kinetic studies revealed that CA specifically activates DNA methyltransferases 1 (DNMT1) at low concentration with EC50 = 1.99 × 10-6 M and inhibits the activity at higher concentration with IC50 = 9.13 × 10-6 M, and specifically inhibits DNMT3a, and DNMT3b activities with IC50= 8.41 × 10-6 M and IC50= 4.89 × 10-6 M, respectively. In a human hepatocyte in vitro model of high glucose (HG)-induced lipid accumulation, CA significantly increased demethylation of 5mCpG in the promoter regions of over 7,000 genes, particularly those involved in master signaling pathways such as calcium-AMPK and 0.0027 at 6 h. RNA sequencing analysis showed that the downregulated genes are affected by CA encoding key enzymes, such as PCSK9, MVK, and HMGCR, which are involved in cholesterol metabolism and steroid biosynthesis pathways. In addition, untargeted lipidomic analysis showed that CA significantly reduced neutral lipid levels by 60% in the cells cultured in high-glucose media. Administration of CA in mouse metabolic dysfunction-associated steatotic liver disease (MASLD) models significantly decreases lipid accumulation, suppresses the gene expression involved in lipid biosynthesis in liver tissues, and alleviates liver function. This study shows that CA as an endogenous epigenetic regulator decreases lipid accumulation via epigenetic regulation. The results indicate that CA can be considered a potential therapeutic target for the treatment of metabolic disorders.NEW & NOTEWORTHY To our knowledge, this study is the first to identify the mitochondrial monohydroxy bile acid cholestenoic acid (CA) as an endogenous epigenetic regulator that regulates lipid metabolism through epigenome modification in human hepatocytes. The methods used in this study are all big data analysis, and the results of each part show the global regulation of CA on human hepatocytes rather than narrow point effects.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Williams M Pandak
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Phillip B Hylemon
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Hae-Ki Min
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - John Min
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States
| |
Collapse
|
6
|
Yu C, Xu Y, Wei Y, Guo Y, Wang Y, Song P, Yu J. Gut microbiota and liver metabolomics reveal the potential mechanism of Lactobacillus rhamnosus GG modulating the liver toxicity caused by polystyrene microplastics in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6527-6542. [PMID: 38151562 DOI: 10.1007/s11356-023-31564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Microplastics (MPs) are known to cause liver toxicity as they can spread through the food chain. Most researches on their toxicity have focused on individual organs, neglecting the crucial "gut-liver axis"-a bidirectional communication pathway between the gut and liver. Probiotics have shown promise in modulating the effects of environmental pollutants. In this study, we exposed mice to Lactobacillus rhamnosus GG (LGG, 100 mg/kg b.w./d) and/or polystyrene microplastics (PS-MPs, 5 mg/kg b.w./d) for 28 d via gavage to investigate how probiotics influence live toxicity through the gut-liver axis. Our results demonstrated that PS-MPs induced liver inflammation (increased IL-6 and TNF-α) and disrupted lipid metabolism. However, when combined with LGG, these effects were alleviated. LGG also improved colon health, rectifying ciliary defects and abnormal mucus secretion caused by PS-MPs. Furthermore, LGG improved gut microbiota dysbiosis induced by PS-MPs. Metabolomics and gene expression analysis (Cyp7a1 and Cyp7b1) indicated that LGG modulated bile acid metabolism. In summary, LGG appears to protect the liver by maintaining gut homeostasis, enhancing gut barrier integrity, and reducing the liver inflammation. These findings confirm the potential of LGG to modulate liver toxicity caused by PS-MPs through the gut-liver axis, offering insights into probiotics' application for environmental pollutant detoxification.
Collapse
Affiliation(s)
- Changhao Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Yawen Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Yiping Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Yuxue Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Yi Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Jing Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
7
|
Kakiyama G, Marques D, Takei H, Nittono H, Erickson S, Fuchs M, Rodriguez-Agudo D, Gil G, Hylemon PB, Zhou H, Bajaj JS, Pandak WM. Mitochondrial oxysterol biosynthetic pathway gives evidence for CYP7B1 as controller of regulatory oxysterols. J Steroid Biochem Mol Biol 2019; 189:36-47. [PMID: 30710743 DOI: 10.1016/j.jsbmb.2019.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022]
Abstract
The aim of this paper was to more completely study the mitochondrial CYP27A1 initiated acidic pathway of cholesterol metabolism. The mitochondrial CYP27A1 initiated pathway of cholesterol metabolism (acidic pathway) is known to synthesize two well-described vital regulators of cholesterol/lipid homeostasis, (25R)-26-hydroxycholesterol (26HC) and 25-hydroxycholesterol (25HC). Both 26HC and 25HC have been shown to be subsequently 7α-hydroxylated by Cyp7b1; reducing their regulatory abilities and furthering their metabolism to chenodeoxycholic acid (CDCA). Cholesterol delivery into the inner mitochondria membrane, where CYP27A1 is located, is considered the pathway's only rate-limiting step. To further explore the pathway, we increased cholesterol transport into mitochondrial CYP27A1 by selectively increased expression of the gene encoding the steroidogenic acute transport protein (StarD1). StarD1 overexpression led to an unanticipated marked down-regulation of oxysterol 7α-hydroxylase (Cyp7b1), a marked increase in 26HC, and the formation of a third vital regulatory oxysterol, 24(S)-hydroxycholesterol (24HC), in B6/129 mice livers. To explore the further metabolism of 24HC, as well as, 25HC and 26HC, characterizations of oxysterols and bile acids using three murine models (StarD1 overexpression, Cyp7b1-/-, Cyp27a1-/-) and human Hep G2 cells were conducted. This report describes the discovery of a new mitochondrial-initiated pathway of oxysterol/bile acid biosynthesis. Just as importantly, it provides evidence for CYP7B1 as a key regulator of three vital intracellular regulatory oxysterol levels.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States.
| | - Dalila Marques
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | | | - Sandra Erickson
- School of Medicine, University of California, San Francisco, United States
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Gregorio Gil
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, United States
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Jasmohan S Bajaj
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| |
Collapse
|
8
|
Xiong F, Wu SG, Zhang J, Jakovlić I, Li WX, Zou H, Li M, Wang GT. Dietary Bile Salt Types Influence the Composition of Biliary Bile Acids and Gut Microbiota in Grass Carp. Front Microbiol 2018; 9:2209. [PMID: 30279683 PMCID: PMC6154720 DOI: 10.3389/fmicb.2018.02209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/29/2018] [Indexed: 01/25/2023] Open
Abstract
Lipid metabolism can influence host’s health. There is increasing evidence for interplay between two key regulating factors in lipid metabolism: bile acids (BAs) and gut microbiota. However, very little is known about how types of different diet-supplemented bile salts (BS) influence this interaction in vivo. We sought to explore these relationships using grass carp (Ctenopharyngodon idellus), which often suffers functional disorder of liver and gallbladder. We studied fluctuations of BAs in the gall and changes of microbial communities in the gut in response to seven different diets: five different BS, chelating BS agent, and control. The BS comprised two primary BS [sodium taurochololate (TCAS) and sodium taurochenodeoxycholate (TCDCAS)], sodium tauroursodeoxycholate (TUDCAS), and two secondary BS [sodium taurodeoxycholate (TDCAS) and sodium taurolithocholate (TLCAS)]. Supplementation of primary BS caused a more significant fluctuation of biliary BAs than secondary BS, and TCAS caused a more prominent increase than TCDCAS and TUDCAS. For the gut microbiota, primary BS tended to increase their diversity and induce community succession, secondary BS resulted in a higher firmicutes/bacteroidetes ratio, while TUDCAS had no significant effects. Changes of the gut microbiota triggered by different types of BS caused alteration in BAs biotransformation. Two-obesity-associated families, Lachnospiraceae and Ruminococcaceae were positively correlated with biliary cholic acid (CA), taurochenodeoxycholic acid (TCDCA), and deoxycholic acid (DCA). As both primary and secondary BS resulted in increased synthesis of toxic secondary Bas by the gut microbiota, future studies should pay closer attention to gut microbiota when considering BA treatment.
Collapse
Affiliation(s)
- Fan Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shan-Gong Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Šošić-Jurjević B, Lütjohann D, Jarić I, Miler M, Vojnović Milutinović D, Filipović B, Ajdžanović V, Renko K, Wirth EK, Janković S, Kӧhrle J, Milošević V. Effects of age and soybean isoflavones on hepatic cholesterol metabolism and thyroid hormone availability in acyclic female rats. Exp Gerontol 2017; 92:74-81. [PMID: 28336316 DOI: 10.1016/j.exger.2017.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/13/2017] [Accepted: 03/13/2017] [Indexed: 11/23/2022]
Abstract
Soy-food and its isoflavones, genistein (G) and daidzein (D), were reported to exert mild cholesterol-lowering effect, but the underlying mechanism is still unclear. In this research, first we studied age-related alterations in hepatic cholesterol metabolism of acyclic middle-aged (MA) female rats. Then we tested if purified isoflavones may prevent or reverse these changes, and whether putative changes in hepatic thyroid hormone availability may be associated with this effect. Serum and hepatic total cholesterol (TChol), bile acid and cholesterol precursors, as well as serum TSH and T4 concentrations, hepatic deiodinase (Dio) 1 enzyme activity and MCT8 protein expression were determined by comparing data obtained for MA with young adult (YA) intact (IC) females. Effects of subcutaneously administered G or D (35mg/kg) to MA rats were evaluated versus vehicle-treated MA females. MA IC females were characterized by: higher (p<0.05) serum TChol, lower (p<0.05) hepatic TChol and its biosynthetic precursors, lower (p<0.05) hepatic 7α-hydroxycholesterol but elevated (p<0.05) 27- and 24-hydroxycholesterol in comparison to YA IC. Both isoflavone treatments decreased (p<0.05) hepatic 27-hydroxycholesterol, G being more effective than D, without affecting any other parameter of Chol metabolism. Only G elevated hepatic Dio1 activity (p<0.05). In conclusion, age-related hypercholesteremia was associated with lower hepatic Chol synthesis and shift from main neutral (lower 7α-hydroxycholesterol) to alternative acidic pathway (higher 27-hydroxycholesterol) of Chol degradation to bile acid. Both isoflavones lowered hepatic 27-hydroxycholesterol, which may be considered beneficial. Only G treatment increased hepatic Dio1 activity, thus indicating local increase in thyroid hormones, obviously insufficient to induce prominent cholesterol-lowering effect.
Collapse
Affiliation(s)
- Branka Šošić-Jurjević
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| | - Dieter Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Ivana Jarić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Marko Miler
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Branko Filipović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Vladimir Ajdžanović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Kostja Renko
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Eva Katrin Wirth
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Snežana Janković
- Institute for Science Application in Agriculture, University of Belgrade, Despot Stefan Blvd. 68b, 11000 Belgrade, Serbia
| | - Josef Kӧhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Verica Milošević
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
He X, Zheng N, He J, Liu C, Feng J, Jia W, Li H. Gut Microbiota Modulation Attenuated the Hypolipidemic Effect of Simvastatin in High-Fat/Cholesterol-Diet Fed Mice. J Proteome Res 2017; 16:1900-1910. [PMID: 28378586 PMCID: PMC5687503 DOI: 10.1021/acs.jproteome.6b00984] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hypolipidemic effect of simvastatin varies greatly among patients. In the current study, we investigated the gut microbial-involved mechanisms underlying the different responses to simvastatin. Male C57BL/6J mice were divided into control (Con), high-fat/cholesterol diet (HFD), antibiotic (AB), simvastatin (SV) and antibiotic_simvastatin (AB_SV) groups, respectively. At the end of the experiment, serum samples were collected for lipids and metabolomic analysis, and liver tissues for histology, gene and protein expression analysis. The results showed that antibiotic treatment not only altered the composition of gut microbiota, but attenuated the hypolipidemic effect of SV. A total of 16 differential metabolites between SV and HFD groups were identified with metabolomics, while most of them showed no statistical differences between AB_SV and HFD groups, and similar changes were also observed in bile acids profile. The expressions of several genes and proteins involved in regulating bile acids synthesis were significantly reversed by SV, but not AB_SV in HFD fed mice. In summary, our current study indicated that the hypolipidemic effect of SV was correlated with the composition of the gut microbiota, and the attenuated hypolipidemic effect of SV by gut microbiota modulation was associated with a suppression of bile acids synthesis from cholesterol.
Collapse
Affiliation(s)
- Xuyun He
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaojiao He
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can Liu
- Laboratory medicine of Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Jing Feng
- Laboratory medicine of Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Wei Jia
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, 96813, USA
| | - Houkai Li
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Cardenia V, Rodriguez-Estrada MT, Lorenzini A, Bandini E, Angeloni C, Hrelia S, Malaguti M. Effect of broccoli extract enriched diet on liver cholesterol oxidation in rats subjected to exhaustive exercise. J Steroid Biochem Mol Biol 2017; 169:137-144. [PMID: 27084531 DOI: 10.1016/j.jsbmb.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/24/2022]
Abstract
The effect of broccoli extract (BE)-enriched diet was studied in order to evaluate its ability to counteract liver cholesterol oxidation products (COPs) induced by acute strenuous exercise in rats. Thirty-two female Wistar rats were randomly divided into four groups: control diet without exercise (C), BE-enriched diet without exercise (B), control diet with acute exhaustive exercise (S) and BE-enriched diet with acute exhaustive exercise (BS). The study lasted 45days and on the last day, rats of S and BS groups were forced to run until exhaustion on a treadmill. Glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT) and cholesterol oxidation products (COPs) were determined in liver. Exhaustive exercise was clearly responsible for tissue damage, as evidenced by the increase of lactate dehydrogenase (LDH) plasma activity in the S group. Moreover, the exercise protocol reduced CAT activity in liver, while it did not affect GST, GR and GPx. BE-enriched diet raised GST, GR and CAT activities in rats of BS group. The main COPs found were 7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, cholestanetriol, 24-hydroxycholesterol and 27-hydroxycholesterol. The BE-enriched diet led to reduced cholesterol oxidation following exhaustive exercise; the highest level of COPs was found in the S group, whereas the BS rats showed the lowest amount. This study indicates that the BE-enriched diet increases antioxidant enzyme activities and exerts an antioxidant effect towards cholesterol oxidation in rat liver, suggesting the use of phytochemicals in the prevention of oxidative damage and in the modulation of the redox environment.
Collapse
Affiliation(s)
- Vladimiro Cardenia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum-University of Bologna, Cesena, Italy
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Erika Bandini
- Scientific Institute of Romagna for the Study and Treatment of Cancer (IRST), Unit of Gene Therapy Meldola-Forlı', Meldola (FC), Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| |
Collapse
|
12
|
Asai Y, Yamada T, Tsukita S, Takahashi K, Maekawa M, Honma M, Ikeda M, Murakami K, Munakata Y, Shirai Y, Kodama S, Sugisawa T, Chiba Y, Kondo Y, Kaneko K, Uno K, Sawada S, Imai J, Nakamura Y, Yamaguchi H, Tanaka K, Sasano H, Mano N, Ueno Y, Shimosegawa T, Katagiri H. Activation of the Hypoxia Inducible Factor 1α Subunit Pathway in Steatotic Liver Contributes to Formation of Cholesterol Gallstones. Gastroenterology 2017; 152:1521-1535.e8. [PMID: 28088462 DOI: 10.1053/j.gastro.2017.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Hypoxia-inducible factor 1α subunit (HIF1A) is a transcription factor that controls the cellular response to hypoxia and is activated in hepatocytes of patients with nonalcoholic fatty liver disease (NAFLD). NAFLD increases the risk for cholesterol gallstone disease by unclear mechanisms. We studied the relationship between HIF1A and gallstone formation associated with liver steatosis. METHODS We performed studies with mice with inducible disruption of Hif1a in hepatocytes via a Cre adenoviral vector (inducible hepatocyte-selective HIF1A knockout [iH-HIFKO] mice), and mice without disruption of Hif1a (control mice). Mice were fed a diet rich in cholesterol and cholate for 1 or 2 weeks; gallbladders were collected and the number of gallstones was determined. Livers and biliary tissues were analyzed by histology, quantitative reverse-transcription polymerase chain reaction, immunohistochemistry, and immunoblots. We measured concentrations of bile acid, cholesterol, and phospholipid in bile and rates of bile flow. Primary hepatocytes and cholangiocytes were isolated and analyzed. HIF1A was knocked down in Hepa1-6 cells with small interfering RNAs. Liver biopsy samples from patients with NAFLD, with or without gallstones, were analyzed by quantitative reverse-transcription polymerase chain reaction. RESULTS Control mice fed a diet rich in cholesterol and cholate developed liver steatosis with hypoxia; levels of HIF1A protein were increased in hepatocytes around central veins and 90% of mice developed cholesterol gallstones. Only 20% of the iH-HIFKO mice developed cholesterol gallstones. In iH-HIFKO mice, the biliary lipid concentration was reduced by 36%, compared with control mice, and bile flow was increased by 35%. We observed increased water secretion from hepatocytes into bile canaliculi to mediate these effects, resulting in suppression of cholelithogenesis. Hepatic expression of aquaporin 8 (AQP8) protein was 1.5-fold higher in iH-HIFKO mice than in control mice. Under hypoxic conditions, cultured hepatocytes increased expression of Hif1a, Hmox1, and Vegfa messenger RNAs (mRNAs), and down-regulated expression of AQP8 mRNA and protein; AQP8 down-regulation was not observed in cells with knockdown of HIF1A. iH-HIFKO mice had reduced inflammation and mucin deposition in the gallbladder compared with control mice. Liver tissues from patients with NAFLD with gallstones had increased levels of HIF1A, HMOX1, and VEGFA mRNAs, compared with livers from patients with NAFLD without gallstones. CONCLUSIONS In steatotic livers of mice, hypoxia up-regulates expression of HIF1A, which reduces expression of AQP8 and concentrates biliary lipids via suppression of water secretion from hepatocytes. This promotes cholesterol gallstone formation. Livers from patients with NAFLD and gallstones express higher levels of HIF1A than livers from patients with NAFLD without gallstones.
Collapse
Affiliation(s)
- Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Sohei Tsukita
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Midori Honma
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Keigo Murakami
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuta Shirai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Sugisawa
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumiko Chiba
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuteru Kondo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Uno
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| |
Collapse
|
13
|
Liu X, Henkel AS, LeCuyer BE, Hubchak SC, Schipma MJ, Zhang E, Green RM. Hepatic deletion of X-box binding protein 1 impairs bile acid metabolism in mice. J Lipid Res 2016; 58:504-511. [PMID: 28039331 DOI: 10.1194/jlr.m071266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
The unfolded protein response (UPR) is an adaptive response to endoplasmic reticulum stress and the inositol-requiring enzyme 1α/X-box binding protein 1 (IRE1α/XBP1) pathway of the UPR is important in lipid metabolism. However, its role in bile acid metabolism remains unknown. We demonstrate that liver-specific Xbp1 knockout (LS-Xbp1-/-) mice had a 45% reduction in total bile acid pool. LS-Xbp1-/- mice had lower serum 7α-hydroxy-4-cholesten-3-one (C4) levels compared with Xbp1fl/fl mice, indicating reduced cholesterol 7α-hydroxylase (CYP7A1) synthetic activity. This occurred without reductions of hepatic CYP7A1 protein expression. Feeding LS-Xbp1-/- mice cholestyramine increased hepatic CYP7A1 protein expression to levels 2-fold and 8-fold greater than cholestyramine-fed and chow-fed Xbp1fl/fl mice, respectively. However, serum C4 levels remained unchanged and were lower than both groups of Xbp1fl/fl mice. In contrast, although feeding LS-Xbp1-/- mice cholesterol did not increase CYP7A1 expression, serum C4 levels increased significantly up to levels similar to chow-fed Xbp1fl/fl mice and the total bile acid pool normalized. In conclusion, loss of hepatic XBP1 decreased the bile acid pool and CYP7A1 synthetic activity. Cholesterol feeding, but not induction of CYP7A1 with cholestyramine, increased CYP7A1 synthetic activity and corrected the genotype-specific total bile acid pools. These data demonstrate a novel role of IRE1α/XBP1 regulating bile acid metabolism.
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Medicine Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Anne S Henkel
- Division of Gastroenterology and Hepatology, Department of Medicine Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Brian E LeCuyer
- Division of Gastroenterology and Hepatology, Department of Medicine Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Susan C Hubchak
- Division of Gastroenterology and Hepatology, Department of Medicine Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Matthew J Schipma
- Next Generation Sequencing Core: Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Eric Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Richard M Green
- Division of Gastroenterology and Hepatology, Department of Medicine Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
14
|
|
15
|
Henkel AS, LeCuyer B, Olivares S, Green RM. Endoplasmic Reticulum Stress Regulates Hepatic Bile Acid Metabolism in Mice. Cell Mol Gastroenterol Hepatol 2016; 3:261-271. [PMID: 28275692 PMCID: PMC5331781 DOI: 10.1016/j.jcmgh.2016.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Cholestasis promotes endoplasmic reticulum (ER) stress in the liver, however, the effect of ER stress on hepatic bile acid metabolism is unknown. We aim to determine the effect of ER stress on hepatic bile acid synthesis and transport in mice. METHODS ER stress was induced pharmacologically in C57BL/6J mice and human hepatoma (HepG2) cells. The hepatic expression of genes controlling bile acid synthesis and transport was determined. To measure the activity of the primary bile acid synthetic pathway, the concentration of 7α-hydroxy-4-cholesten-3-1 was measured in plasma. RESULTS Induction of ER stress in mice and HepG2 cells rapidly suppressed the hepatic expression of the primary bile acid synthetic enzyme, cholesterol 7α-hydroxylase. Plasma levels of 7α-hydroxy-4-cholesten-3-1 were reduced in mice subjected to ER stress, indicating impaired bile acid synthesis. Induction of ER stress in mice and HepG2 cells increased expression of the bile salt export pump (adenosine triphosphate binding cassette [Abc]b11) and a bile salt efflux pump (Abcc3). The observed regulation of Cyp7a1, Abcb11, and Abcc3 occurred in the absence of hepatic inflammatory cytokine activation and was not dependent on activation of hepatic small heterodimer partner or intestinal fibroblast growth factor 15. Consistent with suppressed bile acid synthesis and enhanced bile acid export from hepatocytes, prolonged ER stress decreased the hepatic bile acid content in mice. CONCLUSIONS Induction of ER stress in mice suppresses bile acid synthesis and enhances bile acid removal from hepatocytes independently of established bile acid regulatory pathways. These data show a novel function of the ER stress response in regulating bile acid metabolism.
Collapse
Key Words
- 7α-Hydroxy-4-Cholesten-3-1
- ABC, adenosine triphosphate binding cassette
- Bile Acid Synthesis
- C4, 7α-hydroxy-4-cholesten-3-1
- CYP7A1, cholesterol 7α-hydroxylase
- Cyp7a1
- DMEM, Dulbecco's modified Eagle medium
- DMSO, dimethyl sulfoxide
- ER, endoplasmic reticulum
- ERK, extracellular signaling-regulated kinase
- FGF, fibroblast growth factor
- FXR, farnesoid X receptor
- IL, interleukin
- IRE1α, inositol requiring enzyme 1α
- JNK, c-Jun-N-terminal kinase
- NTCP, sodium/taurocholate cotransporter
- RIDD, regulated inositol requiring enzyme 1α–dependent messenger RNA decay
- SHP, small heterodimer partner
- UPR, unfolded protein response
- Unfolded Protein Response
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Anne S. Henkel
- Correspondence Address correspondence to: Anne S. Henkel, MD, 320 East Superior Street, Tarry 15-705, Chicago, Illinois 60611. fax: (312) 908-9032.320 East Superior StreetTarry 15-705ChicagoIllinois 60611
| | | | | | | |
Collapse
|
16
|
Kobayashi H, Yoshida S, Sun YJ, Shirasawa N, Naito A. Gastric estradiol-17β (E2) and liver ERα correlate with serum E2 in the cholestatic male rat. J Endocrinol 2013; 219:39-49. [PMID: 23881936 DOI: 10.1530/joe-13-0156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cholestasis is associated with changes in hepatic cholesterol metabolism and serum estrogen levels. Ueyama and colleagues reported that the gastric estradiol-17β (E2) level in the portal vein is several times higher than that in the artery. This study aimed to clarify the relationships between gastric E2, hepatic estrogen receptor (ER) α and cholesterol metabolism in cholestatic male rats induced by bile duct ligation (BDL). After BDL, serum E2 levels in the portal vein and artery were measured by ELISA. The gene expression of gastric estrogen-synthesizing enzymes and various hepatic enzymes for cholesterol metabolism were measured by real-time RT-PCR, and gastric aromatase and hepatic ERα proteins were determined by immunohistochemistry and western blotting. Portal E2 levels increased by 4.9, 5.0, and 3.6 times that of controls at 2 days after BDL (BDL2d), BDL4d, and BDL7d respectively. The change in arterial E2 levels was positively correlated with that in the portal vein. Under these conditions, the expression of hepatic Ers1 (ERα) mRNA and protein was significantly reduced in a negative correlation with serum E2 levels in the portal vein after BDL. The expression of hepatic male-specific cytochrome P450 (CYP) genes Cyp2c55 and Cyp3a2 decreased and female-specific Cyp2c12 increased after BDL. It is postulated that the increase in gastric E2 levels, which occurs after BDL, results in the reduction of hepatic ERα, the elevation of arterial E2 level and leads to cholesterol metabolism becoming sex steroid dependent.
Collapse
Affiliation(s)
- Hiroto Kobayashi
- Department of Anatomy and Structural Science, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | | | | | | | | |
Collapse
|
17
|
Tsurusaki T, Sakakibara H, Aoshima Y, Yamazaki S, Sakono M, Shimoi K. Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors. J Clin Biochem Nutr 2013; 52:208-14. [PMID: 23704810 PMCID: PMC3651920 DOI: 10.3164/jcbn.12-127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/20/2013] [Indexed: 11/22/2022] Open
Abstract
In the past few decades, many types of functional factors have been identified in dietary foods; for example, flavonoids are major groups widely distributed in the plant kingdom. However, the absorption rates of the functional food factors are usually low, and many of these are difficult to be absorbed in the intact forms because of metabolization by biological processes during absorption. To gain adequate beneficial effects, it is therefore mandatory to know whether functional food factors are absorbed in sufficient quantity, and then reach target organs while maintaining beneficial effects. These are the reasons why the bioavailability of functional food factors has been well investigated using rodent models. Recently, many of the biological processes have been reported to follow diurnal rhythms recurring every 24 h. Therefore, absorption and metabolism of functional food factors influenced by the biological processes may vary with time of day. Consequently, the evaluation of the bioavailability of functional food factors using rodent models should take into consideration the timing of consumption. In this review, we provide a perspective overview of the diurnal rhythm of biological processes involved in the bioavailability of functional food factors, particularly flavonoids.
Collapse
Affiliation(s)
- Takashi Tsurusaki
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki 889-8526, Japan
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Tang W, Pettersson H, Norlin M. Involvement of the PI3K/Akt pathway in estrogen-mediated regulation of human CYP7B1: identification of CYP7B1 as a novel target for PI3K/Akt and MAPK signalling. J Steroid Biochem Mol Biol 2008; 112:63-73. [PMID: 18790053 DOI: 10.1016/j.jsbmb.2008.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/16/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
Abstract
The steroid hydroxylase CYP7B1 metabolizes neurosteroids, cholesterol derivatives, and estrogen receptor (ER) ligands. Previous studies identified CYP7B1 as a target for regulation by estrogen. The present study examines the mechanism for estrogen-mediated regulation of the human CYP7B1 gene promoter. Treatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), abolished ER-mediated up-regulation of a CYP7B1 promoter-luciferase reporter in HepG2 cells, whereas overexpression of PI3K or Akt significantly increased estrogenic up-regulation of CYP7B1. Overexpression of dominant-negative mutant Akt abolished ER-mediated stimulation of CYP7B1 in HepG2 cells. Data indicated no binding of ER to CYP7B1 promoter sequences, suggesting that ER interacts with the PI3K/Akt pathway without binding to the gene. At low ER levels, overexpression of Akt suppressed CYP7B1 promoter activity, suggesting that its effect on CYP7B1 is different when estrogens are absent. In HEK293 cells, CYP7B1 transcription was much less affected by Akt, indicating that the mechanism for up-regulation of CYP7B1 is different in different cell types. Other experiments indicated that MAPK signalling may affect basal CYP7B1 levels. The current results, indicating that regulation of CYP7B1 by ER can be mediated via the PI3K/Akt signal pathway, a regulatory pathway important for cellular survival and growth, suggest an important role for CYP7B1 in cellular growth, particularly in connection with estrogenic signalling.
Collapse
Affiliation(s)
- Wanjin Tang
- Department of Pharmaceutical Biosciences, Division of Biochemistry, University of Uppsala, Uppsala, Sweden
| | | | | |
Collapse
|
20
|
Lim FL, Currie RA, Orphanides G, Moggs JG. Emerging evidence for the interrelationship of xenobiotic exposure and circadian rhythms: a review. Xenobiotica 2007; 36:1140-51. [PMID: 17118921 DOI: 10.1080/00498250600861819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The circadian clock controls many aspects of mammalian physiology and behaviour with a periodicity of approximately 24 h. These include the anticipation of, and adaptation to, daily environmental changes such as the light-dark cycle, temperature fluctuations and the availability of food. The toxicity of many drugs is dependent on the circadian phase at which they are administered, and recent work has begun to unravel the molecular basis for circadian variations in sensitivity to xenobiotic exposure. Between 2 and 10% of the transcriptome is expressed in a circadian manner, including many key genes associated with the metabolism and transport of xenobiotics. Furthermore, a number of xenobiotics may directly alter the expression of genes that control circadian rhythms. This review discusses the emerging evidence for the regulation of circadian rhythm genes having an important impact on molecular response to xenobiotics.
Collapse
Affiliation(s)
- F L Lim
- Syngenta CTL, Alderley Park, UK.
| | | | | | | |
Collapse
|
21
|
Abstract
By participating in pathways of cholesterol biosynthesis and elimination, different cytochrome P450 (P450 or CYP) enzymes play an important role in maintenance of cholesterol homeostasis. CYP51 is involved in cholesterol biosynthesis, whereas CYP 7A1, 27A1, 46A1, 7B1, 39A1, and 8B1 are the key enzymes in cholesterol catabolism to bile acids, the major route of cholesterol elimination in mammals. Cholesterol transformations to steroid hormones are also initiated by the P450 enzyme CYP11A1. Finally, one of the major drug-metabolizing P450s CYP3A4 seems to contribute to bile acid biosynthesis as well. The 9 P450s will be the focus of this review and assessed as drug targets for cholesterol lowering.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1031, USA.
| |
Collapse
|
22
|
Tang W, Eggertsen G, Chiang JYL, Norlin M. Estrogen-mediated regulation of CYP7B1: a possible role for controlling DHEA levels in human tissues. J Steroid Biochem Mol Biol 2006; 100:42-51. [PMID: 16720094 DOI: 10.1016/j.jsbmb.2006.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 02/22/2006] [Indexed: 11/26/2022]
Abstract
The current study examines regulation of CYP7B1, a DHEA 7alpha-hydroxylase, by sex hormones. Transfection with estrogen receptor alpha and treatment with 17beta-estradiol in human embryonic kidney 293 cells significantly increased CYP7B1 catalytic activity and mRNA, and stimulated a human CYP7B1 reporter gene. Transfection with estrogen receptor beta showed similar but less significant effects. In the absence of receptors, 17beta-estradiol suppressed CYP7B1 activity, suggesting that estrogenic effects may be different in cells not expressing receptors. Quantitation of CYP7B1 mRNA in adult and fetal human tissues showed markedly higher CYP7B1 mRNA levels in fetal tissues compared with the corresponding adult ones, except in the liver. This indicates a tissue-specific, developmental regulation of CYP7B1 and suggests an important function for this enzyme in fetal life. DHEA secreted by fetal adrenals is an essential precursor for placental estrogen formation. Since CYP7B1 diverts DHEA from the sex hormone biosynthetic pathway, estrogen receptor-mediated up-regulation of CYP7B1 should lead to less DHEA available for sex hormone synthesis and may help to maintain normal levels of estrogens and androgens in human tissues, especially during fetal development. Regulation by estrogens may also be of importance in other processes where CYP7B1 is involved, including cholesterol homeostasis, cellular proliferation, and CNS function.
Collapse
Affiliation(s)
- Wanjin Tang
- Department of Pharmaceutical Biosciences, Division of Biochemistry, University of Uppsala, Box 578, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
23
|
Tang W, Norlin M. Regulation of steroid hydroxylase CYP7B1 by androgens and estrogens in prostate cancer LNCaP cells. Biochem Biophys Res Commun 2006; 344:540-6. [PMID: 16630558 DOI: 10.1016/j.bbrc.2006.03.175] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 03/26/2006] [Indexed: 11/29/2022]
Abstract
The present study reports effects of androgens and estrogens on human CYP7B1 transcription in prostate cancer LNCaP cells. Studies with rodents have suggested a role for the CYP7B1 enzyme in balancing cellular hormone levels important for prostate growth. Little is, however, known about the regulation of human CYP7B1. The current study showed strong suppression of a human CYP7B1 luciferase reporter gene by dihydrotestosterone (DHT) in prostate cancer LNCaP cells. Also, DHT and overexpression of androgen receptor (AR) suppressed CYP7B1 promoter activity and CYP7B1-mediated catalysis in kidney-derived HEK293 cells. Effects on CYP7B1 transcription were observed also by estrogen receptors (ER). The effects appeared different for different estrogens. CYP7B1 was stimulated by synthetic ER agonists but suppressed by 17beta-estradiol and 5alpha-androstane-3beta,17beta-diol in LNCaP cells. Our data indicate an important role for CYP7B1 in balancing prostate hormone levels in human cells. In particular, the data suggest that androgens may control intraprostatic levels of estrogen via regulation of CYP7B1-mediated metabolism.
Collapse
Affiliation(s)
- Wanjin Tang
- Department of Pharmaceutical Biosciences, Division of Biochemistry, University of Uppsala, Box 578, S-751 23 Uppsala, Sweden
| | | |
Collapse
|
24
|
Dolara P, Luceri C, De Filippo C, Femia AP, Giovannelli L, Caderni G, Cecchini C, Silvi S, Orpianesi C, Cresci A. Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res 2005; 591:237-46. [PMID: 16293270 DOI: 10.1016/j.mrfmmm.2005.04.022] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 04/09/2005] [Accepted: 04/10/2005] [Indexed: 05/05/2023]
Abstract
Polyphenols from tea and other beverages such as red wine have been regarded with interest as possible chemopreventive agents against cancer. Here we report that red wine polyphenols (50 mg/kg) administered with the diet to F344 rats for 16 weeks inhibited colon carcinogenesis induced by azoxymethane (AOM, 7.4 mg/kg, total dose 74 mg/kg) or dimethylhydrazine (DMH, 30 mg/kg, total dose, 300 mg/kg). Polyphenol-treated animals had a consistently lower tumour yield compared to controls. In polyphenol-treated rats, the main bacterial strains in the faeces at sacrifice were Bacteroides, Lactobacillus and Bifidobacterium spp., whereas microorganisms predominantly identified in control-fed rats were Bacteroides, Clostridium and Propionibacterium spp. Wine polyphenols (57 mg/kg for 10 days, by gavage), administered to rats not treated with carcinogens, produced a significant decrease in the basal level of DNA oxidative damage of the colon mucosa as measured with the comet assay (average pyrimidine oxidation was reduced by 62% and purine oxidation by 57%, p<0.05). To further explore the molecular effects of wine polyphenols we used the microarray technology to study gene expression profiles: rats were treated with 50 mg/kg wine polyphenols for 14 days, mixed in the diet. Global expression analysis of 5707 genes revealed an extensive down-regulation of genes involved in a wide range of physiological functions, such as metabolism, transport, signal transduction and intercellular signalling. By analysing metabolic pathways with the GenMAPP software program we observed that two major regulatory pathways were down-regulated in the colon mucosa of polyphenols-treated rats: inflammatory response and steroid metabolism. We also found a down-regulation of many genes regulating cell surface antigens, metabolic enzymes and cellular response to oxidative stress. In conclusion, reduction of oxidative damage, modulation of colonic flora and variation in gene expression may all concur in the modulation of intestinal function and carcinogenesis by wine polyphenols.
Collapse
Affiliation(s)
- Piero Dolara
- Department of Pharmacology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ren S, Hylemon PB, Marques D, Gurley E, Bodhan P, Hall E, Redford K, Gil G, Pandak WM. Overexpression of cholesterol transporter StAR increases in vivo rates of bile acid synthesis in the rat and mouse. Hepatology 2004; 40:910-7. [PMID: 15382124 DOI: 10.1002/hep.20382] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Bile acid synthesis (BAS) occurs mainly via two pathways: the "neutral" pathway, which is initiated by highly regulated microsomal CYP7A1, and an "acidic" pathway, which is initiated by mitochondrial CYP27A1. Previously, we have shown that overexpression of the steroidogenic acute regulatory protein (StAR), a mitochondrial cholesterol transport protein, increases bile acid biosynthesis more than 5-fold via the acidic pathway in primary rat hepatocytes. This observation suggests that mitochondrial cholesterol transport is the rate-limiting step of BAS via this pathway. The objective of this study was to determine the effect of increased StAR on rates of BAS in vivo. Overexpression of StAR and CYP7A1 were mediated via infection with recombinant adenoviruses. BAS rates were determined in chronic biliary-diverted rats and mice, and in mice with an intact enterohepatic circulation. The protein/messenger RNA levels of StAR and CYP7A1 increased dramatically following overexpression. Overexpression of StAR or CYP7A1 led to a similar 2-fold (P <.01) increase in BAS over up-regulated (approximately 2-fold) 3-day chronic biliary-diverted control rats. Additionally, overexpression of StAR led to more than 3- and 6-fold increases over controls in the rates of BAS in biliary-diverted and intact mice, respectively (P <.01). In conclusion, in both rats and mice in vivo, overexpression of StAR led to a marked increase in the rates of BAS initiated by delivery of cholesterol to mitochondria containing CYP27A1.
Collapse
Affiliation(s)
- Shunlin Ren
- Department of Medicine, Veterans Affairs Medical Center and Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ren S, Hylemon PB, Marques D, Gurley E, Bodhan P, Hall E, Redford K, Gil G, Pandak WM. Overexpression of cholesterol transporter StAR increases in vivo rates of bile acid synthesis in the rat and mouse. Hepatology 2004. [PMID: 15382124 DOI: 10.1002/hep.1840400421] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bile acid synthesis (BAS) occurs mainly via two pathways: the "neutral" pathway, which is initiated by highly regulated microsomal CYP7A1, and an "acidic" pathway, which is initiated by mitochondrial CYP27A1. Previously, we have shown that overexpression of the steroidogenic acute regulatory protein (StAR), a mitochondrial cholesterol transport protein, increases bile acid biosynthesis more than 5-fold via the acidic pathway in primary rat hepatocytes. This observation suggests that mitochondrial cholesterol transport is the rate-limiting step of BAS via this pathway. The objective of this study was to determine the effect of increased StAR on rates of BAS in vivo. Overexpression of StAR and CYP7A1 were mediated via infection with recombinant adenoviruses. BAS rates were determined in chronic biliary-diverted rats and mice, and in mice with an intact enterohepatic circulation. The protein/messenger RNA levels of StAR and CYP7A1 increased dramatically following overexpression. Overexpression of StAR or CYP7A1 led to a similar 2-fold (P <.01) increase in BAS over up-regulated (approximately 2-fold) 3-day chronic biliary-diverted control rats. Additionally, overexpression of StAR led to more than 3- and 6-fold increases over controls in the rates of BAS in biliary-diverted and intact mice, respectively (P <.01). In conclusion, in both rats and mice in vivo, overexpression of StAR led to a marked increase in the rates of BAS initiated by delivery of cholesterol to mitochondria containing CYP27A1.
Collapse
Affiliation(s)
- Shunlin Ren
- Department of Medicine, Veterans Affairs Medical Center and Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ren S, Hylemon P, Marques D, Hall E, Redford K, Gil G, Pandak WM. Effect of increasing the expression of cholesterol transporters (StAR, MLN64, and SCP-2) on bile acid synthesis. J Lipid Res 2004; 45:2123-31. [PMID: 15342684 DOI: 10.1194/jlr.m400233-jlr200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are two major pathways of bile acid synthesis: the "neutral" pathway, initiated by highly regulated microsomal cholesterol 7alpha-hydroxylase (CYP7A1), and an "alternative" pathway, initiated by mitochondrial sterol 27-hydroxylase (CYP27A1). In hepatocyte cultures, overexpression of CYP7A1 increases bile acid synthesis by >8-fold. However, overexpression of CYP27A1 in hepatocytes only increases it by 1.5-fold, suggesting that additional rate-limiting steps must be involved in the regulation of this pathway. The effects of intracellular cholesterol transport proteins on bile acid synthesis have been investigated in the current study. Under culture conditions in which the neutral pathway was inactive, selective overexpression of the gene encoding steroidogenic acute regulatory protein (StAR), MLN64 (StAR homolog protein), and sterol carrier protein-2 (SCP-2) led to 5.7-, 1.2-, and 1.7-fold increases, respectively, in the rates of bile acid synthesis in primary rat hepatocytes. Surprisingly, co-overexpression of MLN64 with StAR, SCP-2, or CYP7A1 blunted the upregulated bile acid synthesis by 48, 47, and 45%, respectively. These results suggest that MLN64, in its full-length form, is not responsible for the transport of cholesterol to the mitochondria or the endoplasmic reticulum, where CYP27A1 or CYP7A1 is located, respectively.
Collapse
Affiliation(s)
- Shunlin Ren
- Department of Medicine, Veterans Affairs Medical Center and Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Bauer M, Hamm AC, Bonaus M, Jacob A, Jaekel J, Schorle H, Pankratz MJ, Katzenberger JD. Starvation response in mouse liver shows strong correlation with life-span-prolonging processes. Physiol Genomics 2004; 17:230-44. [PMID: 14762175 DOI: 10.1152/physiolgenomics.00203.2003] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have monitored global changes in gene expression in mouse liver in response to fasting and sugar-fed conditions using high-density microarrays. From ∼20,000 different genes, the significantly regulated ones were grouped into specific signaling and metabolic pathways. Striking changes in lipid signaling cascade, insulin and dehydroepiandrosterone (DHEA) hormonal pathways, urea cycle and S-adenosylmethionine-based methyl transfer systems, and cell apoptosis regulators were observed. Since these pathways have been implicated to play a role in the aging process, and since we observe significant overlap of genes regulated upon starvation with those regulated upon caloric restriction, our analysis suggests that starvation may elicit a stress response that is also elicited during caloric restriction. Therefore, many of the signaling and metabolic components regulated during fasting may be the same as those which mediate caloric restriction-dependent life-span extension.
Collapse
Affiliation(s)
- Matthias Bauer
- Institut fuer Genetik, Forschungszentrum Karlsruhe, 76021 Karlsruhe, , Germany
| | | | | | | | | | | | | | | |
Collapse
|