1
|
Williams BS, Jomy G, Flanagan M, Carriere JJ, Labdon GE, Hawkes GS, McRobbie-Aston J, Wallace MJ, Price CL, Davies NA, Seeley A. The behavioral, physiological, and biochemical responses of Lumbriculus variegatus exposed to cannabidiol and its metabolites. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:1297-1309. [PMID: 39951309 PMCID: PMC12047024 DOI: 10.1093/etojnl/vgaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 05/02/2025]
Abstract
Cannabidiol (CBD) is a major non-psychoactive cannabinoid that has been detected in environmental samples, but the ecotoxicological effects remain unknown. In this study, Lumbriculus variegatus were exposed to CBD and its metabolites 7-hydroxy-cannabidiol (7-OH-CBD) and 7-carboxy-cannabidiol (7-COOH-CBD). In this study, toxicity, tactile stimulation to elicit stereotypical behaviors, and locomotor activity were measured after 24-hr exposure of L. variegatus to CBD and its metabolites. We describe the impacts on dorsal blood vessel pulsation and oxygen consumption after 24-hr exposure to CBD and 7-OH-CBD and the effects on regenerative capacity and total energy reserves after 72 hr of exposure to CBD and 7-OH-CBD. We observed that CBD, 7-OH-CBD, and 7-COOH-CBD displayed toxicity in 50% of test populations at 14.12 µM, 11.29 µM, and 15.36 µM, respectively. A 24-hr exposure to CBD decreased tactile stimulation response to elicit body reversal at ≥ 2.5 µM and helical swimming at ≥ 0.5 µM and reduced locomotor activity. Lumbriculus variegatus oxygen consumption was not affected by CBD, but ≥ 2.5 µM significantly reduced dorsal blood vessel pulse rate. We observed that exposure to 7-OH-CBD did not affect the regenerative capacity of L. variegatus whereas CBD was shown to reduce regeneration. Exposure to CBD also resulted in a significant decrease in carbohydrates, increased lipids, and no effect on protein levels in L. variegatus. We determined that CBD can reduce L. variegatus behaviors, decrease pulse rates and regenerative capacity, and disrupt energy reserves. Our findings show that CBD is toxic to this common aquatic organism and the increased availability and use of CBD and related substances warrants further study of their environmental impact.
Collapse
Affiliation(s)
- Benjamin S Williams
- Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Wales, United Kingdom
| | - Georgeena Jomy
- Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Wales, United Kingdom
| | - Megan Flanagan
- Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Wales, United Kingdom
| | - Julanta J Carriere
- Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Wales, United Kingdom
| | - Grace E Labdon
- Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Wales, United Kingdom
| | - Grace S Hawkes
- Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Wales, United Kingdom
| | - James McRobbie-Aston
- Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Wales, United Kingdom
| | - Melisa J Wallace
- Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Wales, United Kingdom
| | - Claire L Price
- Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Wales, United Kingdom
- Centre for Cytochrome P450 Biodiversity, Swansea University Medical School, Swansea University, Wales, United Kingdom
| | - Nia A Davies
- Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Wales, United Kingdom
| | - Aidan Seeley
- Swansea Worm Integrative Research Laboratory (SWIRL), Swansea University Medical School, Swansea University, Wales, United Kingdom
| |
Collapse
|
2
|
Fallahi S, Bobak Ł, Opaliński S. Hemp in Animal Diets—Cannabidiol. Animals (Basel) 2022; 12:ani12192541. [PMID: 36230282 PMCID: PMC9559627 DOI: 10.3390/ani12192541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023] Open
Abstract
In recent years, interest in hemp use has grown owing to its chemical and medicinal properties. Several parts of this plant, such as seeds, leaves, flowers, and stems are used in medicine, industry, and environmental preservation. Although there were legal restrictions on hemp exploitation in some countries due to the trace presence of THC as a psychoactive element, many countries have legalized it in recent years. Cannabidiol or CBD is a non-psychoactive phytocannabinoid that can activate the endocannabinoid system and its receptors in the central and peripheral nervous system in bodies of different species. Cannabidiol has anti-inflammatory, antioxidative, analgesic, and anti-depressant effects. This review investigates various aspects of cannabidiol use and its potential in animals and humans.
Collapse
Affiliation(s)
- Sepideh Fallahi
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence:
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Sebastian Opaliński
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| |
Collapse
|
3
|
Crooks BA, Mckenzie D, Cadd LC, McCoy CJ, McVeigh P, Marks NJ, Maule AG, Mousley A, Atkinson LE. Pan-phylum In Silico Analyses of Nematode Endocannabinoid Signalling Systems Highlight Novel Opportunities for Parasite Drug Target Discovery. Front Endocrinol (Lausanne) 2022; 13:892758. [PMID: 35846343 PMCID: PMC9283691 DOI: 10.3389/fendo.2022.892758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid signalling (ECS) system is a complex lipid signalling pathway that modulates diverse physiological processes in both vertebrate and invertebrate systems. In nematodes, knowledge of endocannabinoid (EC) biology is derived primarily from the free-living model species Caenorhabditis elegans, where ECS has been linked to key aspects of nematode biology. The conservation and complexity of nematode ECS beyond C. elegans is largely uncharacterised, undermining the understanding of ECS biology in nematodes including species with key importance to human, veterinary and plant health. In this study we exploited publicly available omics datasets, in silico bioinformatics and phylogenetic analyses to examine the presence, conservation and life stage expression profiles of EC-effectors across phylum Nematoda. Our data demonstrate that: (i) ECS is broadly conserved across phylum Nematoda, including in therapeutically and agriculturally relevant species; (ii) EC-effectors appear to display clade and lifestyle-specific conservation patterns; (iii) filarial species possess a reduced EC-effector complement; (iv) there are key differences between nematode and vertebrate EC-effectors; (v) life stage-, tissue- and sex-specific EC-effector expression profiles suggest a role for ECS in therapeutically relevant parasitic nematodes. To our knowledge, this study represents the most comprehensive characterisation of ECS pathways in phylum Nematoda and inform our understanding of nematode ECS complexity. Fundamental knowledge of nematode ECS systems will seed follow-on functional studies in key nematode parasites to underpin novel drug target discovery efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Louise E. Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
4
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|
6
|
The Endocannabinoid System in the Mediterranean Mussel Mytilus galloprovincialis: Possible Mediators of the Immune Activity? Int J Mol Sci 2021; 22:ijms22094954. [PMID: 34066927 PMCID: PMC8125337 DOI: 10.3390/ijms22094954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Anandamide (AEA) is one of the best characterized members of the endocannabinoid family and its involvement in many pathophysiological processes has been well documented in vertebrates and invertebrates. Here, we report the biochemical and functional characterization of key elements of the endocannabinoid system in hemocytes isolated from the Mediterranean mussel Mytilus galloprovincialis. We also show the effects of exogenous AEA, as well as of capsaicin, on the cell ability to migrate and to activate the respiratory burst, upon in vitro stimulation of phagocytosis. Interestingly, our findings show that both AEA and capsaicin suppress the hemocyte response and that the use of selective antagonists of CB2 and TRPV1 receptors revert their inhibitory effects. Overall, present data support previous evidence on the presence of endocannabinoid signaling in mollusks and advance our knowledge about the evolutionary origins of this endogenous system and its role in the innate response of mollusks.
Collapse
|
7
|
Clarke TL, Johnson RL, Simone JJ, Carlone RL. The Endocannabinoid System and Invertebrate Neurodevelopment and Regeneration. Int J Mol Sci 2021; 22:2103. [PMID: 33672634 PMCID: PMC7924210 DOI: 10.3390/ijms22042103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabis has long been used for its medicinal and psychoactive properties. With the relatively new adoption of formal medicinal cannabis regulations worldwide, the study of cannabinoids, both endogenous and exogenous, has similarly flourished in more recent decades. In particular, research investigating the role of cannabinoids in regeneration and neurodevelopment has yielded promising results in vertebrate models. However, regeneration-competent vertebrates are few, whereas a myriad of invertebrate species have been established as superb models for regeneration. As such, this review aims to provide a comprehensive summary of the endocannabinoid system, with a focus on current advances in the area of endocannabinoid system contributions to invertebrate neurodevelopment and regeneration.
Collapse
Affiliation(s)
- Tristyn L. Clarke
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Rachael L. Johnson
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
- eCB Consulting Inc., P.O. Box 652, 3 Cameron St. W., Cannington, ON L2S 3A1, Canada
| | - Robert L. Carlone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
8
|
The endocannabinoid system. Essays Biochem 2021; 64:485-499. [PMID: 32648908 DOI: 10.1042/ebc20190086] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
Thirty years ago, the discovery of a cannabinoid (CB) receptor that interacts with the psychoactive compound in Cannabis led to the identification of anandamide, an endogenous receptor ligand or endocannabinoid. Research on endocannabinoids has since exploded, and additional receptors along with their lipid mediators and signaling pathways continue to be revealed. Specifically, in humans, the release of endocannabinoids from membrane lipids occurs on demand and the signaling process is rapidly attenuated by the breakdown of the ligand suggesting a tight regulation of the endocannabinoid system (ECS). Additionally, the varying distribution of CB receptors between the central nervous system and other tissues allows for the ECS to participate in a wide range of cognitive and physiological processes. Select plant-derived 'phyto'cannabinoids such as Δ-9-tetrahydrocannabinol (Δ9-THC) bind to the CB receptors and trigger the ECS, and in the case of Δ9-THC, while it has therapeutic value, can also produce detrimental effects. Current research is aimed at the identification of additional phytocannabinoids with minimal psychotropic effects with potential for therapeutic development. Although decades of research on the ECS and its components have expanded our understanding of the mechanisms and implications of endocannabinoid signaling in mammals, it continues to evolve. Here, we provide a brief overview of the ECS and its overlap with other related lipid-mediated signaling pathways.
Collapse
|
9
|
Dvořáček J, Kodrík D. Drosophila reward system - A summary of current knowledge. Neurosci Biobehav Rev 2021; 123:301-319. [PMID: 33421541 DOI: 10.1016/j.neubiorev.2020.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 01/19/2023]
Abstract
The fruit fly Drosophila melanogaster brain is the most extensively investigated model of a reward system in insects. Drosophila can discriminate between rewarding and punishing environmental stimuli and consequently undergo associative learning. Functional models, especially those modelling mushroom bodies, are constantly being developed using newly discovered information, adding to the complexity of creating a simple model of the reward system. This review aims to clarify whether its reward system also includes a hedonic component. Neurochemical systems that mediate the 'wanting' component of reward in the Drosophila brain are well documented, however, the systems that mediate the pleasure component of reward in mammals, including those involving the endogenous opioid and endocannabinoid systems, are unlikely to be present in insects. The mushroom body components exhibit differential developmental age and different functional processes. We propose a hypothetical hierarchy of the levels of reinforcement processing in response to particular stimuli, and the parallel processes that take place concurrently. The possible presence of activity-silencing and meta-satiety inducing levels in Drosophila should be further investigated.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
10
|
Lourenço DM, Ribeiro-Rodrigues L, Sebastião AM, Diógenes MJ, Xapelli S. Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. Int J Mol Sci 2020; 21:E7309. [PMID: 33022963 PMCID: PMC7582633 DOI: 10.3390/ijms21197309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
Collapse
Affiliation(s)
- Diogo M. Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
11
|
Della Rocca G, Di Salvo A. Hemp in Veterinary Medicine: From Feed to Drug. Front Vet Sci 2020; 7:387. [PMID: 32850997 PMCID: PMC7399642 DOI: 10.3389/fvets.2020.00387] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023] Open
Abstract
Hemp (Cannabis sativa) is an angiosperm plant belonging to the Cannabaceae family. Its cultivation dates back to centuries. It has always been cultivated due to the possibility of exploiting almost all the parts of the plant: paper, fabrics, ropes, bio-compounds with excellent insulating capacity, fuel, biodegradable plastic, antibacterial detergents, and food products, such as flour, oils, seeds, herbal teas, and beer, are indeed obtained from hemp. Hemp flowers have also always been used for their curative effects, as well as for recreational purposes due to their psychotropic effects. Cannabis contains almost 500 chemical compounds, such as phytocannabinoids, terpenes, flavonoids, amino acids, fatty acids, vitamins, and macro-, and micro-elements, among others. When utilized as a food source, hemp shows excellent nutritional and health-promoting (nutraceutical) properties, mainly due to the high content in polyunsaturated fatty acids (especially those belonging to the ω-3 series), as well as in phenolic compounds, which seem effective in the prevention of common diseases such as gastrointestinal disorders, neurodegenerative diseases, cancer, and others. Moreover, hemp oil and other oils (i.e., olive oil and medium-chain triglyceride–MCT–oil) enriched in CBD, as well as extracts from hemp dried flowers (Cannabis extracts), are authorized in some countries for therapeutic purposes as a second-choice approach (when conventional therapies have failed) for a certain number of clinical conditions such as pain and inflammation, epilepsy, anxiety disorders, nausea, emesis, and anorexia, among others. The present review will synthetize the beneficial properties of hemp and hemp derivatives in animal nutrition and therapeutics.
Collapse
Affiliation(s)
- Giorgia Della Rocca
- Dipartimento di Medicina Veterinaria, Centro di Ricerca sul Dolore Animale (CeRiDA), Università degli Studi di Perugia, Perugia, Italy
| | - Alessandra Di Salvo
- Dipartimento di Medicina Veterinaria, Centro di Ricerca sul Dolore Animale (CeRiDA), Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
12
|
Previšić A, Rožman M, Mor JR, Acuña V, Serra-Compte A, Petrović M, Sabater S. Aquatic macroinvertebrates under stress: Bioaccumulation of emerging contaminants and metabolomics implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135333. [PMID: 31822419 DOI: 10.1016/j.scitotenv.2019.135333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 05/24/2023]
Abstract
The current knowledge on bioaccumulation of emerging contaminants (ECs) in aquatic invertebrates exposed to the realistic environmental concentrations is limited. Even less is known about the effects of chemical pollution exposure on the metabolome of aquatic invertebrates. We conducted an in situ translocation experiment with passive filter-feeding caddisfly larvae (Hydropsyche sp.) in an effluent-influenced river in order to i) unravel the bioaccumulation (and recovery) dynamics of ECs in aquatic invertebrates, and ii) test whether exposure to environmentally realistic concentrations of ECs will translate into metabolic profile changes in the insects. The experiment was carried out at two sites, upstream and downstream of the discharge of an urban wastewater treatment plant effluent. The translocated animals were collected at 2-week intervals for 46 days. Both pharmaceuticals and endocrine disrupting compounds (EDCs) were detected in water (62 and 7 compounds, respectively), whereas in Hydropsyche tissues 5 EDCs accumulated. Overall, specimens from the upstream site translocated to the impacted site reached higher ECs concentrations in their tissues, as a reflection of the contaminants' water concentrations. However, bioaccumulation was a temporary process susceptible to change under lower contaminant concentrations. Non-targeted metabolite profiling detected fine metabolic changes in translocated Hydropsyche larvae. Both translocations equally induced stress, but it was higher in animals translocated to the impacted site.
Collapse
Affiliation(s)
- Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain.
| | - Marko Rožman
- Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain; Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Jordi-René Mor
- Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain; Faculty of Sciences - University of Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Vicenç Acuña
- Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain; Faculty of Sciences - University of Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Albert Serra-Compte
- Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain; Faculty of Sciences - University of Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Mira Petrović
- Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain; Institute of Aquatic Ecology, University of Girona, Girona, Spain
| |
Collapse
|
13
|
Ritter S, Zadik-Weiss L, Almogi-Hazan O, Or R. Cannabis, One Health, and Veterinary Medicine: Cannabinoids' Role in Public Health, Food Safety, and Translational Medicine. Rambam Maimonides Med J 2020; 11:RMMJ.10388. [PMID: 32017686 PMCID: PMC7000163 DOI: 10.5041/rmmj.10388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Public health is connected to cannabis with regard to food, animal feed (feed), and pharmaceuticals. Therefore, the use of phytocannabinoids should be examined from a One Health perspective. Current knowledge on medical cannabis treatment (MCT) does not address sufficiently diseases which are of epidemiological and of zoonotic concern. The use of cannabinoids in veterinary medicine is illegal in most countries, mostly due to lack of evidence-based medicine. To answer the growing need of scientific evidence-based applicable medicine in both human and veterinary medicine, a new approach for the investigation of the therapeutic potential of cannabinoids must be adopted. A model that offers direct study of a specific disease in human and veterinary patients may facilitate development of novel therapies. Therefore, we urge the regulatory authorities-the ministries of health and agriculture (in Israel and worldwide)-to publish guidelines for veterinary use due to its importance to public health, as well as to promote One Health-related preclinical translational medicine studies for the general public health.
Collapse
Affiliation(s)
| | | | - Osnat Almogi-Hazan
- Laboratory of Immunotherapy and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Reuven Or
- Laboratory of Immunotherapy and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
14
|
Paulsen RT, Burrell BD. Comparative studies of endocannabinoid modulation of pain. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190279. [PMID: 31544609 PMCID: PMC6790382 DOI: 10.1098/rstb.2019.0279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 01/21/2023] Open
Abstract
Cannabinoid-based therapies have long been used to treat pain, but there remain questions about their actual mechanisms and efficacy. From an evolutionary perspective, the cannabinoid system would appear to be highly conserved given that the most prevalent endogenous cannabinoid (endocannabinoid) transmitters, 2-arachidonyl glycerol and anandamide, have been found throughout the animal kingdom, at least in the species that have been analysed to date. This review will first examine recent findings regarding the potential conservation across invertebrates and chordates of the enzymes responsible for endocannabinoid synthesis and degradation and the receptors that these transmitters act on. Next, comparisons of how endocannabinoids modulate nociception will be examined for commonalities between vertebrates and invertebrates, with a focus on the medicinal leech Hirudo verbana. Evidence is presented that there are distinct, evolutionarily conserved anti-nociceptive and pro-nociceptive effects. The combined studies across various animal phyla demonstrate the utility of using comparative approaches to understand conserved mechanisms for modulating nociception. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
| | - Brian D. Burrell
- Division of Basic Biomedical Sciences, Neuroscience, Nanotechnology, and Networks Program, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
15
|
Gómez IM, Rodríguez MA, Santalla M, Kassis G, Colman Lerner JE, Aranda JO, Sedán D, Andrinolo D, Valverde CA, Ferrero P. Inhalation of marijuana affects Drosophila heart function. Biol Open 2019; 8:bio.044081. [PMID: 31324618 PMCID: PMC6737967 DOI: 10.1242/bio.044081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We investigated the effect of inhalation of vaporized marijuana on cardiac function in Drosophila melanogaster, a suitable genetic model for studying human diseases. Adult flies were exposed to marijuana for variable time periods and the effects on cardiac function were studied. Short treatment protocol incremented heart-rate variability. Contractility was augmented only under prolonged exposure to cannabis and it was associated with incremented calcium transient within cardiomyocytes. Neither the activity of the major proteins responsible for calcium handling nor the calcium load of the sarcoplasmic reticulum were affected by the cannabis treatment. The observed changes manifested in the cardiomyocytes even in the absence of the canonical cannabinoid receptors described in mammals. Our results are the first evidence of the in vivo impact of phytocannabinoids in D. melanogaster. By providing a simple and affordable platform prior to mammalian models, this characterization of cardiac function under marijuana exposure opens new paths for conducting genetic screenings using vaporized compounds.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ivana M Gómez
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas, UNLP, La Plata 1900, Argentina
| | - Maia A Rodríguez
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas, UNLP, La Plata 1900, Argentina
| | - Manuela Santalla
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas, UNLP, La Plata 1900, Argentina.,Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino 2700, Argentina
| | | | - Jorge E Colman Lerner
- Centro de Investigación y Desarrollo en Ciencias Aplicadas Facultad de Ciencias Exactas, CCT La Plata-UNLP-CICPBA, La Plata 1900, Argentina
| | - J Oswaldo Aranda
- Programa Ambiental de Extensión Universitaria. Facultad de Ciencias Exactas-UNLP, La Plata 1900, Argentina
| | - Daniela Sedán
- Centro de Investigaciones del medio Ambiente Facultad de Ciencias Exactas, CCT La Plata-UNLP, La Plata 1900, Argentina
| | - Dario Andrinolo
- Centro de Investigaciones del medio Ambiente Facultad de Ciencias Exactas, CCT La Plata-UNLP, La Plata 1900, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas, UNLP, La Plata 1900, Argentina
| | - Paola Ferrero
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas, UNLP, La Plata 1900, Argentina .,Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino 2700, Argentina
| |
Collapse
|
16
|
Pepper I, Vinik A, Lattanzio F, McPheat W, Dobrian A. Countering the Modern Metabolic Disease Rampage With Ancestral Endocannabinoid System Alignment. Front Endocrinol (Lausanne) 2019; 10:311. [PMID: 31156558 PMCID: PMC6533883 DOI: 10.3389/fendo.2019.00311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
When primitive vertebrates evolved from ancestral members of the animal kingdom and acquired complex locomotive and neurological toolsets, a constant supply of energy became necessary for their continued survival. To help fulfill this need, the endocannabinoid (eCB) system transformed drastically with the addition of the cannabinoid-1 receptor (CB1R) to its gene repertoire. This established an eCB/CB1R signaling mechanism responsible for governing the whole organism's energy balance, with its activation triggering a shift toward energy intake and storage in the brain and the peripheral organs (i.e., liver and adipose). Although this function was of primal importance for humans during their pre-historic existence as hunter-gatherers, it became expendable following the successive lifestyle shifts of the Agricultural and Industrial Revolutions. Modernization of the world has further increased food availability and decreased energy expenditure, thus shifting the eCB/CB1R system into a state of hyperactive deregulated signaling that contributes to the 21st century metabolic disease pandemic. Studies from the literature supporting this perspective come from a variety of disciplines, including biochemistry, human medicine, evolutionary/comparative biology, anthropology, and developmental biology. Consideration of both biological and cultural evolution justifies the design of improved pharmacological treatments for obesity and Type 2 diabetes (T2D) that focus on peripheral CB1R antagonism. Blockade of peripheral CB1Rs, which universally promote energy conservation across the vertebrate lineage, represents an evolutionary medicine strategy for clinical management of present-day metabolic disorders.
Collapse
Affiliation(s)
- Ian Pepper
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
- *Correspondence: Ian Pepper
| | - Aaron Vinik
- Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Frank Lattanzio
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - William McPheat
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anca Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
17
|
Scolnick B. Treatment of anorexia nervosa with palmitoylethanoamide. Med Hypotheses 2018; 116:54-60. [PMID: 29857912 DOI: 10.1016/j.mehy.2018.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Barbara Scolnick
- Boston University, Dept of Psychological and Brain Sciences, 64 Cummington Street, Boston, MA 02215, United States.
| |
Collapse
|
18
|
Řezanka T, Vítová M, Lukavský J, Sigler K. Lipidomic Study of Precursors of Endocannabinoids in Freshwater Bryozoan Pectinatella magnifica. Lipids 2018; 53:413-427. [PMID: 29709080 DOI: 10.1002/lipd.12039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 11/08/2022]
Abstract
Freshwater bryozoan Pectinatella magnifica was collected from a sand pit (South Bohemia). The total lipids after extraction from lyophilized bryozoans were analyzed using high-performance liquid chromatography/high-resolution negative tandem electrospray mass spectrometry. A total of 19 lipid classes were identified, including N-acyl-substituted phospholipids, that is, N-acylphosphatidylethanolamine and N-acylphosphatidylserine in their plasmenyl forms. Based on gas chromatography/mass spectrometry of 3-pyridylcarbonyl (picolinyl) esters, a very unusual fatty acid was identified, namely 24:7n-3 (all-cis-3,6,9,12,15,18,21-tetracosaheptaenoic acid). The presence of polyunsaturated fatty acids in individual classes is very specific: arachidonic and eicosapentaenoic acids being predominantly bound as amides in N-acyl phospholipids, that is, diacyl-N-acylphosphatidylethanolamines (NAPtdEtn), plasmenyl-N-acylphosphatidyl ethanolamines (PlsNAPtdEtn), diacyl-N-acylphosphatidylserines (NAPtdSer), and plasmenyl-N-acylphosphatidylserines (PlsNAPtdSer). While 24:6n-3 was identified in the sn-2 position of several phospholipids, 24:7n-3 was identified in only two plasmalogens, that is, PlsNAPtdEtn and PlsNAPtdSer. Thanks to the tandem mass spectrometry, we managed to identify the position of all acyl groups in both diacyl- and also in alkenyl-acyl-(plasmenyl) molecular species of N-acylphospholipids. The identification of the molecular species of N-acyl-substituted phosphatidylethanolamine and phosphatidylserine, including their plasmalogen forms, in the freshwater bryozoan P. magnifica has enabled the identification of endogenous cannabinoid precursors.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Laboratory of Fungal Genetics and Metabolism, The Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Milada Vítová
- Laboratory of Cell Cycles of Algae, Centre Algatech, The Czech Academy of Sciences, Institute of Microbiology, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - Jaromír Lukavský
- Department of Plant Ecology, Biorefinery Centre of Competence, The Czech Academy of Sciences, Institute of Botany, Dukelská 135, 379 82, Třeboň, Czech Republic
| | - Karel Sigler
- Laboratory of Fungal Genetics and Metabolism, The Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
19
|
Sunada H, Watanabe T, Hatakeyama D, Lee S, Forest J, Sakakibara M, Ito E, Lukowiak K. Pharmacological effects of cannabinoids on learning and memory in Lymnaea. ACTA ACUST UNITED AC 2018; 220:3026-3038. [PMID: 28855319 DOI: 10.1242/jeb.159038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022]
Abstract
Cannabinoids are hypothesized to play an important role in modulating learning and memory formation. Here, we identified mRNAs expressed in Lymnaeastagnalis central nervous system that encode two G-protein-coupled receptors (Lymnaea CBr-like 1 and 2) that structurally resemble mammalian cannabinoid receptors (CBrs). We found that injection of a mammalian CBr agonist WIN 55,212-2 (WIN 55) into the snail before operant conditioning obstructed learning and memory formation. This effect of WIN 55 injection persisted for at least 4 days following its injection. A similar obstruction of learning and memory occurred when a severe traumatic stimulus was delivered to L. stagnalis In contrast, injection of a mammalian CBr antagonist AM 251 enhanced long-term memory formation in snails and reduced the duration of the effects of the severe traumatic stressor on learning and memory. Neither WIN 55 nor AM 251 altered normal homeostatic aerial respiratory behaviour elicited in hypoxic conditions. Our results suggest that putative cannabinoid receptors mediate stressful stimuli that alter learning and memory formation in Lymnaea This is also the first demonstration that putative CBrs are present in Lymnaea and play a key role in learning and memory formation.
Collapse
Affiliation(s)
- Hiroshi Sunada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1.,Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Takayuki Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 060-0811, Japan
| | - Dai Hatakeyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Sangmin Lee
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jeremy Forest
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Manabu Sakakibara
- School of High-Technology for Human Welfare, Tokai University, Numazu, Shizuoka 410-0321, Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan .,Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
20
|
Yuan D, Wu Z, Wang Y. Evolution of the diacylglycerol lipases. Prog Lipid Res 2016; 64:85-97. [PMID: 27568643 DOI: 10.1016/j.plipres.2016.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/24/2016] [Accepted: 08/24/2016] [Indexed: 01/31/2023]
Abstract
Diacylglycerol lipases (DGLs) mainly catalyze "on-demand" biosynthesis of bioactive monoacylglycerols (MAGs) with different long fatty acyl chains, including 2-arachidonoylglycerol (2-AG), 2-linoleoylglycerol (2-LG), 2-oleoylglycerol (2-OG) and 2-palmitoylglycerol (2-PG). Enzymatic characterization of DGLs, their expression and distribution, and functional features has been elucidated from microorganisms to mammals in some extent. In mammals, biosynthesis, degradation and metabolism of these bioactive lipids intertwine and form a complicated biochemical pathway to affect the mammal neuromodulation of central nervous system and also other physiological processes in most peripheral organs and non-nervous tissue cells, and yet we still do not know if the neuromodulatory role of mammal DGL and MAGs is similar to invertebrates. Tracing the evolutionary history of DGLs from microorganisms to vertebrates will be an essential method to infer DGL and MAG research in organisms. In this review, we give an exhaustive explanation of the ancestral origin, divergence and evolutionary pattern through systemic searching of DGL orthologs in different species. Finally, we also summarize our recent work on the structural and functional studies of DGL in order to explore usage of DGLs in industry and the development of inhibitors for clinical intervention.
Collapse
Affiliation(s)
- Dongjuan Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China; College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Yonghua Wang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, People's Republic of China.
| |
Collapse
|
21
|
Mikami Y, Fukushima A, Kuwada-Kusunose T, Sakurai T, Kitano T, Komiyama Y, Iwase T, Komiyama K. Whole transcriptome analysis using next-generation sequencing of sterile-cultured Eisenia andrei for immune system research. PLoS One 2015; 10:e0118587. [PMID: 25706644 PMCID: PMC4338202 DOI: 10.1371/journal.pone.0118587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
Recently, earthworms have become a useful model for research into the immune system, and it is expected that results obtained using this model will shed light on the sophisticated vertebrate immune system and the evolution of the immune response, and additionally help identify new biomolecules with therapeutic applications. However, for earthworms to be used as a genetic model of the invertebrate immune system, basic molecular and genetic resources, such as an expressed sequence tag (EST) database, must be developed for this organism. Next-generation sequencing technologies have generated EST libraries by RNA-seq in many model species. In this study, we used Illumina RNA-sequence technology to perform a comprehensive transcriptome analysis using an RNA sample pooled from sterile-cultured Eisenia andrei. All clean reads were assembled de novo into 41,423 unigenes using the Trinity program. Using this transcriptome data, we performed BLAST analysis against the GenBank non-redundant (NR) database and obtained a total of 12,285 significant BLAST hits. Furthermore, gene ontology (GO) analysis assigned 78 unigenes to 24 immune class GO terms. In addition, we detected a unigene with high similarity to beta-1,3-glucuronyltransferase 1 (GlcAT-P), which mediates a glucuronyl transfer reaction during the biosynthesis of the carbohydrate epitope HNK-1 (human natural killer-1, also known as CD57), a marker of NK cells. The identified transcripts will be used to facilitate future research into the immune system using E. andrei.
Collapse
Affiliation(s)
- Yoshikazu Mikami
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Takao Kuwada-Kusunose
- Department of Liberal Arts (Chemistry), Nihon University School of Dentistry at Matsudo, 2-870-1, Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Taiichi Kitano
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yusuke Komiyama
- Intensive Care Unit, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takashi Iwase
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kazuo Komiyama
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
- * E-mail:
| |
Collapse
|
22
|
Yuan S, Burrell BD. Nonnociceptive afferent activity depresses nocifensive behavior and nociceptive synapses via an endocannabinoid-dependent mechanism. J Neurophysiol 2013; 110:2607-16. [PMID: 24027102 DOI: 10.1152/jn.00170.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previously, low-frequency stimulation (LFS) of a nonnociceptive touch-sensitive neuron has been found to elicit endocannabinoid-dependent long-term depression (eCB-LTD) in nociceptive synapses in the leech central nervous system (CNS) that requires activation of a presynaptic transient receptor potential vanilloid (TRPV)-like receptor by postsynaptically synthesized 2-arachidonoyl glycerol (2-AG). This capacity of nonnociceptive afferent activity to reduce nociceptive signaling resembles gate control of pain, albeit longer lasting in these synaptic experiments. Since eCB-LTD has been observed at a single sensory-motor synapse, this study examines the functional relevance of this mechanism, specifically whether this form of synaptic plasticity has similar effects at the behavioral level in which additional, intersegmental neural circuits are engaged. Experiments were carried out using a semi-intact preparation that permitted both synaptic recordings and monitoring of the leech whole body shortening, a defensive withdrawal reflex that was elicited via intracellular stimulation of a single nociceptive neuron (the N cell). The same LFS of a nonnociceptive afferent that induced eCB-LTD in single synapses also produced an attenuation of the shortening reflex. Similar attenuation of behavior was also observed when 2-AG was applied. LFS-induced behavioral and synaptic depression was blocked by tetrahydrolipstatin (THL), a diacylglycerol lipase inhibitor, and by SB366791, a TRPV1 antagonist. The effects of both THL and SB366791 were observed following either bath application of the drug or intracellular injection into the presynaptic (SB366791) or postsynaptic (THL) neuron. These findings demonstrate a novel, endocannabinoid-based mechanism by which nonnociceptive afferent activity may modulate nocifensive behaviors via action on primary afferent synapses.
Collapse
Affiliation(s)
- Sharleen Yuan
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | | |
Collapse
|
23
|
Tauber S, Paulsen K, Wolf S, Synwoldt P, Pahl A, Schneider-Stock R, Ullrich O. Regulation of MMP-9 by a WIN-binding site in the monocyte-macrophage system independent from cannabinoid receptors. PLoS One 2012; 7:e48272. [PMID: 23139770 PMCID: PMC3491062 DOI: 10.1371/journal.pone.0048272] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/21/2012] [Indexed: 11/21/2022] Open
Abstract
The cannabinoid system is known to be involved in the regulation of inflammatory processes. Therefore, drugs targeting cannabinoid receptors are considered as candidates for anti-inflammatory and tissue protective therapy. We demonstrated that the prototypical cannabinoid agonist R(+)WIN55,212-2 (WIN) reduced the secretion of matrix metalloproteinase-9 (MMP-9) in a murine model of cigarette-smoke induced lung inflammation. In experiments using primary cells and cell lines of the monocyte-macrophage-system we found that binding of the cannabinoid-receptor agonist WIN to a stereo-selective, specific binding site in cells of the monocyte-macrophage-system induced a significant down-regulation of MMP-9 secretion and disturbance of intracellular processing, which subsequently down-regulated MMP-9 mRNA expression via a ERK1/2-phosphorylation-dependent pathway. Surprisingly, the anti-inflammatory effect was independent from classical cannabinoid receptors. Our experiments supposed an involvement of TRPV1, but other yet unidentified sites are also possible. We conclude that cannabinoid-induced control of MMP-9 in the monocyte-macrophage system via a cannabinoid-receptor independent pathway represents a general option for tissue protection during inflammation, such as during lung inflammation and other diseases associated with inflammatory tissue damage.
Collapse
Affiliation(s)
- Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute of Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute of Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Susanne Wolf
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | | | | | - Regine Schneider-Stock
- Institute of Pathology, Erlangen, Germany
- Institute of Pathology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute of Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Paulsen K, Tauber S, Timm J, Goelz N, Dumrese C, Stolzing A, Hass R, Ullrich O. The cannabinoid receptors agonist WIN55212-2 inhibits macrophageal differentiation and alters expression and phosphorylation of cell cycle control proteins. Cell Commun Signal 2011; 9:33. [PMID: 22204398 PMCID: PMC3273436 DOI: 10.1186/1478-811x-9-33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/28/2011] [Indexed: 11/10/2022] Open
Abstract
In this study we investigated if and how cannabinoid receptor stimulation regulates macrophageal differentiation, which is one of the key steps in the immune effector reaction. For that reason, we used a well established differentiation model system of human U937 myelocytic leukemia cells that differentiate along the monocyte/macrophage lineage upon stimulation with the phorbol ester PMA. Constant cannabinoid receptor (CB) stimulation was performed using WIN55212-2, a potent synthetic CB agonist. We found that WIN55212-2 inhibited CB1/2-receptor-dependent PMA-induced differentiation of human myelocytic U937 cells into the macrophageal phenotype, which was associated with impaired vimentin, ICAM-1 and CD11b expression. In the presence of WIN55212-2, cdc2 protein and mRNA expression was progressively enhanced and Tyr-15-phosporylation of cdc2 was reduced in differentiating U937 cells. Additionally, p21Waf1/Cip1 expression was up-regulated. PMA-induced apoptosis was not enhanced by WIN55212-2 and differentiation-associated c-jun expression was not altered. In conclusion, we suppose that WIN55212-2-induced signals interferes with cell-cycle-arrest-signaling in differentiating myelocytic cells and thus inhibits macrophageal differentiation. Thus, it is possible that the cannabinoid system is able to influence one of the key steps in the immune effector function, the monocytic-macrophageal differentiation by alteration of cell cycle control proteins cdc2 and p21, and is therefore representing a promising option for therapeutic intervention in exacerbated immune reactions.
Collapse
Affiliation(s)
- Katrin Paulsen
- Division of Cellbiology, Institute of Anatomy, Faculty of Medicine, University of Zurich, Switzerland
| | - Svantje Tauber
- Division of Cellbiology, Institute of Anatomy, Faculty of Medicine, University of Zurich, Switzerland
| | - Johanna Timm
- Division of Cellbiology, Institute of Anatomy, Faculty of Medicine, University of Zurich, Switzerland
| | - Nadine Goelz
- Division of Cellbiology, Institute of Anatomy, Faculty of Medicine, University of Zurich, Switzerland
| | - Claudia Dumrese
- Division of Cellbiology, Institute of Anatomy, Faculty of Medicine, University of Zurich, Switzerland
- Center for Microsocopy and Image Analysis, University of Zurich, Switzerland
| | - Alexandra Stolzing
- Stem Cell Biology Group, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Gynecology, Medizinische Hochschule Hannover, Germany
| | - Oliver Ullrich
- Division of Cellbiology, Institute of Anatomy, Faculty of Medicine, University of Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| |
Collapse
|
25
|
Hoyle CH. Evolution of neuronal signalling: Transmitters and receptors. Auton Neurosci 2011; 165:28-53. [DOI: 10.1016/j.autneu.2010.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 05/09/2010] [Accepted: 05/18/2010] [Indexed: 11/16/2022]
|
26
|
Meriaux C, Arafah K, Tasiemski A, Wisztorski M, Bruand J, Boidin-Wichlacz C, Desmons A, Debois D, Laprévote O, Brunelle A, Gaasterland T, Macagno E, Fournier I, Salzet M. Multiple changes in peptide and lipid expression associated with regeneration in the nervous system of the medicinal leech. PLoS One 2011; 6:e18359. [PMID: 21526169 PMCID: PMC3081291 DOI: 10.1371/journal.pone.0018359] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The adult medicinal leech central nervous system (CNS) is capable of regenerating specific synaptic circuitry after a mechanical lesion, displaying evidence of anatomical repair within a few days and functional recovery within a few weeks. In the present work, spatiotemporal changes in molecular distributions during this phenomenon are explored. Moreover, the hypothesis that neural regeneration involves some molecular factors initially employed during embryonic neural development is tested. RESULTS Imaging mass spectrometry coupled to peptidomic and lipidomic methodologies allowed the selection of molecules whose spatiotemporal pattern of expression was of potential interest. The identification of peptides was aided by comparing MS/MS spectra obtained for the peptidome extracted from embryonic and adult tissues to leech transcriptome and genome databases. Through the parallel use of a classical lipidomic approach and secondary ion mass spectrometry, specific lipids, including cannabinoids, gangliosides and several other types, were detected in adult ganglia following mechanical damage to connected nerves. These observations motivated a search for possible effects of cannabinoids on neurite outgrowth. Exposing nervous tissues to Transient Receptor Potential Vanilloid (TRPV) receptor agonists resulted in enhanced neurite outgrowth from a cut nerve, while exposure to antagonists blocked such outgrowth. CONCLUSION The experiments on the regenerating adult leech CNS reported here provide direct evidence of increased titers of proteins that are thought to play important roles in early stages of neural development. Our data further suggest that endocannabinoids also play key roles in CNS regeneration, mediated through the activation of leech TRPVs, as a thorough search of leech genome databases failed to reveal any leech orthologs of the mammalian cannabinoid receptors but revealed putative TRPVs. In sum, our observations identify a number of lipids and proteins that may contribute to different aspects of the complex phenomenon of leech nerve regeneration, establishing an important base for future functional assays.
Collapse
Affiliation(s)
- Céline Meriaux
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Karim Arafah
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Aurélie Tasiemski
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Maxence Wisztorski
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Jocelyne Bruand
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Céline Boidin-Wichlacz
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Annie Desmons
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Delphine Debois
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, Gif-sur-Yvette, France
| | - Olivier Laprévote
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, Gif-sur-Yvette, France
- Chimie Toxicologie Analytique et Cellulaire, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Alain Brunelle
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, Gif-sur-Yvette, France
| | - Terry Gaasterland
- Marine Biology Research Division, Scripps Institution of Oceanography, Division of Biological Sciences, Institute of Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Eduardo Macagno
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Isabelle Fournier
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| | - Michel Salzet
- Université Lille Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550, Université Lille 1, Villeneuve d'Ascq, France
| |
Collapse
|
27
|
Yuan S, Burrell BD. Endocannabinoid-dependent LTD in a nociceptive synapse requires activation of a presynaptic TRPV-like receptor. J Neurophysiol 2010; 104:2766-77. [PMID: 20884761 DOI: 10.1152/jn.00491.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have found that some forms of endocannabinoid-dependent synaptic plasticity in the hippocampus are mediated through activation of transient potential receptor vanilloid (TRPV) receptors instead of cannabinoid receptors CB1 or CB2. The potential role for synaptic localization of TRPV receptors during endocannabinoid modulation of nociceptive synapses was examined in the leech CNS where it is possible to record from the same pair of neurons from one preparation to the next. Long-term depression (LTD) in the monosynaptic connection between the nociceptive (N) sensory neuron and the longitudinal (L) motor neuron was found to be endocannabinoid-dependent given that this depression was blocked by RHC-80267, an inhibitor of DAG lipase that is required for 2-arachidonoyl glycerol (2AG) synthesis. Intracellular injection of a second DAG lipase inhibitor, tetrahyrdolipstatin (THL) was also able to block this endocannabinoid-dependent LTD (ecLTD) when injected postsynaptically but not presynaptically. N-to-L ecLTD was also inhibited by the TRPV1 antagonists capsazepine and SB 366791. Bath application of 2AG or the TRPV1 agonists capsaicin and resiniferatoxin mimicked LTD and both capsaicin- and 2AG-induced depression were blocked by capsazepine. In addition, pretreatment with 2AG or capsaicin occluded subsequent expression of LTD induced by repetitive activity. Presynaptic, but not postsynaptic, intracellular injection of capsazepine blocked both activity- and 2AG-induced ecLTD, suggesting that a presynaptic TRPV-like receptor in the leech mediated this form of synaptic plasticity. These findings potentially extend the role ecLTD to nociceptive synapses and suggest that invertebrate synapses, which are thought to lack CB1/CB2 receptor orthologues, utilize a TRPV-like protein as an endocannabinoid receptor.
Collapse
Affiliation(s)
- Sharleen Yuan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
28
|
Properties of cannabinoid-dependent long-term depression in the leech. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:841-51. [PMID: 20803022 DOI: 10.1007/s00359-010-0566-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 12/15/2022]
Abstract
Previously, a cannabinoid-dependent form of long-term depression (LTD) was discovered at the polysynaptic connection between the touch mechanosensory neuron and the S interneuron (Li and Burrell in J Comp Physiol A 195:831-841, 2009). In the present study, the physiological properties of this cannabinoid-dependent LTD were examined. Increases in intracellular calcium in the S interneuron are necessary for this form of LTD in this circuit. Calcium signals contributing to cannabinoid-dependent LTD are mediated by voltage-dependent calcium channel and release of calcium from intracellular stores. Inositol triphosphate receptors, but not ryanodine receptors, appear to mediate this store-released calcium signal. Cannabinoid-dependent LTD also requires activation of metabotropic serotonin receptors, possibly a serotonin type 2-like receptor. Finally, this form of LTD involves the stimulation of nitric oxide synthase and a decrease in cyclic adenosine monophosphate signaling, both of which appeared to be downstream of cannabinoid receptor activation. Based on these findings, the cellular signaling mechanisms of cannabinoid-dependent LTD in the leech are remarkably similar to vertebrate forms of cannabinoid-dependent synaptic plasticity.
Collapse
|
29
|
Li Q, Burrell BD. Two forms of long-term depression in a polysynaptic pathway in the leech CNS: one NMDA receptor-dependent and the other cannabinoid-dependent. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:831-41. [PMID: 19657662 DOI: 10.1007/s00359-009-0462-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/13/2009] [Accepted: 07/13/2009] [Indexed: 11/25/2022]
Abstract
Although long-term depression (LTD) is a well-studied form of synaptic plasticity, it is clear that multiple cellular mechanisms are involved in its induction. In the leech, LTD is observed in a polysynaptic connection between touch mechanosensory neurons (T cells) and the S interneuron following low frequency stimulation. LTD elicited by 450 s low frequency stimulation was blocked by N-methyl-D-aspartic acid (NMDA) receptor antagonists. However, LTD elicited by 900 s low frequency stimulation was insensitive to NMDA receptor antagonists and was instead dependent on cannabinoid signaling. This LTD was blocked by both a cannabinoid receptor antagonist and by inhibition of diacylglycerol lipase, which is necessary for the synthesis of the cannabinoid transmitter 2-arachidonyl glycerol (2-AG). Bath application of 2-AG or the cannabinoid receptor agonist CP55 940 also induced LTD at this synapse. These results indicate that two forms of LTD coexist at the leech T-to-S polysynaptic pathway: one that is NMDA receptor-dependent and another that is cannabinoid-dependent and that activation of either form of LTD is dependent on the level of activity in this circuit.
Collapse
Affiliation(s)
- Qin Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
30
|
Pierantoni R, Cobellis G, Meccariello R, Cacciola G, Chianese R, Chioccarelli T, Fasano S. Testicular gonadotropin-releasing hormone activity, progression of spermatogenesis, and sperm transport in vertebrates. Ann N Y Acad Sci 2009; 1163:279-91. [PMID: 19456349 DOI: 10.1111/j.1749-6632.2008.03617.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Since the end of the 1970s, studies have shown that, besides the endocrine route, a chemical mediator may also act through autocrine and/or paracrine mechanisms. This has opened new frontiers for research as a result of a redefinition of what endocrinology represents. Apart from androgens within the male gonad, testicular gonadotropin-releasing hormone, estrogens, molecular chaperones, proto-oncogenes, and, very recently, the endocannabinoid system have been shown to play important roles. Their activities to regulate spermatogenesis, including spermiogenesis and sperm maturation, will be discussed from the comparative viewpoint to describe adaptive phenomena and to speculate on evolution.
Collapse
Affiliation(s)
- Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Lehtonen M, Reisner K, Auriola S, Wong G, Callaway JC. Mass-spectrometric identification of anandamide and 2-arachidonoylglycerol in nematodes. Chem Biodivers 2009; 5:2431-41. [PMID: 19035572 DOI: 10.1002/cbdv.200890208] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The purpose of the study was to see if nematodes (Caenorhabditis elegans, Caenorhabditis briggsae, and Pelodera strongyloides) produce endocannabinoids; i.e., anandamide (AEA) and 2-arachidonoylglycerol (2-AG). In this study, AEA and 2-AG were identified as endogenous products from nematodes by using electrospray-ionization ion-trap MS/MS (ESI-IT-MS) experiments operated in the positive-ionization mode. Endocannabinoids were identified by product ion scan and concentrations were measured by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Both AEA and 2-AG were identified in all of the nematode samples, even though these species lack known cannabinoid receptors. Neither AEA nor 2-AG were detected in the fat-3 mutant of C. elegans, which lacks the necessary enzyme to produce arachidonic acid, the fatty acid precursor of these endocannabinoids.
Collapse
Affiliation(s)
- Marko Lehtonen
- Department of Pharmaceutical Chemistry, University of Kuopio, P. O. Box 1627, FI-70211 Kuopio
| | | | | | | | | |
Collapse
|
32
|
Pierantoni R, Cobellis G, Meccariello R, Cacciola G, Chianese R, Chioccarelli T, Fasano S. CB1 activity in male reproduction: mammalian and nonmammalian animal models. VITAMINS AND HORMONES 2009; 81:367-87. [PMID: 19647119 DOI: 10.1016/s0083-6729(09)81014-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of the endocannabinoid system (ECBS) and its involvement in several physiological processes is still increasing. Since the isolation of the main active compound of Cannabis sativa, Delta(9)-THC, several lines of research have evidenced the basic roles of this signaling system mainly considering its high conservation during evolution. In this chapter the attention is focussed on the involvement of the ECBS in the control of male reproductive aspects at both central and local levels which are both considered from a comparative point of view.
Collapse
Affiliation(s)
- Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Via Costantinopoli, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Angarano MB, McMahon RF, Schetz JA. Cannabinoids inhibit zebra mussel (Dreissena polymorpha) byssal attachment: a potentially green antifouling technology. BIOFOULING 2009; 25:127-138. [PMID: 19037826 DOI: 10.1080/08927010802592743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Macrofouling by zebra mussels (Dreissena polymorpha) has serious environmental, economic and legal consequences for freshwater shipping and raw water facilities. Current antifouling technologies, such as organometallics or aggressive oxidisers, have negative environmental impacts limiting their application. As part of an effort to discover antifoulants with a reduced environmental footprint, the endocannabinoid, anandamide and nine other compounds sharing structural or functional features were tested for their ability to inhibit zebra mussel byssal attachment. A byssal attachment bioassay identified six efficacious compounds; four compounds also had no negative impact on mussels at concentrations maximally inhibiting byssal attachment and three of them had no significant cumulative toxicity towards a non-target organism, Daphnia magna. This discovery demonstrates that both naturally occurring and synthetic cannabinoids can serve as non-toxic efficacious zebra mussel antifoulants. Applications with this technology may lead to a new genre of cleaner antifoulants, because the strategy is to prevent attachment rather than to poison mussels.
Collapse
Affiliation(s)
- Maj-Britt Angarano
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, USA
| | | | | |
Collapse
|
34
|
Elphick MR, Egertová M. Cannabinoid Receptor Genetics and Evolution. THE CANNABINOID RECEPTORS 2009. [DOI: 10.1007/978-1-59745-503-9_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Chianese R, Cobellis G, Pierantoni R, Fasano S, Meccariello R. Non-mammalian vertebrate models and the endocannabinoid system: relationships with gonadotropin-releasing hormone. Mol Cell Endocrinol 2008; 286:S46-51. [PMID: 18325658 DOI: 10.1016/j.mce.2008.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/18/2008] [Accepted: 01/18/2008] [Indexed: 11/18/2022]
Abstract
Endocannabinoids, via cannabinoid receptors (CB1 and CB2), affect reproductive functions at both local and central level. Due to the high complexity of the endocannabinoid system, to the widespread distribution outside the nervous system and to the high degree of evolutionary conservation, a deep CB1 molecular characterization among species may be useful to elucidate the activity of endocannabinoids at multiple levels. In this review we report CB1 characterization in non-mammalian animal models and, in particular, in the anuran amphibian, the frog, Rana esculenta; we also describe its expression during the annual sexual cycle. Moreover, since reproductive functions are under control of gonadotropin releasing hormone (GnRH), cb1 mRNA and protein expression profile in the forebrain has been compared to those of GnRH-I, the mammalian form primarily involved in gonadotropin release.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Sez. "F. Bottazzi", II Università di Napoli, Naples, Italy
| | | | | | | | | |
Collapse
|
36
|
Meccariello R, Chianese R, Cobellis G, Pierantoni R, Fasano S. Cloning of type 1 cannabinoid receptor in Rana esculenta reveals differences between genomic sequence and cDNA. FEBS J 2007; 274:2909-20. [PMID: 17518972 DOI: 10.1111/j.1742-4658.2007.05824.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endocannabinoid system is a conserved system involved in the modulation of several physiologic processes, from the activity of the central nervous system to reproduction. Type 1 cannabinoid receptor (CNR1) cDNA was cloned from the brain and testis of the anuran amphibian, the frog Rana esculenta. Nucleotide identity ranging from 62.6% to 81.9% is observed among vertebrates. The reading frame encoded a protein of 462 amino acids (FCNR1) with all the properties of a membrane G-coupled receptor. Alignments of FCNR1 with those of other vertebrates revealed amino acid identity ranging from 61.9% to 88.1%; critical domains for CNR1 functionality were conserved in the frog. As nucleotide differences of cnr1 cDNA were observed in brain and testis, the genomic sequence of the cnr1 gene was also determined in the same tissue preparations. Nucleotide changes in codons 5, 30, 70, 186, 252 and 408 were observed when cDNA and genomic DNA were compared; the nucleotide differences did not affect the predicted amino acid sequences, except for changes in codons 70 and 408. Interestingly, the predicted RNA folding was strongly affected by different nucleotide sequences. Comparison of cnr1 mRNA sequences available in GenBank with the corresponding genomic sequences revealed that also in human, rat, zebrafish and pufferfish, nucleotide changes between mRNA and genomic sequences occurred. Furthermore, amino acid sequences deduced from both mRNA and the genome were compared among vertebrates, and also in pufferfish the nucleotide changes corresponded to modifications in the amino acid sequence. The present results indicate for the first time that changes in nucleotides may occur in cnr1 mRNA maturation and that this phenomenon might not be restricted to the frog.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università di Napoli Parthenope, Naples, Italy
| | | | | | | | | |
Collapse
|
37
|
Piazza PV, Lafontan M, Girard J. Integrated physiology and pathophysiology of CB1-mediated effects of the endocannabinoid system. DIABETES & METABOLISM 2007; 33:97-107. [PMID: 17350871 DOI: 10.1016/j.diabet.2007.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 02/06/2007] [Indexed: 11/18/2022]
Abstract
The discovery of the endocannabinoid system (ECS) has raised a large interest in the scientific community providing us with a strikingly long list of apparently independent multi organ effects. As a result, in most reviews on this issue the main function of the ECS is considered as modulatory. Unfortunately, this vision does not add much to our understanding of the specific biological function of the ECS. Thus, modulatory is what in general all biological systems are or should be. In this review we will show that the apparent inconsistent puzzle of the very different tissue specific effects of endocannabinoids (ECs) can be reconstructed in one unitary picture. This picture clearly shows that all the different CB1-mediated effects of ECs sub-serve one major physiological function: to facilitate and increase energy storage. We will also analyze the implications of this unitary vision of the ECS in different contexts. First, in the context of the systems that regulate energy balance, introducing a new systematization based on two homeostatic systems: an endostatic and an exostatic system. Second, in the context of evolution, showing how the function of the ECS has shifted from essential to survival to almost pathological in current times. Finally, in a pathophysiological context, introducing the new concept of "proactive evolution diseases", which can explain the current obesity epidemic and the role the ECS plays in it.
Collapse
Affiliation(s)
- P V Piazza
- INSERM Bordeaux Neuroscience Research Center (U862), University of Bordeaux-II, 146 rue Leo-Saignat, 33077 Bordeaux, France.
| | | | | |
Collapse
|
38
|
Ruggeri B, Soverchia L, Mosconi G, Franzoni MF, Cottone E, Polzonetti-Magni AM. Changes of gonadal CB1 cannabinoid receptor mRNA in the gilthead seabream, Sparus aurata, during sex reversal. Gen Comp Endocrinol 2007; 150:263-9. [PMID: 17078952 DOI: 10.1016/j.ygcen.2006.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/05/2006] [Accepted: 09/10/2006] [Indexed: 11/30/2022]
Abstract
Two cannabinoid receptor-like genes (CB1-like), named CB1A and CB1B, have been isolated in teleost fish, specifically in the puffer fish, Fugu rubripes. However, information on the physiological roles, such as the control of reproduction and development in fish is still scarce. Therefore, the aim of the present study was to investigate the presence of CB1-like mRNA in the gonads of a marine teleost species, the gilthead seabream, Sparus aurata, a hermaphrodite species in which the gonadal tissues first develop as testes, and then as functional ovary. We isolated an 890 bp fragment (GenBank accession number ); that corresponded to the open reading frame of the teleost CB1 receptor gene, encoding for the central portion of the protein, which was aligned with the other bony fish sequence. Using "in situ" hybridization, CB1-like mRNA was localized in both mature and sex-reversing gonads, and relative changes in CB1-like expression levels were detected through semi-quantitative RT-PCR. In the mature testis and in the testicular part of the sex-reversing gonad, CB1 expression levels were found to be much higher compared to the ovarian portion. This suggests that the CB1 signaling is likely involved in the process of testicular regression of the S. aurata, but its actual role has yet to be determined.
Collapse
Affiliation(s)
- B Ruggeri
- Dipartimento di Scienze Morfologiche e Biochimiche Comparate, Università degli Studi di Camerino, via Camerini 2, 62032 Camerino (MC), Italy
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Two cannabinoid receptors, CB1 and CB2, are expressed in mammals, birds, reptiles, and fish. The presence of cannabinoid receptors in invertebrates has been controversial, due to conflicting evidence. We conducted a systematic review of the literature, using expanded search parameters. Evidence presented in the literature varied in validity, ranging from crude in vivo behavioural assays to robust in silico ortholog discovery. No research existed for several clades of invertebrates; we therefore tested for cannabinoid receptors in seven representative species, using tritiated ligand binding assays with [3H]CP55,940 displaced by the CB1-selective antagonist SR141716A. Specific binding of [3H]CP55,940 was found in neural membranes of Ciona intestinalis (Deuterstoma, a positive control), Lumbricusterrestris (Lophotrochozoa), and three ecdysozoans: Peripatoides novae-zealandiae (Onychophora), Jasus edwardi (Crustacea) and Panagrellus redivivus (Nematoda); the potency of displacement by SR141716A was comparable to measurements on rat cerebellum. No specific binding was observed in Actinothoe albocincta (Cnidaria) or Tethya aurantium (Porifera). The phylogenetic distribution of cannabinoid receptors may address taxonomic questions; previous studies suggested that the loss of CB1 was a synapomorphy shared by ecdysozoans. Our discovery of cannabinoid receptors in some nematodes, onychophorans, and crustaceans does not contradict the Ecdysozoa hypothesis, but gives it no support. We hypothesize that cannabinoid receptors evolved in the last common ancestor of bilaterians, with secondary loss occurring in insects and other clades. Conflicting data regarding Cnidarians precludes hypotheses regarding the last common ancestor of eumetazoans. No cannabinoid receptors are expressed in sponges, which probably diverged before the origin of the eumetazoan ancestor.
Collapse
|
40
|
Glaser ST, Deutsch DG, Studholme KM, Zimov S, Yazulla S. Endocannabinoids in the intact retina: 3H-anandamide
uptake, fatty acid amide hydrolase immunoreactivity and hydrolysis of
anandamide. Vis Neurosci 2006; 22:693-705. [PMID: 16469181 DOI: 10.1017/s0952523805226020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 04/12/2005] [Indexed: 11/05/2022]
Abstract
There is much evidence for an endocannabinoid system in the retina.
However, neither the distribution of endocannabinoid uptake, the
regulation of endocannabinoid levels, nor the role of endocannabinoid
metabolism have been investigated in the retina. Here we focused on one
endocannabinoid, anandamide (AEA), and its major hydrolyzing enzyme, fatty
acid amide hydrolase (FAAH), in the goldfish retina. Immunoblots of FAAH
immunoreactivity (IR) in goldfish retina, brain and rat retina, and brain
homogenates showed a single band at 61 kDa that was blocked by
preadsorption with peptide antigen. Specific FAAH IR (blocked by
preadsorption) was most prominent over Müller cells and cone inner
segments. Weaker label was observed over some amacrine cells, rare cell
bodies in the ganglion cell layer, and in four lamina in the inner
plexiform layer. FAAH activity assays showed that goldfish-retinal and
brain homogenates hydrolyzed AEA at rates comparable to rat brain
homogenate, and the hydrolysis was inhibited by methyl arachidonyl
fluorophosphonate (MAFP) and N-(4 hydroxyphenyl)-arachidonamide
(AM404), with IC50s of 21 nM and 1.5 μM,
respectively. Cellular 3H-AEA uptake in the intact retina was
determined by in vitro autoradiography. Silver-grain accumulation
at 20°C was most prominent over cone photoreceptors and Müller
cells. Uptake was significantly reduced when retinas were incubated at
4°C, or preincubated with 100 nM MAFP or 10 μM AM404. There was no
differential effect of blocking conditions on the distribution of silver
grains over cones or Müller cells. The codistribution of FAAH IR and
3H-AEA uptake in cones and Müller cells suggests that the
bulk clearance of AEA in the retina occurs as a consequence of a
concentration gradient created by FAAH activity. We conclude that
endocannabinoids are present in the goldfish retina and underlay the
electrophysiological effects of cannabinoid ligands previously shown on
goldfish cones and bipolar cells.
Collapse
Affiliation(s)
- Sherrye T Glaser
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794-5230, USA
| | | | | | | | | |
Collapse
|
41
|
Meccariello R, Chianese R, Cacciola G, Cobellis G, Pierantoni R, Fasano S. Type-1 cannabinoid receptor expression in the frog,Rana esculenta, tissues: A possible involvement in the regulation of testicular activity. Mol Reprod Dev 2006; 73:551-8. [PMID: 16485273 DOI: 10.1002/mrd.20434] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endogenous cannabinoids and type-1 cannabinoid receptor (CB1) are widely produced and distributed in the central nervous system (CNS) and peripheral nerves in mammals. In addition, the detection of endocannabinoids and corresponding receptors in non nervous peripheral tissues indicates an involvement of the system in the control of a wide range of physiological activities, including reproduction. Recently, the existence of CB1 was also observed in lower vertebrates and in urochordate suggesting that the endocannabinoid system is phylogenetically conserved. Using RT-PCR, CB1 mRNA expression profiles were characterized in a wide range of tissues of the anuran amphibian, the frog, Rana esculenta. Besides a strong expression in the CNS, CB1 was also present in testis, kidney, liver, ovary, muscle, heart, spleen, and pituitary. The CB1 expression pattern has been characterized in both testis and CNS during the annual sexual cycle. In testis, CB1 is poorly expressed during the winter stasis of the spermatogenesis rising during the breeding season and resumption period. An expression profile mismatching to that observed in testis was detected in whole-brain preparations during the sexual cycle; in particular in the diencephalon, the encephalic area mainly involved in the control of reproductive functions. Furthermore, fluctuations inside isolated encephalic areas and spinal cord were observed all over the reproductive cycle. In conclusion, CB1 receptor is expressed in R. esculenta CNS and testis. As far as the gonad it concerns, our results suggest the involvement of the endocannabinoids in the control of reproductive function.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università di Napoli Parthenope, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Karava V, Zafiriou PM, Fasia L, Anagnostopoulos D, Boutou E, Vorgias CE, Maccarrone M, Siafaka-Kapadai A. Anandamide metabolism by Tetrahymena pyriformis in vitro. Characterization and identification of a 66 kDa fatty acid amidohydrolase. Biochimie 2005; 87:967-74. [PMID: 15951097 DOI: 10.1016/j.biochi.2005.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Fatty acid amidohydrolase, a membrane-bound enzyme found in a variety of mammalian cells, is responsible for the catabolism of neuromodulatory fatty acid amides, including anandamide. In an earlier study we reported that Tetrahymena pyriformis was able to secrete a FAAH-like activity in starvation medium (Karava V., Fasia L., Siafaka-Kapadai A., FEBS Lett. 508 (2001) 327-331). In this study the endocannabinoid anandamide, was found to be metabolized by T. pyriformis homogenate by the action of a FAAH-like enzyme, in a time- and concentration-dependent manner. The main metabolic products of [3H]anandamide hydrolysis were [3H]arachidonic acid and ethanolamine. Amidohydrolase activity was maximal at pH 9-10, it was inhibited by phenylmethylsulfonyl fluoride and arachidonyltrifluoromethyl ketone and was Ca2+ and Mg(2+)-independent. Kinetic experiments demonstrated that the enzyme had an apparent K(m) of 2.5 microM and V(max) of 20.6 nmol/min mg. Subcellular fractionation of T. pyriformis homogenate showed that the activity was present in every subcellular fraction with highest specific activity in the microsomal as well as in non-microsomal membrane fraction. Immunoblot analysis of selected subcellular fractions, using an anti-FAAH polyclonal antibody, revealed the presence of an immunoreactive protein with a molecular mass approximately 66 kDa similar to the molecular mass of the mammalian enzyme. In conclusion, this study demonstrates that a FAAH similar to the mammalian enzyme is present in a unicellular eukaryote, indicating the importance of FAAH activity throughout evolution. It also supports the notion that Tetrahymena species may be a suitable model for metabolic studies on endocannabinoids, as well as for the study of drugs targeted towards FAAH.
Collapse
Affiliation(s)
- Vivi Karava
- Department of Chemistry, University of Athens, Panepistimioupolis 15771, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The discovery of the endogenous cannabimimetic lipid mediators, anandamide and 2-arachidonoyl glycerol, opened the door to the discovery of other endogenous lipid mediators similar in structure and function. The majority of these compounds do not bind appreciably to known cannabinoid receptors; yet some of them produce cannabimimetic effects while others exert actions through novel mechanisms that remain to be elucidated. This review explores the growing diversity of recently discovered putative lipid mediators and their relationship to the endogenous cannabinoid system. The possibility that there remain many unidentified signalling lipids coupled with the evidence that many of these yield bioactive metabolites due to actions of known enzymes (e.g. cyclooxygenases, lipoxygenases, cytochrome P450s) suggests the existence of a large and complex family of lipid mediators about which only little is known at this time. The elucidation of the biochemistry and pharmacology of these compounds may provide therapeutic targets for a variety of conditions including sleep dysfunction, eating disorders, cardiovascular disease, as well as inflammation and pain.
Collapse
Affiliation(s)
- Heather B Bradshaw
- Department of Psychology, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, U.S.A
| | - J Michael Walker
- Department of Psychology, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, U.S.A
- Author for correspondence:
| |
Collapse
|
44
|
Elphick MR, Egertová M. The phylogenetic distribution and evolutionary origins of endocannabinoid signalling. Handb Exp Pharmacol 2005:283-97. [PMID: 16596778 DOI: 10.1007/3-540-26573-2_9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The endocannabinoid signalling system in mammals comprises several molecular components, including cannabinoid receptors (e.g. CB1, CB2), putative endogenous ligands for these receptors [e.g. anandamide, 2-arachidonoylglycerol (2-AG)] and enzymes involved in the biosynthesis and inactivation of anandamide (e.g. NAPE-PLD, FAAH) and 2-AG (e.g. DAG lipase, MGL). In this review we examine the occurrence of these molecules in non-mammalian organisms (in particular, animals and plants) by surveying published data and by basic local alignment search tool (BLAST) analysis of the GenBank database and of genomic sequence data from several vertebrate and invertebrate species. We conclude that the ability of cells to synthesise molecules that are categorised as "endocannabinoids" in mammals is an evolutionarily ancient phenomenon that may date back to the unicellular common ancestor of animals and plants. However, exploitation of these molecules for intercellular signalling may have occurred independently in different lineages during the evolution of the eukaryotes. The CB1- and CB2-type receptors that mediate effects of endocannabinoids in mammals occur throughout the vertebrates, and an orthologue of vertebrate cannabinoid receptors was recently identified in the deuterostomian invertebrate Ciona intestinalis (CiCBR). However, orthologues of the vertebrate cannabinoid receptors are not found in protostomian invertebrates (e.g. Drosophila, Caenorhabditis elegans). Therefore, it is likely that a CB1/CB2-type cannabinoid receptor originated in a deuterostomian invertebrate. This phylogenetic information provides a basis for exploitation of selected non-mammalian organisms as model systems for research on endocannabinoid signalling.
Collapse
Affiliation(s)
- M R Elphick
- School of Biological Sciences, Queen Mary, University of London, London E1 4NS, UK.
| | | |
Collapse
|
45
|
Affiliation(s)
- P G Tiscar
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, P.zza A. Moro 45, 64100 Teramo Italy.
| | | |
Collapse
|
46
|
McPartland JM. Phylogenomic and chemotaxonomic analysis of the endocannabinoid system. ACTA ACUST UNITED AC 2004; 45:18-29. [PMID: 15063097 DOI: 10.1016/j.brainresrev.2003.11.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2003] [Indexed: 11/25/2022]
Abstract
The endocannabinoid system consists of two cannabinoid (CB) receptors, seven ligands, and ligand-catabolizing enzymes such as fatty acid amid hydrolase (FAAH) and monoglyceride lipase (MGL). The system's phylogenetic distribution is poorly known. The ligands cannot be molecularly investigated because they are not polypeptides and their specific synthetic enzymes have not been identified, so no sequences are available. Ligand phylogenetics can be inferred, nonetheless, by their presence in a range of extant organisms. Thus a meta-analysis of ligand extraction studies was performed (chemotaxonomy), and compared to a molecular search for homologs of CB receptors, vanilloid receptors (VR1), FAAH, and MGL in the genomes of sequenced organisms (phylogenomics). Putative homologs underwent functional mapping to ascertain the presence of critical amino acid motifs known to impart protein functionality. From an evolutionary perspective it appears that (1) endocannabinoid ligands evolved before CB receptors; (2) the ligands evolved independently multiple times; (3) CB receptors evolved prior to the metazoan-bilaterian divergence (ie, between extant Hydra and leech), but were secondarily lost in the Ecdysozoa; (4) VR1 may predate CB receptors but its affinity for endocannabinoids is a recent acquisition, appearing after the lower vertebrate-mammal divergence; (5) MGL may be as old as the ligands, whereas FAAH evolved recently, after the appearance of vertebrates. FAAH's emergence correlates with VR1's newly-found affinity for anandamide; this overlap in evolutionary time is recapitulated by complementary distribution patterns of FAAH, VR1, and anandamide in the brain. Linking FAAH, VR1, and anandamide implies a coupling among the remaining "older" parts of the endocannabinoid system, MGL, CB receptors, and 2-AG.
Collapse
Affiliation(s)
- John M McPartland
- GW Pharmaceuticals Ltd., Porton Down Science Park, Salisbury, Wiltshire SP4 0JQ, UK.
| |
Collapse
|
47
|
Petrocellis LD, Cascio MG, Marzo VD. The endocannabinoid system: a general view and latest additions. Br J Pharmacol 2004; 141:765-74. [PMID: 14744801 PMCID: PMC1574255 DOI: 10.1038/sj.bjp.0705666] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
After the discovery, in the early 1990s, of specific G-protein-coupled receptors for marijuana's psychoactive principle Delta(9)-tetrahydrocannabinol, the cannabinoid receptors, and of their endogenous agonists, the endocannabinoids, a decade of investigations has greatly enlarged our understanding of this altogether new signalling system. Yet, while the finding of the endocannabinoids resulted in a new effort to reveal the mechanisms regulating their levels in the brain and peripheral organs under physiological and pathological conditions, more endogenous substances with a similar action, and more molecular targets for the previously discovered endogenous ligands, anandamide and 2-arachidonoylglycerol, or for some of their metabolites, were being proposed. As the scenario becomes subsequently more complicated, and the experimental tasks to be accomplished correspondingly more numerous, we briefly review in this article the latest 'additions' to the endocannabinoid system together with earlier breakthroughs that have contributed to our present knowledge of the biochemistry and pharmacology of the endocannabinoids.
Collapse
Affiliation(s)
- Luciano De Petrocellis
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, Fabbricato 70, 80078 Pozzuoli (Napoli), Italy
| | - Maria Grazia Cascio
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, Fabbricato 70, 80078 Pozzuoli (Napoli), Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, Fabbricato 70, 80078 Pozzuoli (Napoli), Italy
- Author for correspondence:
| |
Collapse
|
48
|
Fezza F, Dillwith JW, Bisogno T, Tucker JS, Di Marzo V, Sauer JR. Endocannabinoids and related fatty acid amides, and their regulation, in the salivary glands of the lone star tick. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1633:61-7. [PMID: 12842196 DOI: 10.1016/s1388-1981(03)00087-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The salivary glands and saliva from the lone star tick Amblyomma americanum (L.) were analyzed for the presence of the two endogenous agonists of cannabinoid receptors, N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), as well as of the anandamide congener, N-palmitoylethanolamine (PEA), an anti-inflammatory and analgesic mediator that is inactive at cannabinoid receptors. Two very sensitive mass-spectrometric techniques were used for this purpose. Both 2-AG and PEA, as well as other N-acylethanolamines (NAEs), were identified in salivary glands, but anandamide was below detection. The levels of 2-AG were considerably higher in the salivary glands of partially fed than replete females. Ex vivo gland stimulation with arachidonic acid increased the levels of 2-AG, but not of PEA or other NAEs, and caused the formation of anandamide and of the potent analgesic compound N-arachidonoylglycine. Instead, the amounts of anandamide, 2-AG and PEA were not influenced by treatment of salivary glands with dopamine, which stimulates saliva secretion. The possible biosynthetic precursors of anandamide, PEA and other NAEs were also detected in salivary glands, whereas only PEA was detected in tick saliva. These data demonstrate for the first time that the salivary glands of an obligate ectoparasite species can make endocannabinoids and/or related congeners with analgesic and anti-inflammatory activity, which possibly participate in the inhibition of the host defense reactions.
Collapse
Affiliation(s)
- Filomena Fezza
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche-Via Campi Flegrei 34, Comprensorio Olivetti, Fabbricato 70, I-80078 Pozzuoli, Napoli, Italy
| | | | | | | | | | | |
Collapse
|