1
|
Ramachandran P. Unpicking the senescence paradox in MASLD-associated HCC. J Hepatol 2025; 82:1133-1134. [PMID: 40133095 DOI: 10.1016/j.jhep.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Affiliation(s)
- Prakash Ramachandran
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Engels P, Szolek A, Hörner S, Syrigos GV, Hebbel K, Schmidtke M, Zhou M, Mateo-Tortola M, Schönfeld C, Stefanczyk SA, Wolter K, Babaei S, Schindler M, Claassen M, Dauch D, Zender L, Tapía-Abellán A, Weber ANR. Actionable heterogeneity of hepatocellular carcinoma therapy-induced senescence. Cancer Immunol Immunother 2025; 74:207. [PMID: 40374812 DOI: 10.1007/s00262-025-04060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Therapy-induced senescence (TIS) is a stable cell cycle arrest in cancerous cells favoring immune control upon immune cell recruitment and activation via a senescence-associated secretory phenotype (SASP). Numerous studies have investigated the therapeutic applicability of TIS in hepatocellular carcinoma (HCC), a frequent cancer with high morbidity and mortality. Despite these efforts, a comprehensive understanding of how TIS may expose vulnerabilities specifically for immunotherapies, a potent means of cancer therapy, in HCC remains incomplete. Therefore, we conducted systematic studies to carefully characterize actionable and shared SASP- or other senescence-associated molecular parameters of TIS. We systematically compared the TIS inducers, etoposide and alisertib with a novel TIS inducer, CX5461, for their effects on SASP, surfaceome and innate immune clearance of representative human HCC cell lines. Surprisingly, all three compounds induced both metastasis surface antigens but also immunotherapeutically tractable antigens like CD95 (Fas), CD276 (B7-H3) and CD340 (Her2). This was verified in four representative HCC cell lines and publicly available datasets of HCC. Interestingly, alisertib, etoposide and CX5461 rendered senescent HCC vulnerable to be targeted by either T-cell-engaging bispecific antibodies or CAR NK cells. Collectively, our study indicates that heterogenous, but selective features of HCC senescence may be exploited by different immunotherapeutic approaches.
Collapse
Affiliation(s)
- Pujan Engels
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Andras Szolek
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Sebastian Hörner
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Georgios Vavouras Syrigos
- Department of Medical Virology, Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- DZIF Partner Site Tübingen, Tübingen, Germany
| | - Kim Hebbel
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Michelle Schmidtke
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Min Zhou
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Maria Mateo-Tortola
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Caroline Schönfeld
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Sylwia Anna Stefanczyk
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Katharina Wolter
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sepideh Babaei
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Michael Schindler
- Department of Medical Virology, Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- DZIF Partner Site Tübingen, Tübingen, Germany
| | - Manfred Claassen
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Daniel Dauch
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lars Zender
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ana Tapía-Abellán
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany.
- iFIT Cluster of Excellence 2180, 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Cluster of Excellence 2124 CMFI, Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Esser H, de Jong IEM, Roos FM, Bogensperger C, Brunner SM, Cardini B, Dutkowski P, Eker H, Ferreira-Gonzalez S, Forbes SJ, Friend PJ, Fundora Y, Junger H, Krendl FJ, Martins PN, de Meijer VE, Oberhuber R, Oniscu GC, Patrono D, Porte RJ, Resch T, Sadik H, Schlegel A, De Stefano N, Vidgren M, Watson CJE, Weißenbacher A, Schneeberger S. Consensus classification of biliary complications after liver transplantation: guidelines from the BileducTx meeting. Br J Surg 2025; 112:znae321. [PMID: 40313074 PMCID: PMC12046073 DOI: 10.1093/bjs/znae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 05/03/2025]
Affiliation(s)
- Hannah Esser
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris E M de Jong
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Floris M Roos
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Christina Bogensperger
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan M Brunner
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Dutkowski
- Department of Surgery, Clarunis—University Centre for Gastrointestinal and Hepatopancreatobiliary Diseases, Basel, Switzerland and Department of Visceral Surgery, University Hospital Basel, Switzerland
| | - Hasan Eker
- Department for General and HPB Surgery and Liver Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Sofia Ferreira-Gonzalez
- Centre for Inflammation Research (CIR), University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter J Friend
- Nuffield Department of Surgical Sciences, University of Oxford, The Churchill Hospital, Oxford, UK
| | - Yiliam Fundora
- Department of Surgery. HPB and Liver Transplant Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPS, UB, Barcelona, Spain
| | - Henrik Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Felix J Krendl
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Paulo N Martins
- Department of Surgery, Oklahoma University, Oklahoma City, USA
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands and UMCG Comprehensive Transplant Center, Groningen, The Netherlands
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel C Oniscu
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Damiano Patrono
- General Surgery 2U—Liver Transplant Centre, A.O.U. Città della Salute e della Scienza—Torino, Italy
| | - Robert J Porte
- Department of Surgery, Division of Hepato-Pancreato-Biliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Hatem Sadik
- Nuffield Department of Surgical Sciences, University of Oxford, The Churchill Hospital, Oxford, UK
| | - Andrea Schlegel
- Transplantation Center and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicola De Stefano
- General Surgery 2U—Liver Transplant Centre, A.O.U. Città della Salute e della Scienza—Torino, Italy
| | - Mathias Vidgren
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Christopher J E Watson
- The Roy Calne Transplant Unit and the University of Cambridge Department of Surgery, Addenbrooke's Hospital, Cambridge, UK
| | - Annemarie Weißenbacher
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, organLife Laboratory, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Du K, Umbaugh DS, Wang L, Jun JH, Dutta RK, Oh SH, Ren N, Zhang Q, Ko DC, Ferreira A, Hill J, Gao G, Pullen SS, Jain V, Gregory S, Abdelmalek MF, Diehl AM. Targeting senescent hepatocytes for treatment of metabolic dysfunction-associated steatotic liver disease and multi-organ dysfunction. Nat Commun 2025; 16:3038. [PMID: 40155379 PMCID: PMC11953480 DOI: 10.1038/s41467-025-57616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/23/2025] [Indexed: 04/01/2025] Open
Abstract
Senescent hepatocytes accumulate in metabolic dysfunction-associated steatotic liver disease (MASLD) and are linked to worse clinical outcomes. However, their heterogeneity and lack of specific markers have made them difficult to target therapeutically. Here, we define a senescent hepatocyte gene signature (SHGS) using in vitro and in vivo models and show that it tracks with MASLD progression/regression across mouse models and large human cohorts. Single-nucleus RNA-sequencing and functional studies reveal that SHGS+ hepatocytes originate from p21+ cells, lose key liver functions and release factors that drive disease progression. One such factor, GDF15, increases in circulation alongside SHGS+ burden and disease progression. Through chemical screening, we identify senolytics that selectively eliminate SHGS+ hepatocytes and improve MASLD in male mice. Notably, SHGS enrichment also correlates with dysfunction in other organs. These findings establish SHGS+ hepatocytes as key drivers of MASLD and highlight a potential therapeutic strategy for targeting senescent cells in liver disease and beyond.
Collapse
Affiliation(s)
- Kuo Du
- Department of Medicine, Duke University, Durham, NC, USA.
| | | | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ji Hye Jun
- Department of Medicine, Duke University, Durham, NC, USA
| | - Rajesh K Dutta
- Department of Medicine, Duke University, Durham, NC, USA
| | - Seh Hoon Oh
- Department of Medicine, Duke University, Durham, NC, USA
| | - Niansheng Ren
- Department of Medicine, Duke University, Durham, NC, USA
| | - Qiaojuan Zhang
- Department of Neurology, Duke University, Durham, NC, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ana Ferreira
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Jon Hill
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Guannan Gao
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Steven S Pullen
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Simon Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Rodrigo-Torres D, Kilpatrick AM, Ferreira-Gonzalez S, Aird RE, Atkinson SR, Gadd VL, Man TY, Tyson LD, Dhondalay GKR, Vergis N, Arteel GE, Thursz MR, Martinez-Gili L, Forbes SJ. Longitudinal paired liver biopsies and transcriptome profiling in alcohol-associated hepatitis reveal dynamic changes in cellular senescence. Gut 2025:gutjnl-2024-334094. [PMID: 40122595 DOI: 10.1136/gutjnl-2024-334094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND AND AIMS Alcohol-associated hepatitis (AH) is an acute form of alcohol-related liver disease (ALD) with high mortality rate. AH is histologically characterised by cellular processes, including steatosis, inflammation and cell death. Apoptosis is the most studied form of cell death in AH; however, the role of cellular senescence, another response to cellular injury, in AH is unknown. Here, we explore the mechanisms of ALD pathophysiology and describe the role of senescence in AH. METHODS We performed RNA sequencing and bioinformatics analysis of 0- and 28-day transjugular liver biopsies (n=65) from patients with AH participating in the IL-1 Signal Inhibition In Alcoholic Hepatitis (ISAIAH) clinical trial. Additional bioinformatics reanalysis of existing AH transcriptomic datasets was conducted to confirm our findings. We also performed multiomic analysis of an in vitro model of AH with ethanol-treated hepatocytes overexpressing ethanol-metabolising enzymes. RESULTS Our longitudinal analysis revealed that senescence and inflammation were reduced at transcriptomic level following AH resolution; the expression of hepatocyte markers was increased. We identified two senescence-associated protein complexes, cytochrome c oxidase and the proteasome, which may act as senescence-induction mechanisms. We confirmed that senescence markers and pathways were increasingly expressed in hepatocytes as ALD progressed towards AH; this was partially reversed following AH resolution. Our in vitro model revealed that ethanol directly induces senescence and was dependent on ethanol metabolism. CONCLUSIONS Our results suggest a possible pathogenic role for senescence in AH and indicate cellular senescence as a potential therapeutic target in early ALD to limit AH severity.
Collapse
Affiliation(s)
- Daniel Rodrigo-Torres
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Sofia Ferreira-Gonzalez
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Rhona E Aird
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Stephen Rahul Atkinson
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Tak Yung Man
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Luke D Tyson
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Gopal Krishna R Dhondalay
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Nikhil Vergis
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Gavin E Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark R Thursz
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Laura Martinez-Gili
- Division of Digestive Diseases, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Kineman RD, Del Rio-Moreno M, Waxman DJ. Liver-specific actions of GH and IGF1 that protect against MASLD. Nat Rev Endocrinol 2025; 21:105-117. [PMID: 39322791 DOI: 10.1038/s41574-024-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; also known as nonalcoholic fatty liver disease) is a chronic condition associated with metabolic syndrome, a group of conditions that includes obesity, insulin resistance, hyperlipidaemia and cardiovascular disease. Primary growth hormone (GH) deficiency is associated with MASLD, and the decline in circulating levels of GH with weight gain might contribute to the development of MASLD. Raising endogenous GH secretion or administering GH replacement therapy in the context of MASLD enhances insulin-like growth factor 1 (IGF1) production and reduces steatosis and the severity of liver injury. GH and IGF1 indirectly control MASLD progression by regulating systemic metabolic function. Evidence supports the proposal that GH and IGF1 also have a direct role in regulating liver metabolism and health. This Review focuses on how GH acts on the hepatocyte in a sex-dependent manner to limit lipid accumulation, reduce stress, and promote survival and regeneration. In addition, we discuss how GH and IGF1 might regulate non-parenchymal cells of the liver to control inflammation and fibrosis, which have a major effect on hepatocyte survival and regeneration. Development of a better understanding of how GH and IGF1 coordinate the functions of specific, individual liver cell types might provide insight into the aetiology of MASLD initiation and progression and suggest novel approaches for the treatment of MASLD.
Collapse
Affiliation(s)
- Rhonda D Kineman
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA.
| | - Mercedes Del Rio-Moreno
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
7
|
Gadd VL, Ferreira-Gonzalez S, Man TY, Kilpatrick AM, Aird RE, Smith IP, Rodrigo-Torres D, Kurian D, Hallett JM, Ashmore-Harris C, Esser H, Ferreira MF, Macmillan MT, Lu WY, Forbes SJ. Host hepatocyte senescence determines the success of hepatocyte transplantation in a mouse model of liver injury. J Hepatol 2025:S0168-8278(24)02830-7. [PMID: 39755157 DOI: 10.1016/j.jhep.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND & AIMS Hepatocyte transplantation has shown promise for genetic diseases of the hepatocytes but to date has shown limited efficacy for non-genetic forms of severe liver injury. Limited cell engraftment and poor function of donor hepatocytes in recipient livers impacts the clinical utility of hepatocyte cell therapy. The mechanisms underpinning this are poorly understood. We explored this in a liver injury model, where predictable levels of injury and hepatocyte senescence were induced in AhCreMdm2fl/fl mice through genetic excision of hepatocyte Mdm2. METHODS Freshly isolated mouse or human cryopreserved hepatocytes were delivered via intrasplenic injection into AhCreMdm2fl/fl (immune competent and deficient strains) mice. Engraftment kinetics, donor cell engraftment and host liver function were assessed. Paired transcriptomic and proteomic analyses were performed on healthy vs. senescent mouse hepatocytes. RESULTS We found inhibition of host hepatocyte proliferation and liver injury is a requirement for donor hepatocyte engraftment and long-term repopulation, improving liver repair and function, but excessive senescence inhibited this process, causing a decline in graft function due to transmission of senescence from host to donor cells. Paired proteomic and transcriptomic analyses of healthy vs. senescent hepatocytes reveal a unique senescent signature associated with paracrine senescence. Modification of the host niche prior to transplantation with the senotherapeutic drug ABT737 improved donor cell proliferative capacity. CONCLUSIONS The host niche impacts the initial engraftment and long-term function of transplanted hepatocytes. Targeting paracrine senescence may be a way to improve donor hepatocyte function, optimise therapy and guide translation into the clinic. IMPACT AND IMPLICATIONS Hepatocyte transplantation has shown promise for genetic diseases but has limited efficacy for acute and severe liver injury. Poor engraftment and functionality have prevented large-scale clinical application. We show that host senescence provides the required non-competitive niche for donor hepatocytes to repopulate the recipient liver, but can, paradoxically, negatively impact donor function. These findings demonstrate a requirement for a clear understanding of the host niche prior to cell transfusion. This has significant implications not only for hepatocellular therapies, but also when developing and optimising any preclinical and clinical cell therapies.
Collapse
Affiliation(s)
- Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Sofia Ferreira-Gonzalez
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Tak Yung Man
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Rhona E Aird
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Ian P Smith
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Daniel Rodrigo-Torres
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Dominic Kurian
- Proteomic and Metabolomics Unit, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom
| | - John M Hallett
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Candice Ashmore-Harris
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Hannah Esser
- Department of Visceral, Transplant and Thoracic Surgery, Centre of Operative Medicine, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Marisa F Ferreira
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Mark T Macmillan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Wei-Yu Lu
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom.
| |
Collapse
|
8
|
Gu L, Zhu Y, Nandi SP, Lee M, Watari K, Bareng B, Ohira M, Liu Y, Sakane S, Carlessi R, Sauceda C, Dhar D, Ganguly S, Hosseini M, Teneche MG, Adams PD, Gonzalez DJ, Kisseleva T, Tirnitz-Parker JEE, Simon MC, Alexandrov LB, Karin M. FBP1 controls liver cancer evolution from senescent MASH hepatocytes. Nature 2025; 637:461-469. [PMID: 39743585 DOI: 10.1038/s41586-024-08317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2024] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) originates from differentiated hepatocytes undergoing compensatory proliferation in livers damaged by viruses or metabolic-dysfunction-associated steatohepatitis (MASH)1. While increasing HCC risk2, MASH triggers p53-dependent hepatocyte senescence3, which we found to parallel hypernutrition-induced DNA breaks. How this tumour-suppressive response is bypassed to license oncogenic mutagenesis and enable HCC evolution was previously unclear. Here we identified the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) as a p53 target that is elevated in senescent-like MASH hepatocytes but suppressed through promoter hypermethylation and proteasomal degradation in most human HCCs. FBP1 first declines in metabolically stressed premalignant disease-associated hepatocytes and HCC progenitor cells4,5, paralleling the protumorigenic activation of AKT and NRF2. By accelerating FBP1 and p53 degradation, AKT and NRF2 enhance the proliferation and metabolic activity of previously senescent HCC progenitors. The senescence-reversing and proliferation-supportive NRF2-FBP1-AKT-p53 metabolic switch, operative in mice and humans, also enhances the accumulation of DNA-damage-induced somatic mutations needed for MASH-to-HCC progression.
Collapse
Affiliation(s)
- Li Gu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, China.
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Shuvro P Nandi
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Department of Bioengineering, UCSD, La Jolla, CA, USA
- Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Maiya Lee
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Kosuke Watari
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Breanna Bareng
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Masafumi Ohira
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Yuxiao Liu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | | | - Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Consuelo Sauceda
- Department of Pharmacology, UCSD, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA, USA
| | | | | | | | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David J Gonzalez
- Department of Pharmacology, UCSD, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA, USA
| | | | - Janina E E Tirnitz-Parker
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Department of Bioengineering, UCSD, La Jolla, CA, USA
- Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
9
|
Li Q, Wang L. Navigating the complex role of senescence in liver disease. Chin Med J (Engl) 2024; 137:3061-3072. [PMID: 39679454 PMCID: PMC11706581 DOI: 10.1097/cm9.0000000000003439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Cellular senescence, an irreversible state of cell cycle arrest characterized by phenotypic changes and a specific secretory profile, plays a dual role in liver health and disease. Under physiological conditions, senescence aids organ repair and regeneration, but its accumulation due to aging or pathological stress significantly contributes to chronic liver diseases, including alcoholic liver disease, metabolic dysfunction-associated steatohepatitis, liver fibrosis, and hepatocellular carcinoma. Senescence is identified by a range of cellular and molecular changes, such as morphological alterations, expression of cell cycle inhibitors, senescence-associated β-galactosidase activity, and nuclear membrane changes. The onset of senescence in organ cells can affect the entire organism, primarily through the senescence-associated secretory phenotype, which has autocrine, paracrine, and endocrine effects on tissue microenvironments. The objective of this review is to offer a contemporary overview of the pathophysiological events involving hepatic senescent cells and to elucidate their role in the onset and progression of liver diseases, particularly through mechanisms like telomere shortening, genomic and mitochondrial DNA damage, and inflammation. Additionally, this review discusses the emerging senolytic therapies aimed at targeting senescent cells to delay or mitigate liver disease progression. The therapeutic potential of these interventions, alongside their safety and effectiveness, highlights the need for further research to refine these approaches and address unresolved problems in the field of hepatic cellular senescence.
Collapse
Affiliation(s)
- Qiuting Li
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
10
|
Amengual J, Alay A, Vaquero J, Gonzalez-Sanchez E, Bertran E, Sánchez A, Herrera B, Meyer K, Maus M, Serrano M, Martínez-Chantar ML, Fabregat I. Iron chelation as a new therapeutic approach to prevent senescence and liver fibrosis progression. Cell Death Dis 2024; 15:680. [PMID: 39289337 PMCID: PMC11408630 DOI: 10.1038/s41419-024-07063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Iron overload and cellular senescence have been implicated in liver fibrosis, but their possible mechanistic connection has not been explored. To address this, we have delved into the role of iron and senescence in an experimental model of chronic liver injury, analyzing whether an iron chelator would prevent liver fibrosis by decreasing hepatocyte senescence. The model of carbon tetrachloride (CCl4) in mice was used as an experimental model of liver fibrosis. Results demonstrated that during the progression of liver fibrosis, accumulation of iron occurs, concomitant with the appearance of fibrotic areas and cells undergoing senescence. Isolated parenchymal hepatocytes from CCl4-treated mice present a gene transcriptomic signature compatible with iron accumulation and senescence, which correlates with induction of Reactive Oxygen Species (ROS)-related genes, activation of the Transforming Growth Factor-beta (TGF-β) pathway and inhibition of oxidative metabolism. Analysis of the iron-related gene signature in a published single-cell RNA-seq dataset from CCl4-treated livers showed iron accumulation correlating with senescence in other non-parenchymal liver cells. Treatment with deferiprone, an iron chelator, attenuated iron accumulation, fibrosis and senescence, concomitant with relevant changes in the senescent-associated secretome (SASP), which switched toward a more anti-inflammatory profile of cytokines. In vitro experiments in human hepatocyte HH4 cells demonstrated that iron accumulates in response to a senescence-inducing reagent, doxorubicin, being deferiprone able to prevent senescence and SASP, attenuating growth arrest and cell death. However, deferiprone did not significantly affect senescence induced by two different agents (doxorubicin and deoxycholic acid) or activation markers in human hepatic stellate LX-2 cells. Transcriptomic data from patients with different etiologies demonstrated the relevance of iron accumulation in the progression of liver chronic damage and fibrosis, correlating with a SASP-related gene signature and pivotal hallmarks of fibrotic changes. Altogether, our study establishes iron accumulation as a clinically exploitable driver to attenuate pathological senescence in hepatocytes.
Collapse
Affiliation(s)
- Josep Amengual
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Ania Alay
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
- Preclinical and Experimental Research in Thoracic Tumors (PReTT), Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain
- Department of Physiology and Pharmacology, University of Salamanca, 37007, Salamanca, Spain
| | - Esther Bertran
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the "Hospital Clínico San Carlos" (IdISSC), Madrid, Spain
| | - Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the "Hospital Clínico San Carlos" (IdISSC), Madrid, Spain
| | - Kathleen Meyer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Cambridge, United Kingdom
| | - Mate Maus
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Cambridge, United Kingdom
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - María Luz Martínez-Chantar
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Derio, Bizkaia, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| |
Collapse
|
11
|
Wang Z, Gao J, Xu C. Targeting metabolism to influence cellular senescence a promising anti-cancer therapeutic strategy. Biomed Pharmacother 2024; 177:116962. [PMID: 38936195 DOI: 10.1016/j.biopha.2024.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024] Open
Abstract
Metabolic disorders are considered the hallmarks of cancer and metabolic reprogramming is emerging as a new strategy for cancer treatment. Exogenous and endogenous stressors can induce cellular senescence; the interactions between cellular senescence and systemic metabolism are dynamic. Cellular senescence disrupts metabolic homeostasis in various tissues, which further promotes senescence, creating a vicious cycle facilitating tumor occurrence, recurrence, and altered outcomes of anticancer treatments. Therefore, the regulation of cellular senescence and related secretory phenotypes is considered a breakthrough in cancer therapy; moreover, proteins involved in the associated pathways are prospective therapeutic targets. Although studies on the association between cellular senescence and tumors have emerged in recent years, further elucidation of this complex correlation is required for comprehensive knowledge. In this paper, we review the research progress on the correlation between cell aging and metabolism, focusing on the strategies of targeting metabolism to modulate cellular senescence and the progress of relevant research in the context of anti-tumor therapy. Finally, we discuss the significance of improving the specificity and safety of anti-senescence drugs, which is a potential challenge in cancer therapy.
Collapse
Affiliation(s)
- Zehua Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jianwen Gao
- College of Health Management, Shanghai Jian Qiao University, Shanghai 201306, China.
| | - Congjian Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China.
| |
Collapse
|
12
|
Karaca ZM, Karaca G, Kayhan B, Gül M, Ersan V, Gözükara Bağ H, Yeşilada E. Chronic liver fibrosis induction in aging causes significant ultra-structural deterioration in liver and alteration on immune response gene expressions in liver-spleen axis. Ultrastruct Pathol 2024; 48:261-273. [PMID: 38842161 DOI: 10.1080/01913123.2024.2360447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
The relationship between damage to the liver and spleen by aging and the immune response status in these two organs, which are anatomically and immunologically interconnected, is unknown. The authors investigated the histopathological, ultrastructural, and immunological effects of aging in young and aged fibrotic mice by using an experimental model. Four groups were planned, with 10 mice in each experimental group. The levels of fibrosis and ultrastructural destruction in the liver were determined by α-SMA staining and TEM analysis. Expression levels of immunity genes (Il2, Il4, Il6, Il10, Il12, Il17, Tnf, Ifng, Tgfb1, Gata3, Rorc, Tbx21, Foxp3, Ccl2, Ccr2, Cxcr3, Pf4, Cxcl10) were carried out by qRT-PCR. While structural disorders were detected in the mitochondria of aged healthy group, cellular destruction in the fibrosis-induced elderly group was at a dramatic level. Fibrosis induction in aged mice caused an elevation in the expression of chemokines (CCl2, CXCL10, CCR2) and cytokine (IL-17a) genes that induce autoinflammatory response in the liver. Unlike the cellular pathology and genes activated in fibrosis in youth and the natural occurrence of fibrosis with aging, induction of fibrosis during aging causes deterioration in the liver and expression of genes responsible for autoimmunity in both the liver and spleen.
Collapse
Affiliation(s)
- Zeynal Mete Karaca
- Department of Medical Biology and Genetics, Faculty of Medicine, İnönü University, Malatya, Türkiye
- Department of Genetıcs, Faculty of Medıcıne, Kırklarel' Unıversıty, Kırklarelı, Türkıye
| | - Gamze Karaca
- Department of Medical Biology and Genetics, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Başak Kayhan
- Liver Transplantation Institute, Transplantation Immunology Laboratory, İnönü University, Malatya, Türkiye
- Department of Microbiology, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| | - Mehmet Gül
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Veysel Ersan
- Liver Transplantation Institute, Department of General Surgery, İnönü University, Malatya, Türkiye
| | - Harika Gözükara Bağ
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Elif Yeşilada
- Department of Medical Biology and Genetics, Faculty of Medicine, İnönü University, Malatya, Türkiye
| |
Collapse
|
13
|
Gribben C, Galanakis V, Calderwood A, Williams EC, Chazarra-Gil R, Larraz M, Frau C, Puengel T, Guillot A, Rouhani FJ, Mahbubani K, Godfrey E, Davies SE, Athanasiadis E, Saeb-Parsy K, Tacke F, Allison M, Mohorianu I, Vallier L. Acquisition of epithelial plasticity in human chronic liver disease. Nature 2024; 630:166-173. [PMID: 38778114 PMCID: PMC11153150 DOI: 10.1038/s41586-024-07465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized1-4, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K-AKT-mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.
Collapse
Affiliation(s)
- Christopher Gribben
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
| | - Vasileios Galanakis
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alexander Calderwood
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Eleanor C Williams
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ruben Chazarra-Gil
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Miguel Larraz
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carla Frau
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany
| | - Tobias Puengel
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Edmund Godfrey
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emmanouil Athanasiadis
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Medical Image and Signal Processing Laboratory, Department of Biomedical Engineering, University of West Attica, Athens, Greece
| | | | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Allison
- Open Targets, Wellcome Genome Campus, Hinxton, UK.
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Irina Mohorianu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, UK.
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
14
|
Denk H, Abuja PM, Zatloukal K. Mallory-Denk bodies and hepatocellular senescence: a causal relationship? Virchows Arch 2024; 484:637-644. [PMID: 38289501 PMCID: PMC11063002 DOI: 10.1007/s00428-024-03748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 05/02/2024]
Abstract
Mallory-Denk bodies (MDBs) are hepatocellular cytoplasmic inclusions, which occur in certain chronic liver diseases, such as alcohol-related (ASH) and metabolic dysfunction-associated (MASH) steatohepatitis, copper toxicosis, some drug-induced liver disorders, chronic cholangiopathies, and liver tumors. Our study focused on the expression of the senescence markers p21WAF1/cip1 and p16INK4a in hepatocytes containing MDBs in steatohepatitis, chronic cholangiopathies with fibrosis or cirrhosis, Wilson's disease, and hepatocellular carcinomas. Cytoplasm and nuclei of MDB-containing hepatocytes as well as MDB inclusions, except those associated with carcinoma cells, were strongly p16-positive, p21-positive, as well as p21-negative nuclei in MDB-containing hepatocytes which were observed whereas MDBs were p21-negative. Expression of the senescence marker p16 suggests that MDB formation reflects an adaptive response to chronic stress resembling senescence with its consequences, i.e., expression of inflammation- and fibrosis-prone secretome. Thus, senescence can be regarded as "double-edged sword" since, on the one hand, it may be an attempt of cellular defense, but, on the other, also causes further and sustained damage by inducing inflammation and fibrosis related to the senescence-associated secretory phenotype and thus progression of chronic liver disease.
Collapse
Affiliation(s)
- Helmut Denk
- Diagnostic and Research Institute of Pathology, Diagnostic & Research Center of Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria.
| | - Peter M Abuja
- Diagnostic and Research Institute of Pathology, Diagnostic & Research Center of Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Diagnostic & Research Center of Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria
| |
Collapse
|
15
|
Wei P, Li L, Ran C, Jin M, Zhao H, Yang K, Wang Y, He H, Jia M, Pan H, Li Q, Guo J. High fat diet-induced downregulation of TRPV2 mediates hepatic steatosis via p21 signalling. J Physiol Biochem 2024; 80:113-126. [PMID: 37882938 DOI: 10.1007/s13105-023-00988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
The global prevalence and incidence of non-alcoholic fatty liver disease (NAFLD) are exhibiting an increasing trend. NAFLD is characterized by a significant accumulation of lipids, though its underlying mechanism is still unknown. Here we report that high-fat diet (HFD) feeding induced hepatic steatosis in mice, which was accompanied by a reduction in the expression and function of hepatic TRPV2. Moreover, conditional knockout of TRPV2 in hepatocytes exacerbated HFD-induced hepatic steatosis. In an in vitro model of NAFLD, TRPV2 regulated lipid accumulation in HepG2 cells, and TRPV2 activation inhibited the expression of the cellular senescence markers p21 and p16, all of which were mediated by AMPK phosphorylation. Finally, we found that administration of probenecid, a TRPV2 agonist, impaired HFD-induced hepatic steatosis and suppressed HFD-induced elevation in p21 and p16. Collectively, our findings imply that hepatic TRPV2 protects against the accumulation of lipids by modulating p21 signalling.
Collapse
Affiliation(s)
- Pengfei Wei
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Lixuan Li
- Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Chenqiu Ran
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Mingyue Jin
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Huijuan Zhao
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Kelaier Yang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Huaqiu He
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Mengyang Jia
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Hongyan Pan
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China.
| | - Jing Guo
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
16
|
Dutta RK, Jun J, Du K, Diehl AM. Hedgehog Signaling: Implications in Liver Pathophysiology. Semin Liver Dis 2023; 43:418-428. [PMID: 37802119 DOI: 10.1055/a-2187-3382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The purpose of this review is to summarize current knowledge about the role of the Hedgehog signaling pathway in liver homeostasis and disease. Hedgehog is a morphogenic signaling pathway that is active in development. In most healthy tissues, pathway activity is restricted to stem and/or stromal cell compartments, where it enables stem cell self-renewal and tissue homeostasis. Aberrant over-activation of Hedgehog signaling occurs in many cancers, including hepatocellular and cholangio-carcinoma. The pathway is also activated transiently in stromal cells of injured tissues and orchestrates normal wound healing responses, including inflammation, vascular remodeling, and fibrogenesis. In liver, sustained Hedgehog signaling in stromal cells plays a major role in the pathogenesis of cirrhosis. Hedgehog signaling was thought to be silenced in healthy hepatocytes. However, recent studies show that targeted disruption of the pathway in hepatocytes dysregulates lipid, cholesterol, and bile acid metabolism, and promotes hepatic lipotoxicity, insulin resistance, and senescence. Hepatocytes that lack Hedgehog activity also produce a secretome that activates Hedgehog signaling in cholangiocytes and neighboring stromal cells to induce inflammatory and fibrogenic wound healing responses that drive progressive fibrosis. In conclusion, Hedgehog signaling must be precisely controlled in adult liver cells to maintain liver health.
Collapse
Affiliation(s)
| | - JiHye Jun
- Department of Medicine, Duke University, Durham, North Carolina
| | - Kuo Du
- Department of Medicine, Duke University, Durham, North Carolina
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
17
|
Borrello MT, Mann D. Chronic liver diseases: From development to novel pharmacological therapies: IUPHAR Review 37. Br J Pharmacol 2023; 180:2880-2897. [PMID: 35393658 DOI: 10.1111/bph.15853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic liver diseases comprise a broad spectrum of burdensome diseases that still lack effective pharmacological therapies. Our research group focuses on fibrosis, which is a major precursor of liver cirrhosis. Fibrosis consists in a progressive disturbance of liver sinusoidal architecture characterised by connective tissue deposition as a reparative response to tissue injury. Multifactorial events and several types of cells participate in fibrosis initiation and progression, and the process still needs to be completely understood. The development of experimental models of liver fibrosis alongside the identification of critical factors progressing fibrosis to cirrhosis will facilitate the development of more effective therapeutic approaches for such condition. This review provides an overlook of the main process leading to hepatic fibrosis and therapeutic approaches that have emerged from a deep knowledge of the molecular regulation of fibrogenesis in the liver. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Maria Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
18
|
Rabindranath M, Zaya R, Prayitno K, Orchanian-Cheff A, Patel K, Jaeckel E, Bhat M. A Comprehensive Review of Liver Allograft Fibrosis and Steatosis: From Cause to Diagnosis. Transplant Direct 2023; 9:e1547. [PMID: 37854023 PMCID: PMC10581596 DOI: 10.1097/txd.0000000000001547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Despite advances in posttransplant care, long-term outcomes for liver transplant recipients remain unchanged. Approximately 25% of recipients will advance to graft cirrhosis and require retransplantation. Graft fibrosis progresses in the context of de novo or recurrent disease. Recurrent hepatitis C virus infection was previously the most important cause of graft failure but is now curable in the majority of patients. However, with an increasing prevalence of obesity and diabetes and nonalcoholic fatty liver disease as the most rapidly increasing indication for liver transplantation, metabolic dysfunction-associated liver injury is anticipated to become an important cause of graft fibrosis alongside alloimmune hepatitis and alcoholic liver disease. To better understand the landscape of the graft fibrosis literature, we summarize the associated epidemiology, cause, potential mechanisms, diagnosis, and complications. We additionally highlight the need for better noninvasive methods to ameliorate the management of graft fibrosis. Some examples include leveraging the microbiome, genetic, and machine learning methods to address these limitations. Overall, graft fibrosis is routinely seen by transplant clinicians, but it requires a better understanding of its underlying biology and contributors that can help inform diagnostic and therapeutic practices.
Collapse
Affiliation(s)
- Madhumitha Rabindranath
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Rita Zaya
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Khairunnadiya Prayitno
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Ani Orchanian-Cheff
- Library and Information Services, University Health Network, Toronto, ON, Canada
| | - Keyur Patel
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elmar Jaeckel
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Wilkinson AL, Hulme S, Kennedy JI, Mann ER, Horn P, Shepherd EL, Yin K, Zaki MY, Hardisty G, Lu WY, Rantakari P, Adams DH, Salmi M, Hoare M, Patten DA, Shetty S. The senescent secretome drives PLVAP expression in cultured human hepatic endothelial cells to promote monocyte transmigration. iScience 2023; 26:107966. [PMID: 37810232 PMCID: PMC10558774 DOI: 10.1016/j.isci.2023.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) undergo significant phenotypic change in chronic liver disease (CLD), and yet the factors that drive this process and the impact on their function as a vascular barrier and gatekeeper for immune cell recruitment are poorly understood. Plasmalemma-vesicle-associated protein (PLVAP) has been characterized as a marker of LSEC in CLD; notably we found that PLVAP upregulation strongly correlated with markers of tissue senescence. Furthermore, exposure of human LSEC to the senescence-associated secretory phenotype (SASP) led to a significant upregulation of PLVAP. Flow-based assays demonstrated that SASP-driven leukocyte recruitment was characterized by paracellular transmigration of monocytes while the majority of lymphocytes migrated transcellularly. Knockdown studies confirmed that PLVAP selectively supported monocyte transmigration mediated through PLVAP's impact on LSEC permeability by regulating phospho-VE-cadherin expression and endothelial gap formation. PLVAP may therefore represent an endothelial target that selectively shapes the senescence-mediated immune microenvironment in liver disease.
Collapse
Affiliation(s)
- Alex L. Wilkinson
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Samuel Hulme
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - James I. Kennedy
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Emily R. Mann
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul Horn
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Emma L. Shepherd
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Kelvin Yin
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Marco Y.W. Zaki
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Gareth Hardisty
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Pia Rantakari
- Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - David H. Adams
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Matthew Hoare
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Daniel A. Patten
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
20
|
Pantelidou P, Sinakos E, Germanidis G, Pagkalidou E, Haidich AB, Akriviadis E, Hytiroglou P. Assessment of histologic risk factors for hepatocellular carcinoma in patients with chronic hepatitis B of advanced stage. Pathol Res Pract 2023; 249:154741. [PMID: 37586217 DOI: 10.1016/j.prp.2023.154741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Histologic markers of increased risk for hepatocellular carcinoma can provide useful information for the management of patients with chronic hepatitis B. The expression of epithelial cell adhesion molecule (EpCAM, a marker of hepatic progenitor cells), p21 (a marker of hepatocyte senescence), glutamine synthetase (a marker of perivenular hepatocytes) and CD34 (a marker of sinusoidal capillarization) were assessed by immunohistochemistry in 52 liver biopsy specimens from patients with advanced stage chronic hepatitis B. Nineteen patients developed hepatocellular carcinoma during a follow-up period of 133 months. The findings were compared with those of 18 liver biopsy specimens from patients with early-stage chronic hepatitis B and 6 liver biopsy specimens without significant pathologic findings. EpCAM expression in hepatocytes was significantly increased in specimens with advanced stage, as compared with all other specimens. EpCAM positivity in over 30 % of hepatocytes was only seen in 3 specimens from patients who subsequently developed hepatocellular carcinoma. The expression of p21, glutamine synthetase and CD34 was not associated with hepatocellular carcinoma development. Nevertheless, glutamine synthetase immunostains highlighted zonality abnormalities that were useful in chronic hepatitis B staging. In conclusion, extensive immunopositivity of hepatocytes for EpCAM in chronic hepatitis B may represent a marker of increased hepatocellular carcinoma risk. Glutamine synthetase immunostaining represents a useful adjunct in determining the stage of chronic hepatitis B in diagnostic practice.
Collapse
Affiliation(s)
- Pavlina Pantelidou
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Emmanouil Sinakos
- Fourth Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Georgios Germanidis
- First Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Eirini Pagkalidou
- Department of Hygiene, Social-Preventive Medicine and Medical Statistics, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Anna Bettina Haidich
- Department of Hygiene, Social-Preventive Medicine and Medical Statistics, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Evangelos Akriviadis
- Fourth Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Prodromos Hytiroglou
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
21
|
Zhu Y, Han Y, Wang W, Liang G, Qi J. Mulberry leaves attenuate D-galactose-induced aging in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116286. [PMID: 36965545 DOI: 10.1016/j.jep.2023.116286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry leaves contain many bioactive compounds and have been widely used in traditional medicines and functional foods for prevention and treatment of age-related diseases, such as diabetes, cognitive impairment and obesity-mediated liver cancer. Aging has an irreversible negative impact on human health for many years, even decades, before death, which is a social and economic burden on society. AIM OF THE STUDY The objective of this study was to investigate the antioxidant and anti-aging effects of mulberry leaf extract (MLE) in vivo and in vitro. MATERIALS AND METHODS The Caenorhabditis elegans (C. elegans) was used as a model organism to observe the effects of different concentrations of MLE (1, 2, 4, 8 mg/mL) on nematodes' healthy lifespan, reproductive capacity, locomotion, stress resistance, and antioxidation. In addition, D-galactose (D-gal) induced liver aging in mice and L-02 cells were established. The antioxidant and anti-aging effects of MLE were evaluated by body weight, organ indexes, malondialdehyde (MDA), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), aspartate and alanine aminotransferases (AST and ALT), reactive oxygen species (ROS), mitochondrial membrane potential (MMP), hematoxylin and eosin (H&E), senescence-associated β-galactosidase (SA-β-Gal). Besides, the expressions of AMPK/SIRT1/PGC-1α and Nrf2-Keap1 were detected by Western blotting. RESULTS MLE could significantly prolonged nematodes' average life span and improved most physiological indicators related to aging of C. elegans. Moreover, Treatment with MLE ameliorated the decreased body weight and organ index (weight of organ/body weight) in model mice, and protected against oxidative stress in mice and liver cells, in a dose-dependent manner, up-regulating T-SOD and T-AOC, while reducing ROS and MDA levels. MLE decreased both liver and cell levels of AST and ALT, and enhanced the mitochondrial membrane potential. MLE activated the AMPK/SIRT1/PGC-1α pathways, participated in mitochondrial biosynthesis and oxidative metabolism and delayed D-gal-induced aging. MLE promoted the accumulation of Nrf2 in the nucleus, indicating that the improved oxidative stress response was mediated by the Nrf2-Keap1 pathway in vivo and in vitro. CONCLUSION MLE appeared to have great potential for stimulating the oxidative stress response and attenuating the aging process of in vivo and in vitro, and provide a novel health-promoting resource against aging and aging-related diseases.
Collapse
Affiliation(s)
- Yan Zhu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yaping Han
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wuyang Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Guangming Liang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jin Qi
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
22
|
Anastasopoulos NA, Charchanti AV, Barbouti A, Mastoridou EM, Goussia AC, Karampa AD, Christodoulou D, Glantzounis GK. The Role of Oxidative Stress and Cellular Senescence in the Pathogenesis of Metabolic Associated Fatty Liver Disease and Related Hepatocellular Carcinoma. Antioxidants (Basel) 2023; 12:1269. [PMID: 37371999 DOI: 10.3390/antiox12061269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents a worryingly increasing cause of malignancy-related mortality, while Metabolic Associated Fatty Liver Disease (MAFLD) is going to become its most common cause in the next decade. Understanding the complex underlying pathophysiology of MAFLD-related HCC can provide opportunities for successful targeted therapies. Of particular interest in this sequela of hepatopathology is cellular senescence, a complex process characterised by cellular cycle arrest initiated by a variety of endogenous and exogenous cell stressors. A key biological process in establishing and maintaining senescence is oxidative stress, which is present in multiple cellular compartments of steatotic hepatocytes. Oxidative stress-induced cellular senescence can change hepatocyte function and metabolism, and alter, in a paracrine manner, the hepatic microenvironment, enabling disease progression from simple steatosis to inflammation and fibrosis, as well as HCC. The duration of senescence and the cell types it affects can tilt the scale from a tumour-protective self-restricting phenotype to the creator of an oncogenic hepatic milieu. A deeper understanding of the mechanism of the disease can guide the selection of the most appropriate senotherapeutic agent, as well as the optimal timing and cell type targeting for effectively combating HCC.
Collapse
Affiliation(s)
- Nikolaos-Andreas Anastasopoulos
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Department of General Surgery, Croydon University Hospital, Croydon Health Services NHS Trust, London CR7 7YE, UK
| | - Antonia V Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eleftheria M Mastoridou
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anna C Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasia D Karampa
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Christodoulou
- Department of Gastroenterology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios K Glantzounis
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
23
|
Jannone G, Riani EB, de Magnée C, Tambucci R, Evraerts J, Ravau J, Baldin P, Bouzin C, Loriot A, Gatto L, Decottignies A, Najimi M, Sokal EM. Senescence and senotherapies in biliary atresia and biliary cirrhosis. Aging (Albany NY) 2023; 15:204700. [PMID: 37204430 DOI: 10.18632/aging.204700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Premature senescence occurs in adult hepatobiliary diseases and worsens the prognosis through deleterious liver remodeling and hepatic dysfunction. Senescence might also arises in biliary atresia (BA), the first cause of pediatric liver transplantation. Since alternatives to transplantation are needed, our aim was to investigate premature senescence in BA and to assess senotherapies in a preclinical model of biliary cirrhosis. METHODS BA liver tissues were prospectively obtained at hepatoportoenterostomy (n=5) and liver transplantation (n=30) and compared to controls (n=10). Senescence was investigated through spatial whole transcriptome analysis, SA-β-gal activity, p16 and p21 expression, γ-H2AX and senescence-associated secretory phenotype (SASP). Human allogenic liver-derived progenitor cells (HALPC) or dasatinib and quercetin (D+Q) were administrated to two-month-old Wistar rats after bile duct ligation (BDL). RESULTS Advanced premature senescence was evidenced in BA livers from early stage and continued to progress until liver transplantation. Senescence and SASP were predominant in cholangiocytes, but also present in surrounding hepatocytes. HALPC but not D+Q reduced the early marker of senescence p21 in BDL rats and improved biliary injury (serum γGT and Sox9 expression) and hepatocytes mass loss (Hnf4a). CONCLUSIONS BA livers displayed advanced cellular senescence at diagnosis that continued to progress until liver transplantation. HALPC reduced early senescence and improved liver disease in a preclinical model of BA, providing encouraging preliminary results regarding the use of senotherapies in pediatric biliary cirrhosis.
Collapse
Affiliation(s)
- Giulia Jannone
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Eliano Bonaccorsi Riani
- Abdominal Transplantation Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Catherine de Magnée
- Pediatric Surgery and Transplantation Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Roberto Tambucci
- Pediatric Surgery and Transplantation Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Jonathan Evraerts
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Joachim Ravau
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Pamela Baldin
- Department of Anatomopathology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Axelle Loriot
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes Group, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Mustapha Najimi
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Etienne Marc Sokal
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| |
Collapse
|
24
|
Shi JF, Liu Y, Wang Y, Gao R, Wang Y, Liu J. Targeting ferroptosis, a novel programmed cell death, for the potential of alcohol-related liver disease therapy. Front Pharmacol 2023; 14:1194343. [PMID: 37214434 PMCID: PMC10196366 DOI: 10.3389/fphar.2023.1194343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Ferroptosis is a new iron-dependent cell death mode, which is different from the other types of programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is characterized by a process in which fatal lipids from lipid peroxidation accumulate in cells and eventually lead to cell death. Alcohol-related liver disease (ALD) is a type of liver injury caused by excessive alcohol intake. Alcohol-related liver disease is a broad-spectrum disease category, which includes fatty liver, steatohepatitis, hepatitis, cirrhosis, and hepatocellular tumors. Recent studies have found that ferroptosis is involved in the pathological development of non-viral liver diseases. Therefore, ferroptosis may be an ideal target for the treatment of non-viral liver diseases. In this review article, we will elaborate the molecular mechanism and regulatory mechanism of ferroptosis, explore the key role of ferroptosis in the Alcohol-related liver disease process, and summarize the existing targeted ferroptosis drugs and their feasibility for the treatment of Alcohol-related liver disease.
Collapse
Affiliation(s)
- Jing-Fen Shi
- Institute for Health Policy and Hospital Management, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wang
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
| | - Ru Gao
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Wenjiang District People’s Hospital of Chengdu, Chengdu, China
- Department of Ultrasound Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
26
|
Huppert SS, Schwartz RE. Multiple Facets of Cellular Homeostasis and Regeneration of the Mammalian Liver. Annu Rev Physiol 2023; 85:469-493. [PMID: 36270290 PMCID: PMC9918695 DOI: 10.1146/annurev-physiol-032822-094134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver regeneration occurs in response to diverse injuries and is capable of functionally reestablishing the lost parenchyma. This phenomenon has been known since antiquity, encapsulated in the Greek myth where Prometheus was to be punished by Zeus for sharing the gift of fire with humanity by having an eagle eat his liver daily, only to have the liver regrow back, thus ensuring eternal suffering and punishment. Today, this process is actively leveraged clinically during living donor liver transplantation whereby up to a two-thirds hepatectomy (resection or removal of part of the liver) on a donor is used for transplant to a recipient. The donor liver rapidly regenerates to recover the lost parenchymal mass to form a functional tissue. This astonishing regenerative process and unique capacity of the liver are examined in further detail in this review.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA;
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
27
|
Cellular Senescence in Hepatocellular Carcinoma: The Passenger or the Driver? Cells 2022; 12:cells12010132. [PMID: 36611926 PMCID: PMC9818733 DOI: 10.3390/cells12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
With the high morbidity and mortality, hepatocellular carcinoma (HCC) represents a major yet growing burden for our global community. The relapse-prone nature and drug resistance of HCC are regarded as the consequence of varying intracellular processes and extracellular interplay, which actively participate in tumor microenvironment remodeling. Amongst them, cellular senescence is regarded as a fail-safe program, leading to double-sword effects of both cell growth inhibition and tissue repair promotion. Particularly, cellular senescence serves a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to carcinogenesis. Given the current challenges in improving the clinical management and outcome of HCC, senescence may exert striking potential in affecting anti-cancer strategies. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies. In this review, we intend to provide an up-to-date understanding of liver cell senescence and its impacts on treatment modalities of HCC.
Collapse
|
28
|
Stress-Induced Premature Senescence Related to Oxidative Stress in the Developmental Programming of Nonalcoholic Fatty Liver Disease in a Rat Model of Intrauterine Growth Restriction. Antioxidants (Basel) 2022; 11:antiox11091695. [PMID: 36139771 PMCID: PMC9495674 DOI: 10.3390/antiox11091695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome (MetS) refers to cardiometabolic risk factors, such as visceral obesity, dyslipidemia, hyperglycemia/insulin resistance, arterial hypertension and non-alcoholic fatty liver disease (NAFLD). Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing metabolic/hepatic disorders later in life. Oxidative stress and cellular senescence have been associated with MetS and are observed in infants born following IUGR. However, whether these mechanisms could be particularly associated with the development of NAFLD in these individuals is still unknown. IUGR was induced in rats by a maternal low-protein diet during gestation versus. a control (CTRL) diet. In six-month-old offspring, we observed an increased visceral fat mass, glucose intolerance, and hepatic alterations (increased transaminase levels, triglyceride and neutral lipid deposit) in male rats with induced IUGR compared with the CTRL males; no differences were found in females. In IUGR male livers, we identified some markers of stress-induced premature senescence (SIPS) (lipofuscin deposit, increased protein expression of p21WAF, p16INK4a and Acp53, but decreased pRb/Rb ratio, foxo-1 and sirtuin-1 protein and mRNA expression) associated with oxidative stress (higher superoxide anion levels, DNA damages, decreased Cu/Zn SOD, increased catalase protein expression, increased nfe2 and decreased keap1 mRNA expression). Impaired lipogenesis pathways (decreased pAMPK/AMPK ratio, increased pAKT/AKT ratio, SREBP1 and PPARγ protein expression) were also observed in IUGR male livers. At birth, no differences were observed in liver histology, markers of SIPS and oxidative stress between CTRL and IUGR males. These data demonstrate that the livers of IUGR males at adulthood display SIPS and impaired liver structure and function related to oxidative stress and allow the identification of specific therapeutic strategies to limit or prevent adverse consequences of IUGR, particularly metabolic and hepatic disorders.
Collapse
|
29
|
New Trends in Aging Drug Discovery. Biomedicines 2022; 10:biomedicines10082006. [PMID: 36009552 PMCID: PMC9405986 DOI: 10.3390/biomedicines10082006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is considered the main risk factor for many chronic diseases that frequently appear at advanced ages. However, the inevitability of this process is being questioned by recent research that suggests that senescent cells have specific features that differentiate them from younger cells and that removal of these cells ameliorates senescent phenotype and associated diseases. This opens the door to the design of tailored therapeutic interventions aimed at reducing and delaying the impact of senescence in life, that is, extending healthspan and treating aging as another chronic disease. Although these ideas are still far from reaching the bedside, it is conceivable that they will revolutionize the way we understand aging in the next decades. In this review, we analyze the main and well-validated cellular pathways and targets related to senescence as well as their implication in aging-associated diseases. In addition, the most relevant small molecules with senotherapeutic potential, with a special emphasis on their mechanism of action, ongoing clinical trials, and potential limitations, are discussed. Finally, a brief overview of alternative strategies that go beyond the small molecule field, together with our perspectives for the future of the field, is provided.
Collapse
|
30
|
Unraveling the effect of intra- and intercellular processes on acetaminophen-induced liver injury. NPJ Syst Biol Appl 2022; 8:27. [PMID: 35933513 PMCID: PMC9357019 DOI: 10.1038/s41540-022-00238-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
In high dosages, acetaminophen (APAP) can cause severe liver damage, but susceptibility to liver failure varies across individuals and is influenced by factors such as health status. Because APAP-induced liver injury and recovery is regulated by an intricate system of intra- and extracellular molecular signaling, we here aim to quantify the importance of specific modules in determining the outcome after an APAP insult and of potential targets for therapies that mitigate adversity. For this purpose, we integrated hepatocellular acetaminophen metabolism, DNA damage response induction and cell fate into a multiscale mechanistic liver lobule model which involves various cell types, such as hepatocytes, residential Kupffer cells and macrophages. Our model simulations show that zonal differences in metabolism and detoxification efficiency are essential determinants of necrotic damage. Moreover, the extent of senescence, which is regulated by intracellular processes and triggered by extracellular signaling, influences the potential to recover. In silico therapies at early and late time points after APAP insult indicated that prevention of necrotic damage is most beneficial for recovery, whereas interference with regulation of senescence promotes regeneration in a less pronounced way.
Collapse
|
31
|
Cheng N, Kim KH, Lau LF. Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight 2022; 7:158207. [PMID: 35708907 PMCID: PMC9431681 DOI: 10.1172/jci.insight.158207] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Senescent cells have long been associated with deleterious effects in aging-related pathologies, although recent studies have uncovered their beneficial roles in certain contexts, such as wound healing. We have found that hepatic stellate cells (HSCs) underwent senescence within 2 days after 2/3 partial hepatectomy (PHx) in young (2–3 months old) mice, and the elimination of these senescent cells by using the senolytic drug ABT263 or by using a genetic mouse model impaired liver regeneration. Senescent HSCs secrete IL-6 and CXCR2 ligands as part of the senescence-associated secretory phenotype, which induces multiple signaling pathways to stimulate liver regeneration. IL-6 activates STAT3, induces Yes-associated protein (YAP) activation through SRC family kinases, and synergizes with CXCL2 to activate ERK1/2 to stimulate hepatocyte proliferation. The administration of either IL-6 or CXCL2 partially restored liver regeneration in mice with senescent cell elimination, and the combination of both fully restored liver weight recovery. Furthermore, the matricellular protein central communication network factor 1 (CCN1, previously called CYR61) was rapidly elevated in response to PHx and induced HSC senescence. Knockin mice expressing a mutant CCN1 unable to bind integrin α6β1 were deficient in senescent cells and liver regeneration after PHx. Thus, HSC senescence, largely induced by CCN1, is a programmed response to PHx and plays a critical role in liver regeneration through signaling pathways activated by IL-6 and ligands of CXCR2.
Collapse
Affiliation(s)
- Naiyuan Cheng
- Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Ki-Hyun Kim
- Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Lester F Lau
- Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| |
Collapse
|
32
|
Perinatal Obesity Induces Hepatic Growth Restriction with Increased DNA Damage Response, Senescence, and Dysregulated Igf-1-Akt-Foxo1 Signaling in Male Offspring of Obese Mice. Int J Mol Sci 2022; 23:ijms23105609. [PMID: 35628414 PMCID: PMC9144113 DOI: 10.3390/ijms23105609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Maternal obesity predisposes for hepato-metabolic disorders early in life. However, the underlying mechanisms causing early onset dysfunction of the liver and metabolism remain elusive. Since obesity is associated with subacute chronic inflammation and accelerated aging, we test the hypothesis whether maternal obesity induces aging processes in the developing liver and determines thereby hepatic growth. To this end, maternal obesity was induced with high-fat diet (HFD) in C57BL/6N mice and male offspring were studied at the end of the lactation [postnatal day 21 (P21)]. Maternal obesity induced an obese body composition with metabolic inflammation and a marked hepatic growth restriction in the male offspring at P21. Proteomic and molecular analyses revealed three interrelated mechanisms that might account for the impaired hepatic growth pattern, indicating prematurely induced aging processes: (1) Increased DNA damage response (γH2AX), (2) significant upregulation of hepatocellular senescence markers (Cdnk1a, Cdkn2a); and (3) inhibition of hepatic insulin/insulin-like growth factor (IGF)-1-AKT-p38-FoxO1 signaling with an insufficient proliferative growth response. In conclusion, our murine data demonstrate that perinatal obesity induces an obese body composition in male offspring with hepatic growth restriction through a possible premature hepatic aging that is indicated by a pathologic sequence of inflammation, DNA damage, senescence, and signs of a possibly insufficient regenerative capacity.
Collapse
|
33
|
Raffaele M, Kovacovicova K, Biagini T, Lo Re O, Frohlich J, Giallongo S, Nhan JD, Giannone AG, Cabibi D, Ivanov M, Tonchev AB, Mistrik M, Lacey M, Dzubak P, Gurska S, Hajduch M, Bartek J, Mazza T, Micale V, Curran SP, Vinciguerra M. Nociceptin/orphanin FQ opioid receptor (NOP) selective ligand MCOPPB links anxiolytic and senolytic effects. GeroScience 2022; 44:463-483. [PMID: 34820764 PMCID: PMC8612119 DOI: 10.1007/s11357-021-00487-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Accumulation of senescent cells may drive age-associated alterations and pathologies. Senolytics are promising therapeutics that can preferentially eliminate senescent cells. Here, we performed a high-throughput automatized screening (HTS) of the commercial LOPAC®Pfizer library on aphidicolin-induced senescent human fibroblasts, to identify novel senolytics. We discovered the nociceptin receptor FQ opioid receptor (NOP) selective ligand 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole (MCOPPB, a compound previously studied as potential anxiolytic) as the best scoring hit. The ability of MCOPPB to eliminate senescent cells in in vitro models was further tested in mice and in C. elegans. MCOPPB reduced the senescence cell burden in peripheral tissues but not in the central nervous system. Mice and worms exposed to MCOPPB also exhibited locomotion and lipid storage changes. Mechanistically, MCOPPB treatment activated transcriptional networks involved in the immune responses to external stressors, implicating Toll-like receptors (TLRs). Our study uncovers MCOPPB as a NOP ligand that, apart from anxiolytic effects, also shows tissue-specific senolytic effects.
Collapse
Affiliation(s)
- Marco Raffaele
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Kristina Kovacovicova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Psychogenics Inc, Tarrytown, NY, USA
| | - Tommaso Biagini
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Sebastiano Giallongo
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - James D Nhan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, Arts, and Sciences, Dornsife College of Letters, University of Southern California, Los Angeles, CA, USA
| | - Antonino Giulio Giannone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Pathologic Anatomy Unit-University of Palermo, Palermo, Italy
| | - Daniela Cabibi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Pathologic Anatomy Unit-University of Palermo, Palermo, Italy
| | - Martin Ivanov
- Department of Anatomy and Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Sona Gurska
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiri Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Tommaso Mazza
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, Arts, and Sciences, Dornsife College of Letters, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria.
| |
Collapse
|
34
|
The Potential Role of Cellular Senescence in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23020652. [PMID: 35054837 PMCID: PMC8775400 DOI: 10.3390/ijms23020652] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents an increasing global health burden. Cellular senescence develops in response to cellular injury, leading not only to cell cycle arrest but also to alterations of the cellular phenotype and metabolic functions. In this review, we critically discuss the currently existing evidence for the involvement of cellular senescence in NAFLD in order to identify areas requiring further exploration. Hepatocyte senescence can be a central pathomechanism as it may foster intracellular fat accumulation, fibrosis and inflammation, also due to secretion of senescence-associated inflammatory mediators. However, in some non-parenchymal liver cell types, such as hepatic stellate cells, senescence may be beneficial by reducing the extracellular matrix deposition and thereby reducing fibrosis. Deciphering the detailed interaction between NAFLD and cellular senescence will be essential to discover novel therapeutic targets halting disease progression.
Collapse
|
35
|
Liao CM, Luo T, von der Ohe J, de Juan Mora B, Schmitt R, Hass R. Human MSC-Derived Exosomes Reduce Cellular Senescence in Renal Epithelial Cells. Int J Mol Sci 2021; 22:13562. [PMID: 34948355 PMCID: PMC8709122 DOI: 10.3390/ijms222413562] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence of renal tubular cells is associated with chronic diseases and age-related kidney disorders. Therapies to antagonize senescence are, therefore, explored as novel approaches in nephropathy. Exosomes derived from human mesenchymal stroma-/stem-like cells (MSC) entail the transfer of multiple bioactive molecules, exhibiting profound regenerative potential in various tissues, including therapeutic effects in kidney diseases. Here, we first demonstrate that exosomes promote proliferation and reduce senescence in aged MSC cultures. For potential therapeutic perspectives in organ rejuvenation, we used MSC-derived exosomes to antagonize senescence in murine kidney primary tubular epithelial cells (PTEC). Exosome treatment efficiently reduced senescence while diminishing the transcription of senescence markers and senescence-associated secretory phenotype (SASP) factors. Concomitantly, we observed less DNA damage foci and more proliferating cells. These data provide new information regarding the therapeutic property of MSC exosomes in the development of renal senescence, suggesting a contribution to a new chapter of regenerative vehicles in senotherapy.
Collapse
Affiliation(s)
- Chieh Ming Liao
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany; (C.M.L.); (B.d.J.M.); (R.S.)
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Lab, Department of Gynecology and Obstetrics, Hannover Medical School, 30625 Hannover, Germany; (T.L.); (J.v.d.O.)
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Gynecology and Obstetrics, Hannover Medical School, 30625 Hannover, Germany; (T.L.); (J.v.d.O.)
| | - Blanca de Juan Mora
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany; (C.M.L.); (B.d.J.M.); (R.S.)
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany; (C.M.L.); (B.d.J.M.); (R.S.)
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Gynecology and Obstetrics, Hannover Medical School, 30625 Hannover, Germany; (T.L.); (J.v.d.O.)
| |
Collapse
|
36
|
Priming, Triggering, Adaptation and Senescence (PTAS): A Hypothesis for a Common Damage Mechanism of Steatohepatitis. Int J Mol Sci 2021; 22:ijms222212545. [PMID: 34830427 PMCID: PMC8624051 DOI: 10.3390/ijms222212545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the pathomechanism of steatohepatitis (SH) is hampered by the difficulty of distinguishing between causes and consequences, by the broad spectrum of aetiologies that can produce the phenotype, and by the long time-span during which SH develops, often without clinical symptoms. We propose that SH develops in four phases with transitions: (i) priming lowers stress defence; (ii) triggering leads to acute damage; (iii) adaptation, possibly associated with cellular senescence, mitigates tissue damage, leads to the phenotype, and preserves liver function at a lower level; (iv) finally, senescence prevents neoplastic transformation but favours fibrosis (cirrhosis) and inflammation and further reduction in liver function. Escape from senescence eventually leads to hepatocellular carcinoma. This hypothesis for a pathomechanism of SH is supported by clinical and experimental observations. It allows organizing the various findings to uncover remaining gaps in our knowledge and, finally, to provide possible diagnostic and intervention strategies for each stage of SH development.
Collapse
|