1
|
Hayat MA, Ding J, Zhang X, Liu T, Zhang J, Bin Wang H. Enhanced apoptosis in damaged laminar tissue of acute laminitis induced by oligofructose overload in dairy cows. Vet Immunol Immunopathol 2025; 284:110935. [PMID: 40233496 DOI: 10.1016/j.vetimm.2025.110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Dairy cow laminitis leads to massive financial losses and animal health issues in the worldwide dairy sector. Apoptosis may be an important factor in the epidermal attachment failure. This study explored the laminar tissue apoptotic-related gene and protein status with oligofructose (OF)-induced laminitis in dairy cows. Twelve clinically healthy, non-pregnant Chinese Holstein cows were randomly divided into two groups of six cows each: the control group and the oligofructose overload group (OF group), respectively. At 0 h, 17 g/kg BW of OF dissolved in 20 mL/kg BW of warm deionized water was gavaged to the OF dairy cows through a stomach tube, while the control cows were given the same dose of deionized water in the same way. After 72 h, laminar tissue samples in both groups were collected to express genes and proteins. Compared with the control cows, the gene expression of Bcl2 significantly reduced in the OF cows laminar tissue. The gene expression of Bax and P53 significantly enhanced in the laminar tissue of OF cows compared to the control cows. The expression of Bcl2 protein significantly decreased, whereas the expression of Bax and Bif1, caspase3, caspase8, and caspase9/9p proteins significantly increased in the OF cows' laminar tissues than in the control cows. However, the distribution of Bax and P53 proteins significantly enhanced in the OF cows' laminar tissues relative to the control cows. In conclusion, imbalanced gene and protein status may represent the primary cause of the epidermal attachment failure, which confirmed the increased apoptosis in laminar tissue of sick cows.
Collapse
Affiliation(s)
- Muhammad Abid Hayat
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiafeng Ding
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Xianhao Zhang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China
| | - Tao Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China
| | - Jiantao Zhang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China
| | - Hong Bin Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China.
| |
Collapse
|
2
|
Wang X, Lang Z, Yan Z, Xu J, Zhang J, Jiao L, Zhang H. Dilated cardiomyopathy: from genes and molecules to potential treatments. Mol Cell Biochem 2025:10.1007/s11010-025-05269-0. [PMID: 40155570 DOI: 10.1007/s11010-025-05269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Dilated cardiomyopathy is a myocardial condition marked by the enlargement of the heart's ventricular chambers and the gradual decline in systolic function, frequently resulting in congestive heart failure. Dilated cardiomyopathy has obvious familial characteristics, and mutations in related pathogenic genes can account for about 50% of patients with dilated cardiomyopathy. The most common genes related to dilated cardiomyopathy include TTN, LMNA, MYH7, etc. With more and more research on these genes, it will undoubtedly provide more potential targets and therapeutic pathways for the treatment of dilated cardiomyopathy. In addition, myocardial inflammation, myocardial metabolism abnormalities and cardiomyocyte apoptosis all have an important impact on the pathogenesis of dilated cardiomyopathy. Approximately half of sudden deaths among children and adolescents, along with the majority of patients undergoing heart transplantation, stem from cardiomyopathy. Therefore, precise and prompt clinical diagnosis holds paramount importance. Currently, diagnosis primarily hinges on the patient's medical background and imaging tests, with the significance of genetic testing steadily gaining prominence. The primary treatment for dilated cardiomyopathy remains heart transplantation. However, the scarcity of donors and the risk of severe immune rejection underscore the pressing need for novel therapies. Presently, research is actively exploring preclinical treatments like stem cell therapy as potential solutions.
Collapse
Affiliation(s)
- Xiumei Wang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou, 730000, The People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Zekun Lang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Zeyi Yan
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Jing Xu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Jinyuan Zhang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Lianhang Jiao
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China
| | - Haijun Zhang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou, 730000, The People's Republic of China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, The People's Republic of China.
| |
Collapse
|
3
|
Chevalley T, Dübi M, Fumeaux L, Merli MS, Sarre A, Schaer N, Simeoni U, Yzydorczyk C. Sexual Dimorphism in Cardiometabolic Diseases: From Development to Senescence and Therapeutic Approaches. Cells 2025; 14:467. [PMID: 40136716 PMCID: PMC11941476 DOI: 10.3390/cells14060467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The global incidence and prevalence of cardiometabolic disorders have risen significantly in recent years. Although lifestyle choices in adulthood play a crucial role in the development of these conditions, it is well established that events occurring early in life can have an important effect. Recent research on cardiometabolic diseases has highlighted the influence of sexual dimorphism on risk factors, underlying mechanisms, and response to therapies. In this narrative review, we summarize the current understanding of sexual dimorphism in cardiovascular and metabolic diseases in the general population and within the framework of the Developmental Origins of Health and Disease (DOHaD) concept. We explore key risk factors and mechanisms, including the influence of genetic and epigenetic factors, placental and embryonic development, maternal nutrition, sex hormones, energy metabolism, microbiota, oxidative stress, cell death, inflammation, endothelial dysfunction, circadian rhythm, and lifestyle factors. Finally, we discuss some of the main therapeutic approaches, responses to which may be influenced by sexual dimorphism, such as antihypertensive and cardiovascular treatments, oxidative stress management, nutrition, cell therapies, and hormone replacement therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Catherine Yzydorczyk
- Developmental Origins of Health and Disease (DOHaD) Laboratory, Division of Pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (T.C.); (M.D.); (L.F.); (M.S.M.); (A.S.); (N.S.)
| |
Collapse
|
4
|
Tanwar SS, Dwivedi S, Khan S, Sharma S. Cardiomyopathies and a brief insight into DOX-induced cardiomyopathy. Egypt Heart J 2025; 77:29. [PMID: 40064787 PMCID: PMC11893974 DOI: 10.1186/s43044-025-00628-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Cardiomyopathy is a heterogeneous group of myocardial disorders characterized by structural and functional abnormalities of the heart muscle. It is classified into primary (genetic, mixed, or acquired) and secondary categories, resulting in various phenotypes including dilated, hypertrophic, and restrictive patterns. Hypertrophic cardiomyopathy, the most common primary form, can cause exertional dyspnea, presyncope, and sudden cardiac death. Dilated cardiomyopathy typically presents with heart failure symptoms, while restrictive cardiomyopathy is rarer and often associated with systemic diseases. Diagnosis involves a comprehensive evaluation including history, physical examination, electrocardiography, and echocardiography. Treatment options range from pharmacotherapy and lifestyle modifications to implantable cardioverter-defibrillators and heart transplantation in refractory cases. MAIN BODY Anthracyclines, particularly doxorubicin, have emerged as crucial components in cancer treatment, demonstrating significant antitumor activity across various malignancies. These drugs have become standard in numerous chemotherapy regimens, improving patient outcomes. However, their use is associated with severe cardiotoxicity, including cardiomyopathy and heart failure. The mechanisms of anthracycline action and toxicity are complex, involving DNA damage, iron-mediated free radical production, and disruption of cardiovascular homeostasis. Doxorubicin-induced cardiomyopathy (DIC) is a severe complication of cancer treatment with a poor prognosis and limited effective treatments. The pathophysiology of DIC involves multiple mechanisms, including oxidative stress, inflammation, mitochondrial damage, and calcium homeostasis disorder. Despite extensive research, no effective treatment for established DIC is currently available. Dexrazoxane is the only FDA-approved protective agent, but it has limitations. Recent studies have explored various potential therapeutic approaches, including natural drugs, endogenous substances, new dosage forms, and herbal medicines. However, the lack of experimental models incorporating pre-existing cancer limits the understanding of DIC pathophysiology and treatment efficacy. CONCLUSION Cardiomyopathy, whether primary or secondary, poses a significant clinical challenge due to its varying etiologies and poor prognosis in advanced stages. Anthracycline-induced cardiomyopathy is a severe complication of chemotherapy, with doxorubicin being a notable contributor. Despite advancements in cancer therapies, the cardiotoxic effects of anthracyclines necessitate further investigation into effective preventive strategies and therapeutic interventions to improve patient outcomes.
Collapse
Affiliation(s)
| | - Sumeet Dwivedi
- Acropolis Institute of Pharmaceutical Education and Research, Indore, India
| | - Sheema Khan
- The University of Texas Rio Grande Valley, Edinburg, US
| | - Seema Sharma
- Shri Vaishnav Vidyapeeth Vishwadvidyalaya, Indore, India.
| |
Collapse
|
5
|
Jalali A, Kabiri M, Hashemi S, Abdi Ardekani A, Zarshenas MM. Medicinal plants or bioactive components with antioxidant/anti-apoptotic effects as a potential therapeutic approach in heart failure prevention and management: a literature review. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:275-291. [PMID: 39576713 DOI: 10.1080/10286020.2024.2414196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/24/2024]
Abstract
Heart failure is described as a complicated syndrome, which is estimated that 56.2 million people were living with HF globally in 2019. Oxidative stress and apoptosis play a major role on HF development via targeting several signaling pathways in cardiac cells. This study investigated medicinal plants or their bioactive components with positive effects on HF management. In this research, keywords "heart failure," "plant," "antioxidant" or "radical scavenging," "herbal" and "apoptosis" were synchronously searched through popular databases from 1990 up to 2023. Finally, the role of oxidative stress and apoptosis in HF development was searched and related signaling pathways were investigated.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil 56189-85991, Iran
| | - Maryam Kabiri
- Arnold and Marie Schwarts College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Shima Hashemi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Ramsar Campus, Ramsar 4847193698, Iran
| | - Alireza Abdi Ardekani
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil 56189-85991, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| |
Collapse
|
6
|
Wang K, Wen J, Liang T, Hu H, Li S, Shen L, Ren T, Yao Y, Xie J, Ding J, Chen J, Tang YD, Zhu Y, Gao C. Enhancing miR-19a/b induced cardiomyocyte proliferation in infarcted hearts by alleviating oxidant stress and controlling miR-19 release. Biomaterials 2025; 312:122732. [PMID: 39088913 DOI: 10.1016/j.biomaterials.2024.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Fully restoring the lost population of cardiomyocytes and heart function remains the greatest challenge in cardiac repair post myocardial infarction. In this study, a pioneered highly ROS-eliminating hydrogel was designed to enhance miR-19a/b induced cardiomyocyte proliferation by lowering the oxidative stress and continuously releasing miR-19a/b in infarcted myocardium in situ. In vivo lineage tracing revealed that ∼20.47 % of adult cardiomyocytes at the injected sites underwent cell division in MI mice. In MI pig the infarcted size was significantly reduced from 40 % to 18 %, and thereby marked improvement of cardiac function and increased muscle mass. Most importantly, our treatment solved the challenge of animal death--all the treated pigs managed to live until their hearts were harvested at day 50. Therefore, our strategy provides clinical conversion advantages and safety for healing damaged hearts and restoring heart function post MI, which will be a powerful tool to battle cardiovascular diseases in patients.
Collapse
Affiliation(s)
- Kai Wang
- The State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou 310009, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jun Wen
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Tian Liang
- Department of Cardiology, the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shifen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tanchen Ren
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, the Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jinghai Chen
- Department of Cardiology, the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yi-Da Tang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| | - Yang Zhu
- The State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou 310009, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Changyou Gao
- The State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou 310009, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
7
|
Jia Y, Liu Y, Zuo Y, Zhang J, Li Y, Liu X, Lv S. The Potential Therapeutic Prospect of PANoptosis in Heart Failure. J Inflamm Res 2024; 17:9147-9168. [PMID: 39583864 PMCID: PMC11585275 DOI: 10.2147/jir.s485901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
Heart failure (HF) represents a serious manifestation or advanced stage of various cardiac diseases. HF continues to impose a significant global disease burden, characterized by high rates of hospitalization and fatality. Furthermore, the pathogenesis and pathophysiological processes underlying HF remain incompletely understood, complicating its prevention and treatment strategies. One significant pathophysiological mechanism associated with HF is the systemic inflammatory response. PANoptosis, a novel mode of inflammatory cell death, has been extensively studied in the context of infectious diseases, neurodegenerative disorders, cancers, and other inflammatory conditions. Recent investigations have revealed that PANoptosis-related genes are markedly dysregulated in HF specimens. Consequently, the PANoptosis-mediated inflammatory response may represent a potential mechanism and therapeutic target for HF. This paper conducts a comprehensive analysis of the molecular pathways that drive PANoptosis. We discuss its role and potential therapeutic targets in HF, thereby providing valuable insights for clinical treatment and the development of novel therapies.
Collapse
Affiliation(s)
- Yunfeng Jia
- Department of Geriatrics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300381, People’s Republic of China
| | - Yayi Liu
- Department of Geriatrics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300381, People’s Republic of China
| | - Yiming Zuo
- Department of Geriatrics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300381, People’s Republic of China
| | - Junping Zhang
- Department of Geriatrics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300381, People’s Republic of China
| | - Yanyang Li
- Department of Integrated Traditional and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People’s Republic of China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Xuezheng Liu
- Department of Geriatrics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300381, People’s Republic of China
| | - Shichao Lv
- Department of Geriatrics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300381, People’s Republic of China
| |
Collapse
|
8
|
Choudhury P, Kandula N, Kosuru R, Adena SKR. Nanomedicine: A great boon for cardiac regenerative medicine. Eur J Pharmacol 2024; 982:176969. [PMID: 39218342 DOI: 10.1016/j.ejphar.2024.176969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.
Collapse
Affiliation(s)
- Priyanka Choudhury
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nirupama Kandula
- Department of Microbiology, GSL Medical College, Rajahmahendravaram, Andhra Pradesh, 533296, India
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Sandeep Kumar Reddy Adena
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
9
|
Chen L, Liu H, Zhan W, Long C, Xu F, Li X, Tian XL, Chen S. Alteration of N-glycosylation of CDON promotes H 2O 2-induced DNA damage in H9c2 cardiomyocytes. Int J Biochem Cell Biol 2024; 176:106671. [PMID: 39389454 DOI: 10.1016/j.biocel.2024.106671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Protein glycosylation is involved in DNA damage. Recently, DNA damage has been connected with the pathogenesis of heart failure. Cell adhesion associated, oncogene regulated (CDON), considered as an N-linked glycoprotein, is a transmembrane receptor for modulating cardiac function. But the role of CDON and its glycosylation in DNA damage remains unknown. In this study, we found that the knockdown of CDON caused DNA double-strand breaks as indicated by an increase in phosphorylated histone H2AX (γH2AX) protein level, immunofluorescent intensity of γH2AX and tail DNA moment in H9c2 cardiomyocytes. Conversely, overexpression of CDON led to decreasing DNA damage induced by hydrogen peroxide (H2O2) and upregulating the expression of genes related to DNA repair pathways-homologous recombination (HR) and non-homologous end joining (NHEJ). Moreover, we expressed nine predicted N-glycosylation site mutants in H9c2 cells prior to treatment with H2O2. The results showed that mutation of N-glycosylation sites (N99Q, N179Q, and N870Q) increased the accumulation of DNA damage and downregulated the expression of HR-related genes, demonstrating that CDON N-glycosylation on DNA damage is site-specific and these specific N-glycan sites may regulate HR repair-related transcript abundance of genes. Our data highlight that N-glycosylation of CDON is critical to cardiomyocyte DNA lesion. It may uncover the potential strategies targeting DNA damage pathway in heart disease.
Collapse
Affiliation(s)
- Liping Chen
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Hongfei Liu
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Wenxing Zhan
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Changkun Long
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Fang Xu
- Epigenetic regulation and Aging, Human Aging Research Institute, School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang 330031, China.
| | - Xueer Li
- Aging and Vascular Diseases, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Shenghan Chen
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| |
Collapse
|
10
|
Zhong L, Zhong Y, Liao Y, Zhou Y. Metoprolol use is associated with improved outcomes in patients with sepsis-induced cardiomyopathy: an analysis of the MIMIC-IV database. BMC Cardiovasc Disord 2024; 24:587. [PMID: 39448900 PMCID: PMC11515608 DOI: 10.1186/s12872-024-04271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Metoprolol is commonly administered to critically ill patients; however, its effect on mortality in patients with sepsis-induced cardiomyopathy (SICM) remains uncertain. This study aimed to investigate the relationship between metoprolol use and mortality in patients with SICM. METHODS Adults with SICM were identified from the MIMIC-IV database. The exposure of interest was metoprolol treatment. The outcomes assessed were 30-day mortality, 1-year mortality, and in-hospital mortality. Kaplan-Meier survival analysis evaluated the effect of metoprolol on these outcomes. Multivariable Cox proportional hazards and logistic regression analyses were performed to determine the correlation between metoprolol treatment and mortality in patients with SICM. RESULTS 1163 patients with SICM were identified, with 882 receiving metoprolol treatment (MET group) and 281 not receiving metoprolol treatment (NOMET group). Overall, the 30-day, 1-year, and in-hospital mortality rates were 10.2%, 18.2%, and 8.9%, respectively. Significant differences in mortality existed between the groups. Multivariable Cox analysis revealed that patients in the NOMET group had a higher risk of 1-year mortality (adjusted hazard ratio [HR] 2.493; 95% confidence interval [CI] 1.800-3.451; P < 0.001) and 30-day mortality (adjusted HR 4.280; 95%CI 2.760-6.637; P < 0.001). Metoprolol treatment was associated with lower in-hospital mortality (odds ratio [OR] 5.076; 95% CI 2.848-9.047; P < 0.001). Subgroup analysis supported these findings. CONCLUSION Metoprolol treatment is associated with reduced all-cause mortality in patients with SICM. Prospective studies are required to validate these findings.
Collapse
Affiliation(s)
- Liping Zhong
- Department of Anesthesiology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Yuting Zhong
- Department of Anesthesiology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Yilin Liao
- Department of Anesthesiology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Yuanjun Zhou
- Department of Anesthesiology, Meizhou People's Hospital, Meizhou, Guangdong, China.
| |
Collapse
|
11
|
Douglas T, Zhang J, Wu Z, Abdallah K, McReynolds M, Gilbert WV, Iwai K, Peng J, Young LH, Crews CM. An atypical E3 ligase safeguards the ribosome during nutrient stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617692. [PMID: 39416039 PMCID: PMC11482868 DOI: 10.1101/2024.10.10.617692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metabolic stress must be effectively mitigated for the survival of cells and organisms. Ribosomes have emerged as signaling hubs that sense metabolic perturbations and coordinate responses that either restore homeostasis or trigger cell death. As yet, the mechanisms governing these cell fate decisions are not well understood. Here, we report an unexpected role for the atypical E3 ligase HOIL-1 in safeguarding the ribosome. We find HOIL-1 mutations associated with cardiomyopathy broadly sensitize cells to nutrient and translational stress. These signals converge on the ribotoxic stress sentinel ZAKα. Mechanistically, mutant HOIL-1 excludes a ribosome quality control E3 ligase from its functional complex and remodels the ribosome ubiquitin landscape. This quality control failure renders glucose starvation ribotoxic, precipitating a ZAKα-ATF4-xCT-driven noncanonical cell death. We further show HOIL-1 loss exacerbates cardiac dysfunction under pressure overload. These data reveal an unrecognized ribosome signaling axis and a molecular circuit controlling cell fate during nutrient stress.
Collapse
|
12
|
Huber T, Horioka-Duplix M, Chen Y, Saca VR, Ceraudo E, Chen Y, Sakmar TP. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci Signal 2024; 17:eadp3967. [PMID: 39288219 PMCID: PMC11920964 DOI: 10.1126/scisignal.adp3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
In contrast with sun exposure-induced melanoma, rarer melanocytic tumors and neoplasms with low mutational burden present opportunities to study isolated signaling mechanisms. These include uveal melanoma and blue nevi, which are often driven by mutations within the G protein-coupled signaling cascade downstream of cysteinyl leukotriene receptor 2. Here, we review how the same mutations within this pathway drive the growth of melanocytes in one tissue but can inhibit the growth of those in another, exemplifying the role of the tissue environment in the delicate balance between uncontrolled cell growth and senescence.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Victoria R Saca
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
13
|
Dutka M, Zimmer K, Ćwiertnia M, Ilczak T, Bobiński R. The role of PCSK9 in heart failure and other cardiovascular diseases-mechanisms of action beyond its effect on LDL cholesterol. Heart Fail Rev 2024; 29:917-937. [PMID: 38886277 PMCID: PMC11306431 DOI: 10.1007/s10741-024-10409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a protein that regulates low-density lipoprotein (LDL) cholesterol metabolism by binding to the hepatic LDL receptor (LDLR), ultimately leading to its lysosomal degradation and an increase in LDL cholesterol (LDLc) levels. Treatment strategies have been developed based on blocking PCSK9 with specific antibodies (alirocumab, evolocumab) and on blocking its production with small regulatory RNA (siRNA) (inclisiran). Clinical trials evaluating these drugs have confirmed their high efficacy in reducing serum LDLc levels and improving the prognosis in patients with atherosclerotic cardiovascular diseases. Most studies have focused on the action of PCSK9 on LDLRs and the subsequent increase in LDLc concentrations. Increasing evidence suggests that the adverse cardiovascular effects of PCSK9, particularly its atherosclerotic effects on the vascular wall, may also result from mechanisms independent of its effects on lipid metabolism. PCSK9 induces the expression of pro-inflammatory cytokines contributing to inflammation within the vascular wall and promotes apoptosis, pyroptosis, and ferroptosis of cardiomyocytes and is thus involved in the development and progression of heart failure. The elimination of PCSK9 may, therefore, not only be a treatment for hypercholesterolaemia but also for atherosclerosis and other cardiovascular diseases. The mechanisms of action of PCSK9 in the cardiovascular system are not yet fully understood. This article reviews the current understanding of the mechanisms of PCSK9 action in the cardiovascular system and its contribution to cardiovascular diseases. Knowledge of these mechanisms may contribute to the wider use of PCSK9 inhibitors in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland.
| | - Karolina Zimmer
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| | - Michał Ćwiertnia
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Tomasz Ilczak
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| |
Collapse
|
14
|
van Thiel BS, de Boer M, Ridwan Y, de Kleijnen MGJ, van Vliet N, van der Linden J, de Beer I, van Heijningen PM, Vermeij WP, Hoeijmakers JHJ, Danser AHJ, Kanaar R, Duncker DJ, van der Pluijm I, Essers J. Hybrid Molecular and Functional Micro-CT Imaging Reveals Increased Myocardial Apoptosis Preceding Cardiac Failure in Progeroid Ercc1 Mice. Mol Imaging Biol 2024; 26:628-637. [PMID: 38498063 PMCID: PMC11281969 DOI: 10.1007/s11307-024-01902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE In this study, we explored the role of apoptosis as a potential biomarker for cardiac failure using functional micro-CT and fluorescence molecular tomography (FMT) imaging techniques in Ercc1 mutant mice. Ercc1 is involved in multiple DNA repair pathways, and its mutations contribute to accelerated aging phenotypes in both humans and mice, due to the accumulation of DNA lesions that impair vital DNA functions. We previously found that systemic mutations and cardiomyocyte-restricted deletion of Ercc1 in mice results in left ventricular (LV) dysfunction at older age. PROCEDURES AND RESULTS Here we report that combined functional micro-CT and FMT imaging allowed us to detect apoptosis in systemic Ercc1 mutant mice prior to the development of overt LV dysfunction, suggesting its potential as an early indicator and contributing factor of cardiac impairment. The detection of apoptosis in vivo was feasible as early as 12 weeks of age, even when global LV function appeared normal, underscoring the potential of apoptosis as an early predictor of LV dysfunction, which subsequently manifested at 24 weeks. CONCLUSIONS This study highlights the utility of combined functional micro-CT and FMT imaging in assessing cardiac function and detecting apoptosis, providing valuable insights into the potential of apoptosis as an early biomarker for cardiac failure.
Collapse
Affiliation(s)
- Bibi S van Thiel
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Vascular Surgery, Erasmus MC Cardiovascular Institute, Erasmus University Medical Center, Room 702A, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martine de Boer
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yanto Ridwan
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, Room 702A, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Marion G J de Kleijnen
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Janette van der Linden
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Isa de Beer
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paula M van Heijningen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilbert P Vermeij
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Institute for Genome Stability in Aging and Disease, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Vascular Surgery, Erasmus MC Cardiovascular Institute, Erasmus University Medical Center, Room 702A, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Vascular Surgery, Erasmus MC Cardiovascular Institute, Erasmus University Medical Center, Room 702A, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
- Department of Radiotherapy, Erasmus University Medical Center, Room 702A, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Samavati I, Ranjbar A, Haddadi R. Cardioprotective effect of vitamin D3 on cisplatin-induced cardiotoxicity in male mice: role of oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4761-4769. [PMID: 38150016 DOI: 10.1007/s00210-023-02848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/28/2023]
Abstract
Cisplatin (CP) is a chemotherapy drug used in a broad spectrum of cancer. The current study investigated the protective effect of vitamin D3 (vit-D3) on CP-induced cardiotoxicity. Forty-two male Balb-c mice (20-25 g) were divided into seven groups (GP), 6 per/group were included: GP1 was considered the control group, GP2 received a single dose of I.V. injection of cisplatin (10 mg/kg). Seven days before cisplatin injection on GP3 and GP4 as pre-treatment, vit-D3 was injected I.P. with the doses of 500 IU/kg and 1000 IU/kg, respectively. GP5 and GP6 were considered the treatment groups, were injected cisplatin (10 mg/kg, I.V), and 15 days later, received vit-D3 (500 IU/kg and 1000 IU/kg, I.P) for 7 days. GP7 was the positive control group, which received vit-D3 at a dose of 500 IU/kg (I.P.) for 7 days. Tissues samples and blood serum were collected for biochemical and histopathological investigations. CP injection significantly increased (p < 0.001) LDH, Troponin I, CK-MB, malondialdehyde (MDA), and nitric oxide (NO) levels, but total antioxidant capacity (TAC) levels were significantly reduced. Histological findings showed cardiac muscle rupture, myocardial fiber necrosis, edema, and pyknotic nuclei, indicating cardiac damage. In both pre-treatment and treatment protocol, vit-D3 could improve the histological and biochemical parameters and prevented from the CP toxicity. Vit-D3 significantly could prevent the CP cardiotoxicity in pre-treatment groups, and partially improve the damage of chemotherapy in treatment group. However, further research is necessary to establish the potential of vit-D3 in preventing or ameliorating cisplatin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Iman Samavati
- Department of Pharmacology and Toxicology, School of Pharmacy, Herbal Medicine and Natural Product Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Herbal Medicine and Natural Product Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Herbal Medicine and Natural Product Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran.
| |
Collapse
|
16
|
Nasrallah D, Abdelhamid A, Tluli O, Al-Haneedi Y, Dakik H, Eid AH. Angiotensin receptor blocker-neprilysin inhibitor for heart failure with reduced ejection fraction. Pharmacol Res 2024; 204:107210. [PMID: 38740146 DOI: 10.1016/j.phrs.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Heart failure with reduced ejection fraction (HFrEF) is a clinical syndrome characterized by volume overload, impaired exercise capacity, and recurrent hospital admissions. A major contributor to the pathophysiology and clinical presentation of heart failure is the activation of the renin-angiotensin-aldosterone system (RAAS). Normally, RAAS is responsible for the homeostatic regulation of blood pressure, extracellular fluid volume, and serum sodium concentration. In HFrEF, RAAS gets chronically activated in response to decreased cardiac output, further aggravating the congestion and cardiotoxic effects. Hence, inhibition of RAAS is a major approach in the pharmacologic treatment of those patients. The most recently introduced RAAS antagonizing medication class is angiotensin receptor blocker/ neprilysin inhibitor (ARNI). In this paper, we discuss ARNIs' superiority over traditional RAAS antagonizing agents in reducing heart failure hospitalization and mortality. We also tease out the evidence that shows ARNIs' renoprotective functions in heart failure patients including those with chronic or end stage kidney disease. We also discuss the evidence showing the added benefit resulting from combining ARNIs with a sodium-glucose cotransporter-2 (SGLT-2) inhibitor. Moreover, how ARNIs decrease the risk of arrhythmias and reverse cardiac remodeling, ultimately lowering the risk of cardiovascular death, is also discussed. We then present the positive outcome of ARNIs' use in patients with diabetes mellitus and those recovering from acute decompensated heart failure. ARNIs' side effects are also appreciated and discussed. Taken together, the provided insight and critical appraisal of the evidence justifies and supports the implementation of ARNIs in the guidelines for the treatment of HFrEF.
Collapse
Affiliation(s)
- Dima Nasrallah
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Alaa Abdelhamid
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Omar Tluli
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Yaman Al-Haneedi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Habib Dakik
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
17
|
Eschenhagen T, Weinberger F. Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes. NATURE CARDIOVASCULAR RESEARCH 2024; 3:515-524. [PMID: 39195938 DOI: 10.1038/s44161-024-00472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/04/2024] [Indexed: 08/29/2024]
Abstract
Here we aim at providing a concise but comprehensive overview of the perspectives and challenges of heart repair with pluripotent stem cell-derived cardiomyocytes. This Review comes at a time when consensus has been reached about the lack of relevant proliferative capacity of adult mammalian cardiomyocytes and the lack of new heart muscle formation with autologous cell sources. While alternatives to cell-based approaches will be shortly summarized, the focus lies on pluripotent stem cell-derived cardiomyocyte repair, which entered first clinical trials just 2 years ago. In the view of the authors, these early trials are important but have to be viewed as early proof-of-concept trials in humans that will hopefully provide first answers on feasibility, safety and the survival of allogeneic pluripotent stem cell-derived cardiomyocyte in the human heart. Better approaches have to be developed to make this approach clinically applicable.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
18
|
Ye J, Qiu W, Pang X, Su Y, Zhang X, Huang J, Xie H, Liao J, Tang Z, Chen Z, Li F, Xiong Z, Su R. Polystyrene nanoplastics and cadmium co-exposure aggravated cardiomyocyte damage in mice by regulating PANoptosis pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123713. [PMID: 38462200 DOI: 10.1016/j.envpol.2024.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Micro/nanoplastics (M/NPs) are the novel contaminants ubiquitous in the environment. Cadmium (Cd), a kind of heavy metal pollutant widely distributed, could potentially co-exist with PS-NPs in the environment. However, their combined effects on cardiomyocyte and its molecular mechanism in mammals remained ambiguous. Here, we examined whether PANoptosis, an emerging and complicated kind of programmed cell death, was involved in PS-NPs and Cd co-exposure-elicited cardiac injury. In this study, 60 male mice were orally subjected to environmentally relevant concentrations of PS-NPs (1 mg/kg) and/or CdCl2 (1.5 mg/kg) for 35 days. As we speculated, PS-NPs and Cd co-exposure affected the expression of pyroptosis(Caspase-1, Cleaved-Caspase-1, GSDMD, N-GSDMD, AIM2, Pyrin, NLRP3, IL-18, IL-1β)-, apoptosis(Caspase-3, Cleaved-Caspase-3, Caspase-8, Cleaved-Caspase-8, Caspase-7, BAX)- and necroptosis (t-RIPK3, p-RIPK3, t-RIPK1, p-RIPK1, t-MLKL, p-MLKL, ZBP1)-related genes and protein, resulting in growth restriction and damaged myocardial microstructure in mice. Notably, the combined effects on Cd and PS-NPs even predominantly aggravated the toxic damage. Intriguingly, we fortuitously discovered PS-NPs and/or Cd exposure facilitated linear ubiquitination of certain proteins in mice myocardium. In summation, this study shed light toward the effects of Cd and PS-NPs on cardiotoxicity, advanced the understanding of myocardial PANoptosis and provided a scientific foundation for further exploration of the combined toxicological effects of PS-NPs and heavy metals.
Collapse
Affiliation(s)
- Jiali Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenyue Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiman Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinting Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianjia Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haoming Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zefeng Chen
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Fei Li
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Zhaojun Xiong
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Rongsheng Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
19
|
Eid RA. Acylated ghrelin protection inhibits apoptosis in the remote myocardium post-myocardial infarction by inhibiting calcineurin and activating ARC. Arch Physiol Biochem 2024; 130:215-229. [PMID: 34965150 DOI: 10.1080/13813455.2021.2017463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
This study investigated if acylated ghrelin (AG) could inhibit myocardial infarction (MI)-induced apoptosis in the left ventricles (LV) of male rats and tested if this protection involves modulating ARC anti-apoptotic protein. Rats (n = 12/group) were assigned as a sham-operated, a sham + AG (100 µg/kg, 2x/d, S.C.), MI, and MI + AG. With no antioxidant activity or expression of FAS, AG inhibited caspase-3, 8, and 9 and decreased cytosolic/mitochondrial levels of cytochrome-c, Bax, Bad, and Bad-BCL-2 complex in the LVs of the sham-operated and MI-treated rats. Concomitantly, AG preserved the mitochondria structure, decreased mtPTP, and enhanced state-3 respiration in the LVs of both treated groups. These effects were associated with increased mitochondrial levels of ARC and a reduction in the activity of calcineurin. Overall, AG suppresses MI-induced ventricular apoptosis by inhibition of calcineurin, activation of ARC, and preserving mitochondria integrity.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
20
|
Song W, Chen Z, Zhang M, Fu H, Wang X, Ma J, Zang X, Hu J, Ai F, Chen K. Bilobalide Prevents Apoptosis and Improves Cardiac Function in Myocardial Infarction. Mol Biotechnol 2024; 66:442-453. [PMID: 37199885 DOI: 10.1007/s12033-023-00753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Myocardial infarction (MI) is an extremely severe cardiovascular disease, which ranks as the leading cause of sudden death worldwide. Studies have proved that cardiac injury following MI can cause cardiomyocyte apoptosis and myocardial fibrosis. Bilobalide (Bilo) from Ginkgo biloba leaves have been widely reported to possess excellent cardioprotective effects. However, concrete roles of Bilo in MI have not been investigated yet. We here designed both in vitro and in vivo experiments to explore the effects of Bilo on MI-induced cardiac injury and the underlying mechanisms of its action. We conducted in vitro experiments using oxygen-glucose deprivation (OGD)-treated H9c2 cells. Cell apoptosis in H9c2 cells was assessed by conducting flow cytometry assay and evaluating apoptosis-related proteins with western blotting. MI mouse model was established by performing left anterior descending artery (LAD) ligation. Cardiac function of MI mice was determined by assessing ejection fraction (EF), fractional shortening (FS), left ventricular end-systolic diameter (LVESD), and left ventricular end-diastolic diameter (LVEDD). Histological changes were analyzed, infarct size and myocardial fibrosis were measured by hematoxylin and eosin (H&E) and Masson staining in cardiac tissues from the mice. The apoptosis of cardiomyocytes in MI mice was assessed by TUNEL staining. Western blotting was applied to detect the effect of Bilo on c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinases (p38 MAPK) signaling both in vitro and in vivo. Bilo inhibited OGD-induced cell apoptosis and lactate dehydrogenase (LDH) release in H9c2 cells. The protein levels of p-JNK and p-p38 were significantly downregulated by Bilo treatment. SB20358 (inhibitor of p38) and SP600125 (inhibitor of JNK) suppressed OGD-induced cell apoptosis as Bilo did. In MI mouse model, Bilo improved the cardiac function and significantly reduced the infarct size and myocardial fibrosis. Bilo inhibited MI-induced cardiomyocytes apoptosis in mice. Bilo suppressed the protein levels of p-JNK and p-p38 in cardiac tissues from MI mice. Bilo alleviated OGD-induced cell apoptosis in H9c2 cells and suppressed MI-induced cardiomyocyte apoptosis and myocardial fibrosis in mice via the inactivation of JNK/p38 MAPK signaling pathways. Thus, Bilo may be an effective anti-MI agent.
Collapse
Affiliation(s)
- Weifeng Song
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang 'an District, Wuhan, 430014, China
| | - Meng Zhang
- Department of Ophthalmology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518102, China
| | - Haixia Fu
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China
| | - Xianqing Wang
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China
| | - Jifang Ma
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China
| | - Xiaobiao Zang
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China
| | - Juan Hu
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang 'an District, Wuhan, 430014, China.
| | - Ke Chen
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 463599, China.
| |
Collapse
|
21
|
Tung B, Frishman WH. Splanchnic Nerve Block: An Emerging Treatment for Heart Failure. Cardiol Rev 2024; 32:170-173. [PMID: 36409744 DOI: 10.1097/crd.0000000000000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart failure (HF) is a disease syndrome whose management is increasingly challenging given the aging population and efficacious management of acute cardiac events. The current treatment options within our armamentarium incompletely address the unmet needs of HF. Splanchnic nerve block (SNB) is a novel technique that targets the greater splanchnic nerve, a potential therapeutic target in HF. However, the technique confers potential adverse side effects and complications that warrant further investigations. In this review paper, we aim to discuss the inextricable role of splanchnic nerve in HF by highlighting their physiological interplay, clinical studies that have exhibited favorable hemodynamic parameters in the context of acute and chronic HF, and common side effects and possible complications from SNB.
Collapse
Affiliation(s)
- Brian Tung
- From the School of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
- Department of Medicine, Tufts University School of Medicine/Steward Carney Hospital, Boston, MA
| | - William H Frishman
- Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
22
|
Schelemei P, Wagner E, Picard FSR, Winkels H. Macrophage mediators and mechanisms in cardiovascular disease. FASEB J 2024; 38:e23424. [PMID: 38275140 DOI: 10.1096/fj.202302001r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Macrophages are major players in myocardial infarction (MI) and atherosclerosis, two major cardiovascular diseases (CVD). Atherosclerosis is caused by the buildup of cholesterol-rich lipoproteins in blood vessels, causing inflammation, vascular injury, and plaque formation. Plaque rupture or erosion can cause thrombus formation resulting in inadequate blood flow to the heart muscle and MI. Inflammation, particularly driven by macrophages, plays a central role in both atherosclerosis and MI. Recent integrative approaches of single-cell analysis-based classifications in both murine and human atherosclerosis as well as experimental MI showed overlap in origin, diversity, and function of macrophages in the aorta and the heart. We here discuss differences and communalities between macrophages in the heart and aorta at steady state and in atherosclerosis or upon MI. We focus on markers, mediators, and functional states of macrophage subpopulations. Recent trials testing anti-inflammatory agents show a major benefit in reducing the inflammatory burden of CVD patients, but highlight a necessity for a broader understanding of immune cell ontogeny and heterogeneity in CVD. The novel insights into macrophage biology in CVD represent exciting opportunities for the development of novel treatment strategies against CVD.
Collapse
Affiliation(s)
- Patrik Schelemei
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Wagner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Zhang T, Xu L, Guo X, Tao H, Liu Y, Liu X, Zhang Y, Meng X. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J Pharm Anal 2024; 14:157-176. [PMID: 38464786 PMCID: PMC10921247 DOI: 10.1016/j.jpha.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 03/12/2024] Open
Abstract
Heart failure (HF) is a highly morbid syndrome that seriously affects the physical and mental health of patients and generates an enormous socio-economic burden. In addition to cardiac myocyte oxidative stress and apoptosis, which are considered mechanisms for the development of HF, alterations in cardiac energy metabolism and pathological autophagy also contribute to cardiac abnormalities and ultimately HF. Silent information regulator 1 (Sirt1) and adenosine monophosphate-activated protein kinase (AMPK) are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and phosphorylated kinases, respectively. They play similar roles in regulating some pathological processes of the heart through regulating targets such as peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), protein 38 mitogen-activated protein kinase (p38 MAPK), peroxisome proliferator-activated receptors (PPARs), and mammalian target of rapamycin (mTOR). We summarized the synergistic effects of Sirt1 and AMPK in the heart, and listed the traditional Chinese medicine (TCM) that exhibit cardioprotective properties by modulating the Sirt1/AMPK pathway, to provide a basis for the development of Sirt1/AMPK activators or inhibitors for the treatment of HF and other cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaowei Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, 620032, China
| |
Collapse
|
24
|
Marunouchi T, Onda S, Kurasawa M, Tanonaka K. Angiotensin II Is Involved in MLKL Activation During the Development of Heart Failure Following Myocardial Infarction in Rats. Biol Pharm Bull 2024; 47:809-817. [PMID: 38583954 DOI: 10.1248/bpb.b23-00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Several reports assume that myocardial necroptotic cell death is induced during the development of chronic heart failure. Although it is well accepted that angiotensin II induces apoptotic cell death of cardiac myocytes, the involvement of angiotensin II in the induction of myocardial necroptosis during the development of heart failure is still unknown. Therefore, we examined the role of angiotensin II in myocardial necroptosis using rat failing hearts following myocardial infarction and cultured cardiomyocytes. We found that administration of azilsartan, an angiotensin II AT1 receptor blocker, or trandolapril, an angiotensin-converting enzyme inhibitor, to rats from the 2nd to the 8th week after myocardial infarction resulted in preservation of cardiac function and attenuation of mixed lineage kinase domain-like (MLKL) activation. Furthermore, the ratio of necroptotic cell death was increased in neonatal rat ventricular cardiomyocytes cultured with conditioned medium from rat cardiac fibroblasts in the presence of angiotensin II. This increase in necroptotic cells was attenuated by pretreatment with azilsartan. Furthermore, activated MLKL was increased in cardiomyocytes cultured in conditioned medium. Pretreatment with azilsartan also prevented the conditioned medium-induced increase in activated MLKL. These results suggest that angiotensin II contributes to the induction of myocardial necroptosis during the development of heart failure.
Collapse
Affiliation(s)
- Tetsuro Marunouchi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences
| | - Sumika Onda
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences
| | - Minami Kurasawa
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences
| | - Kouichi Tanonaka
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
25
|
Engel Sällberg A, Helleberg S, Ahmed S, Ahmed A, Rådegran G. Plasma tumour necrosis factor-alpha-related proteins in prognosis of heart failure with pulmonary hypertension. ESC Heart Fail 2023; 10:3582-3591. [PMID: 37772417 PMCID: PMC10682849 DOI: 10.1002/ehf2.14507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/30/2023] Open
Abstract
AIMS Patients with heart failure (HF) exhibit poor prognosis, which is further deteriorated by pulmonary hypertension (PH), with negative impact on morbidity and mortality. As PH due to left HF (LHF-PH) is among the most common causes of PH, there is an urge according to the 2021 European Society of Cardiology HF guidelines to find new biomarkers that aid in prognostication of this patient cohort. Given the role of tumour necrosis factor-alpha (TNF-α) in HF progression, we aimed to investigate the prognostic value of plasma proteins related to TNF-α in patients with LHF-PH, in relation to haemodynamic changes following heart transplantation (HT). METHODS AND RESULTS Twenty TNF-α-related plasma proteins were analysed using proximity extension assay in healthy controls (n = 20) and patients with LHF-PH (n = 67), before and 1 year after HT (n = 19). Plasma levels were compared between the groups, and the prognostic values were determined using Kaplan-Meier and Cox regression analyses. Plasma levels of lymphotoxin-beta receptor (LTBR), TNF receptor superfamily member 6B (TNFRSF6B), and TNF-related apoptosis-inducing ligand receptors 1 and 2 (TRAIL-R1 and TRAIL-R2, respectively) were higher in LHF-PH pre-HT vs. controls (P < 0.0001), as well as higher in pre-HT vs. post-HT (P < 0.001). The elevated pre-HT levels of LTBR, TNFRSF6B, TRAIL-R1, and TRAIL-R2 decreased towards the levels of healthy controls after HT. Higher preoperative levels of LTBR, TNFRSF6B, TRAIL-R1, and TRAIL-R2 in LHF-PH were associated with worse survival rates (P < 0.002). In multivariate Cox regression models, each adjusted for age and sex, LTBR, TNFRSF6B, TRAIL-R1, and TRAIL-R2 predicted mortality (P < 0.002) [hazard ratio (95% confidence interval): 1.12 (1.04-1.19), 1.01 (1.004-1.02), 1.28 (1.14-1.42), and 1.03 (1.02-1.04), respectively]. CONCLUSIONS Elevated pre-HT plasma levels of the TNF-α-related proteins LTBR, TNFRSF6B, TRAIL-R1, and TRAIL-R2 in LHF-PH decreased 1 year after HT, displaying a normalization pattern towards the levels of the healthy controls. These proteins were also prognostic, where higher levels were associated with worse survival rates in LHF-PH, providing new insight in their potential role as prognostic biomarkers. Larger studies are warranted to validate our findings and to investigate their possible pathobiological mechanisms in LHF-PH.
Collapse
Affiliation(s)
- Adam Engel Sällberg
- The Section for Cardiology, Department of Clinical Sciences LundLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Sara Helleberg
- The Section for Cardiology, Department of Clinical Sciences LundLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Salaheldin Ahmed
- The Section for Cardiology, Department of Clinical Sciences LundLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Abdulla Ahmed
- The Section for Cardiology, Department of Clinical Sciences LundLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| | - Göran Rådegran
- The Section for Cardiology, Department of Clinical Sciences LundLund UniversityLundSweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung MedicineSkåne University HospitalLundSweden
| |
Collapse
|
26
|
Zhu Z, Pu J, Li Y, Chen J, Ding H, Zhou A, Zhang X. RBM25 regulates hypoxic cardiomyocyte apoptosis through CHOP-associated endoplasmic reticulum stress. Cell Stress Chaperones 2023; 28:861-876. [PMID: 37736860 PMCID: PMC10746693 DOI: 10.1007/s12192-023-01380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/15/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Ischemic heart failure (HF) is one of the leading causes of global morbidity and mortality; blocking the apoptotic cascade could help improve adverse outcomes of it. RNA-binding motif protein 25 (RBM25) is an RNA-binding protein related to apoptosis; however, its role remains unknown in ischemic HF. The main purpose of this study is to explore the mechanism of RBM25 in ischemic HF. Establishing an ischemic HF model and oxygen-glucose deprivation (OGD) model. ELISA was performed to evaluate the BNP level in the ischemic HF model. Echocardiography and histological analysis were performed to assess cardiac function and infarct size. Proteins were quantitatively and locationally analyzed by western blotting and immunofluorescence. The morphological changes of endoplasmic reticulum (ER) were observed with ER-tracker. Cardiac function and myocardial injury were observed in ischemic HF rats. RBM25 was elevated in cardiomyocytes of hypoxia injury hearts and localized in nucleus both in vitro and in vivo. In addition, cell apoptosis was significantly increased when overexpressed RBM25. Moreover, ER stress stimulated upregulation of RBM25 and promoted cell apoptosis through the CHOP related pathway. Finally, inhibiting the expression of RBM25 could ameliorate the apoptosis and improve cardiac function through blocking the activation of CHOP signaling pathway. RBM25 is significantly upregulated in ischemic HF rat heart and OGD model, which leads to apoptosis by modulating the ER stress through CHOP pathway. Knockdown of RBM25 could reverse apoptosis-mediated cardiac dysfunction. RBM25 may be a promising target for the treatment of ischemic HF.
Collapse
Affiliation(s)
- Ziwei Zhu
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jie Pu
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jianshu Chen
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Hong Ding
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Anyu Zhou
- Department of Cardiology, Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - XiaoWei Zhang
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
27
|
Al-Masri A. Apoptosis and long non-coding RNAs: Focus on their roles in Heart diseases. Pathol Res Pract 2023; 251:154889. [PMID: 38238070 DOI: 10.1016/j.prp.2023.154889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 01/23/2024]
Abstract
Heart disease is one of the principal death reasons around the world and there is a growing requirement to discover novel healing targets that have the potential to avert or manage these illnesses. On the other hand, apoptosis is a strongly controlled, cell removal procedure that has a crucial part in numerous cardiac problems, such as reperfusion injury, MI (myocardial infarction), consecutive heart failure, and inflammation of myocardium. Completely comprehending the managing procedures of cell death signaling is critical as it is the primary factor that influences patient mortality and morbidity, owing to cardiomyocyte damage. Indeed, the prevention of heart cell death appears to be a viable treatment approach for heart illnesses. According to current researches, a number of long non-coding RNAs cause the heart cells death via different methods that are embroiled in controlling the activity of transcription elements, the pathways that signals transmission within cells, small miRNAs, and the constancy of proteins. When there is too much cell death in the heart, it can cause problems like reduced blood flow, heart damage after restoring blood flow, heart disease in diabetics, and changes in the heart after reduced blood flow. Therefore, studying how lncRNAs control apoptosis could help us find new treatments for heart diseases. In this review, we present recent discoveries about how lncRNAs are involved in causing cell death in different cardiovascular diseases.
Collapse
Affiliation(s)
- Abeer Al-Masri
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
28
|
Xue Z, Wu D, Zhang J, Pan Y, Kan R, Gao J, Zhou B. Protective effect and mechanism of procyanidin B2 against hypoxic injury of cardiomyocytes. Heliyon 2023; 9:e21309. [PMID: 37885736 PMCID: PMC10598540 DOI: 10.1016/j.heliyon.2023.e21309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Background Cardiomyocyte ischemia and hypoxia are important causes of oxidative stress damage and cardiomyocyte apoptosis in coronary heart disease (CHD). Epidemiological investigation has shown that eating more plant-based foods, such as vegetables and fruits, may significantly decrease the risk of CHD. As natural antioxidants, botanicals have fewer toxic side effects than chemical drugs and have great potential for development. Procyanidin B2 (PB2) is composed of flavan-3-ol and epicatechin and has been reported to have antioxidant and anti-inflammatory effects. However, whether PB2 exerts protective effects on hypoxic cardiomyocytes has remained unclear. This study aimed to explore the protective effect of PB2 against cardiomyocyte hypoxia and to provide new treatment strategies and ideas for myocardial ischemia and hypoxia in CHD. Methods and results A hypoxic cardiomyocyte model was constructed, and a CCK-8 assay proved that PB2 had a protective effect on cardiomyocytes in a hypoxic environment. DCFH fluorescence staining, DHE staining, and BODIPY lipid oxidation assessment revealed that PB2 reduced the oxidative stress levels of cardiomyocytes under hypoxic conditions. TUNEL staining, Annexin V/PI fluorescence flow cytometry, and Western blot analysis of the expression of the apoptosis marker protein cleaved caspase-3 confirmed that PB2 reduced cardiomyocyte apoptosis under hypoxic conditions. JC-1 staining indicated that PB2 reduced the mitochondrial membrane potential of cardiomyocytes under hypoxia. In addition, transcriptomic analysis proved that the expression of 158 genes in cardiomyocytes was significantly changed after PB2 was added during hypoxia, of which 53 genes were upregulated and 105 genes were downregulated. GO enrichment analysis demonstrated that the activity of cytokines, extracellular matrix proteins and other molecules was changed significantly in the biological process category. KEGG enrichment analysis showed that the IL-17 signaling pathway and JAK-STAT signaling pathway underwent significant changes. We also performed metabolomic analysis and found that the levels of 51 metabolites were significantly changed after the addition of PB2 to cardiomyocytes during hypoxia. Among them, 39 metabolites exhibited increased levels, while 12 metabolites exhibited decreased levels. KEGG enrichment analysis showed that cysteine and methionine metabolism, arginine and proline metabolism and other metabolic pathways underwent remarkable changes. Conclusion This study proves that PB2 can reduce the oxidative stress and apoptosis of cardiomyocytes during hypoxia to play a protective role. Transcriptomic and metabolomic analyses preliminarily revealed signaling pathways and metabolic pathways that are related to its protective mechanism. These findings lay a foundation for further research on the role of PB2 in the treatment of CHD and provide new ideas and new perspectives for research on PB2 in the treatment of other diseases.
Collapse
Affiliation(s)
- Zhimin Xue
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyu Wu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwen Pan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongsheng Kan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Gao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binquan Zhou
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Jiang H, Fang T, Cheng Z. Mechanism of heart failure after myocardial infarction. J Int Med Res 2023; 51:3000605231202573. [PMID: 37818767 PMCID: PMC10566288 DOI: 10.1177/03000605231202573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/14/2023] [Indexed: 10/13/2023] Open
Abstract
Despite the widespread use of early revascularization and drugs to regulate the neuroendocrine system, the impact of such measures on alleviating the development of heart failure (HF) after myocardial infarction (MI) remains limited. Therefore, it is important to discuss the development of new therapeutic strategies to prevent or reverse HF after MI. This requires a better understanding of the potential mechanisms involved. HF after MI is the result of complex pathophysiological processes, with adverse ventricular remodeling playing a major role. Adverse ventricular remodeling refers to the heart's adaptation in terms of changes in ventricular size, shape, and function under the influence of various regulatory factors, including the mechanical, neurohormonal, and cardiac inflammatory immune environments; ischemia/reperfusion injury; energy metabolism; and genetic correlation factors. Additionally, unique right ventricular dysfunction can occur secondary to ischemic shock in the surviving myocardium. HF after MI may also be influenced by other factors. This review summarizes the main pathophysiological mechanisms of HF after MI and highlights sex-related differences in the prognosis of patients with acute MI. These findings provide new insights for guiding the development of targeted treatments to delay the progression of HF after MI and offering incremental benefits to existing therapies.
Collapse
Affiliation(s)
- Huaiyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Fang
- Department of Cardiology, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zeyi Cheng
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Chen J, Shao J, Wang Y, Wu K, Huang M. OPA1, a molecular regulator of dilated cardiomyopathy. J Cell Mol Med 2023; 27:3017-3025. [PMID: 37603376 PMCID: PMC10568666 DOI: 10.1111/jcmm.17918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a disease with no specific treatment, poor prognosis and high mortality. During DCM development, there is apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. Optic atrophy 1 (OPA1) appears at high frequency in these three aspects. DCM LMNA (LaminA/C) gene mutation can activate TP53, and the study of P53 shows that P53 affects OPA1 through Bak/Bax and OMA1 (a metalloprotease). OPA1 can be considered the missing link between DCMp53 and DCM apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. OPA1 regulates apoptosis by regulating the release of cytochrome c from the mitochondrial matrix through CJs (crisp linkages, located in the inner mitochondrial membrane) and unbalances mitochondrial fusion and fission by affecting mitochondrial inner membrane (IM) fusion. OPA1 is also associated with the formation and maintenance of mitochondrial cristae. OPA1 is not the root cause of DCM, but it is an essential mediator in P53 mediating the occurrence and development of DCM, so OPA1 also becomes a molecular regulator of DCM. This review discusses the implication of OPA1 for DCM from three aspects: apoptosis, mitochondrial dynamics and ridge structure.
Collapse
Affiliation(s)
- Jiaqi Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jianan Shao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yaoyao Wang
- Fuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular DiseasesBeijingChina
| | - Kangxiang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Mingyuan Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
31
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
32
|
Sheng SY, Li JM, Hu XY, Wang Y. Regulated cell death pathways in cardiomyopathy. Acta Pharmacol Sin 2023; 44:1521-1535. [PMID: 36914852 PMCID: PMC10374591 DOI: 10.1038/s41401-023-01068-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Heart disease is a worldwide health menace. Both intractable primary and secondary cardiomyopathies contribute to malignant cardiac dysfunction and mortality. One of the key cellular processes associated with cardiomyopathy is cardiomyocyte death. Cardiomyocytes are terminally differentiated cells with very limited regenerative capacity. Various insults can lead to irreversible damage of cardiomyocytes, contributing to progression of cardiac dysfunction. Accumulating evidence indicates that majority of cardiomyocyte death is executed by regulating molecular pathways, including apoptosis, ferroptosis, autophagy, pyroptosis, and necroptosis. Importantly, these forms of regulated cell death (RCD) are cardinal features in the pathogenesis of various cardiomyopathies, including dilated cardiomyopathy, diabetic cardiomyopathy, sepsis-induced cardiomyopathy, and drug-induced cardiomyopathy. The relevance between abnormity of RCD with adverse outcome of cardiomyopathy has been unequivocally evident. Therefore, there is an urgent need to uncover the molecular and cellular mechanisms for RCD in order to better understand the pathogenesis of cardiomyopathies. In this review, we summarize the latest progress from studies on RCD pathways in cardiomyocytes in context of the pathogenesis of cardiomyopathies, with particular emphasis on apoptosis, necroptosis, ferroptosis, autophagy, and pyroptosis. We also elaborate the crosstalk among various forms of RCD in pathologically stressed myocardium and the prospects of therapeutic applications targeted to various cell death pathways.
Collapse
Affiliation(s)
- Shu-Yuan Sheng
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Jia-Min Li
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Xin-Yang Hu
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Yibin Wang
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China.
- Signature Program in Cardiovascular and Metabolic Diseases, DukeNUS Medical School and National Heart Center of Singapore, Singapore, Singapore.
| |
Collapse
|
33
|
Maas RGC, van den Dolder FW, Yuan Q, van der Velden J, Wu SM, Sluijter JPG, Buikema JW. Harnessing developmental cues for cardiomyocyte production. Development 2023; 150:dev201483. [PMID: 37560977 PMCID: PMC10445742 DOI: 10.1242/dev.201483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Developmental research has attempted to untangle the exact signals that control heart growth and size, with knockout studies in mice identifying pivotal roles for Wnt and Hippo signaling during embryonic and fetal heart growth. Despite this improved understanding, no clinically relevant therapies are yet available to compensate for the loss of functional adult myocardium and the absence of mature cardiomyocyte renewal that underlies cardiomyopathies of multiple origins. It remains of great interest to understand which mechanisms are responsible for the decline in proliferation in adult hearts and to elucidate new strategies for the stimulation of cardiac regeneration. Multiple signaling pathways have been identified that regulate the proliferation of cardiomyocytes in the embryonic heart and appear to be upregulated in postnatal injured hearts. In this Review, we highlight the interaction of signaling pathways in heart development and discuss how this knowledge has been translated into current technologies for cardiomyocyte production.
Collapse
Affiliation(s)
- Renee G. C. Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Floor W. van den Dolder
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Sean M. Wu
- Department of Medicine, Division of Cardiovascular Medicine,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joost P. G. Sluijter
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Jan W. Buikema
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
- Department of Cardiology, Amsterdam Heart Center, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
34
|
Silva JMA, Antonio EL, Dos Santos LFN, Serra AJ, Feliciano RS, Junior JAS, Ihara SSM, Tucci PJF, Moises VA. Hypertrophy of the right ventricle by pulmonary artery banding in rats: a study of structural, functional, and transcriptomics alterations in the right and left ventricles. Front Physiol 2023; 14:1129333. [PMID: 37576341 PMCID: PMC10414540 DOI: 10.3389/fphys.2023.1129333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Right ventricular remodeling with subsequent functional impairment can occur in some clinical conditions in adults and children. The triggering factors, molecular mechanisms, and, especially, the evolution over time are still not well known. Left ventricular (LV) changes associated with right ventricular (RV) remodeling are also poorly understood. Objectives: The study aimed to evaluate RV morphological, functional, and gene expression parameters in rats submitted to pulmonary artery banding compared to control rats, with the temporal evolution of these parameters, and to analyze the influence of RV remodeling by pulmonary artery banding in rats and their controls over time on LV geometry, histology, gene expression, and functional performance. Methods: Healthy 6-week-old male Wistar-EPM rats weighing 170-200 g were included. One day after the echocardiogram, depending on the animals undergoing the pulmonary artery banding (PAB) procedure or not (control group), they were then randomly divided into subgroups according to the follow-up time: 72 h, or 2, 4, 6, or 8 weeks. In each subgroup, the following were conducted: a new echocardiogram, a hemodynamic study, the collection of material for morphological analysis (hypertrophy and fibrosis), and molecular biology (gene expression). The results were presented as the mean ± standard deviation of the mean. A two-way ANOVA and Tukey post-test compared the variables of the subgroups and evolution follow-up times. The adopted significance level was 5%. Results: There was no significant difference among the subgroups in the percentage of water in both the lungs and the liver (the percentage of water in the lungs ranged from 76% to 78% and that of the liver ranged from 67% to 71%). The weight of the right chambers was significantly higher in PAB animals in all subgroups (RV PAB weighed from 0.34 to 0.48 g, and control subjects, from 0.17 to 0.20 g; right atrium (RA) with PAB from 0.09 to 0.14 g; and control subjects from 0.02 to 0.03 g). In the RV of PAB animals, there was a significant increase in myocyte nuclear volume (97 μm3-183.6 μm3) compared to control subjects (34.2 μm3-57.2 μm3), which was more intense in subgroups with shorter PAB follow-up time, and the fibrosis percentage (5.9%-10.4% vs. 0.96%-1.18%) was higher as the PAB follow-up time was longer. In the echocardiography result, there was a significant increase in myocardial thickness in all PAB groups (0.09-0.11 cm compared to control subjects-0.04-0.05 cm), but there was no variation in RV diastolic diameter. From 2 to 8 weeks of PAB, the S-wave (S') (0.031 cm/s and 0.040 cm/s), and fractional area change (FAC) (51%-56%), RV systolic function parameters were significantly lower than those of the respective control subjects (0.040 cm/s to 0.050 cm/s and 61%-67%). Furthermore, higher expression of genes related to hypertrophy and extracellular matrix in the initial subgroups and apoptosis genes in the longer follow-up PAB subgroups were observed in RV. On the other hand, LV weight was not different between animals with and without PAB. The nuclear volume of the PAB animals was greater than that of the control subjects (74 μm3-136 μm3; 40.8 μm3-46.9 μm3), and the percentage of fibrosis was significantly higher in the 4- and 8-week PAB groups (1.2% and 2.2%) compared to the control subjects (0.4% and 0.7%). Echocardiography showed that the diastolic diameter and LV myocardial thickness were not different between PAB animals and control subjects. Measurements of isovolumetric relaxation time and E-wave deceleration time at the echocardiography were different between PAB animals and control subjects in all subgroups, but there were no changes in diastolic function in the hemodynamic study. There was also increased expression of genes related to various functions, particularly hypertrophy. Conclusion: 1) Rats submitted to pulmonary artery banding presented RV remodeling compatible with hypertrophy. Such alterations were mediated by increased gene expression and functional alterations, which coincide with the onset of fibrosis. 2) Structural changes of the RV, such as weight, myocardial thickness, myocyte nuclear volume, and degree of fibrosis, were modified according to the time of exposure to pulmonary artery banding and related to variations in gene expression, highlighting the change from an alpha to a beta pattern from early to late follow-up times. 3) The study suggests that the left ventricle developed histological alterations accompanied by gene expression modifications simultaneously with the alterations found in the right ventricle.
Collapse
Affiliation(s)
| | - Ednei Luiz Antonio
- Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Andrey Jorge Serra
- Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Wei KH, Lin IT, Chowdhury K, Lim KL, Liu KT, Ko TM, Chang YM, Yang KC, Lai SL(B. Comparative single-cell profiling reveals distinct cardiac resident macrophages essential for zebrafish heart regeneration. eLife 2023; 12:e84679. [PMID: 37498060 PMCID: PMC10411971 DOI: 10.7554/elife.84679] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/26/2023] [Indexed: 07/28/2023] Open
Abstract
Zebrafish exhibit a robust ability to regenerate their hearts following injury, and the immune system plays a key role in this process. We previously showed that delaying macrophage recruitment by clodronate liposome (-1d_CL, macrophage-delayed model) impairs neutrophil resolution and heart regeneration, even when the infiltrating macrophage number was restored within the first week post injury (Lai et al., 2017). It is thus intriguing to learn the regenerative macrophage property by comparing these late macrophages vs. control macrophages during cardiac repair. Here, we further investigate the mechanistic insights of heart regeneration by comparing the non-regenerative macrophage-delayed model with regenerative controls. Temporal RNAseq analyses revealed that -1d_CL treatment led to disrupted inflammatory resolution, reactive oxygen species homeostasis, and energy metabolism during cardiac repair. Comparative single-cell RNAseq profiling of inflammatory cells from regenerative vs. non-regenerative hearts further identified heterogeneous macrophages and neutrophils, showing alternative activation and cellular crosstalk leading to neutrophil retention and chronic inflammation. Among macrophages, two residential subpopulations (hbaa+ Mac and timp4.3+ Mac 3) were enriched only in regenerative hearts and barely recovered after +1d_CL treatment. To deplete the resident macrophage without delaying the circulating macrophage recruitment, we established the resident macrophage-deficient model by administrating CL earlier at 8 d (-8d_CL) before cryoinjury. Strikingly, resident macrophage-deficient zebrafish still exhibited defects in revascularization, cardiomyocyte survival, debris clearance, and extracellular matrix remodeling/scar resolution without functional compensation from the circulating/monocyte-derived macrophages. Our results characterized the diverse function and interaction between inflammatory cells and identified unique resident macrophages prerequisite for zebrafish heart regeneration.
Collapse
Affiliation(s)
- Ke-Hsuan Wei
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - I-Ting Lin
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Kaushik Chowdhury
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Khai Lone Lim
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Kuan-Ting Liu
- Department of Biological Science & Technology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Tai-Ming Ko
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Department of Biological Science & Technology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Kai-Chien Yang
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of MedicineTaipeiTaiwan
| | - Shih-Lei (Ben) Lai
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
36
|
Xu Q, Zhao YM, He NQ, Gao R, Xu WX, Zhuo XJ, Ren Z, Wu CY, Liu LS. PCSK9: A emerging participant in heart failure. Biomed Pharmacother 2023; 158:114106. [PMID: 36535197 DOI: 10.1016/j.biopha.2022.114106] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome caused by various cardiovascular diseases. Its main pathogenesis includes cardiomyocyte loss, myocardial energy metabolism disorder, and activation of cardiac inflammation. Due to the clinically unsatisfactory treatment of heart failure, different mechanisms need to be explored to provide new targets for the treatment of this disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9), a gene mainly related to familial hypercholesterolemia, was discovered in 2003. Aside from regulating lipid metabolism, PCSK9 may be involved in other biological processes such as apoptosis, autophagy, pyroptosis, inflammation, and tumor immunity and related to diabetes and neurodegenerative diseases. Recently, clinical data have shown that the circulating PCSK9 level is significantly increased in patients with heart failure, and it is related to the prognosis for heart failure. Furthermore, in animal models and patients with myocardial infarction, PCSK9 in the infarct margin area was also found to be significantly increased, which further suggested that PCSK9 might be closely related to heart failure. However, the specific mechanism of how PCSK9 participates in heart failure remains to be further explored. The purpose of this review is to summarize the potential mechanism of PCSK9's involvement in heart failure, thereby providing a new treatment strategy for heart failure.
Collapse
Affiliation(s)
- Qian Xu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Yi-Meng Zhao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Nai-Qi He
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Rong Gao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Wen-Xin Xu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Xiu-Juan Zhuo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Chun-Yan Wu
- The Third Affiliated Hospital, Department of Cardiovascular Medicine, University of South China, Hengyang, Hunan Province 421001, PR China.
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, PR China.
| |
Collapse
|
37
|
Comparison of Hemodynamic Response between Patients with Systolic Heart Failure Differing in Serum Aldosterone Concentrations during and after a 6-Minute Walk Test. J Clin Med 2023; 12:jcm12031007. [PMID: 36769655 PMCID: PMC9917580 DOI: 10.3390/jcm12031007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Aldosterone regulates hemodynamics, including blood pressure (BP), and is involved in the development and progression of cardiovascular diseases, including systolic heart failure (HF). While exercise intolerance is typical for HF, neither BP nor heart rate (HR) have specific characteristics in HF patients. This study compares BP and HR profiles during and after standardized exercise between patients with systolic HF with either lower or higher aldosterone concentrations. We measured BP and HR in 306 ambulatory adults with systolic HF (left ventricular ejection fraction (LVEF) <50%) during and after a 6 min walk test (6MWT). All patients underwent a resting transthoracic echocardiography, and venous blood samples were collected for biochemical analyses. The patients were also divided into tertiles of serum aldosterone concentration: T1 (<106 pg/mL), T2 (106 and 263 pg/mL) and T3 (>263 pg/mL), respectively. Individuals from T1 and T2 were combined into T1-T2 as the reference group for comparisons with patients from T3. The individuals from T3 had significantly lower systolic, mean and diastolic BPs at rest, at the end and at 1 and 3 min post-6MWT recovery, as well as a more dilated left atrium and right ventricle alongside a higher concentration of N-terminal pro-B-type natriuretic peptide (NT-proBNP). Higher serum aldosterone concentration in HF patients with an LVEF < 50% is associated with a lower 6MWT BP but not an HR profile.
Collapse
|
38
|
Abstract
Mortality in acute kidney injury (AKI) remains very high, yet the cause of death is often failure of extrarenal organs. We and others have demonstrated remote organ dysfunction after renal ischemia. The term "cardiorenal syndrome" was first applied to the "cross talk" between the organs by the National Heart, Lung, and Blood Institute of the National Institutes of Health, and the clinical importance is being increasingly appreciated. Nevertheless, more information is needed to effectively address the consequences of renal injury on the heart. Since AKI often occurs in patients with comorbidities, we investigated the effect of renal ischemia in the setting of existing cardiac failure. We hypothesized that the cardiac effects of renal ischemia would be significantly amplified in experimental cardiomyopathy. Male Sprague-Dawley rats with preexisting cardiac and renal injury due to low-dose doxorubicin were subjected to bilateral renal artery occlusion. Cardiac structure and function were examined 2 days after reperfusion. Loss of functional myocardial tissue with decreases in left ventricular pressure, increases in apoptotic cell death, inflammation, and collagen, and greater disruption in ultrastructure with mitochondrial fragmentation were seen in the doxorubicin/ischemia group compared with animals in the groups treated with doxorubicin alone or following ischemia alone. Systemic inflammation and cardiac abnormalities persisted for at least 21 wk. These results suggest that preexisting comorbidities can result in much more severe distant organ effects of acute renal injury. The results of this study are relevant to human AKI.NEW & NOTEWORTHY Acute kidney injury is common, expensive, and deadly, yet morbidity and mortality are often secondary to remote organ dysfunction. We hypothesized that the effects of renal ischemia would be amplified in the setting of comorbidities. Sustained systemic inflammation and loss of functional myocardium with significantly decreased systolic and diastolic function, apoptotic cell death, and increased collagen and inflammatory cells were found in the heart after renal ischemia in the doxorubicin cardiomyopathy model (vs. renal ischemia alone). Understanding the remote effects of renal ischemia has the potential to improve outcomes in acute kidney injury.
Collapse
Affiliation(s)
- Jesus H Dominguez
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Danhui Xie
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - K J Kelly
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
39
|
Fischer M, Zacherl MJ, Olivier J, Lindner S, Massberg S, Bartenstein P, Grawe F, Ziegler S, Brendel M, Lehner S, Boening G, Todica A. Detection of apoptosis by [ 18F]ML-10 after cardiac ischemia-reperfusion injury in mice. Ann Nucl Med 2023; 37:34-43. [PMID: 36306025 PMCID: PMC9813199 DOI: 10.1007/s12149-022-01801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Myocardial infarction leads to ischemic heart disease and cell death, which is still a major obstacle in western society. In vivo imaging of apoptosis, a defined cascade of cell death, could identify myocardial tissue at risk. METHODS Using 2-(5-[18F]fluoropentyl)-2-methyl-malonic acid ([18F]ML-10) in autoradiography and positron emission tomography (PET) visualized apoptosis in a mouse model of transient ligation of the left anterior descending (LAD) artery. 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET imaging indicated the defect area. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) histology stain indicated cardiac apoptosis. RESULTS [18F]ML-10 uptake was evident in the ischemic area after transient LAD ligation in ex vivo autoradiography and in vivo PET imaging. Detection of [18F]ML-10 is in line with the defect visualized by [18F]FDG and the histological approach of TUNEL staining. CONCLUSION The tracer [18F]ML-10 is suitable for detecting apoptosis after transient LAD ligation in mice.
Collapse
Affiliation(s)
- Maximilian Fischer
- Medizinische Klinik Und Poliklinik I, Klinikum Der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Mathias J Zacherl
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Jessica Olivier
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik Und Poliklinik I, Klinikum Der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Freba Grawe
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sebastian Lehner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Guido Boening
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Die Radiologie, Munich, Germany.
| |
Collapse
|
40
|
Bon-Mathier AC, Déglise T, Rignault-Clerc S, Bielmann C, Mazzolai L, Rosenblatt-Velin N. Brain Natriuretic Peptide Protects Cardiomyocytes from Apoptosis and Stimulates Their Cell Cycle Re-Entry in Mouse Infarcted Hearts. Cells 2022; 12:cells12010007. [PMID: 36611800 PMCID: PMC9818267 DOI: 10.3390/cells12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Brain Natriuretic Peptide (BNP) supplementation after infarction increases heart function and decreases heart remodeling. BNP receptors, NPR-A and NPR-B are expressed on adult cardiomyocytes (CMs). We investigated whether a part of the BNP cardioprotective effect in infarcted and unmanipulated hearts is due to modulation of the CM fate. For this purpose, infarcted adult male mice were intraperitoneally injected every two days during 2 weeks with BNP or saline. Mice were sacrificed 1 and 14 days after surgery. BNP or saline was also injected intraperitoneally every two days into neonatal pups (3 days after birth) for 10 days and in unmanipulated 8-week-old male mice for 2 weeks. At sacrifice, CMs were isolated, counted, measured, and characterized by qRT-PCR. The proportion of mononucleated CMs was determined. Immunostainings aimed to detect CM re-entry in the cell cycle were performed on the different hearts. Finally, the signaling pathway activated by BNP treatment was identified in in vitro BNP-treated adult CMs and in CMs isolated from BNP-treated hearts. An increased number of CMs was detected in the hypoxic area of infarcted hearts, and in unmanipulated neonatal and adult hearts after BNP treatment. Accordingly, Troponin T plasma concentration was significantly reduced 1 and 3 days after infarction in BNP-treated mice, demonstrating less CM death. Furthermore, higher number of small, dedifferentiated and mononucleated CMs were identified in adult BNP-treated hearts when compared to saline-treated hearts. BNP-treated CMs express higher levels of mRNAs coding for hif1 alpha and for the different cyclins than CMs isolated from saline-treated hearts. Higher percentages of CMs undergoing DNA synthesis, expressing Ki67, phospho histone3 and Aurora B were detected in all BNP-treated hearts, demonstrating that CMs re-enter into the cell cycle. BNP effect on adult CMs in vivo is mediated by NPR-A binding and activation of the ERK MAP kinase pathway. Interestingly, an increased number of CMs was also detected in adult infarcted hearts treated with LCZ696, an inhibitor of the natriuretic peptide degradation. Altogether, our results identified BNP and all therapies aimed to increase BNP's bioavailability as new cardioprotective targets as BNP treatment leads to an increased number of CMs in neonatal, adult unmanipulated and infarcted hearts.
Collapse
|
41
|
Vichare R, Saleem F, Mansour H, Bojkovic K, Cheng F, Biswal M, Panguluri SK. Impact of age and sex on hyperoxia-induced cardiovascular pathophysiology. Mech Ageing Dev 2022; 208:111727. [PMID: 36075315 DOI: 10.1016/j.mad.2022.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022]
Abstract
Hyperoxia is characterized by pronounced inflammatory responses, pulmonary cell apoptosis, and adverse cardiac remodeling due to an excess supply of oxygen. Hyperoxic episodes are frequent in mechanically ventilated patients and are associated with in-hospital mortality. This study extends the analysis of prior published research by our group as it investigates the influence of age in male and female rodents exposed to hyperoxic conditions. Age is an independent cardiovascular risk factor, often compounded by variables like obesity, diabetes, and a decline in sex hormones and their receptors. This study simulates clinical hyperoxia by subjecting rodents to > 90 % of oxygen for 72 h and compares the changes in cardiac structural and functional parameters with those exposed to normal air. While in both sexes conduction abnormalities with ageing were discernible, aged females owing to their inherent higher baseline QTc, were at a higher risk of developing arrhythmias as compared to age-matched males. Quantitative real-time RT-PCR and western blot analysis reflected altered expression of cardiac potassium channels, resulting in conduction abnormalities in aged female rodents. Unaffected by age and sex, hyperoxia-treated mice had altered body composition, as evidenced by a considerable reduction in body weight. Interestingly, compensatory hypertrophy observed as a protective mechanism in young males was absent in aged males, whereas protection of hearts from hyperoxia-induced cardiac hypertrophy was absent in aged female mice, both of which may be at least in part due to a reduction in sex steroid receptors and the systemic steroid levels. Finally, statistical analysis revealed that hyperoxia had the greatest impact on most of the cardiac parameters, followed by age and then sex. This data established an imperative finding that can change the provision of care for aged individuals admitted to ICU by elucidating the impact of intrinsic aging on hyperoxia-induced cardiac remodeling.
Collapse
Affiliation(s)
- Riddhi Vichare
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Faizan Saleem
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Hussein Mansour
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Katarina Bojkovic
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Manas Biswal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; College of Medicine Internal Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Siva Kumar Panguluri
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
42
|
Liu H, Sun W, Zhu H, Guo J, Liu M, Xu S. Eucalyptol relieves the toxicity of diisobutyl phthalate in Ctenopharyngodon idellus kidney cells through Keap1/Nrf2/HO-1 pathway: Apoptosis-autophagy crosstalk and immunoregulation. FISH & SHELLFISH IMMUNOLOGY 2022; 130:490-500. [PMID: 36162772 DOI: 10.1016/j.fsi.2022.09.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Diisobutyl phthalate (DiBP), one of the commonly used plasticizers in industry, is an endocrine disruptor and environmental contaminant that can persist in water and threaten the health of aquatic creatures. Eucalyptol (Euc), a monoterpenoid extracted from plants, has been proved to have anti-inflammatory, antioxidant, and detoxification properties. However, the protective mechanism of Euc against cell injury caused by DiBP exposure and the involvement of apoptosis, autophagy, and immunity remains unknown. In the current investigation, 27.8 μg/mL DiBP or/and 20 μM Euc has been applied to Ctenopharyngodon idellus kidney (CIK) cells for 24 h. The findings showed that exposure to DiBP raised intracellular ROS levels, inducing oxidative stress, and enhanced the rate of apoptosis as well as the expression of the apoptotic markers Bax, Caspase3, Caspase9, and Cytc while decreasing the expression of Bcl-2. Furthermore, DiBP inhibited IL-2, IFN-γ, Hepcidin-1, and β-defensin expression and elevated TNF-α, and IL-1β levels, causing immune dysfunction. DiBP and Euc co-treatment significantly activated the Keap1/Nrf2/HO-1 pathway, restored antioxidant enzyme activity, and elevated autophagy pathway-associated genes ATG5, Beclin1, and LC3B decreased p62 expression, enhanced cell autophagy, reduced apoptosis, and improved immunity. In conclusion, Euc promotes autophagy, alleviates DiBP-induced apoptosis, and improves immunological dysfunction in CIK cells by regulating the Keap1/Nrf2/HO-1 pathway. These results demonstrated the threat of DiBP exposure to fish while providing a theoretical foundation for using Euc in aquaculture.
Collapse
Affiliation(s)
- Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huijun Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
43
|
Han J, Luo L, Wang Y, Wu S, Kasim V. Therapeutic potential and molecular mechanisms of salidroside in ischemic diseases. Front Pharmacol 2022; 13:974775. [PMID: 36060000 PMCID: PMC9437267 DOI: 10.3389/fphar.2022.974775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Rhodiola is an ancient wild plant that grows in rock areas in high-altitude mountains with a widespread habitat in Asia, Europe, and America. From empirical belief to research studies, Rhodiola has undergone a long history of discovery, and has been used as traditional medicine in many countries and regions for treating high-altitude sickness, anoxia, resisting stress or fatigue, and for promoting longevity. Salidroside, a phenylpropanoid glycoside, is the main active component found in all species of Rhodiola. Salidroside could enhance cell survival and angiogenesis while suppressing oxidative stress and inflammation, and thereby has been considered a potential compound for treating ischemia and ischemic injury. In this article, we highlight the recent advances in salidroside in treating ischemic diseases, such as cerebral ischemia, ischemic heart disease, liver ischemia, ischemic acute kidney injury and lower limb ischemia. Furthermore, we also discuss the pharmacological functions and underlying molecular mechanisms. To our knowledge, this review is the first one that covers the protective effects of salidroside on different ischemia-related disease.
Collapse
Affiliation(s)
- Jingxuan Han
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Lailiu Luo
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Yicheng Wang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Shourong Wu, ; Vivi Kasim,
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Shourong Wu, ; Vivi Kasim,
| |
Collapse
|
44
|
Marwarha G, Røsand Ø, Slagsvold KH, Høydal MA. GSK3β Inhibition Is the Molecular Pivot That Underlies the Mir-210-Induced Attenuation of Intrinsic Apoptosis Cascade during Hypoxia. Int J Mol Sci 2022; 23:ijms23169375. [PMID: 36012628 PMCID: PMC9409400 DOI: 10.3390/ijms23169375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Apoptotic cell death is a deleterious consequence of hypoxia-induced cellular stress. The master hypoxamiR, microRNA-210 (miR-210), is considered the primary driver of the cellular response to hypoxia stress. We have recently demonstrated that miR-210 attenuates hypoxia-induced apoptotic cell death. In this paper, we unveil that the miR-210-induced inhibition of the serine/threonine kinase Glycogen Synthase Kinase 3 beta (GSK3β) in AC-16 cardiomyocytes subjected to hypoxia stress underlies the salutary protective response of miR-210 in mitigating the hypoxia-induced apoptotic cell death. Using transient overexpression vectors to augment miR-210 expression concomitant with the ectopic expression of the constitutive active GSK3β S9A mutant (ca-GSK3β S9A), we exhaustively performed biochemical and molecular assays to determine the status of the hypoxia-induced intrinsic apoptosis cascade. Caspase-3 activity analysis coupled with DNA fragmentation assays cogently demonstrate that the inhibition of GSK3β kinase activity underlies the miR-210-induced attenuation in the hypoxia-driven apoptotic cell death. Further elucidation and delineation of the upstream cellular events unveiled an indispensable role of the inhibition of GSK3β kinase activity in mediating the miR-210-induced mitigation of the hypoxia-driven BAX and BAK insertion into the outer mitochondria membrane (OMM) and the ensuing Cytochrome C release into the cytosol. Our study is the first to unveil that the inhibition of GSK3β kinase activity is indispensable in mediating the miR-210-orchestrated protective cellular response to hypoxia-induced apoptotic cell death.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Øystein Røsand
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Katrine Hordnes Slagsvold
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Department of Cardiothoracic Surgery, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Morten Andre Høydal
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Correspondence: ; Tel.: +47-48134843
| |
Collapse
|
45
|
Fan X, Zhang Z, Zheng L, Wei W, Chen Z. Long non-coding RNAs in the pathogenesis of heart failure: A literature review. Front Cardiovasc Med 2022; 9:950284. [PMID: 35990951 PMCID: PMC9381960 DOI: 10.3389/fcvm.2022.950284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Heart failure (HF) is a common cardiovascular disorder and a major cause of mortality and morbidity in older people. The mechanisms underlying HF are still not fully understood, restricting novel therapeutic target discovery and drug development. Besides, few drugs have been shown to improve the survival of HF patients. Increasing evidence suggests that long non-coding RNAs (lncRNAs) serve as a critical regulator of cardiac physiological and pathological processes, regarded as a new target of treatment for HF. lncRNAs are versatile players in the pathogenesis of HF. They can interact with chromatin, protein, RNA, or DNA, thereby modulating chromatin accessibility, gene expressions, and signaling transduction. In this review, we summarized the current knowledge on how lncRNAs involve in HF and categorized them into four aspects based on their biological functions, namely, cardiomyocyte contractility, cardiac hypertrophy, cardiac apoptosis, and myocardial fibrosis. Along with the extensive laboratory data, RNA-based therapeutics achieved great advances in recent years. These indicate that targeting lncRNAs in the treatment of HF may provide new strategies and address the unmet clinical needs.
Collapse
Affiliation(s)
- Xiaoyan Fan
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Cardiovascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenwei Zhang
- Department of Urinary Surgery, No.3 People's Hospital, Jinan, China
| | - Liang Zheng
- Department of Cardiovascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wei
- Postdoctoral Mobile Station of Wangjing Hospital, Wangjing Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
- *Correspondence: Wei Wei
| | - Zetao Chen
- Section of Integrated Chinese and Western Medicine, Shandong university of Traditional Chinese Medicine, Jinan, China
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Zetao Chen
| |
Collapse
|
46
|
Fischer M, Olivier J, Lindner S, Zacherl MJ, Massberg S, Bartenstein P, Ziegler S, Brendel M, Lehner S, Boening G, Todica A. Detection of cardiac apoptosis by [ 18F]ML-10 in a mouse model of permanent LAD ligation. Mol Imaging Biol 2022; 24:666-674. [PMID: 35352214 PMCID: PMC9296384 DOI: 10.1007/s11307-022-01718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE The loss of viable cardiac cells and cell death by myocardial infarction (MI) is still a significant obstacle in preventing deteriorating heart failure. Imaging of apoptosis, a defined cascade to cell death, could identify areas at risk. PROCEDURES Using 2-(5-[18F]fluoropentyl)-2-methyl-malonic acid ([18F]ML-10) in autoradiography and positron emission tomography (PET) visualized apoptosis in murine hearts after permanent ligation of the left anterior descending artery (LAD) inducing myocardial infarction (MI). 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET imaging localized the infarct area after MI. Histology by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining validated apoptosis in the heart. RESULTS Accumulation of [18F]ML-10 was evident in the infarct area after permanent ligation of the LAD in autoradiography and PET imaging. Detection of apoptosis by [18F]ML-10 is in line with the defect visualized by [18F]FDG and the histological approach. CONCLUSION [18F]ML-10 could be a suitable tracer for apoptosis imaging in a mouse model of permanent LAD ligation.
Collapse
Affiliation(s)
- Maximilian Fischer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Jessica Olivier
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Mathias J Zacherl
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sebastian Lehner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Ambulatory Healthcare Center Dr. Neumaier & Colleagues, Radiology, Nuclear Medicine, Radiation Therapy, Regensburg, Germany
| | - Guido Boening
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- DIE RADIOLOGIE, Munich, Germany.
| |
Collapse
|
47
|
SCRUTINIO D, CONSERVA F, GUIDA P, PASSANTINO A. Long-term prognostic potential of microRNA-150-5p in optimally treated heart failure patients with reduced ejection fraction: a pilot study. Minerva Cardiol Angiol 2022; 70:439-446. [DOI: 10.23736/s2724-5683.20.05366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Pournemati B, Tabesh H, Jenabi A, Mehdinavaz Aghdam R, Hossein Rezayan A, Poorkhalil A, Ahmadi Tafti SH, Mottaghy K. Injectable conductive nanocomposite hydrogels for cardiac tissue engineering: Focusing on carbon and metal-based nanostructures. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
49
|
Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts. BIOLOGY 2022; 11:biology11060880. [PMID: 35741401 PMCID: PMC9220194 DOI: 10.3390/biology11060880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Death from injury to the heart from a variety of causes remains a major cause of mortality worldwide. The cardiomyocyte, the major contracting cell of the heart, is responsible for pumping blood to the rest of the body. During fetal development, these immature cardiomyocytes are small and rapidly divide to complete development of the heart by birth when they develop structural and functional characteristics of mature cells which prevent further division. All further growth of the heart after birth is due to an increase in the size of cardiomyocytes, hypertrophy. Following the loss of functional cardiomyocytes due to coronary artery occlusion or other causes, the heart is unable to replace the lost cells. One of the significant research goals has been to induce adult cardiomyocytes to reactivate the cell cycle and repair cardiac injury. This review explores the developmental, structural, and functional changes of the growing cardiomyocyte, and particularly the sarcomere, responsible for force generation, from the early fetal period of reproductive cell growth through the neonatal period and on to adulthood, as well as during pathological response to different forms of myocardial diseases or injury. Multiple issues relative to cardiomyocyte cell-cycle regulation in normal or diseased conditions are discussed. Abstract The cardiomyocyte undergoes dramatic changes in structure, metabolism, and function from the early fetal stage of hyperplastic cell growth, through birth and the conversion to hypertrophic cell growth, continuing to the adult stage and responding to various forms of stress on the myocardium, often leading to myocardial failure. The fetal cell with incompletely formed sarcomeres and other cellular and extracellular components is actively undergoing mitosis, organelle dispersion, and formation of daughter cells. In the first few days of neonatal life, the heart is able to repair fully from injury, but not after conversion to hypertrophic growth. Structural and metabolic changes occur following conversion to hypertrophic growth which forms a barrier to further cardiomyocyte division, though interstitial components continue dividing to keep pace with cardiac growth. Both intra- and extracellular structural changes occur in the stressed myocardium which together with hemodynamic alterations lead to metabolic and functional alterations of myocardial failure. This review probes some of the questions regarding conditions that regulate normal and pathologic growth of the heart.
Collapse
|
50
|
Canty JM. Myocardial Injury, Troponin Release and Cardiomyocyte Death in Brief Ischemia, Failure and Ventricular Remodeling. Am J Physiol Heart Circ Physiol 2022; 323:H1-H15. [PMID: 35559722 DOI: 10.1152/ajpheart.00093.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Troponin released from irreversibly injured myocytes is the gold standard biomarker for the rapid identification of an acute coronary syndrome. In acute myocardial infarction, necrotic cell death is characterized by sarcolemmal disruption in response to a critical level of energy depletion after more than 15-minutes of ischemia. While troponin I and T are highly specific for cardiomyocyte death, high-sensitivity assays have demonstrated that measurable circulating levels of troponin are present in the majority of normal subjects. In addition, transient as well as chronic elevations have been demonstrated in many disease states not clearly associated with myocardial ischemia. The latter observations have given rise to the clinical concept of myocardial injury. This review will summarize evidence supporting the notion that circulating troponin levels parallel the extent of myocyte apoptosis in normal ventricular remodeling and in pathophysiological conditions not associated with infarction or necrosis. It will review the evidence that myocyte apoptosis can be accelerated by both diastolic strain from elevated ventricular preload as well as systolic strain from dyskinesis after brief episodes of ischemia too short to cause a critical level of myocyte energy depletion. We then show how chronic, low rates of myocyte apoptosis from endogenous myocyte turnover, repetitive ischemia or repetitive elevations in LV diastolic pressure can lead to significant myocyte loss in the absence of neurohormonal stimulation. Finally, we posit that the differential response to strain-induced injury in heart failure may determine whether progressive myocyte loss and HFrEF or interstitial fibrosis and HFpEF become the heart failure phenotype.
Collapse
Affiliation(s)
- John M Canty
- VA WNY Health Care System, the Departments of Medicine, Physiology & Biophysics, Biomedical Engineering and The Clinical and Translational Research Center of the University at Buffalo, Buffalo, NY, United States
| |
Collapse
|