1
|
Racheva K, Totev T, Natchev E, Bocheva N, Beirne R, Zlatkova M. Elimination of the color discrimination impairment along the blue-yellow axis in patients with hypothyroidism after treatment with levothyroxine as assessed by the Farnsworth-Munsell 100 hue test. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:A26-A32. [PMID: 37132999 DOI: 10.1364/josaa.476139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Our previous study has shown that individuals with untreated hypothyroidism display significantly higher partial error scores (P E S) along the blue-yellow axis compared to the red-green axis than normal individuals using the Farnsworth-Munsell 100 hue test [J. Opt. Soc. Am. A37, A18 (2020)JOAOD60740-323210.1364/JOSAA.382390]. We wished to determine how color discrimination may change when hypothyroidism has been treated to the point of euthyroidism. Color discrimination was reassessed for 17 female individuals who had undergone treatment for hypothyroidism, and the results were compared with 22 female individuals without thyroid dysfunction. No statistically significant difference was found in the total error score (T E S) for the first and second measurements for both groups (p>0.45). The P E S for the hypothyroid group improved significantly in the previously impaired color regions after the treatment. Color discrimination defects found in untreated hypothyroidism can be negated with treatment of the condition over an appropriate time period.
Collapse
|
2
|
Cognitive Issues in Pediatric Multiple Sclerosis. Brain Sci 2021; 11:brainsci11040442. [PMID: 33808278 PMCID: PMC8065790 DOI: 10.3390/brainsci11040442] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) is one of the leading causes of disability in young adults. The onset of MS during developmental age makes pediatric patients particularly susceptible to cognitive impairment, resulting from both disease-related damage and failure of age-expected brain growth. Despite different test batteries and definitions, cognitive impairment has been consistently reported in approximately one-third of pediatric patients with MS. However, the lack of a uniform definition of cognitive impairment and the adoption of different test batteries have led to divergent results in terms of cognitive domains more frequently affected across the cohorts explored. This heterogeneity has hampered large international collaborative studies. Moreover, research aimed at the identification of risk factors (e.g., demographic, clinical, and radiological features) or protective factors (e.g., cognitive reserve, leisure activities) for cognitive decline is still scanty. Mood disorders, such as depression and anxiety, can be detected in these patients alongside cognitive decline or in isolation, and can negatively affect quality of life scores as well as academic performances. By using MRI, cognitive impairment was attributed to damage to specific brain compartments as well as to abnormal network activation patterns. However, multimodal MRI studies are still needed in order to assess the contribution of each MRI metric to cognitive impairment. Importantly, longitudinal studies have recently demonstrated failure of age-expected brain growth and of white matter (WM) and gray matter (GM) maturation plays a relevant role in determining cognitive dysfunction, in addition to MS-related direct damage. Whether these growth retardations might result in specific cognitive profiles according to the age at disease onset has not been studied, yet. A better characterization of cognitive profiles in pediatric MS patients, as well as the definition of neuroanatomical substrates of cognitive impairment and their longitudinal evolution are needed to develop efficient therapeutic strategies against cognitive impairment in this patient population.
Collapse
|
3
|
Cell Biology of Intracellular Adaptation of Mycobacterium leprae in the Peripheral Nervous System. Microbiol Spectr 2020; 7. [PMID: 31322104 DOI: 10.1128/microbiolspec.bai-0020-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mammalian nervous system is invaded by a number of intracellular bacterial pathogens which can establish and progress infection in susceptible individuals. Subsequent clinical manifestation is apparent with the impairment of the functional units of the nervous system, i.e., the neurons and the supporting glial cells that produce myelin sheaths around axons and provide trophic support to axons and neurons. Most of these neurotrophic bacteria display unique features, have coevolved with the functional sophistication of the nervous system cells, and have adapted remarkably to manipulate neural cell functions for their own advantage. Understanding how these bacterial pathogens establish intracellular adaptation by hijacking endogenous pathways in the nervous system, initiating myelin damage and axonal degeneration, and interfering with myelin maintenance provides new knowledge not only for developing strategies to combat neurodegenerative conditions induced by these pathogens but also for gaining novel insights into cellular and molecular pathways that regulate nervous system functions. Since the pathways hijacked by bacterial pathogens may also be associated with other neurodegenerative diseases, it is anticipated that detailing the mechanisms of bacterial manipulation of neural systems may shed light on common mechanisms, particularly of early disease events. This chapter details a classic example of neurodegeneration, that caused by Mycobacterium leprae, which primarily infects glial cells of the peripheral nervous system (Schwann cells), and how it targets and adapts intracellularly by reprogramming Schwann cells to stem cells/progenitor cells. We also discuss implications of this host cell reprogramming by leprosy bacilli as a model in a wider context.
Collapse
|
4
|
Kostadinova I, Danchev N. 4-aminopyridine – the new old drug for the treatment of neurodegenerative diseases. PHARMACIA 2019. [DOI: 10.3897/pharmacia.66.e35976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this review are described the preclinical and clinical pharmacological data as well as new therapeutic indications for the use of 4-aminopyridine. 4-aminopyridine is a potassium (K+) channel blocker that has a long history and various application areas. It is a chemical agent developed in 1963 as a bird poison. The first approval for clinical application of 4-aminopyridine was in 70’s in Bulgaria, since anesthetists in that country have confirmed its effect as reversal agent for nondepolarizing myorelaxants. The Bulgarian pharmaceutical company Sopharma commersialized 4-aminopyridine under the trade name Pymadin. Since then 4-aminopyridine was extensively studied and in 2010 is approved in the USA for the treatment of walking disabilities in patients with multiple sclerosis. In recent years, data from clinical trials indicated that K-channel blockade may prove to be an appropriate strategy to overcome disturbances in nerve impulses conduction associated with demyelination of the central nervous system.
Collapse
|
5
|
The Dual Role of TAM Receptors in Autoimmune Diseases and Cancer: An Overview. Cells 2018; 7:cells7100166. [PMID: 30322068 PMCID: PMC6210017 DOI: 10.3390/cells7100166] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate cellular processes by converting signals from the extracellular environment to the cytoplasm and nucleus. Tyro3, Axl, and Mer (TAM) receptors form an RTK family that plays an intricate role in tissue maintenance, phagocytosis, and inflammation as well as cell proliferation, survival, migration, and development. Defects in TAM signaling are associated with numerous autoimmune diseases and different types of cancers. Here, we review the structure of TAM receptors, their ligands, and their biological functions. We discuss the role of TAM receptors and soluble circulating TAM receptors in the autoimmune diseases systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Lastly, we discuss the effect of TAM receptor deregulation in cancer and explore the therapeutic potential of TAM receptors in the treatment of diseases.
Collapse
|
6
|
Ruiz M, Bégou M, Launay N, Ranea-Robles P, Bianchi P, López-Erauskin J, Morató L, Guilera C, Petit B, Vaurs-Barriere C, Guéret-Gonthier C, Bonnet-Dupeyron MN, Fourcade S, Auwerx J, Boespflug-Tanguy O, Pujol A. Oxidative stress and mitochondrial dynamics malfunction are linked in Pelizaeus-Merzbacher disease. Brain Pathol 2017; 28:611-630. [PMID: 29027761 PMCID: PMC8028267 DOI: 10.1111/bpa.12571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022] Open
Abstract
Pelizaeus‐Merzbacher disease (PMD) is a fatal hypomyelinating disorder characterized by early impairment of motor development, nystagmus, choreoathetotic movements, ataxia and progressive spasticity. PMD is caused by variations in the proteolipid protein gene PLP1, which encodes the two major myelin proteins of the central nervous system, PLP and its spliced isoform DM20, in oligodendrocytes. Large duplications including the entire PLP1 gene are the most frequent causative mutation leading to the classical form of PMD. The Plp1 overexpressing mouse model (PLP‐tg66/66) develops a phenotype very similar to human PMD, with early and severe motor dysfunction and a dramatic decrease in lifespan. The sequence of cellular events that cause neurodegeneration and ultimately death is poorly understood. In this work, we analyzed patient‐derived fibroblasts and spinal cords of the PLP‐tg66/66 mouse model, and identified redox imbalance, with altered antioxidant defense and oxidative damage to several enzymes involved in ATP production, such as glycolytic enzymes, creatine kinase and mitochondrial proteins from the Krebs cycle and oxidative phosphorylation. We also evidenced malfunction of the mitochondria compartment with increased ROS production and depolarization in PMD patient's fibroblasts, which was prevented by the antioxidant N‐acetyl‐cysteine. Finally, we uncovered an impairment of mitochondrial dynamics in patient's fibroblasts which may help explain the ultrastructural abnormalities of mitochondria morphology detected in spinal cords from PLP‐tg66/66 mice. Altogether, these results underscore the link between redox and metabolic homeostasis in myelin diseases, provide insight into the pathophysiology of PMD, and may bear implications for tailored pharmacological intervention.
Collapse
Affiliation(s)
- Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Mélina Bégou
- Inserm, UMR 1107, NEURO-DOL, F-63001 Clermont-Ferrand, France.,Université Clermont Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France
| | - Nathalie Launay
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Pablo Ranea-Robles
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Patrizia Bianchi
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Jone López-Erauskin
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Laia Morató
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Cristina Guilera
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Bérengère Petit
- Université Clermont Auvergne, GReD, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Station 15, CH-1015 Lausanne, Switzerland
| | - Odile Boespflug-Tanguy
- Assistance Publique des Hopitaux de Paris (APHP), Reference Center for Rare Diseases "Leukodystrophies," Child Neurology and Metabolic Disorders Department, Robert Debré University Hospital, Paris, France.,Inserm, Paris Diderot University UMR 1141, DHU PROTECT, Sorbonne Paris-Cite, Robert Debré University Hospital, Paris, France
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
7
|
Murta V, Ferrari C. Peripheral Inflammation and Demyelinating Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 949:263-285. [PMID: 27714694 DOI: 10.1007/978-3-319-40764-7_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent decades, several neurodegenerative diseases have been shown to be exacerbated by systemic inflammatory processes. There is a wide range of literature that demonstrates a clear but complex relationship between the central nervous system (CNS) and the immunological system, both under naïve or pathological conditions. In diseased brains, peripheral inflammation can transform "primed" microglia into an "active" state, which can trigger stronger pathological responses. Demyelinating diseases are a group of neurodegenerative diseases characterized by inflammatory lesions associated with demyelination, which in turn induces axonal damage, neurodegeneration, and progressive loss of function. Among them, the most important are multiple sclerosis (MS) and neuromyelitis optica (NMO). In this review, we will analyze the effect of specific peripheral inflammatory stimuli in the progression of demyelinating diseases and discuss their animal models. In most cases, peripheral immune stimuli are exacerbating.
Collapse
Affiliation(s)
- Verónica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Ferrari
- Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc Natl Acad Sci U S A 2016; 113:14133-14138. [PMID: 27911765 DOI: 10.1073/pnas.1601513113] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Magnetic fields from neuronal action potentials (APs) pass largely unperturbed through biological tissue, allowing magnetic measurements of AP dynamics to be performed extracellularly or even outside intact organisms. To date, however, magnetic techniques for sensing neuronal activity have either operated at the macroscale with coarse spatial and/or temporal resolution-e.g., magnetic resonance imaging methods and magnetoencephalography-or been restricted to biophysics studies of excised neurons probed with cryogenic or bulky detectors that do not provide single-neuron spatial resolution and are not scalable to functional networks or intact organisms. Here, we show that AP magnetic sensing can be realized with both single-neuron sensitivity and intact organism applicability using optically probed nitrogen-vacancy (NV) quantum defects in diamond, operated under ambient conditions and with the NV diamond sensor in close proximity (∼10 µm) to the biological sample. We demonstrate this method for excised single neurons from marine worm and squid, and then exterior to intact, optically opaque marine worms for extended periods and with no observed adverse effect on the animal. NV diamond magnetometry is noninvasive and label-free and does not cause photodamage. The method provides precise measurement of AP waveforms from individual neurons, as well as magnetic field correlates of the AP conduction velocity, and directly determines the AP propagation direction through the inherent sensitivity of NVs to the associated AP magnetic field vector.
Collapse
|
9
|
Yandamuri SS, Lane TE. Imaging Axonal Degeneration and Repair in Preclinical Animal Models of Multiple Sclerosis. Front Immunol 2016; 7:189. [PMID: 27242796 PMCID: PMC4871863 DOI: 10.3389/fimmu.2016.00189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/02/2016] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) disease characterized by chronic neuroinflammation, demyelination, and axonal damage. Infiltration of activated lymphocytes and myeloid cells are thought to be primarily responsible for white matter damage and axonopathy. Over time, this neurologic damage manifests clinically as debilitating motor and cognitive symptoms. Existing MS therapies focus on symptom relief and delay of disease progression through reduction of neuroinflammation. However, long-term strategies to remyelinate, protect, or regenerate axons have remained elusive, posing a challenge to treating progressive forms of MS. Preclinical mouse models and techniques, such as immunohistochemistry, flow cytometry, and genomic and proteomic analysis have provided advances in our understanding of discrete time-points of pathology following disease induction. More recently, in vivo and in situ two-photon (2P) microscopy has made it possible to visualize continuous real-time cellular behavior and structural changes occurring within the CNS during neuropathology. Research utilizing 2P imaging to study axonopathy in neuroinflammatory demyelinating disease has focused on five areas: (1) axonal morphologic changes, (2) organelle transport and health, (3) relationship to inflammation, (4) neuronal excitotoxicity, and (5) regenerative therapies. 2P imaging may also be used to identify novel therapeutic targets via identification and clarification of dynamic cellular and molecular mechanisms of axonal regeneration and remyelination. Here, we review tools that have made 2P accessible for imaging neuropathologies and advances in our understanding of axonal degeneration and repair in preclinical models of demyelinating diseases.
Collapse
Affiliation(s)
| | - Thomas E. Lane
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Banaszek A, Bladowska J, Pokryszko-Dragan A, Podemski R, Sąsiadek MJ. Evaluation of the Degradation of the Selected Projectile, Commissural and Association White Matter Tracts Within Normal Appearing White Matter in Patients with Multiple Sclerosis Using Diffusion Tensor MR Imaging - a Preliminary Study. Pol J Radiol 2015; 80:457-63. [PMID: 26516389 PMCID: PMC4603607 DOI: 10.12659/pjr.894661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/30/2015] [Indexed: 11/21/2022] Open
Abstract
Backround The aim of the study was to assess the impairment of the selected white matter tracts within normal appearing white matter (NAWM) in multiple sclerosis (MS) patients using diffusion tensor imaging (DTI). Material/Methods Thirty-six patients (mean age 33.4 yrs) with clinically definite, relapsing-remitting MS and mild disability (EDSS – Expanded Disability Status Scale 1–3.5) and 16 control subjects (mean age 34.4 yrs) were enrolled in the study. DTI examinations were performed on a 1.5T MR scanner. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were obtained with a small ROI method in several white matter tracts within NAWM including: the middle cerebellar peduncles (MCP), the inferior longitudinal fasciculi (ILF), inferior frontooccipital fasciculi (IFOF), genu (GCC) and splenium of the corpus callosum (SCC), posterior limbs of the internal capsules (PLIC), superior longitudinal fasciculi (SLF) and posterior cingula (CG). There were no demyelinative lesions within the ROIs in any of the patients. Results A significant decrease in FA was found in MS patients in both the ILFs and IFOFs (p<0.001) and in the left MCP and right SLF (p<0.05), compared to the normal subjects. There were no significant differences in FA values in the remaining evaluated ROIs, between MS patients and the control group. A significant increase in ADC (p<0.05) was found only in the right PLIC and the right SLF in MS subjects, compared to the control group. Conclusions The FA values could be a noninvasive neuroimaging biomarker for assessing the microstructural changes within NAWM tracts in MS patients.
Collapse
Affiliation(s)
- Anna Banaszek
- Department of General and Interventional Radiology and Neuroradiology, Wrocław Medical University, Wrocław, Poland
| | - Joanna Bladowska
- Department of General and Interventional Radiology and Neuroradiology, Wrocław Medical University, Wrocław, Poland
| | | | - Ryszard Podemski
- Department and Clinic of Neurology, Wrocław Medical University, Wrocław, Poland
| | - Marek J Sąsiadek
- Department of General and Interventional Radiology and Neuroradiology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
11
|
Lee M, Kiernan MC, Macefield VG, Lee BB, Lin CSY. Short-term peripheral nerve stimulation ameliorates axonal dysfunction after spinal cord injury. J Neurophysiol 2015; 113:3209-18. [PMID: 25787956 DOI: 10.1152/jn.00839.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/18/2015] [Indexed: 12/13/2022] Open
Abstract
There is accumulating evidence that peripheral motor axons deteriorate following spinal cord injury (SCI). Secondary axonal dysfunction can exacerbate muscle atrophy, contribute to peripheral neuropathies and neuropathic pain, and lead to further functional impairment. In an attempt to ameliorate the adverse downstream effects that developed following SCI, we investigated the effects of a short-term peripheral nerve stimulation (PNS) program on motor axonal excitability in 22 SCI patients. Axonal excitability studies were undertaken in the median and common peroneal nerves (CPN) bilaterally before and after a 6-wk unilateral PNS program. PNS was delivered percutaneously over the median nerve at the wrist and CPN around the fibular head, and the compound muscle action potential (CMAP) from the abductor pollicis brevis and tibialis anterior was recorded. Stimulus intensity was above motor threshold, and pulses (450 μs) were delivered at 100 Hz with a 2-s on/off cycle for 30 min 5 days/wk. SCI patients had consistently high thresholds with a reduced CMAP consistent with axonal loss; in some patients the peripheral nerves were completely inexcitable. Nerve excitability studies revealed profound changes in membrane potential, with a "fanned-in" appearance in threshold electrotonus, consistent with membrane depolarization, and significantly reduced superexcitability during the recovery cycle. These membrane dysfunctions were ameliorated after 6 wk of PNS, which produced a significant hyperpolarizing effect. The contralateral, nonstimulated nerves remained depolarized. Short-term PNS reversed axonal dysfunction following SCI, may provide an opportunity to prevent chronic changes in axonal and muscular function, and may improve rehabilitation outcomes.
Collapse
Affiliation(s)
- Michael Lee
- Neuroscience Research Australia, Sydney, Australia; Brain and Mind Research Institute, The University of Sydney, Sydney, Australia; Discipline of Physiotherapy, Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Matthew C Kiernan
- Neuroscience Research Australia, Sydney, Australia; Brain and Mind Research Institute, The University of Sydney, Sydney, Australia
| | - Vaughan G Macefield
- Neuroscience Research Australia, Sydney, Australia; Integrative Physiology, School of Medicine, University of Western Sydney, Sydney, Australia
| | - Bonne B Lee
- Neuroscience Research Australia, Sydney, Australia; Spinal Medicine Department, Prince of Wales Hospital, Sydney, Australia; and
| | - Cindy S-Y Lin
- Translational Neuroscience Facility, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
12
|
Zhang M, Zhan XL, Ma ZY, Chen XS, Cai QY, Yao ZX. Thyroid hormone alleviates demyelination induced by cuprizone through its role in remyelination during the remission period. Exp Biol Med (Maywood) 2015; 240:1183-96. [PMID: 25577802 DOI: 10.1177/1535370214565975] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/12/2014] [Indexed: 01/09/2023] Open
Abstract
Multiple sclerosis (MS) is a disease induced by demyelination in the central nervous system, and the remission period of MS is crucial for remyelination. In addition, abnormal levels of thyroid hormone (TH) have been identified in MS. However, in the clinic, insufficient attention has been paid to the role of TH in the remission period. Indeed, TH not only functions in the development of the brain but also affects myelination. Therefore, it is necessary to observe the effect of TH on remyelination during this period. A model of demyelination induced by cuprizone (CPZ) was used to observe the function of TH in remyelination during the remission period of MS. Through weighing and behavioral tests, we found that TH improved the physical symptoms of mice impaired by CPZ. Supplementation of TH led to the repair of myelin as detected by immunohistochemistry and western blot. In addition, a sufficient TH supply resulted in an increase in myelinated axons without affecting myelin thickness and g ratio in the corpus callosum, as detected by electron microscopy. Double immunostaining with myelin basic protein and neurofilament 200 (NF200) showed that the CPZ-induced impairment of axons was alleviated by TH. Conversely, insufficient TH induced by 6-propyl-2-thiouracil resulted in the enlargement of mitochondria. Furthermore, we found that an adequate supply of TH promoted the proliferation and differentiation of oligodendrocyte lineage cells by immunofluorescence, which was beneficial to remyelination. Further, we found that TH reduced the number of astrocytes without affecting microglia. Conclusively, it was shown that TH alleviated demyelination induced by CPZ by promoting the development of oligodendrocyte lineage cells and remyelination. The critical time for remyelination is the remission period of MS. TH plays a significant role in alleviating demyelination during the remission period in the clinical treatment of MS.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Xiao L Zhan
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Zi Y Ma
- Battalion 14 of Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Xing S Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Qi Y Cai
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Zhong X Yao
- Department of Physiology, Third Military Medical University, Chongqing 400038, China Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
13
|
Rusu L, Neamtu MC, Rosulescu E, Cosma G, Dragomir M, Marin MI. Analysis of foot and ankle disorders and prediction of gait in multiple sclerosis rehabilitation. Eur J Med Res 2014; 19:73. [PMID: 25539821 PMCID: PMC4301622 DOI: 10.1186/s40001-014-0073-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/03/2014] [Indexed: 12/03/2022] Open
Abstract
Background Multiple sclerosis (MS) is a disease of the central nervous system probably based on the autoimmune mechanism against myelin and the action of lymphocyte T. In the last 50 years, more than 150 descriptive studies regarding MS have focused on the etiopathogeny, treatment, diagnosis and prevention of the progressive evolution of MS. Most recently, studies in the field of rehabilitation and diagnosis have tried to present the postural aspects of control/foot and ankle control and gait pattern in MS. The aim of this study is focused on biomechanical foot analyses of MS patients. Methods Our clinical research and functional assessment was based on a scale like the EDSS/Kurtzke score: biomechanical foot assessment used the RSscan force plate to assess the foot loading, impulse and foot-ankle angle (subtalar angle), and pressure distribution methods for statistical analyses. The study included MS patients at the Neurologic Rehabilitation Unit, Craiova, we studied 48 patients (46.04 ± 10.99 years) diagnosed with MS. Results This study shows that the major lesion is to the pyramidal system and the average value for functionality index (EDSS score) is 3.03 ± 0.13, where 3 means easy paraparesis or hemiparesis. In considering postural strategies, we observed an instability left to right to be more evident in the swing phase and it influences the under the foot impulse for the next step and postural control. From the analysis of the data and pressure centre position, we can see that the high pressure is on metatarsian II to III and more or less at the heel. This means the development of an ankle strategy necessary to restore balance, stability and motor control cannot be assessed other than by clinical evaluation. Even if many physicians and physical therapists do use the functional scale in their daily assessment, it does not help us achieve a complex assessment of gait and lower limb behaviour during gait, nor does it provide information about the impact of gait on daily activities and on quality of life. Conclusions Biomechanical assessment can help the clinician predict the functional evolution of MS patients without visible clinical gait disorders and allows the development of a strategy for rehabilitation to prevent an incorrect ankle/ankle and foot position, resulting in a lack of motor control.
Collapse
Affiliation(s)
- Ligia Rusu
- Sports Medicine and Kinesiology Department, University of Craiova, Srada Alexandru Ioan Cuza 13, Craiova, 200585, Romania.
| | - Marius Cristian Neamtu
- Department of Pathologic Physiology, University of Medicine and Pharmacy of Craiova, Strada Petru Rareş 2-4, Craiova, 200349, Romania.
| | - Eugenia Rosulescu
- Sports Medicine and Kinesiology Department, University of Craiova, Srada Alexandru Ioan Cuza 13, Craiova, 200585, Romania.
| | - Germina Cosma
- Department of Theory and Methodology of Motricity Activities, University of Craiova, Strada Alexandru Ioan Cuza 13, Craiova, 200585, Romania.
| | - Mihai Dragomir
- Sports Medicine and Kinesiology Department, University of Craiova, Srada Alexandru Ioan Cuza 13, Craiova, 200585, Romania.
| | - Mihnea Ion Marin
- Department of Applied Mechanics, University of Craiova, Strada Alexandru Ioan Cuza 13, Craiova, 200585, Romania.
| |
Collapse
|
14
|
Kadir T, Sarica FB, Ozgur K, Cekinmez M, Nur AM. Delayed radiation myelopathy: Differential diagnosis with positron emission tomography/computed tomography examination. Asian J Neurosurg 2013; 7:206-9. [PMID: 23559989 PMCID: PMC3613644 DOI: 10.4103/1793-5482.106656] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Myelopathy is a rare but serious complication of radiation therapy (RT). Radiation myelopathy is white matter damage to the spinal cord developed after a certain period of application of ionizing radiation. Factors such as radiation dose and time between applications affect the occurrence as well as the severity of myelopathy. In those patients, positron emission tomography/computed tomography examination has a very important role both in the diagnosis and in the differential diagnosis of lesions. In this case report, the case of progressive paraparesis, developed in a 52-year-old female patient operated with pulmonary mucinous cystadenocarcinoma diagnosis and who received chemotherapy and RT following surgery, has been reported.
Collapse
Affiliation(s)
- Tufan Kadir
- Department of Neurosurgery, Baskent University Faculty of Medicine, Adana Education and Research Center, Adana, Turkey
| | | | | | | | | |
Collapse
|
15
|
The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS. J Neurosci 2013; 33:1927-39. [PMID: 23365232 DOI: 10.1523/jneurosci.2080-12.2013] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have previously shown that myelin abnormalities characterize the normal aging process of the brain and that an age-associated reduction in Klotho is conserved across species. Predominantly generated in brain and kidney, Klotho overexpression extends life span, whereas loss of Klotho accelerates the development of aging-like phenotypes. Although the function of Klotho in brain is unknown, loss of Klotho expression leads to cognitive deficits. We found significant effects of Klotho on oligodendrocyte functions, including induced maturation of rat primary oligodendrocytic progenitor cells (OPCs) in vitro and myelination. Phosphoprotein analysis indicated that Klotho's downstream effects involve Akt and ERK signal pathways. Klotho increased OPC maturation, and inhibition of Akt or ERK function blocked this effect on OPCs. In vivo studies of Klotho knock-out mice and control littermates revealed that knock-out mice have a significant reduction in major myelin protein and gene expression. By immunohistochemistry, the number of total and mature oligodendrocytes was significantly lower in Klotho knock-out mice. Strikingly, at the ultrastructural level, Klotho knock-out mice exhibited significantly impaired myelination of the optic nerve and corpus callosum. These mice also displayed severe abnormalities at the nodes of Ranvier. To decipher the mechanisms by which Klotho affects oligodendrocytes, we used luciferase pathway reporters to identify the transcription factors involved. Together, these studies provide novel evidence for Klotho as a key player in myelin biology, which may thus be a useful therapeutic target in efforts to protect brain myelin against age-dependent changes and promote repair in multiple sclerosis.
Collapse
|
16
|
Giannetti P, Niccolini F, Nicholas R. BG-12 and its potential for the prevention of relapse in multiple sclerosis. Degener Neurol Neuromuscul Dis 2012; 2:119-132. [PMID: 30890883 DOI: 10.2147/dnnd.s35790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Multiple sclerosis (MS) arises from an immune attack on the central nervous system producing demyelination and axonal loss. Clinically the relapsing-remitting course is characterized by subacute onset of neurological symptoms usually with partial or complete recovery, while the progressive course, predominant in the later stages, is characterized by progressive disability in the absence of relapses. A number of disease-modifying treatments have been developed and are increasingly effective at targeting relapses. Early injectable therapies such as interferon and glatiramer acetate are only partially effective, but have a good safety record. Recently, natalizumab, an intravenous therapy, demonstrated increased effectiveness, but side effects complicate its use. The first oral therapy offering good efficacy and convenience, fingolimod, was approved in USA in 2010 and Europe in 2011. BG-12 is a potential novel oral therapy for MS, which has previously been used as a different formulation for psoriasis. It has anti-inflammatory and neuroprotective actions in vitro, which makes it a promising candidate for future therapies. Phase II studies showed that BG-12 reduced MRI inflammatory activity over placebo, which was confirmed in two Phase III studies indicating immune modulation may be its principal action rather than neuroprotection. In these studies, BG-12 reduced relapse rates consistently with variable effects on progression and few serious adverse events. With its favorable efficacy-tolerability profile, BG-12 could offer a substantial step forward for the care for subjects affected by relapsing MS.
Collapse
Affiliation(s)
- Paolo Giannetti
- Centre for Neurosciences, Division of Experimental Medicine, Department of Medicine, Imperial College, London, UK,
| | - Flavia Niccolini
- University of Rome "Sapienza", Department of Neurology and Psychiatry, Rome, Italy
| | - Richard Nicholas
- Centre for Neurosciences, Division of Experimental Medicine, Department of Medicine, Imperial College, London, UK,
| |
Collapse
|
17
|
Henney HR, Blight AR. Walking impairment in patients with multiple sclerosis - a new therapeutic approach and clinical potential of dalfampridine extended release tablets. Degener Neurol Neuromuscul Dis 2012; 2:53-64. [PMID: 30890878 DOI: 10.2147/dnnd.s19839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Walking impairment is a clinical hallmark of multiple sclerosis (MS) that has been under-recognized as a therapeutic target for pharmacologic intervention. The development and approval of dalfampridine extended release tablets (dalfampridine-ER; known as prolonged-, modified, or sustained-release fampridine outside the USA), 10 mg taken twice daily, to improve walking in patients with MS, fills a previously unmet need. In three randomized, double-blind, placebo-controlled trials, dalfampridine-ER improved walking speed in approximately one-third (37%) of treated patients, and average walking speed on therapy among these responders improved by approximately 25% relative to baseline. Walking-speed improvement among responders was clinically significant, as determined by a statistically significant improvement in the patient-reported 12-item Multiple Sclerosis Walking Scale. Long-term extension studies indicate that responders were able to maintain benefits, compared with nonresponders over prolonged periods of treatment. Dalfampridine-ER was generally well tolerated. Dizziness, insomnia, balance disorder, headache, nausea, urinary tract infection, and asthenia were the most common adverse events. Although the incidence of seizures appeared to be dose related, among patients treated with dalfampridine-ER in the three trials, the rate of seizures was 0.25%. These efficacy and safety data suggest that dalfampridine-ER can be a useful and clinically relevant addition to the pharmacologic armamentarium for the management of MS symptoms and disabilities. Because of its narrow therapeutic index and potential for seizures, it is especially important in the clinical setting to adhere to the dosing recommended in the approved labels.
Collapse
|
18
|
van Horssen J, Witte ME, Ciccarelli O. The role of mitochondria in axonal degeneration and tissue repair in MS. Mult Scler 2012; 18:1058-67. [PMID: 22723572 DOI: 10.1177/1352458512452924] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Axonal injury is a key feature of multiple sclerosis (MS) pathology and is currently seen as the main correlate for permanent clinical disability. Although little is known about the pathogenetic mechanisms that drive axonal damage and loss, there is accumulating evidence highlighting the central role of mitochondrial dysfunction in axonal degeneration and associated neurodegeneration. The aim of this topical review is to provide a concise overview on the involvement of mitochondrial dysfunction in axonal damage and destruction in MS. Hereto, we will discuss putative pathological mechanisms leading to mitochondrial dysfunction and recent imaging studies performed in vivo in patients with MS. Moreover, we will focus on molecular mechanisms and novel imaging studies that address the role of mitochondrial metabolism in tissue repair. Finally, we will briefly review therapeutic strategies aimed at improving mitochondrial metabolism and function under neuroinflammatory conditions.
Collapse
Affiliation(s)
- J van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, The Netherlands.
| | | | | |
Collapse
|
19
|
Shields SD, Waxman SG. Cerebellar dysfunction in multiple sclerosis: in the blink of an eye. Mult Scler 2011; 17:1152-4. [DOI: 10.1177/1352458511410345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shannon D Shields
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
20
|
Racke MK. Immunopathogenesis of multiple sclerosis. Ann Indian Acad Neurol 2011; 12:215-20. [PMID: 20182567 PMCID: PMC2824947 DOI: 10.4103/0972-2327.58274] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/10/2009] [Accepted: 07/06/2009] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a suspected autoimmune disease in which myelin-specific CD4+ and CD8+ T cells enter the central nervous system (CNS) and initiate an inflammatory response directed against myelin and other components of the CNS. Acute MS exacerbations are believed be the result of active inflammation, and progression of disability is generally believed to reflect accumulation of damage to the CNS, particularly axonal damage. Over the last several years, the pathophysiology of MS is being appreciated to be much more complex, and it appears that the development of the MS plaque involves a large number of cell populations, including CD8+ T lymphocytes, B cells, and Th17 cells (a population of helper T cells that secrete the inflammatory cytokine IL-17). The axonal transection and degeneration that is thought to represent the basis for progressive MS is now recognized to begin early in the disease process and to continue in the progressive forms of the disease. Molecules important for limiting aberrant neural connections in the CNS have been identified, which suppress axonal sprouting and regeneration of transected axons within the CNS. Pathways have also been identified that prevent remyelination of the MS lesion by oligodendrocyte precursors. Novel neuroimaging methodologies and potential biomarkers are being developed to monitor various aspects of the disease process in MS. As we identify the pathways responsible for the clinical phenomena of MS, we will be able to develop new therapeutic strategies for this disabling illness of young adults.
Collapse
Affiliation(s)
- Michael K Racke
- The Helen C. Kurtz Chair of Neurology, The Ohio State University Medical Center, 395 West 12 Avenue, Columbus, OH 43210 USA
| |
Collapse
|
21
|
Shi R, Sun W. Potassium channel blockers as an effective treatment to restore impulse conduction in injured axons. Neurosci Bull 2011; 27:36-44. [PMID: 21270902 DOI: 10.1007/s12264-011-1048-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Most axons in the vertebral central nervous system are myelinated by oligodendrocytes. Myelin protects and insulates neuronal processes, enabling the fast, saltatory conduction unique to myelinated axons. Myelin disruption resulting from trauma and biochemical reaction is a common pathological event in spinal cord injury and chronic neurodegenerative diseases. Myelin damage-induced axonal conduction block is considered to be a significant contributor to the devastating neurological deficits resulting from trauma and illness. Potassium channels are believed to play an important role in axonal conduction failure in spinal cord injury and multiple sclerosis. Myelin damage has been shown to unmask potassium channels, creating aberrant potassium currents that inhibit conduction. Potassium channel blockade reduces this ionic leakage and improves conduction. The present review was mainly focused on the development of this technique of restoring axonal conduction and neurological function of demyelinated axons. The drug 4-aminopyridine has recently shown clinical success in treating multiple sclerosis symptoms. Further translational research has also identified several novel potassium channel blockers that may prove effective in restoring axonal conduction.
Collapse
Affiliation(s)
- Riyi Shi
- Department of Basic Medical Sciences, School of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
22
|
Neurofilament proteins as body fluid biomarkers of neurodegeneration in multiple sclerosis. Mult Scler Int 2011; 2011:315406. [PMID: 22096635 PMCID: PMC3195785 DOI: 10.1155/2011/315406] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/23/2010] [Indexed: 01/17/2023] Open
Abstract
Biomarkers of axonal degeneration have the potential to improve our capacity to predict and monitor neurological outcome in multiple sclerosis (MS) patients. Neurofilament proteins, one of the major proteins expressed within neurons and axons, have been detected in cerebrospinal fluid and blood samples from MS patients and are now being actively investigated for their utility as prognostic indicators of disease progression in MS. In this paper, we summarize the current literature on neurofilament structure, assembly, and degeneration and discuss their potential utility as biomarkers for monitoring neurological decline in MS. We also discuss the need to further develop sensitive methods for assaying neurofilaments in blood to improve clinical applicability.
Collapse
|
23
|
Abstract
Women are more susceptible to a variety of autoimmune diseases including systemic lupus erythematosus (SLE), multiple sclerosis (MS), primary biliary cirrhosis, rheumatoid arthritis and Hashimoto's thyroiditis. This increased susceptibility in females compared to males is also present in animal models of autoimmune diseases such as spontaneous SLE in (NZBxNZW)F1 and NZM.2328 mice, experimental autoimmune encephalomyelitis (EAE) in SJL mice, thyroiditis, Sjogren's syndrome in MRL/Mp-lpr/lpr mice and diabetes in non-obese diabetic mice. Indeed, being female confers a greater risk of developing these diseases than any single genetic or environmental risk factor discovered to date. Understanding how the state of being female so profoundly affects autoimmune disease susceptibility would accomplish two major goals. First, it would lead to an insight into the major pathways of disease pathogenesis and, secondly, it would likely lead to novel treatments which would disrupt such pathways.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- Professor, UCLA Dept, of Neurology, Jack H Skirball Chair for Multiple Sclerosis Research, Director, UCLA Multiple Sclerosis Program, Neuroscience Research Building 1, Room 475D, 635 Charles Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Le TT, Yue S, Cheng JX. Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy. J Lipid Res 2010; 51:3091-102. [PMID: 20713649 PMCID: PMC2952550 DOI: 10.1194/jlr.r008730] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/16/2010] [Indexed: 12/31/2022] Open
Abstract
Despite the ubiquitous roles of lipids in biology, the detection of lipids has relied on invasive techniques, population measurements, or nonspecific labeling. Such difficulties can be circumvented by a label-free imaging technique known as coherent anti-Stokes Raman (CARS) microscopy, which is capable of chemically selective, highly sensitive, and high-speed imaging of lipid-rich structures with submicron three-dimensional spatial resolution. We review the broad applications of CARS microscopy to studies of lipid biology in cell cultures, tissue biopsies, and model organisms. Recent technical advances, limitations of the technique, and perspectives are discussed.
Collapse
Affiliation(s)
- Thuc T. Le
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Shuhua Yue
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
25
|
Spatiotemporal patterns of dexamethasone-induced Ras protein 1 expression in the central nervous system of rats with experimental autoimmune encephalomyelitis. J Mol Neurosci 2010; 41:198-209. [PMID: 20084551 DOI: 10.1007/s12031-009-9322-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
Dexamethasone-induced Ras protein 1 (Dexras 1), a brain-enriched member of Ras subfamily of guanosine triphosphatases, as a novel physiologic nitric oxide (NO) effector, anchor neuronal nitric oxide synthase (nNOS) that could form a ternary complex with carboxy-terminal PDZ ligand of nNOS (CAPON) and nNOS, to specific targets to enhance NO signaling. The present study was to explore the expression pattern of Dexras 1 in the development of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Western blot and immunochemistry analysis showed that the gene and protein expression of Dexras 1 in the central nervous system (CNS) of rats increased significantly during the process of EAE compared with control groups (p < 0.01) and maintain a high level in the remission period. The protein expressions of nNOS and CAPON in hippocampus were approximately paralleled Dexras 1. Immunofluorescence revealed that both neurons and glial cells expressed the Dexras 1 in EAE CNS. Importantly, the damaged CNS in EAE-affected rats showed the codistribution between Dexras 1 and caspase 3, indicating the role of Dexras 1 played in the apoptotic process in EAE. Furthermore, colocalizations of Dexras 1 were observed in neurons and glial cells in CNS with nNOS or CAPON, supporting the ternary complex in this model. Thus, these findings suggest the postulation that Dexras 1 might participate into CNS neuronal cell death and demyelination in the whole process of EAE through regulating the NO signaling by binding to nNOS and CAPON.
Collapse
|
26
|
Tremlett H, Yousefi M, Devonshire V, Rieckmann P, Zhao Y. Impact of multiple sclerosis relapses on progression diminishes with time. Neurology 2009; 73:1616-23. [PMID: 19890070 DOI: 10.1212/wnl.0b013e3181c1e44f] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The relationship between relapses and long-term disability in multiple sclerosis (MS) remains to be fully elucidated. Current literature is conflicting and focused on early relapses. We investigated the effects of relapses at different stages on disability progression. METHODS We conducted a retrospective review of 2,477 patients with definite relapsing-onset MS followed until July 2003 in British Columbia, Canada. Time-dependent Cox proportional hazards models examined the effect of relapses at different time periods (0-5; >5-10; >10 years postonset) on time to cane (Expanded Disability Status Scale [EDSS]) and secondary progressive MS (SPMS). Findings were derived from hazard ratios with 95% confidence intervals (CIs), adjusted for sex, onset age, and symptoms. RESULTS Mean follow-up was 20.6 years; 11,722 postonset relapses were recorded. An early relapse (within 5 years postonset) was associated with an increased hazard in disease progression over the short term, by 48%; 95% CI 37%-60% for EDSS 6 and 29%; 95% CI 20%-38% for SPMS. However, this substantially lessened to 10%; 95% CI 4%-16% (EDSS 6) and 2%; 95% CI -2%-7% (SPMS) after 10 years postonset. The impact of later relapses (>5-10 years postonset) also lessened over time. Effects were modulated by age, impact being greatest in younger (<25 years at onset) and least in older (>or=35 years) patients where relapses beyond 5-years postonset typically failed to reach significance. Relapses during SPMS had no measurable impact on time to EDSS 6 from SPMS. CONCLUSION Relapses within the first 5 years of disease impacted on disease progression over the short term. However, the long-term impact was minimal, either for early or later relapses. Long-term disease progression was least affected by relapses in patients with an extended disease duration (>10 years) or already in the secondary progressive phase.
Collapse
Affiliation(s)
- H Tremlett
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Zhang J, Zhang ZG, Morris D, Li Y, Roberts C, Elias SB, Chopp M. Neurological functional recovery after thymosin beta4 treatment in mice with experimental auto encephalomyelitis. Neuroscience 2009; 164:1887-93. [PMID: 19782721 DOI: 10.1016/j.neuroscience.2009.09.054] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/21/2009] [Accepted: 09/21/2009] [Indexed: 02/07/2023]
Abstract
In the present study, we hypothesized that thymosin beta 4 (Tbeta4) is a potential therapy of multiple sclerosis (MS). To test this hypothesis, SJL/J mice (n=21) were subjected to experimental autoimmune encephalomyelitis (EAE), an animal model of MS. EAE mice were treated with saline or Tbeta4 (6 mg/kg, n=10) every 3 days starting on the day of myelin proteolipid protein (PLP) immunization for total five doses. Neurological function, inflammatory infiltration, oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes were measured in the brain of EAE mice. Double immunohistochemical staining was used to detect proliferation and differentiation of OPCs. Tbeta4 was used to treat N20.1 cells (premature oligodendrocyte cell line) in vitro, and proliferation of N20.1 cells was measured by bromodeoxyuridine (BrdU) immunostaining. Tbeta4 treatment improved functional recovery after EAE. Inflammatory infiltrates were significantly reduced in the Tbeta4 treatment group compared to the saline groups (3.6+/-0.3/slide vs 5+/-0.5/slide, P<0.05). NG2(+) OPCs (447.7+/-41.9 vs 195.2+/-31/mm(2) in subventricular zone (SVZ), 75.1+/-4.7 vs 41.7+/-3.2/mm(2) in white matter), CNPase(+) mature oligodendrocytes (267.5+/-10.3 vs 141.4+/-22.9/mm(2)), BrdU(+) with NG2(+) OPCs (32.9+/-3.7 vs 17.9+/-3.6/mm(2)), BrdU(+) with CNPase(+) mature oligodendrocytes (18.2+/-1.7 vs 10.7+/-2.2/mm(2)) were significantly increased in the Tbeta4 treated mice compared to those of saline controls (P<0.05). These data indicate that Tbeta4 treatment improved functional recovery after EAE, possibly, via reducing inflammatory infiltrates, and stimulating oligodendrogenesis.
Collapse
Affiliation(s)
- J Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Offner H, Sinha S, Wang C, Burrows GG, Vandenbark AA. Recombinant T cell receptor ligands: immunomodulatory, neuroprotective and neuroregenerative effects suggest application as therapy for multiple sclerosis. Rev Neurosci 2009; 19:327-39. [PMID: 19145988 DOI: 10.1515/revneuro.2008.19.4-5.327] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recombinant T cell receptor (TCR) ligands (RTL) represent the minimal interactive surface with antigen-specific T cell receptors. These novel constructs fold similarly to native four-domain MHC/peptide complexes but deliver suboptimal and qualitatively different signals that cause a 'cytokine switch' to anti-inflammatory factors in targeted encephalitogenic T cells. RTL treatment can reverse clinical and histological signs of experimental autoimmune encephalomyelitis (EAE) and most dramatically can promote myelin and axonal recoveiy in the CNS of mice with chronic disease. These properties of RTL suggest that this novel antigen-specific approach may hold unusual promise as a therapy for multiple sclerosis.
Collapse
Affiliation(s)
- Halina Offner
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
29
|
Fu Y, Wang H, Huff TB, Shi R, Cheng JX. Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination. J Neurosci Res 2008; 85:2870-81. [PMID: 17551984 PMCID: PMC2277477 DOI: 10.1002/jnr.21403] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coherent anti-Stokes Raman scattering (CARS) microscopy, which allows vibrational imaging of myelin sheath in its natural state, was applied to characterize lysophosphatidylcholine (lyso-PtdCho)-induced myelin degradation in tissues and in vivo. After the injection of lyso-PtdCho into ex vivo spinal tissues or in vivo mouse sciatic nerves, myelin swelling characterized by the decrease of CARS intensity and loss of excitation polarization dependence was extensively observed. The swelling corresponds to myelin vesiculation and splitting observed by electron microscopy. The demyelination dynamics were quantified by the increase of g ratio measured from the CARS images. Treating spinal tissues with Ca2+ ionophore A23187 resulted in the same kind of myelin degradation as lyso-PtdCho. Moreover, the demyelination lesion size was significantly reduced upon preincubation of the spinal tissue with Ca2+ free Krebs' solution or a cytosolic phospholipase A2 (cPLA(2)) inhibitor or a calpain inhibitor. In accordance with the imaging results, removal of Ca2+ or addition of cPLA(2) inhibitor or calpain inhibitor in the Krebs' solution remarkably increased the mean compound action potential amplitude in lyso-PtdCho treated spinal tissues. Our results suggest that lyso-PtdCho induces myelin degradation via Ca(2+) influx into myelin and subsequent activation of cPLA(2) and calpain, which break down the myelin lipids and proteins. The current work also shows that CARS microscopy is a potentially powerful tool for the study of demyelination.
Collapse
Affiliation(s)
- Yan Fu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Haifeng Wang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Terry B. Huff
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Department of Basic Medical Sciences, Institute for Applied Neurology, and Center for Paralysis Research, Purdue University, West Lafayette, Indiana
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Department of Chemistry, Purdue University, West Lafayette, Indiana
- *Correspondence to: Ji-Xin Cheng, Weldon School of Biomedical Engineering, Purdue University, 206 South Intramural Drive, West Lafayette, IN 47907. E-mail:
| |
Collapse
|
30
|
Wang C, Gold BG, Kaler LJ, Yu X, Afentoulis ME, Burrows GG, Vandenbark AA, Bourdette DN, Offner H. Antigen-specific therapy promotes repair of myelin and axonal damage in established EAE. J Neurochem 2006; 98:1817-27. [PMID: 16899071 PMCID: PMC2175524 DOI: 10.1111/j.1471-4159.2006.04081.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inflammation results in CNS damage in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. It is uncertain how much repair of injured myelin and axons can occur following highly selective anti-inflammatory therapy in EAE and MS. In this study, SJL/J mice with established EAE were treated successfully with an antigen-specific recombinant T cell receptor ligand (RTL), RTL401, a mouse I-A(s)/PLP-139-151 construct, after the peak of EAE. To define the mechanisms by which late application of RTL401 inhibits EAE, we evaluated mice at different time points to assess the levels of neuroinflammation and myelin and axon damage in their spinal cords. Our results showed that RTL401 administered after the peak of acute EAE induced a marked reduction in inflammation in the CNS, associated with a significant reduction of demyelination, axonal loss and ongoing damage. Electron microscopy showed that RTL-treated mice had reduced pathology compared with mice treated with vehicle and mice at the peak of disease, as demonstrated by a decrease in continued degeneration, increase in remyelinating axons and the presence of an increased number of small, presumably regenerative axonal sprouts. These findings indicate that RTL therapy targeting encephalitogenic T cells may promote CNS neuroregenerative processes.
Collapse
MESH Headings
- Animals
- Axons/ultrastructure
- Drug Administration Schedule
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Epitopes
- Female
- Immunotherapy
- Ligands
- Mice
- Mice, Inbred Strains
- Microscopy, Electron
- Myelin Sheath/ultrastructure
- Nerve Regeneration/drug effects
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/therapeutic use
- Recombinant Proteins/therapeutic use
- Spinal Cord/ultrastructure
Collapse
Affiliation(s)
- Chunhe Wang
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, Oregon, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Powell HC, Garrett RS, Brett FM, Chiang CS, Chen E, Masliah E, Campbell IL. Response of glia, mast cells and the blood brain barrier, in transgenic mice expressing interleukin-3 in astrocytes, an experimental model for CNS demyelination. Brain Pathol 2006; 9:219-35. [PMID: 10219739 PMCID: PMC8098132 DOI: 10.1111/j.1750-3639.1999.tb00220.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Transgenic mice overexpressing cytokines facilitate analysis of the effects of these immunomodulators on indigenous cells of the central nervous system. This study examines morphological aspects of demyelination and permeability changes, in a recently described transgenic model (termed GFAP-IL3). GFAP-IL3 mice develop progressive motor disease at approximately 5 months. Lesions identified after disease onset, showed activation of microglia, astroglial proliferation with phagocytosis of lipids, and immigration of macrophages and mast cells into neural parenchyma. Lymphocytes failed to appear until the later stages of the disease. Later, cerebellar and brain stem white matter contained focal demyelinating lesions with intense macrophage infiltration and a proliferative astrocytosis. Dystrophic axonal changes were noted, in addition to demyelination in heavily infiltrated lesions. Mast cells, variably present in the thalamus and meninges of wild type mice, were greatly increased at these sites in GFAP-IL3 mice. Blood-brain barrier (BBB) defects were documented with leakage of intravenously injected horseradish peroxidase. Mast cell infiltration into the CNS and their degranulation at the site of injury, may represent initial events in a spontaneous process of macrophage mediated demyelination in which glial cells and macrophages are both involved in the phagocytic process.
Collapse
Affiliation(s)
- H C Powell
- Veterans Administration Research Service, VAMC San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Kealey SM, Kim Y, Whiting WL, Madden DJ, Provenzale JM. Determination of multiple sclerosis plaque size with diffusion-tensor MR Imaging: comparison study with healthy volunteers. Radiology 2005; 236:615-20. [PMID: 16040917 PMCID: PMC1805677 DOI: 10.1148/radiol.2362040014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To use diffusion-tensor magnetic resonance (MR) imaging to measure involvement of normal-appearing white matter (WM) immediately adjacent to multiple sclerosis (MS) plaques and thus redefine actual plaque size on diffusion-tensor images through comparison with T2-weighted images of equivalent areas in healthy volunteers. MATERIALS AND METHODS Informed consent was not required given the retrospective nature of the study on an anonymized database. The study complied with requirements of the Health Insurance Portability and Accountability Act. Twelve patients with MS (four men, eight women; mean age, 35 years) and 14 healthy volunteers (six men, eight women; mean age, 25 years) were studied. The authors obtained fractional anisotropy (FA) values in MS plaques and in the adjacent normal-appearing WM in patients with MS and in equivalent areas in healthy volunteers. They placed regions of interest (ROIs) around the periphery of plaques and defined the total ROIs (ie, plaques plus peripheral ROIs) as abnormal if their mean FA values were at least 2 standard deviations below those of equivalent ROIs within equivalent regions in healthy volunteers. The combined area of the plaque and the peripheral ROI was compared with the area of the plaque seen on T2-weighted MR images by means of a Student paired t test (P = .05). RESULTS The mean plaque size on T2-weighted images was 72 mm2 +/- 21 (standard deviation). The mean plaque FA value was 0.285 +/- 0.088 (0.447 +/- 0.069 in healthy volunteers [P < .001]; mean percentage reduction in FA in MS plaques, 37%). The mean plaque size on FA maps was 91 mm2 +/- 35, a mean increase of 127% compared with the size of the original plaque on T2-weighted images (P = .03). CONCLUSION A significant increase in plaque size was seen when normal-appearing WM was interrogated with diffusion-tensor MR imaging. This imaging technique may represent a more sensitive method of assessing disease burden and may have a future role in determining disease burden and activity.
Collapse
Affiliation(s)
- Susan M Kealey
- Departments of Radiology and Psychiatry and Behavioral Science, Duke University Medical Center, Erwin Rd, Box 3808, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
33
|
Morgan BP, Griffiths M, Khanom H, Taylor SM, Neal JW. Blockade of the C5a receptor fails to protect against experimental autoimmune encephalomyelitis in rats. Clin Exp Immunol 2005; 138:430-8. [PMID: 15544619 PMCID: PMC1809229 DOI: 10.1111/j.1365-2249.2004.02646.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Complement activation contributes to inflammation and tissue damage in human demyelinating diseases and in rodent models of demyelination. Inhibitors of complement activation ameliorate disease in the rat model antibody-dependent experimental autoimmune encephalomyelitis and rats unable to generate the membrane attack complex of complement develop inflammation without demyelination. The role of the highly active chemotactic and anaphylactic complement-derived peptide C5a in driving inflammation and pathology in rodent models of demyelination has been little explored. Here we have used a small molecule C5a receptor antagonist, AcF-[OPdChaWR], to examine the effects of C5a receptor blockade in rat models of brain inflammation and demyelination. C5a receptor antagonist therapy completely blocked neutrophil response to C5a in vivo but had no effect on clinical disease or resultant pathology in either inflammatory or demyelinating rat models. We conclude that C5a is not required for disease induction or perpetuation in these strongly complement-dependent disease models.
Collapse
Affiliation(s)
- B P Morgan
- Complement Biology Group, Department of Medical Biochemistry and Immunology and Department of Pathology, UWCM, Cardiff, UK.
| | | | | | | | | |
Collapse
|
34
|
Petzold A, Eikelenboom MJ, Keir G, Grant D, Lazeron RHC, Polman CH, Uitdehaag BMJ, Thompson EJ, Giovannoni G. Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study. J Neurol Neurosurg Psychiatry 2005; 76:206-11. [PMID: 15654034 PMCID: PMC1739484 DOI: 10.1136/jnnp.2004.043315] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Neurofilament phosphoforms (Nf) are principal components of the axoskeleton released during axonal injury. Cerebrospinal fluid (CSF) levels of Nf phosphoforms might be useful surrogate markers for disability in multiple sclerosis (MS), aid in distinguishing clinical subtypes, and provide valuable prognostic information. METHOD Thirty four patients with MS were included in a three year follow up study along with 318 controls with other non-inflammatory neurological diseases. CSF levels of two Nf heavy chain (NfH) phosphoforms (NfH(SMI35), NfH(SMI34)) were quantified at baseline and three year follow up using new ELISA techniques. Levels of NfH phosphoforms, the degree of phosphorylation (NfH(SMI34):NfH(SMI35) ratio), and changes in NfH levels between baseline and follow up (Delta NfH) were related to the clinical phenotype (RR or SP/PP), to three clinical scales (Kurtzke's EDSS, ambulation index (AI), and nine hole peg test (9HPT)), and to progression of disability. RESULTS A significantly higher proportion (59%) of patients with SP/PPMS experienced an increase in NfH(SMI35) levels between baseline and follow up compared with those with RRMS (14%, p<0.05). CSF NfH(SMI34) levels at baseline were higher in patients with SP/PP (11 pg/ml) compared with RR (7 pg/ml, p<0.05) and NfH(SMI35) levels were higher at follow up in SP/PP (129 pg/ml) compared with levels below assay sensitivity in RR (p<0.05). NfH(SMI35) correlated with the EDSS (r(s) = 0.54, p<0.01), the AI (r(s) = 0.42, p<0.05), and the 9HPT (r(s) = 0.59, p<0.01) at follow up. CONCLUSION The increase in NfH during the progressive phase of the disease together with the correlation of NfH(SMI35) with all clinical scales at follow up suggests that cumulative axonal loss is responsible for sustained disability and that high NfH(SMI35) levels are a poor prognostic sign.
Collapse
Affiliation(s)
- A Petzold
- Institute of Neurology, Department of Neuroinflammation, Queen Square, London WC1N 3BG, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kerschensteiner M, Bareyre FM, Buddeberg BS, Merkler D, Stadelmann C, Brück W, Misgeld T, Schwab ME. Remodeling of axonal connections contributes to recovery in an animal model of multiple sclerosis. ACTA ACUST UNITED AC 2004; 200:1027-38. [PMID: 15492125 PMCID: PMC2211840 DOI: 10.1084/jem.20040452] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In multiple sclerosis (MS), inflammation in the central nervous system (CNS) leads to damage of axons and myelin. Early during the clinical course, patients can compensate this damage, but little is known about the changes that underlie this improvement of neurological function. To study axonal changes that may contribute to recovery, we made use of an animal model of MS, which allows us to target inflammatory lesions to the corticospinal tract (CST), a major descending motor pathway. We demonstrate that axons remodel at multiple levels in response to a single neuroinflammatory lesion as follows: (a) surrounding the lesion, local interneurons show regenerative sprouting; (b) above the lesion, descending CST axons extend new collaterals that establish a "detour" circuit to the lumbar target area, whereas below the lesion, spared CST axons increase their terminal branching; and (c) in the motor cortex, the distribution of projection neurons is remodeled, and new neurons are recruited to the cortical motor pool. Behavioral tests directly show the importance of these changes for recovery. This paper provides evidence for a highly plastic response of the motor system to a single neuroinflammatory lesion. This framework will help to understand the endogenous repair capacity of the CNS and to develop therapeutic strategies to support it.
Collapse
Affiliation(s)
- Martin Kerschensteiner
- Department of Neuromorphology, Brain Research Institute, University of Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kealey SM, Kim Y, Provenzale JM. Redefinition of Multiple Sclerosis Plaque Size Using Diffusion Tensor MRI. AJR Am J Roentgenol 2004; 183:497-503. [PMID: 15269047 DOI: 10.2214/ajr.183.2.1830497] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We used diffusion tensor MRI to redefine the size of multiple sclerosis (MS) plaques on fractional anisotropy (FA) maps. MATERIALS AND METHODS Thirty-six white matter (WM) plaques were identified in 20 patients with MS. Plaque FA was measured by placing regions of interest (ROIs) on plaques on diffusion tensor images. We compared FA values in identical mirror-image ROIs placed on normal-appearing WM in the contralateral hemisphere. This comparison showed a mean decrease in FA of 41% in plaques, serving as the threshold for outlining abnormal regions in normal-appearing WM surrounding plaques. ROIs were placed around each plaque and FA values were compared with those in the mirror-image ROIs. Combined areas of perilesional normal-appearing WM with 40% or more FA reduction plus plaque were compared with the areas of abnormality on T2-weighted images using a paired Student's t test. A p value of 0.05 or less was considered significant. RESULTS Mean plaque area was 60 mm(2) (range, 15-103 mm(2)), mean plaque FA was 0.251 (range, 0.133-0.436), and mean FA of contralateral normal-appearing WM was 0.429 (range, 0.204-0.712). Applying a threshold of 40% FA reduction, mean combined area of abnormal WM (including plaque seen on T2-weighted sequences) was 87 mm(2) (range, 30-251 mm(2)) or 145% of the mean plaque area that was seen on T2-weighted images (p < 0.001). CONCLUSION Using an operator-defined threshold of abnormal FA values based on plaque anisotropy characteristics, we saw a statistically significant increase in plaque size.
Collapse
Affiliation(s)
- Susan M Kealey
- Department of Neuroradiology, Duke University Medical Center, Box 3808, Erwin Rd., Durham, NC 27710, USA
| | | | | |
Collapse
|
37
|
Ruiz-Peña JL, Piñero P, Sellers G, Argente J, Casado A, Foronda J, Uclés A, Izquierdo G. Magnetic resonance spectroscopy of normal appearing white matter in early relapsing-remitting multiple sclerosis: correlations between disability and spectroscopy. BMC Neurol 2004; 4:8. [PMID: 15191618 PMCID: PMC446197 DOI: 10.1186/1471-2377-4-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Accepted: 06/10/2004] [Indexed: 11/21/2022] Open
Abstract
Background What currently appears to be irreversible axonal loss in normal appearing white matter, measured by proton magnetic resonance spectroscopy is of great interest in the study of Multiple Sclerosis. Our aim is to determine the axonal damage in normal appearing white matter measured by magnetic resonance spectroscopy and to correlate this with the functional disability measured by Multiple Sclerosis Functional Composite scale, Neurological Rating Scale, Ambulation Index scale, and Expanded Disability Scale Score. Methods Thirty one patients (9 male and 22 female) with relapsing remitting Multiple Sclerosis and a Kurtzke Expanded Disability Scale Score of 0–5.5 were recruited from four hospitals in Andalusia, Spain and included in the study. Magnetic resonance spectroscopy scans and neurological disability assessments were performed the same day. Results A statistically significant correlation was found (r = -0.38 p < 0.05) between disability (measured by Expanded Disability Scale Score) and N-Acetyl Aspartate (NAA/Cr ratio) levels in normal appearing white matter in these patients. No correlation was found between the NAA/Cr ratio and disability measured by any of the other disability assessment scales. Conclusions There is correlation between disability (measured by Expanded Disability Scale Score) and the NAA/Cr ratio in normal appearing white matter. The lack of correlation between the NAA/Cr ratio and the Multiple Sclerosis Functional Composite score indicates that the Multiple Sclerosis Functional Composite is not able to measure irreversible disability and would be more useful as a marker in stages where axonal damage is not a predominant factor.
Collapse
Affiliation(s)
- Juan Luis Ruiz-Peña
- Unidad de Esclerosis Múltiple, Hospital Universitario Virgen Macarena, Avda, Dr, Fedriani 3, 41003 Sevilla, España
| | - Pilar Piñero
- Servicio de Radiología, Clínica Sagrado Corazón, Rafael Salgado 3, 41013 Sevilla, España
- Servicio de Radiología, Hospital Virgen del Rocío, Avda, Manuel Siurot s/n, 41013 Sevilla, España
| | - Guillermo Sellers
- Centro de Investigación y Bioestadística, Trespaderne, 29, Edif, Barajas, 1, 28042 Madrid, España
| | - Joaquín Argente
- Servicio de Neurología, Hospital Puerta del Mar, Avda, de viva, 21, 11009 Cádiz, España
| | - Alfredo Casado
- Servicio de Neurología, Hospital San Cecilio, Avda, Dr., Oloriz, 16, 18012 Granada, España
| | - Jesus Foronda
- Servicio de Neurología, Hospital de Jaén, Avda, Del Ejercito Español, 10, 23007 Jaén, España
| | - Antonio Uclés
- Servicio de Neurología, Hospital Virgen del Rocío, Avda, Manuel Siurot s/n, 41013 Sevilla, España
| | - Guillermo Izquierdo
- Unidad de Esclerosis Múltiple, Hospital Universitario Virgen Macarena, Avda, Dr, Fedriani 3, 41003 Sevilla, España
| |
Collapse
|
38
|
Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG. Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc Natl Acad Sci U S A 2004; 101:8168-73. [PMID: 15148385 PMCID: PMC419575 DOI: 10.1073/pnas.0402765101] [Citation(s) in RCA: 338] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although voltage-gated sodium channels are known to be deployed along experimentally demyelinated axons, the molecular identities of the sodium channels expressed along axons in human demyelinating diseases such as multiple sclerosis (MS) have not been determined. Here we demonstrate changes in the expression of sodium channels in demyelinated axons in MS, with Nav1.6 confined to nodes of Ranvier in controls but with diffuse distribution of Nav1.2 and Nav1.6 along extensive regions of demyelinated axons within acute MS plaques. Using triple-labeled fluorescent immunocytochemistry, we also show that Nav1.6, which is known to produce a persistent sodium current, and the Na+/Ca2+ exchanger, which can be driven by persistent sodium current to import damaging levels of calcium into axons, are colocalized with beta-amyloid precursor protein, a marker of axonal injury, in acute MS lesions. Our results demonstrate the molecular identities of the sodium channels expressed along demyelinated and degenerating axons in MS and suggest that coexpression of Nav1.6 and Na+/Ca2+ exchanger is associated with axonal degeneration in MS.
Collapse
Affiliation(s)
- Matthew J Craner
- Department of Neurology and Paralyzed Veterans of America/Eastern Paralyzed Veterans Association Neuroscience Research Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
4-Aminopyridine (4-AP or fampridine) is a potassium channel-blocking agent that has been shown to restore conduction in focally demyelinated axons. A sustained-release matrix tablet form of 4-AP (fampridine-SR) is currently undergoing multicenter clinical trials in patients with multiple sclerosis or chronic spinal cord injury. This review describes the pharmacology and mechanisms of action of 4-AP, its pharmacokinetics in human subjects, and the outcomes of clinical trials employing either immediate-release or sustained-release formulations of the drug. The randomized clinical trials that have been completed to date indicate that K+ channel blockade may prove to be a useful strategy for ameliorating central conduction deficits due to demyelination. Diverse neurological gains have been reported for both motor and sensory domains. At the present time, however, the clinical trials have not provided sufficiently robust or definitive evidence of efficacy to gain regulatory approval for the symptomatic management of patients with either multiple sclerosis or spinal cord injury.
Collapse
Affiliation(s)
- Keith C Hayes
- Department of Physical Medicine & Rehabilitation, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
40
|
Zoukos Y, Thomaides TN, Kidd D, Cuzner ML, Thompson A. Expression of beta2 adrenoreceptors on peripheral blood mononuclear cells in patients with primary and secondary progressive multiple sclerosis: a longitudinal six month study. J Neurol Neurosurg Psychiatry 2003; 74:197-202. [PMID: 12531948 PMCID: PMC1738290 DOI: 10.1136/jnnp.74.2.197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Beta(2) adrenoreceptor expression on peripheral blood mononuclear cells is increased in progressive multiple sclerosis. This increase has been correlated with disease activity in relapsing-remitting multiple sclerosis. OBJECTIVE To determine the beta(2) adrenoreceptor expression in primary and secondary progressive multiple sclerosis in relation to findings on magnetic resonance imaging (MRI) and clinical disease activity. METHODS 10 patients with multiple sclerosis were studied (five with primary progressive and five with secondary progressive forms of the disease) over a period of six months. Monthly clinical and MRI assessments of the brain and spinal cord were carried out. Beta(2) adrenoreceptor expression was assessed monthly using a ligand binding assay with [(125)I]iodocyanopindolol. Expression of beta(2) adrenoceptors on peripheral blood mononuclear cells was also assessed in five normal controls over a similar period. RESULTS The mean (SEM) value of beta(2) adrenoreceptor density for the five normal controls was 1346 (183) sites/cell, with affinity Kd of 120 (40) pM. MRI disease activity in primary progressive multiple sclerosis was reported on two occasions and on those occasions the expression of beta(2) adrenoreceptors was increased in excess of 1900 sites/cell; in the remaining 28 observations beta(2) adrenoreceptor expression was within the normal range (800 to 1900 sites/cell). In patients with secondary progressive disease, MRI disease activity was observed on 16 occasions. In these patients expression of beta(2) adrenoreceptors was increased in excess of 2000 sites/cell in all measurements except in one subject who did not show MRI activity throughout the six months period of study. The affinity of the receptors was within the normal range in all cases. CONCLUSIONS Increased expression of beta(2) adrenoreceptors was correlated with MRI disease activity in two patients with primary progressive multiple sclerosis. In secondary progressive multiple sclerosis, increased expression of beta(2) adrenoreceptors tended not to correlate with MRI disease activity. This may reflect a persistent Th1 immune reaction in the secondary progressive form of the disease.
Collapse
Affiliation(s)
- Y Zoukos
- Department of Neurology, The Royal London and St Bartholomew's Hospital, London E1, UK.
| | | | | | | | | |
Collapse
|
41
|
Involvement of tissue plasminogen activator in onset and effector phases of experimental allergic encephalomyelitis. J Neurosci 2003. [PMID: 12486171 DOI: 10.1523/jneurosci.22-24-10781.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammation, demyelination, and neurodegeneration are pathological features of multiple sclerosis (MS). In the brains of MS patients, tissue plasminogen activator (tPA) mRNA and protein are upregulated, and changes in the levels of tPA correlate with progression of the disease. However, the role of tPA in MS is as yet unknown. tPA functions in the CNS in neuronal plasticity and cell death. tPA also mediates the activation of microglia, the CNS "immune cells." In this study, we establish that tPA activity increases during major oligodendrocyte glycoprotein-induced experimental allergic encephalomyelitis (EAE) in normal mice. To explore the role of tPA in this disease as a model for MS, we have examined the EAE course and expression of histopathological markers in mice lacking tPA (tPA(-/-)). We find that tPA(-/-) mice have a delayed onset of EAE but then exhibit increased severity and delayed recovery from the neurological dysfunction. Demyelination and axon degeneration are delayed, microglial activation is attenuated, and the production of chemokines is decreased. Our results suggest that tPA and activated microglia have complex roles in MS/EAE, and that these roles are harmful during the onset of the disease but beneficial in the recovery phase. A temporally restricted attenuation of tPA activity could have therapeutic potential in the management of MS.
Collapse
|
42
|
Bjartmar C, Trapp BD. Axonal degeneration and progressive neurologic disability in multiple sclerosis. Neurotox Res 2003; 5:157-64. [PMID: 12832230 DOI: 10.1007/bf03033380] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Accumulating data support axonal degeneration as the major determinant of irreversible neurological disability in patients with multiple sclerosis (MS). The extent of axonal injury correlates with the degree of inflammation in active MS lesions and occurs at early stages of disease, indicating that inflammatory demyelination is an important factor behind axon pathology at the relapsing-remitting stage of MS. Axonal loss from disease onset can remain clinically silent for many years, and permanent neurological disability develops when a threshold of axonal loss is reached and the CNS compensatory resources are exhausted. Lack of myelin-derived trophic support due to long term demyelination may cause continuous axonal degeneration in chronic inactive lesions at the secondary-progressive stage of MS. Axonal pathology is not limited to demyelinated lesions, but also extends into normal appearing white matter. The concept of MS as a neurodegenerative disorder has important clinical implications: First, proactive anti-inflammatory and immunomodulatory treatment should prevent or delay chronic disability since inflammation influences axonal injury. Second, the pathophysiological mechanisms underlying axonal degeneration in MS need to be clarified in order to develop novel neuroprotective therapeutics. Finally, surrogate markers of axonal pathology, such as N-acetyl aspartate, can be used to monitor axonal dysfunction, axonal loss and treatment efficiency in patients with MS.
Collapse
Affiliation(s)
- Carl Bjartmar
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA.
| | | |
Collapse
|
43
|
Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 2002; 346:165-73. [PMID: 11796850 DOI: 10.1056/nejmoa010994] [Citation(s) in RCA: 727] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Multiple sclerosis is an inflammatory disease of the central nervous system that destroys myelin, oligodendrocytes, and axons. Since most of the lesions of multiple sclerosis are not remyelinated, enhancement of remyelination is a possible therapeutic strategy that could perhaps be achieved with the transplantation of oligodendrocyte-producing cells into the lesions. We investigated the frequency distribution and configuration of oligodendrocytes in chronic lesions of multiple sclerosis to determine whether these factors limit remyelination. METHODS Forty-eight chronic lesions obtained at autopsy from 10 patients with multiple sclerosis were examined immunocytochemically for oligodendrocytes and oligodendrocyte progenitor cells. Using confocal microscopy, we examined the three-dimensional relations between axons and the processes of premyelinating oligodendrocytes. RESULTS Thirty-four of the 48 chronic lesions of multiple sclerosis contained oligodendrocytes with multiple extended processes that associated with demyelinated axons but failed to myelinate them. These axons were dystrophic and contained multiple swellings. In some regions, the densities of premyelinating oligodendrocytes (25 per square millimeter of tissue) were similar to those in the developing rodent brain (23 per square millimeter). In the patients with disease of long duration (more than 20 years), there were fewer lesions with premyelinating oligodendrocytes (P<0.001). CONCLUSIONS Premyelinating oligodendrocytes are present in chronic lesions of multiple sclerosis, so remyelination is not limited by an absence of oligodendrocyte progenitors or their failure to generate oligodendrocytes. Our findings suggest that in the chronic lesions of multiple sclerosis, the axons are not receptive for remyelination. Understanding the cellular interactions between premyelinating oligodendrocytes, axons, and the microenvironment of lesions of multiple sclerosis may lead to effective strategies for enhancing remyelination.
Collapse
Affiliation(s)
- Ansi Chang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- J H Noseworthy
- Department of Neurology, Mayo Clinic and Mayo Foundation, Rochester, Minn 55905, USA
| | | | | | | |
Collapse
|
45
|
Waxman SG. The neuron as a dynamic electrogenic machine: modulation of sodium-channel expression as a basis for functional plasticity in neurons. Philos Trans R Soc Lond B Biol Sci 2000; 355:199-213. [PMID: 10724456 PMCID: PMC1692729 DOI: 10.1098/rstb.2000.0559] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neurons signal each other via regenerative electrical impulses (action potentials) and thus can be thought of as electrogenic machines. Voltage-gated sodium channels produce the depolarizations necessary for action potential activity in most neurons and, in this respect, lie close to the heart of the electrogenic machinery. Although classical neurophysiological doctrine accorded 'the' sodium channel a crucial role in electrogenesis, it is now clear that nearly a dozen genes encode distinct sodium channels with different molecular structures and functional properties, and the majority of these channels are expressed within the mammalian nervous system. The transcription of these sodium-channel genes, and the deployment of the channels that they encode, can change significantly within neurons following various injuries. Moreover, the transcription of these genes and the deployment of various types of sodium channels within neurons of the normal nervous system can change markedly as neurons respond to changing milieus or physiological inputs. As a result of these changes in sodium-channel expression, the membranes of neurons may be retuned so as to alter their transductive and/or encoding properties. Neurons within the normal and injured nervous system can thus function as dynamic electrogenic machines with electroresponsive properties that change not only in response to pathological insults, but also in response to shifting functional needs.
Collapse
Affiliation(s)
- S G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
46
|
Osterhout DJ, Wolven A, Wolf RM, Resh MD, Chao MV. Morphological differentiation of oligodendrocytes requires activation of Fyn tyrosine kinase. J Cell Biol 1999; 145:1209-18. [PMID: 10366594 PMCID: PMC2133143 DOI: 10.1083/jcb.145.6.1209] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1998] [Revised: 05/04/1999] [Indexed: 01/06/2023] Open
Abstract
In the central nervous system, myelination of axons occurs when oligodendrocyte progenitors undergo terminal differentiation and initiate process formation and axonal ensheathment. Although it is hypothesized that neuron-oligodendrocyte contact initiates this process, the molecular signals are not known. Here we find that Fyn tyrosine kinase activity is upregulated very early during oligodendrocyte progenitor cell differentiation. Concomitant with this increase is the appearance of several tyrosine phosphorylated proteins present only in differentiated cells. The increased tyrosine kinase activity is specific to Fyn, as other Src family members are not active in oligodendrocytes. To investigate the function of Fyn activation on differentiation, we used Src family tyrosine kinase inhibitors, PP1 and PP2, in cultures of differentiating oligodendrocyte progenitors. Treatment of progenitors with these compounds prevented activation of Fyn and reduced process extension and myelin membrane formation. This inhibition was reversible and not observed with related inactive analogues. A similar effect was observed when a dominant negative Fyn was introduced in progenitor cells. These findings strongly suggest that activation of Fyn is an essential signaling component for the morphological differentiation of oligodendrocytes.
Collapse
Affiliation(s)
- D J Osterhout
- Molecular Neurobiology Program, Skirball Institute, New York University Medical Center, New York 10016, USA
| | | | | | | | | |
Collapse
|
47
|
McFarland HI, Lobito AA, Johnson MM, Nyswaner JT, Frank JA, Palardy GR, Tresser N, Genain CP, Mueller JP, Matis LA, Lenardo MJ. Determinant Spreading Associated with Demyelination in a Nonhuman Primate Model of Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.4.2384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Definition of the immune process that causes demyelination in multiple sclerosis is essential to determine the feasibility of Ag-directed immunotherapy. Using the nonhuman primate, Callithrix jacchus jacchus (common marmoset), we show that immunization with myelin basic protein and proteolipid protein determinants results in clinical disease with significant demyelination. Demyelination was associated with spreading to myelin oligodendrocyte glycoprotein (MOG) determinants that generated anti-MOG serum Abs and Ig deposition in central nervous system white matter lesions. These data associate intermolecular “determinant spreading” with clinical autoimmune disease in primates and raise important issues for the pathogenesis and treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Hugh I. McFarland
- *Laboratory of Immunology, National Institute of Allergy and Infectious Diseases,
| | - Adrian A. Lobito
- *Laboratory of Immunology, National Institute of Allergy and Infectious Diseases,
| | - Michele M. Johnson
- *Laboratory of Immunology, National Institute of Allergy and Infectious Diseases,
| | - Jeffrey T. Nyswaner
- *Laboratory of Immunology, National Institute of Allergy and Infectious Diseases,
| | | | - Gregory R. Palardy
- *Laboratory of Immunology, National Institute of Allergy and Infectious Diseases,
| | - Nancy Tresser
- ‡Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Claude P. Genain
- §Department of Neurology, University of California, San Francisco, CA 94143; and
| | | | | | - Michael J. Lenardo
- *Laboratory of Immunology, National Institute of Allergy and Infectious Diseases,
| |
Collapse
|
48
|
Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J Neurosci 1998. [PMID: 9698311 DOI: 10.1523/jneurosci.18-16-06176.1998] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Olfactory ensheathing cells (OECs), which have properties of both astrocytes and Schwann cells, can remyelinate axons with a Schwann cell-like pattern of myelin. In this study the pattern and extent of remyelination and the electrophysiological properties of dorsal column axons were characterized after transplantation of OECs into a demyelinated rat spinal cord lesion. Dorsal columns of adult rat spinal cords were demyelinated by x-ray irradiation and focal injections of ethidium bromide. Cell suspensions of acutely dissociated OECs from neonatal rats were injected into the lesion 6 d after x-ray irradiation. At 21-25 d after transplantation of OECs, the spinal cords were maintained in an in vitro recording chamber to study the conduction properties of the axons. The remyelinated axons displayed improved conduction velocity and frequency-response properties, and action potentials were conducted a greater distance into the lesion, suggesting that conduction block was overcome. Quantitative histological analysis revealed remyelinated axons near and remote from the cell injection site, indicating extensive migration of OECs within the lesion. These data support the conclusion that transplantation of neonatal OECs results in quantitatively extensive and functional remyelination of demyelinated dorsal column axons.
Collapse
|