1
|
Sharma A, Ravindran V. Current and future advances in practice: arboviral arthritides. Rheumatol Adv Pract 2025; 9:rkaf029. [PMID: 40225230 PMCID: PMC11992517 DOI: 10.1093/rap/rkaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Arboviral arthritides are a group of viral infections affecting the musculoskeletal system. Mosquitoes are vectors for some of the arboviral febrile diseases such as due to chikungunya, dengue and Zika viruses, which constitute a major proportion of arboviral arthritide syndromes in humans. They have gained epidemiological importance as the natural habitats of these mosquitoes are in the vicinity of human dwellings. Chikungunya virus infection frequently leads to post-infectious chronic musculoskeletal syndromes including erosive inflammatory arthritis, which resembles RA. Clinical features of the chronic phase result from the chronic persistence of the virus in certain tissues after the acute infection has resolved. In addition, the triggering of autoimmunity has also been implicated in musculoskeletal syndromes. Due to the diversity of clinical presentations and overlapping features with other viral illnesses and inflammatory arthritides, diagnosis and management are challenging. Poor prognostic factors for predicting evolution to chronic arthritides are not well delineated. There is no universal agreement regarding when to start immunomodulatory agents and the duration of such therapy. The lack of specific antiviral agents adds to the complexity of the situation. A live-attenuated vaccine has been recently approved by the US Food and Drug Administration for the prevention of chikungunya virus infection. This review discusses the musculoskeletal syndromes related to arboviral infections, with a major focus on chikungunya virus-related arthritis to provide practical guidance to clinicians involved in managing patients with chikungunya and its sequelae.
Collapse
Affiliation(s)
- Ashish Sharma
- Dilshad Garden, Rheumatology Clinic, New Delhi, India
| | - Vinod Ravindran
- Department of Rheumatology, Centre for Rheumatology, Calicut, Kerala, India
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Feng Z, Yang X, Zhang B, Mo C, Li C, Tian X, Zhang C, Ou M, Hou X. Exploring the relationship between infectious agents and autoimmune diseases: a review. Eur J Clin Microbiol Infect Dis 2024; 43:1505-1516. [PMID: 38829448 DOI: 10.1007/s10096-024-04869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
The relationship between infectious agents and autoimmune diseases is a complex issue. In recent years, increasing clinical cases have indicated that infectious agents play an important role in the development of autoimmune diseases. Molecular mimicry is currently widely regarded as the primary pathogenic mechanism of various autoimmune diseases in humans. Components of infectious agents can undergo molecular mimicry with components in patients' bodies, leading to the development of various autoimmune diseases. In this article, we provide a brief overview of current research of the current research status on the relationship between infectious agents and autoimmune diseases, and describe our current understanding of their mechanisms of action in order to better understand the pathogenesis, diagnosis, and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Zhihui Feng
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xueli Yang
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Biao Zhang
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Chune Mo
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Chunhong Li
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xiayu Tian
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Chong Zhang
- Department of Neurology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Minglin Ou
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xianliang Hou
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Zhang W, Lang R. Association between autoimmune liver diseases and chronic hepatitis B: A multivariable Mendelian randomization study in European population. Prev Med 2024; 184:107984. [PMID: 38705484 DOI: 10.1016/j.ypmed.2024.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Observational studies have indicated a link between autoimmune liver diseases (AILD) and chronic hepatitis B (CHB) through observational studies. The association between AILD and CHB remains indeterminate. METHODS A two-sample Mendelian randomization (MR) analysis was conducted to scrutinize the causal nexus between AILD and CHB utilizing summary statistics derived from extensive genome-wide association studies (GWASs) in European populations. The primary statistical methodology employed was the inverse variance-weighted (IVW) method to deduce the causal connection of AILD on CHB. This study incorporated primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and autoimmune hepatitis (AIH) as subtypes of AILD. Additionally, we conducted a multivariable MR (MVMR) analysis to account for the potential confounding effects of smoking, alcohol consumption, body mass index (BMI), and some autoimmune diseases. RESULTS Our MR investigation encompassed a cohort of 725,816 individuals. The MR analysis revealed that genetically predicted PSC significantly correlated with a reduced risk of CHB (IVW OR = 0.857; 95%CI: 0.770-0.953, P = 0.005). Conversely, the reverse MR analysis suggested that genetic susceptibility to PSC might not modify the risk of CHB (IVW OR = 1.004; 95% CI: 0.958-1.053, P = 0.866). Genetically proxied PBC and AIH exhibited no discernible causal association with CHB in the MR analysis using the IVW method (P = 0.583; P = 0.425). The MVMR analysis still indicated a decreased risk of CHB associated with PSC (OR = 0.853, P = 0.003). CONCLUSION Our study elucidates a causal relationship between PSC and a diminished risk of CHB.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Alexander VN. The creativity of cells: aneural irrational cognition. J Physiol 2024; 602:2479-2489. [PMID: 37777982 DOI: 10.1113/jp284417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
Evidence of cognition in aneural cells is well-establish in the literature. This paper extends the exploration of the mechanisms of cognition by considering whether or not aneural cells may be capable of irrational cognition, making associations based on coincidental similarities and circumstantial factors. If aneural cells do harness such semiosic qualities, as with higher-level creativity, this might be how they are able to overcome old algorithms and invent tools for new situations. I will look at three examples of irrational learning in aneural systems in terms of semiotics: (1) generalisation in the immune system, based on viral molecular mimicry, whereby immune cells attack the self, which seems to be an overgeneralisation of an icon sign based on mere similarity, not identity, (2) the classical conditioning of pea plants to trope toward wind as a sign of light, which seems to be an association of an index sign based on mere temporal proximity, and (3) a pharmaceutical intervention to prevent pregnancy, using a conjugate to encrypt self with non-self, which seems to be an example of symbol use. We identify irrational cognition easily when it leads to 'wrong' outcomes, but, if it occurs, it may also lead to favourable outcomes and 'creative' solutions.
Collapse
|
5
|
Scott RC, Moshé SL, Holmes GL. Do vaccines cause epilepsy? Review of cases in the National Vaccine Injury Compensation Program. Epilepsia 2024; 65:293-321. [PMID: 37914395 DOI: 10.1111/epi.17794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE The National Childhood Vaccine Injury Act of 1986 created the National Vaccine Injury Compensation Program (VICP), a no-fault alternative to the traditional tort system. Since 1988, the total compensation paid exceeds $5 billion. Although epilepsy is one of the leading reasons for filing a claim, there has been no review of the process and validity of the legal outcomes given current medical information. The objectives were to review the evolution of the VICP program in regard to vaccine-related epilepsy and assess the rationale behind decisions made by the court. METHODS Publicly available cases involving epilepsy claims in the VICP were searched through Westlaw and the US Court of Federal Claims websites. All published reports were reviewed for petitioner's theories supporting vaccine-induced epilepsy, respondent's counterarguments, the final decision regarding compensation, and the rationale underlying these decisions. The primary goal was to determine which factors went into decisions regarding whether vaccines caused epilepsy. RESULTS Since the first epilepsy case in 1989, there have been many changes in the program, including the removal of residual seizure disorder as a vaccine-related injury, publication of the Althen prongs, release of the acellular form of pertussis, and recognition that in genetic conditions the underlying genetic abnormality rather than the immunization causes epilepsy. We identified 532 unique cases with epilepsy: 105 with infantile spasms and 427 with epilepsy without infantile spasms. The petitioners' experts often espoused outdated, erroneous causation theories that lacked an acceptable medical or scientific foundation and were frequently criticized by the court. SIGNIFICANCE Despite the lack of epidemiological or mechanistic evidence indicating that childhood vaccines covered by the VICP result in or aggravate epilepsy, these cases continue to be adjudicated. After 35 years of intense litigation, it is time to reconsider whether epilepsy should continue to be a compensable vaccine-induced injury.
Collapse
Affiliation(s)
- Rodney C Scott
- Nemours Children's Hospital-Delaware, Wilmington, Delaware, USA
| | - Solomon L Moshé
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Gregory L Holmes
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
6
|
Blank M, Israeli E, Halpert G, Cervera R. The Infectious Origin of the Anti-Phospholipid Syndrome. INFECTION AND AUTOIMMUNITY 2024:695-713. [DOI: 10.1016/b978-0-323-99130-8.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Trier NH, Houen G. Antibody Cross-Reactivity in Auto-Immune Diseases. Int J Mol Sci 2023; 24:13609. [PMID: 37686415 PMCID: PMC10487534 DOI: 10.3390/ijms241713609] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Autoimmunity is defined by the presence of antibodies and/or T cells directed against self-components. Although of unknown etiology, autoimmunity commonly is associated with environmental factors such as infections, which have been reported to increase the risk of developing autoimmune diseases. Occasionally, similarities between infectious non-self and self-tissue antigens may contribute to immunological cross-reactivity in autoimmune diseases. These reactions may be interpreted as molecular mimicry, which describes cross-reactivity between foreign pathogens and self-antigens that have been reported to cause tissue damage and to contribute to the development of autoimmunity. By focusing on the nature of antibodies, cross-reactivity in general, and antibody-antigen interactions, this review aims to characterize the nature of potential cross-reactive immune reactions between infectious non-self and self-tissue antigens which may be associated with autoimmunity but may not actually be the cause of disease onset.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
8
|
Xu Y, Chen Y, Zhang L. Review: Advances in the Pathogenesis and Treatment of Immune Thrombocytopenia Associated with Viral Hepatitis. Glob Med Genet 2023; 10:229-233. [PMID: 37635907 PMCID: PMC10449570 DOI: 10.1055/s-0043-1772771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Hepatitis B virus and hepatitis C virus are the hepatitis subtypes that most commonly induce immune thrombocytopenia (ITP). Although the pathogenesis of viral hepatitis-associated ITP remains unclear, it may involve antibody cross-reactivity due to molecular mimicry, the formation of virus-platelet immune complexes, and T cell-mediated suppression of bone marrow hematopoiesis. Moreover, there is significant correlation between platelet count and the severity of viral hepatitis, the risk of progression to liver cirrhosis, and clinical prognosis. However, treatment of viral hepatitis-associated ITP is hindered by some antiviral drugs. In this review, we summarize research progress to date on the pathogenesis and treatment of viral hepatitis-related ITP, hoping to provide a reference for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yanmei Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, People's Republic of China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, People's Republic of China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, People's Republic of China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, People's Republic of China
| |
Collapse
|
9
|
Chatanaka MK, Sohaei D, Diamandis EP, Prassas I. Beyond the amyloid hypothesis: how current research implicates autoimmunity in Alzheimer's disease pathogenesis. Crit Rev Clin Lab Sci 2023; 60:398-426. [PMID: 36941789 DOI: 10.1080/10408363.2023.2187342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
The amyloid hypothesis has so far been at the forefront of explaining the pathogenesis of Alzheimer's Disease (AD), a progressive neurodegenerative disorder that leads to cognitive decline and eventual death. Recent evidence, however, points to additional factors that contribute to the pathogenesis of this disease. These include the neurovascular hypothesis, the mitochondrial cascade hypothesis, the inflammatory hypothesis, the prion hypothesis, the mutational accumulation hypothesis, and the autoimmunity hypothesis. The purpose of this review was to briefly discuss the factors that are associated with autoimmunity in humans, including sex, the gut and lung microbiomes, age, genetics, and environmental factors. Subsequently, it was to examine the rise of autoimmune phenomena in AD, which can be instigated by a blood-brain barrier breakdown, pathogen infections, and dysfunction of the glymphatic system. Lastly, it was to discuss the various ways by which immune system dysregulation leads to AD, immunomodulating therapies, and future directions in the field of autoimmunity and neurodegeneration. A comprehensive account of the recent research done in the field was extracted from PubMed on 31 January 2022, with the keywords "Alzheimer's disease" and "autoantibodies" for the first search input, and "Alzheimer's disease" with "IgG" for the second. From the first search, 19 papers were selected, because they contained recent research on the autoantibodies found in the biofluids of patients with AD. From the second search, four papers were selected. The analysis of the literature has led to support the autoimmune hypothesis in AD. Autoantibodies were found in biofluids (serum/plasma, cerebrospinal fluid) of patients with AD with multiple methods, including ELISA, Mass Spectrometry, and microarray analysis. Through continuous research, the understanding of the synergistic effects of the various components that lead to AD will pave the way for better therapeutic methods and a deeper understanding of the disease.
Collapse
Affiliation(s)
- Miyo K Chatanaka
- Department of Laboratory and Medicine Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Dorsa Sohaei
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory and Medicine Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| |
Collapse
|
10
|
Afroz S, Bartolo L, Su LF. Pre-existing T Cell Memory to Novel Pathogens. Immunohorizons 2023; 7:543-553. [PMID: 37436166 PMCID: PMC10587503 DOI: 10.4049/immunohorizons.2200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Immunological experiences lead to the development of specific T and B cell memory, which readies the host for a later pathogen rechallenge. Currently, immunological memory is best understood as a linear process whereby memory responses are generated by and directed against the same pathogen. However, numerous studies have identified memory cells that target pathogens in unexposed individuals. How "pre-existing memory" forms and impacts the outcome of infection remains unclear. In this review, we discuss differences in the composition of baseline T cell repertoire in mice and humans, factors that influence pre-existing immune states, and recent literature on their functional significance. We summarize current knowledge on the roles of pre-existing T cells in homeostasis and perturbation and their impacts on health and disease.
Collapse
Affiliation(s)
- Sumbul Afroz
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA
| | - Laurent Bartolo
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA
| | - Laura F. Su
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| |
Collapse
|
11
|
Abstract
At the end of 2019, the world began to fight the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2. Many vaccines have quickly been developed to control the epidemic, and with the widespread use of vaccines globally, several vaccine-related adverse events have been reported. This review mainly focused on COVID-19 vaccination-associated thyroiditis and summarized the current evidence regarding vaccine-induced subacute thyroiditis, silent thyroiditis, Graves' disease, and Graves' orbitopathy. The main clinical characteristics of each specific disease were outlined, and possible pathophysiological mechanisms were discussed. Finally, areas lacking evidence were specified, and a research agenda was proposed.
Collapse
Affiliation(s)
- Süleyman Nahit Şendur
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Seda Hanife Oğuz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Uğur Ünlütürk
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey.
| |
Collapse
|
12
|
Lerkvaleekul B, Charuvanij S, Sukharomana M, Pirojsakul K, Kamolwatwong M, Vilaiyuk S. Outcomes in children with rheumatic diseases following COVID-19 vaccination and infection: data from a large two-center cohort study in Thailand. Front Pediatr 2023; 11:1194821. [PMID: 37360372 PMCID: PMC10285492 DOI: 10.3389/fped.2023.1194821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Vaccination against coronavirus disease 2019 (COVID-19) is effective in protecting patients from severe COVID-19 infection. Disease flare-up following immunization in children with rheumatic disorders may result in patient reluctance to receive the vaccine. Underlying rheumatic diseases or the use of immunosuppressive drugs may influence the outcomes of COVID-19 vaccination and infection. We aimed to describe outcomes in children with rheumatic diseases following COVID-19 immunization and infection. Methods This retrospective study was performed at two large academic centers in Thailand. During the COVID-19 pandemic, all patients were routinely queried about COVID-19-related conditions. We included patients with rheumatic diseases aged <18 years who received at least one dose of a COVID-19 vaccine or had a history of COVID-19 infection with more than 6 months of recorded follow-up after the last vaccine dose or COVID-19 illness. Demographic information and data on clinical symptoms, disease activity, treatment, outcomes, and COVID-19 vaccination and infection were collected. Results A total of 479 patients were included. Most (229; 47.81%) patients had juvenile idiopathic arthritis, followed by connective tissue diseases (189; 39.46%), vasculitis syndromes (42; 8.76%), and other rheumatic diseases (19; 3.97%). Approximately 90% of patients received at least one dose of COVID-19 vaccination, and half of the patients had COVID-19 infection. Among patients, 10.72% and 3.27% developed a flare after COVID-19 vaccination and COVID-19 illness, respectively. Flare severity after COVID immunization and infection was mainly mild to moderate. The predictor of flare after COVID-19 vaccination was the use of prednisolone ≥10 mg/day before vaccination (hazard ratio: 2.04, 95% confidence interval: 1.05-3.97, p = 0.037). Inactive disease before receiving the COVID-19 vaccination was a predictor of inactive status after a flare (hazard ratio: 2.95, 95% confidence interval: 1.04-8.40; p = 0.043). Overall, 3.36% and 1.61% of patients experienced a new onset of rheumatic disease after receiving the COVID-19 vaccine and after COVID-19 infection, respectively. Conclusion The COVID-19 vaccine is recommended for children with rheumatic disease, particularly those who are in stable condition. After COVID-19 vaccination, patients-especially those with active disease before vaccination or those receiving concurrent prednisolone doses of ≥10 mg/day-should be closely monitored.
Collapse
Affiliation(s)
- Butsabong Lerkvaleekul
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Charuvanij
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Maynart Sukharomana
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kwanchai Pirojsakul
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Malisa Kamolwatwong
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Soamarat Vilaiyuk
- Division of Rheumatology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Silva PBR, Silva GD. Risk and characteristics of attacks occurring after vaccination in patients with neuromyelitis optica spectrum disorders: A systematic review and meta-analysis. Mult Scler Relat Disord 2023; 75:104741. [PMID: 37182477 DOI: 10.1016/j.msard.2023.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/25/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Vaccination in patients with neuromyelitis optica spectrum disorders (NMOSD) is challenging because there is a concern that vaccines can lead to clinical attacks. However, little is known about the risk and the characteristics of attacks occurring after vaccination. METHODS We performed a systematic review and meta-analysis using PubMed and Embase databases to estimate a summary frequency of attacks occurring after vaccination and describe the clinical features of theses attacks. We defined attacks occurring after vaccination as typical NMOSD attacks that occurred up to 30 days after vaccine administration. For the frequency of attacks occurring after vaccination, we selected observational studies that reported the number of attacks and total number of patients that received vaccines; for the clinical description of the attacks, case reports and case series were also included. RESULTS We included 377 participants from 5 studies to estimate the frequency of NMOSD attacks occurring after vaccination. We found a summary frequency of of 2% (95% CI 1-4%, I2 = 0%). We evaluated 17 studies to identify that 13 different vaccines were associated with NMOSD attacks. A higher-than-expected proportion of males, simultaneous optic neuritis and transverse myelitis attacks, and anti-aquaporin 4 antibody negative cases were identified in vaccine-associated attacks from 24 participants from 17 studies. Nearly two-thirds of attacks occurring after vaccination were an initial event of NMOSD. CONCLUSION The frequency of NMOSD attacks occurring after vaccination is low and non-specific to different vaccine technologies. Our work reinforces the safety of vaccine recommendations in patients with NMOSD.
Collapse
Affiliation(s)
| | - Guilherme Diogo Silva
- Neuroimmunology group, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Rousseau BA, Bhaduri-McIntosh S. Inflammation and Epstein-Barr Virus at the Crossroads of Multiple Sclerosis and Post-Acute Sequelae of COVID-19 Infection. Viruses 2023; 15:949. [PMID: 37112929 PMCID: PMC10141000 DOI: 10.3390/v15040949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Recent studies have strengthened the evidence for Epstein-Barr Virus (EBV) as an important contributing factor in the development of multiple sclerosis (MS). Chronic inflammation is a key feature of MS. EBV+ B cells can express cytokines and exosomes that promote inflammation, and EBV is known to be reactivated through the upregulation of cellular inflammasomes. Inflammation is a possible cause of the breakdown of the blood-brain barrier (BBB), which allows the infiltration of lymphocytes into the central nervous system. Once resident, EBV+ or EBV-specific B cells could both plausibly exacerbate MS plaques through continued inflammatory processes, EBV reactivation, T cell exhaustion, and/or molecular mimicry. Another virus, SARS-CoV-2, the cause of COVID-19, is known to elicit a strong inflammatory response in infected and immune cells. COVID-19 is also associated with EBV reactivation, particularly in severely ill patients. Following viral clearance, continued inflammation may be a contributor to post-acute sequelae of COVID-19 infection (PASC). Evidence of aberrant cytokine activation in patients with PASC supports this hypothesis. If unaddressed, long-term inflammation could put patients at risk for reactivation of EBV. Determining mechanisms by which viruses can cause inflammation and finding treatments for reducing that inflammation may help reduce the disease burden for patients suffering from PASC, MS, and EBV diseases.
Collapse
Affiliation(s)
- Beth A. Rousseau
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
15
|
English J, Patrick S, Stewart LD. The potential role of molecular mimicry by the anaerobic microbiome in the aetiology of autoimmune disease. Anaerobe 2023; 80:102721. [PMID: 36940867 DOI: 10.1016/j.anaerobe.2023.102721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Autoimmune diseases are thought to develop as a consequence of various environmental and genetic factors, each of which contributes to dysfunctional immune responses and/or a breakdown in immunological tolerance towards native structures. Molecular mimicry by microbial components is among the environmental factors thought to promote a breakdown in immune tolerance, particularly through the presence of cross-reactive epitopes shared with the human host. While resident members of the microbiome are essential promoters of human health through immunomodulation, defence against pathogenic colonisation and conversion of dietary fibre into nutritional resources for host tissues, there may be an underappreciated role of these microbes in the aetiology and/or progression of autoimmune disease. An increasing number of molecular mimics are being identified amongst the anaerobic microbiota which structurally resemble endogenous components and, in some cases, for example the human ubiquitin mimic of Bacteroides fragilis and DNA methyltransferase of Roseburia intestinalis, have been associated with promoting antibody profiles characteristic of autoimmune diseases. The persistent exposure of molecular mimics from the microbiota to the human immune system is likely to be involved in autoantibody production that contributes to the pathologies associated with immune-mediated inflammatory disorders. Here-in, examples of molecular mimics that have been identified among resident members of the human microbiome and their ability to induce autoimmune disease through cross-reactive autoantibody production are discussed. Improved awareness of the molecular mimics that exist among human colonisers will help elucidate the mechanisms involved in the breakdown of immune tolerance that ultimately lead to chronic inflammation and downstream disease.
Collapse
Affiliation(s)
- Jamie English
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast. 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Sheila Patrick
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast. 19 Chlorine Gardens, Belfast, BT9 5DL, UK; The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Linda D Stewart
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast. 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| |
Collapse
|
16
|
Taghadosi M, Safarzadeh E, Asgarzadeh A, Roghani SA, Shamsi A, Jalili C, Assar S, Soufivand P, Pournazari M, Feizollahi P, Nicknam MH, Asghariazar V, Vaziri S, Shahriari H, Mohammadi A. Partners in crime: Autoantibodies complicit in COVID-19 pathogenesis. Rev Med Virol 2023; 33:e2412. [PMID: 36471421 PMCID: PMC9877745 DOI: 10.1002/rmv.2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Autoantibodies (AABs) play a critical role in the pathogenesis of autoimmune diseases (AIDs) and serve as a diagnostic and prognostic tool in assessing these complex disorders. Viral infections have long been recognized as a principal environmental factor affecting the production of AABs and the development of autoimmunity. COVID-19 has primarily been considered a hyperinflammatory syndrome triggered by a cytokine storm. In the following, the role of maladaptive B cell response and AABs became more apparent in COVID-19 pathogenesis. The current review will primarily focus on the role of extrafollicular B cell response, Toll-like receptor-7 (TLR-7) activation, and neutrophil extracellular traps (NETs) formation in the development of AABs following SARS-CoV-2 infection. In the following, this review will clarify how these AABs dysregulate immune response to SARS-CoV-2 by disrupting cytokine function and triggering neutrophil hyper-reactivity. Finally, the pathologic effects of these AABs will be further described in COVID-19 associate clinical manifestations, including venous and arterial thrombosis, a multisystem inflammatory syndrome in children (MIS-C), acute respiratory distress syndrome (ARDS), and recently described post-acute sequelae of COVID-19 (PASC) or long-COVID.
Collapse
Affiliation(s)
- Mahdi Taghadosi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Seyed Askar Roghani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Afsaneh Shamsi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Department of Anatomy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parviz Soufivand
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Feizollahi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Siavash Vaziri
- Infectious Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Shahriari
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
17
|
Kim S, Lee EK, Sohn E. Two Case Reports of Chronic Inflammatory Demyelinating Polyneuropathy After COVID-19 Vaccination. J Korean Med Sci 2023; 38:e57. [PMID: 36852853 PMCID: PMC9970789 DOI: 10.3346/jkms.2023.38.e57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/28/2022] [Indexed: 02/12/2023] Open
Abstract
The occurrence of chronic inflammatory demyelinating polyneuropathy (CIDP) related to coronavirus disease 2019 (COVID-19) has rarely been reported. We describe two patients who were diagnosed with CIDP after COVID-19 vaccination. A 72-year-old man presented with a progressive tingling sensation and weakness below both knees for two weeks. He had been vaccinated against COVID-19 (mRNA-1273 vaccine) a month before the appearance of symptoms. Demyelinating polyneuropathy was observed in the nerve conduction studies (NCS). Intravenous immunoglobulin (IVIg) was administered under the diagnosis of Guillain-Barré syndrome (GBS), and his symptoms were improved. However, his symptoms relapsed at 10 weeks from the onset. Oral prednisolone, azathioprine, and IVIg were administered as treatment. The second case was a 50-year-old man who complained of a bilateral leg tingling sensation and gait disturbance lasting four weeks. He had received the Ad26.COV2.S vaccine against COVID-19 five weeks prior. Demyelinating polyneuropathy was observed in the NCS. He was treated with oral prednisolone, azathioprine, and IVIg for CIDP because his symptoms had lasted for more than 12 weeks from the onset. A causal relationship has not been established between COVID-19 vaccination and CIDP; however, CIDP may follow COVID-19 vaccination. As CIDP treatment is different from that for GBS, clinicians should closely monitor patients diagnosed with GBS associated with COVID-19 whether they deteriorate after initial treatment.
Collapse
Affiliation(s)
- Sooyoung Kim
- Department of Neurology, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| | - Eun Kyoung Lee
- Department of Neurology, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Korea
| | - Eunhee Sohn
- Department of Neurology, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea.
| |
Collapse
|
18
|
COVID-19 Vaccine-Induced Lichenoid Eruptions-Clinical and Histopathologic Spectrum in a Case Series of Fifteen Patients with Review of the Literature. Vaccines (Basel) 2023; 11:vaccines11020438. [PMID: 36851315 PMCID: PMC9967301 DOI: 10.3390/vaccines11020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Lichen planus is a distinctive mucocutaneous disease with well-established clinical and histopathologic criteria. Lichenoid eruptions closely resemble lichen planus and may sometimes be indistinguishable from it. Systemic agents previously associated have included medications, viral infections and vaccines. Sporadic case reports of lichen planus and lichenoid reactions associated with COVID-19 vaccines have recently emerged. Herein, we review the world literature (31 patients) and expand it with a case series of 15 patients who presented with vaccine-induced lichenoid eruption (V-ILE). The spectrum of clinical and histopathologic findings is discussed with emphasis on the subset whose lesions manifested in embryologic fusion lines termed lines of Blaschko. This rare Blaschkoid distribution appeared in seven of the 46 patients studied. Of interest, all seven were linked to the mRNA COVID-19 vaccines. We believe that all lichenoid eruptions should be approached with a heightened index of suspicion and patients should be specifically questioned with regards to their vaccination history. When diagnosed early in its course, V-ILE is easily treated and resolves quickly in almost all patients with or without hyperpigmentation. Additional investigative studies regarding its immunopathology and inflammatory signaling pathways may offer insight into other Th1-driven autoimmune phenomena related to COVID-19 vaccination.
Collapse
|
19
|
Kuang H, Liu J, Jia XY, Cui Z, Zhao MH. Autoimmunity in Anti-Glomerular Basement Membrane Disease: A Review of Mechanisms and Prospects for Immunotherapy. Am J Kidney Dis 2023; 81:90-99. [PMID: 36334986 DOI: 10.1053/j.ajkd.2022.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/10/2022] [Indexed: 11/06/2022]
Abstract
Anti-glomerular basement membrane (anti-GBM) disease is an organ-specific autoimmune disorder characterized by autoantibodies against the glomerular and alveolar basement membranes, leading to rapidly progressive glomerulonephritis and severe alveolar hemorrhage. The noncollagenous domain of the α3 chain of type IV collagen, α3(IV)NC1, contains the main target autoantigen in this disease. Epitope mapping studies of α3(IV)NC1 have identified several nephritogenic epitopes and critical residues that bind to autoantibodies and trigger anti-GBM disease. The discovery of novel target antigens has revealed the heterogeneous nature of this disease. In addition, both epitope spreading and mimicry have been implicated in the pathogenesis of anti-GBM disease. Epitope spreading refers to the development of autoimmunity to new autoepitopes, thus worsening disease progression, whereas epitope mimicry, which occurs via sharing of critical residues with microbial peptides, can initiate autoimmunity. An understanding of these autoimmune responses may open opportunities to explore potential new therapeutic approaches for this disease. We review how current advances in epitope mapping, identification of novel autoantigens, and the phenomena of epitope spreading and mimicry have heightened the understanding of autoimmunity in the pathogenesis of anti-GBM disease, and we discuss prospects for immunotherapy.
Collapse
Affiliation(s)
- Huang Kuang
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jing Liu
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Peking-Tsinghua Center for Life Sciences, Beijing, People's Republic of China
| | - Xiao-Yu Jia
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China; Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Peking-Tsinghua Center for Life Sciences, Beijing, People's Republic of China
| |
Collapse
|
20
|
Noureldine HA, Maamari J, El Helou MO, Chedid G, Farra A, Husni R, Mokhbat JE. The effect of the BNT162b2 vaccine on antinuclear antibody and antiphospholipid antibody levels. Immunol Res 2022; 70:800-810. [PMID: 35978253 PMCID: PMC9385410 DOI: 10.1007/s12026-022-09309-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/20/2022] [Indexed: 11/05/2022]
Abstract
The Food and Drug Administration (FDA) approved the first SARS-CoV-2 mRNA vaccine (Pfizer-BioNTech) in December 2020. New adverse events have emerged since these vaccines have reached market. Although no clear association between messenger ribonucleic acid (mRNA) vaccines and autoimmunity has emerged, the significance of such an association warrants further exploration. After obtaining consent, a standardized survey on baseline characteristics and other relevant variables was conducted on unvaccinated individuals who were scheduled for vaccination and had not previously contracted COVID-19. Blood samples were collected from participants prior to the first dose, prior to the second dose, and 1 month after the second dose. All collected samples were tested for antinuclear antibody (ANA) titers using indirect immunofluorescence microscopy kits, and antiphospholipid (APS) immunoglobulin M (IgM) and immunoglobulin G (IgG) levels using an enzyme-linked immunoassay (ELISA) technique. ANA titers were positive for 9 participants out of 101 (8.9%) in the first pre-vaccination draw. For the second draw, the number of participants testing positive for ANA decreased to 5 (5%). For the last draw, 6 (5.9%) participants tested positive for ANA titers. One participant tested positive for APS IgM at the first pre-vaccination draw, 2 tested positive at the second draw, and 2 at the third draw. As for APS IgG titers, all participants tested negative in the three draws. McNemar's test for two dependent categorical outcomes was conducted on all variables and did not show a statistical significance. The McNemar test of these two composite variables (i.e., ANA/APS, first draw vs. ANA/APS, second and third draws) did not show statistical significance. The 2-sided exact significance of the McNemar test was 1.0. The Friedman test also showed no significance (p = 0.459). No association was found between BNT162b2 vaccine administration and changes in APS and ANA titers. The benefits of the BNT162b2 vaccine significantly outweigh any possible risk of autoimmune dysregulation considering the current evidence.
Collapse
Affiliation(s)
- Hussein A Noureldine
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Julian Maamari
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mohamad Othman El Helou
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Scholars in Health Research Program, Faculty of Medicine and Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Georges Chedid
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Anna Farra
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center - Rizk Hospital, Zahar St, Achrafieh, Beirut, Lebanon
| | - Roula Husni
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center - Rizk Hospital, Zahar St, Achrafieh, Beirut, Lebanon
| | - Jacques E Mokhbat
- LAU Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University Medical Center - Rizk Hospital, Zahar St, Achrafieh, Beirut, Lebanon.
| |
Collapse
|
21
|
Dudek B, Rybka J, Bugla-Płoskońska G, Korzeniowska-Kowal A, Futoma-Kołoch B, Pawlak A, Gamian A. Biological functions of sialic acid as a component of bacterial endotoxin. Front Microbiol 2022; 13:1028796. [PMID: 36338080 PMCID: PMC9631793 DOI: 10.3389/fmicb.2022.1028796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Lipopolysaccharide (endotoxin, LPS) is an important Gram-negative bacteria antigen. LPS of some bacteria contains sialic acid (Neu5Ac) as a component of O-antigen (O-Ag), in this review we present an overview of bacteria in which the presence of Neu5Ac has been confirmed in their outer envelope and the possible ways that bacteria can acquire Neu5Ac. We explain the role of Neu5Ac in bacterial pathogenesis, and also involvement of Neu5Ac in bacterial evading the host innate immunity response and molecular mimicry phenomenon. We also highlight the role of sialic acid in the mechanism of bacterial resistance to action of serum complement. Despite a number of studies on involvement of Neu5Ac in bacterial pathogenesis many aspects of this phenomenon are still not understood.
Collapse
Affiliation(s)
- Bartłomiej Dudek
- Department of Microbiology, University of Wrocław, Wrocław, Poland
- *Correspondence: Bartłomiej Dudek,
| | - Jacek Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Andrzej Gamian,
| |
Collapse
|
22
|
Chen N, Wang C, Li D, Jiang Y, Ao Y. Effect of Joint Infection After Arthroscopic Single-Bundle ACL Reconstruction With Autologous Hamstring Tendon: A Retrospective Matched MRI Study. Orthop J Sports Med 2022; 10:23259671221125493. [PMID: 36263310 PMCID: PMC9575462 DOI: 10.1177/23259671221125493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Joint infection after anterior cruciate ligament (ACL) reconstruction is a
rare but serious complication. Purpose: To assess the effect of joint infection on the graft, cartilage, and bone
tunnel using magnetic resonance imaging (MRI) after arthroscopic
single-bundle ACL reconstruction with autologous hamstring tendons. Study Design: Cohort study; Level of evidence, 3. Methods: This retrospective matched cohort study included 26 patients who underwent
arthroscopic single-bundle ACL reconstruction with hamstring tendon graft at
the authors’ institute between January 2002 and December 2017 and developed
postoperative joint infection. These patients were matched 1:3 to patients
who did not sustain joint infection after ACL reconstruction (control
group). MRI scans were collected at the time of follow-up. The following
parameters were evaluated: graft signal-to-noise quotient (SNQ); graft
signal intensity at the bone-graft interface and within the knee joint; bone
tunnel enlargement at the tunnel aperture, midsection, and exit of the
tibial and femoral tunnels; and cartilage integrity. Results: The average follow-up time was 47.8 months in the infection group and 48.5
months in the control group. Compared with the control group, the infection
group had a significantly higher SNQ (20.01 ± 12.08 vs 7.61 ± 6.70;
P = .014) as well as a higher signal intensity at the
bone-graft interface (P = .037) and higher Howell grade
(P = .031). The mean enlargement at the femoral tunnel
aperture was 31.20% ± 26.76% in the infection group and 19.22% ± 20.10% in
the control group (P = .037). The articular cartilage of
the patellofemoral and lateral femorotibial joints showed more degenerative
change in the infection group. Conclusion: Study findings indicated that graft ligamentization and incorporation graft
maturity were inferior in patients who experienced a joint infection after
ACL reconstruction compared with patients who did not.
Collapse
Affiliation(s)
- Nayun Chen
- Department of Sports Medicine, Peking University Third Hospital,
Beijing, China.,Institute of Sports Medicine of Peking University, Beijing,
China
| | - Cheng Wang
- Department of Sports Medicine, Peking University Third Hospital,
Beijing, China.,Institute of Sports Medicine of Peking University, Beijing,
China
| | - Dai Li
- Department of Sports Medicine, Peking University Third Hospital,
Beijing, China.,Institute of Sports Medicine of Peking University, Beijing,
China
| | - Yanfang Jiang
- Department of Sports Medicine, Peking University Third Hospital,
Beijing, China.,Institute of Sports Medicine of Peking University, Beijing,
China
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital,
Beijing, China.,Institute of Sports Medicine of Peking University, Beijing,
China.,Yingfang Ao, MD, Institute of Sports Medicine of Peking
University, 49 North Garden Road, Haidian District, Beijing 100191, China
()
| |
Collapse
|
23
|
Prediction of molecular mimicry between proteins from Trypanosoma sp. and human antigens associated with systemic lupus erythematosus. Microb Pathog 2022; 172:105760. [PMID: 36126789 DOI: 10.1016/j.micpath.2022.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
The immune response against pathogens induces protection from future infection, however, molecular mimicry between the pathogen and the human host can promote autoreactive responses. Using in silico approaches, we identified molecular mimicry between Trypanosoma sp. and human autoantigens involved in the development of systemic lupus erythematosus (SLE). We retrieved all reported autoantigen amino acid sequences for SLE from the AAgAtlas database to perform PSI-BLAST against the Trypanosoma sp proteome to determine amino acid sequence identity with each other. The antigens given in the Protein Data Bank without a 3D structure were modeled by homology with the "Swiss Modeller Server". Epitopes shared between Trypanosoma sp. and human antigens were identified using the Ellipro server and the Immune Epitope Database (IEDB), and cross-reactive epitopes were assigned to the 3D models. 36 autoantigens involved in SLE showed molecular mimicry with Trypanosoma sp. Antigens Epitope prediction revealed that some autoantigens shared several antigenic.
Collapse
|
24
|
Kang MC, Park KA, Min JH, Oh SY. Myasthenia gravis with ocular symptoms following a ChAdOx1 nCoV-19 vaccination: A case report. Am J Ophthalmol Case Rep 2022; 27:101620. [PMID: 35800401 PMCID: PMC9254405 DOI: 10.1016/j.ajoc.2022.101620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/28/2022] [Accepted: 06/12/2022] [Indexed: 12/20/2022] Open
Abstract
Purpose We report on the case of a 35-year-old man who developed myasthenia gravis with ocular symptoms following a ChAdOx1 nCoV-19 vaccine injection. Observations A 35-year-old man complained of binocular diplopia one month following ChAdOx1 nCoV-19 vaccination. He had weak infraduction of the left eye. Upper and lower extremity strength was normal on presentation. A serum antiacetylcholine receptor antibody titer was elevated at 1.60 nmol/L. His diplopia improved temporarily following the application of an ice pack for 2 min. Conclusions and importance This case report describes a rare occurrence of myasthenia gravis with ocular symptoms as a potential complication of ChAdOx1 nCoV-19 vaccination.
Collapse
Affiliation(s)
- Min Chae Kang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Corresponding author. Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Corresponding author. Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Sei Yeul Oh
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
25
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
de Souza A, Oo WM, Giri P. Inflammatory demyelinating polyneuropathy after the ChAdOx1 nCoV-19 vaccine may follow a chronic course. J Neurol Sci 2022; 436:120231. [PMID: 35313224 PMCID: PMC8923716 DOI: 10.1016/j.jns.2022.120231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 12/16/2022]
Abstract
Background Methods Conclusions
Collapse
Affiliation(s)
- Aaron de Souza
- Department of Medicine, Launceston General Hospital, 274-280 Charles Street, Launceston TAS 7250, Australia; Faculty of Medicine, Launceston Clinical School, University of Tasmania, Launceston TAS 7250, Australia.
| | - Wai M Oo
- Department of Medicine, Launceston General Hospital, 274-280 Charles Street, Launceston TAS 7250, Australia
| | - Pradeep Giri
- Department of Medicine, Launceston General Hospital, 274-280 Charles Street, Launceston TAS 7250, Australia
| |
Collapse
|
27
|
Singh S, Sanna F, Adhikari R, Akella R, Gangu K. Chronic Inflammatory Demyelinating Polyneuropathy Post-mRNA-1273 Vaccination. Cureus 2022; 14:e24528. [PMID: 35651399 PMCID: PMC9138197 DOI: 10.7759/cureus.24528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Massive efforts are being made to develop coronavirus disease 2019 (COVID-19) vaccines at an unprecedented rate. The vaccinations' adverse impact profile, on the other hand, has not been well established. Neurological complications are increasingly reported as a result of these vaccines. One such complication identified is immune-mediated inflammatory polyneuropathy, which affects peripheral nerves and neurons. We report a case of chronic inflammatory demyelinating polyneuropathy (CIDP) post-mRNA-1273 (Moderna) COVID-19 vaccine. Recognizing this complication and distinguishing it from Guillain-Barré syndrome enables timely initiation of treatment. Additionally, our report highlights a possible link between vaccination and subsequent development of CIDP, but conclusive evidence of a causal relationship requires more extensive studies.
Collapse
|
28
|
Esposito G, Dottori L, Pivetta G, Ligato I, Dilaghi E, Lahner E. Pernicious Anemia: The Hematological Presentation of a Multifaceted Disorder Caused by Cobalamin Deficiency. Nutrients 2022; 14:nu14081672. [PMID: 35458234 PMCID: PMC9030741 DOI: 10.3390/nu14081672] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Pernicious anemia is still a neglected disorder in many medical contexts and is underdiagnosed in many patients. Pernicious anemia is linked to but different from autoimmune gastritis. Pernicious anemia occurs in a later stage of autoimmune atrophic gastritis when gastric intrinsic factor deficiency and consequent vitamin B12 deficiency may occur. The multifaceted nature of pernicious anemia is related to the important role of cobalamin, which, when deficient, may lead to several dysfunctions, and thus, the proteiform clinical presentations of pernicious anemia. Indeed, pernicious anemia may lead to potentially serious long-term complications related to micronutrient deficiencies and their consequences and the development of gastric cancer and type 1 gastric neuroendocrine tumors. When not recognized in a timely manner or when pernicious anemia is diagnosed with delay, these complications may be potentially life-threatening and sometimes irreversible. The current review aimed to focus on epidemiology, pathogenesis, and clinical presentations of pernicious anemia in an attempt to look beyond borders of medical specialties. It aimed to focus on micronutrient deficiencies besides the well-known vitamin B12 deficiency, the diagnostic approach for pernicious anemia, its long-term complications and optimal clinical management, and endoscopic surveillance of patients with pernicious anemia.
Collapse
|
29
|
Patrick S. A tale of two habitats: Bacteroides fragilis, a lethal pathogen and resident in the human gastrointestinal microbiome. Microbiology (Reading) 2022; 168. [DOI: 10.1099/mic.0.001156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteroides fragilis
is an obligately anaerobic Gram-negative bacterium and a major colonizer of the human large colon where
Bacteroides
is a predominant genus. During the growth of an individual clonal population, an astonishing number of reversible DNA inversion events occur, driving within-strain diversity. Additionally, the
B. fragilis
pan-genome contains a large pool of diverse polysaccharide biosynthesis loci, DNA restriction/modification systems and polysaccharide utilization loci, which generates remarkable between-strain diversity. Diversity clearly contributes to the success of
B. fragilis
within its normal habitat of the gastrointestinal (GI) tract and during infection in the extra-intestinal host environment. Within the GI tract,
B. fragilis
is usually symbiotic, for example providing localized nutrients for the gut epithelium, but
B. fragilis
within the GI tract may not always be benign. Metalloprotease toxin production is strongly associated with colorectal cancer.
B. fragilis
is unique amongst bacteria; some strains export a protein >99 % structurally similar to human ubiquitin and antigenically cross-reactive, which suggests a link to autoimmune diseases.
B. fragilis
is not a primary invasive enteric pathogen; however, if colonic contents contaminate the extra-intestinal host environment, it successfully adapts to this new habitat and causes infection; classically peritoneal infection arising from rupture of an inflamed appendix or GI surgery, which if untreated, can progress to bacteraemia and death. In this review selected aspects of
B. fragilis
adaptation to the different habitats of the GI tract and the extra-intestinal host environment are considered, along with the considerable challenges faced when studying this highly variable bacterium.
Collapse
Affiliation(s)
- Sheila Patrick
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, UK
| |
Collapse
|
30
|
SARS-CoV-2 vaccine-related neurological complications. Neurol Sci 2022; 43:2295-2297. [PMID: 35050428 PMCID: PMC8771172 DOI: 10.1007/s10072-022-05898-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/13/2022] [Indexed: 02/03/2023]
Abstract
Objective To describe three cases with neurological symptoms after SARS-CoV-2 vaccination. Methods A case series followed by a review of the literature, describing hypotheses on how neurological symptoms might develop after vaccination. Results The different temporal relationship between the onset or worsening of different neurological symptoms suggests different pathophysiological mechanisms. Progression of post-infectious myoclonus, caused by a previous SARS-CoV-2-infection, shortly after vaccination suggests a renewed auto-immune mediated crossreaction of antibodies to both viral epitopes and central nervous system components. Thunderclap headache after vaccination suggests a similar pathophysiological mechanism to the headache and other flu-like symptoms described after vaccination against other viruses. This might be ascribed to the activation of immunoinflammatory mediators or accompanying fever. Although headache accompanied by encephalopathy and focal neurological deficit might occur as part of a cytokine release syndrome, this is clinically less likely. Conclusions A variety of symptoms, including thunderclap headache, focal deficits and movement disorders, can occur after SARS-CoV-2 vaccination, and an activation or reactivation of the immune system is suggested as most likely cause. However, one should be careful about claiming a direct correlation. It remains important to exclude other causes, such as structural lesions, infections or subarachnoid hemorrhage, and future research is required to understand possible pathophysiological mechanisms and associations with the SARS-CoV-2 vaccine.
Collapse
|
31
|
Zhou Y, Penny HL, Kroenke MA, Bautista B, Hainline K, Chea LS, Parnes J, Mytych DT. Immunogenicity assessment of bispecific antibody-based immunotherapy in oncology. J Immunother Cancer 2022; 10:e004225. [PMID: 35444060 PMCID: PMC9024276 DOI: 10.1136/jitc-2021-004225] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/18/2022] Open
Abstract
With increasing numbers of bispecific antibodies (BsAbs) and multispecific products entering the clinic, recent data highlight immunogenicity as an emerging challenge in the development of such novel biologics. This review focuses on the immunogenicity risk assessment (IgRA) of BsAb-based immunotherapies for cancer, highlighting several risk factors that need to be considered. These include the novel scaffolds consisting of bioengineered sequences, the potentially synergistic immunomodulating mechanisms of action (MOAs) from different domains of the BsAb, as well as several other product-related and patient-related factors. In addition, the clinical relevance of anti-drug antibodies (ADAs) against selected BsAbs developed as anticancer agents is reviewed and the advances in our knowledge of tools and strategies for immunogenicity prediction, monitoring, and mitigation are discussed. It is critical to implement a drug-specific IgRA during the early development stage to guide ADA monitoring and risk management strategies. This IgRA may include a combination of several assessment tools to identify drug-specific risks as well as a proactive risk mitigation approach for candidate or format selection during the preclinical stage. The IgRA is an on-going process throughout clinical development. IgRA during the clinical stage may bridge the gap between preclinical immunogenicity prediction and clinical immunogenicity, and retrospectively guide optimization efforts for next-generation BsAbs. This iterative process throughout development may improve the reliability of the IgRA and enable the implementation of effective risk mitigation strategies, laying the foundation for improved clinical success.
Collapse
Affiliation(s)
- Yanchen Zhou
- Clinical Immunology, Amgen Inc, South San Francisco, California, USA
| | | | - Mark A Kroenke
- Clinical Immunology, Amgen Inc, Thousand Oaks, California, USA
| | - Bianca Bautista
- Clinical Immunology, Amgen Inc, Thousand Oaks, California, USA
| | - Kelly Hainline
- Clinical Immunology, Amgen Inc, Thousand Oaks, California, USA
| | - Lynette S Chea
- Clinical Immunology, Amgen Inc, South San Francisco, California, USA
| | - Jane Parnes
- Early Development, Amgen Inc, Thousand Oaks, California, USA
| | - Daniel T Mytych
- Clinical Immunology, Amgen Inc, Thousand Oaks, California, USA
| |
Collapse
|
32
|
Muñoz Ú, Sebal C, Escudero E, García Sánchez MI, Urcelay E, Jayo A, Arroyo R, García-Martínez MA, Álvarez-Lafuente R, Sádaba MC. High prevalence of intrathecal IgA synthesis in multiple sclerosis patients. Sci Rep 2022; 12:4247. [PMID: 35277553 PMCID: PMC8917141 DOI: 10.1038/s41598-022-08099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
The detection of intrathecal IgA synthesis (IAS) in multiple sclerosis (MS) could be underestimated. To assess it, we develop a highly sensitive assay based on isoelectric focusing (IEF). 151 MS patients and 53 controls with different neurological diseases were recruited. IgA concentration was analyzed using a newly developed in house ELISA. IgA oligoclonal bands to detect IAS were determined by IEF. Most individuals showed an IgA concentration within normal range in serum samples (90.69%) but 31.37% of individuals had a IgA concentration below the normal range in the cerebrospinal fluid (CSF). No significant differences were observed between MS and control groups, neither in CSF nor in serum. The new IEF was more sensitive than those previously described (0.01 mg/dl of IgA), and clearly identified patients with and without IAS, that was not related with IgA concentration. Using IEF, MS patients showed higher percentage of IAS-IEF (43.00%) than the control group (16.98) (p = 0.001). The incidence was especially higher in patients with clinically isolated syndrome (66.00%). The new IFE demonstrated a higher percentage of IAS in MS patients than assumed in the past. The presence of IAS-IEF in MS is higher than in other neurological diseases.
Collapse
Affiliation(s)
- Úrsula Muñoz
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Crta Boadilla del Monte Km 5,3, Madrid, Spain
| | - Cristina Sebal
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Crta Boadilla del Monte Km 5,3, Madrid, Spain
| | - Esther Escudero
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Crta Boadilla del Monte Km 5,3, Madrid, Spain
| | - Maria Isabel García Sánchez
- UGC Neurología (Biobanco Hospitalario), Hospital Universitario Virgen Macarena, Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Elena Urcelay
- Instituto de Investigación Sanitaria San Carlos (IdISSC)/Hospital Clínico San Carlos, Madrid, Spain
| | - Asier Jayo
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Crta Boadilla del Monte Km 5,3, Madrid, Spain
| | - Rafael Arroyo
- Departamento de Neurología, Hospital Universitario Quironsalud, Madrid, Spain
| | - Maria A García-Martínez
- Grupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria San Carlos (IdISSC)/Hospital Clínico San Carlos, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- Grupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria San Carlos (IdISSC)/Hospital Clínico San Carlos, Madrid, Spain.
| | - María C Sádaba
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Crta Boadilla del Monte Km 5,3, Madrid, Spain.
| |
Collapse
|
33
|
Ahsan N, Santoro JD. Immunopathogenesis of acute disseminated encephalomyelitis. TRANSLATIONAL AUTOIMMUNITY 2022:249-263. [DOI: 10.1016/b978-0-12-824466-1.00003-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Sciascia S, Ponticelli C, Roccatello D. Pathogenesis-based new perspectives of management of ANCA-associated vasculitis. Autoimmun Rev 2021; 21:103030. [PMID: 34971805 DOI: 10.1016/j.autrev.2021.103030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
While the pathogenesis of anti-neutrophil cytoplasmic autoantibody associated vasculitis (AAV) is still not fully elucidated, there is a mounting evidence that it is initiated by inflammation and activation of innate immunity in the presence of predisposing factors, innate immunity, aberrant responses of the adaptive immune system, and complement system activation. Biologics targeting inflammation-related molecules in the immune system have been explored to treat AVV, and these treatments have provided revolutionary advances. When focusing on the pathogenic mechanisms of AVV, this review presents the new findings regarding novel therapeutic approaches for the management of these conditions.
Collapse
Affiliation(s)
- Savino Sciascia
- CMID-Nephrology and Dialysis Unit (ERK-net Member), Center of Research of Immunopathology and Rare Diseases- Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, Department of Clinical and Biological Sciences, University of Turin and S. Giovanni Bosco Hub Hospital, Turin, Italy
| | | | - Dario Roccatello
- CMID-Nephrology and Dialysis Unit (ERK-net Member), Center of Research of Immunopathology and Rare Diseases- Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, Department of Clinical and Biological Sciences, University of Turin and S. Giovanni Bosco Hub Hospital, Turin, Italy.
| |
Collapse
|
35
|
Groarke EM, Dulau-Florea AE, Kanthi Y. Thrombotic manifestations of VEXAS syndrome. Semin Hematol 2021; 58:230-238. [PMID: 34802545 DOI: 10.1053/j.seminhematol.2021.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/11/2022]
Abstract
VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a recently described autoinflammatory syndrome characterized by diffuse inflammatory manifestations, predisposition to hematological malignancy, and an association with a high rate of thrombosis. VEXAS is attributed to somatic mutations in the UBA1 gene in hematopoietic stem and progenitor cells with myeloid restriction in mature forms. The rate of thrombosis in VEXAS patients is approximately 40% in all reported cases to date. Venous thromboembolism predominates thrombotic events in VEXAS. These are classified as unprovoked in etiology, although systemic and vascular inflammation are implicated. Here, we review the clinical and laboratory characteristics in VEXAS that provide insight into the possible mechanisms leading to thrombosis. We present knowledge gaps in the mechanisms and management of VEXAS-associated thromboinflammation and propose areas for future investigation in the field.
Collapse
Affiliation(s)
- Emma M Groarke
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Alina E Dulau-Florea
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
36
|
Bakhtadze S, Lim M, Craiu D, Cazacu C. Vaccination in acute immune-mediated/inflammatory disorders of the central nervous system. Eur J Paediatr Neurol 2021; 34:118-122. [PMID: 34487956 DOI: 10.1016/j.ejpn.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 01/06/2023]
Abstract
This review article covers the vaccination related issues in autoimmune disorders of central nervous system (CNS) including narcolepsy, anti-NMDAR encephalitis, Rasmussen encephalitis and febrile infection related epilepsy syndrome (FIRES). Beyond these conditions the immune mediated epilepsies related with autoimmune CNS disorders are discussed and indications and contraindications of vaccinations in these cases are also considered.
Collapse
Affiliation(s)
- Sophia Bakhtadze
- Department of Paediatric Neurology, Tbilisi State Medical University, 33 Vazha Pshavela ave, 0160, Tbilisi, Georgia.
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital at Guy's and St Thomas' NHS Foundation Trust, Westminister Bridge Road, SE1 7EH, London, UK; Department Women and Children's Health, School of Life Course Sciences (SoLCS), King's College, Strand, WC2R 2LS, London, UK.
| | - Dana Craiu
- Department of Neurosciences, Pediatric Neurology Discipline II, Carol Davila University of Medicine and Pharmacy, Faculty of Medicine, Strada Dionisie Lupu No. 37, 020021, Bucharest/S2, Romania; Pediatric Neurology Clinic, Center of Expertise for Rare Disorders in Pediatric Neurology, EpiCARE Member, Sos. Berceni 10, Bucharest/S4, Romania.
| | - Cristina Cazacu
- Pediatric Neurology Clinic, Center of Expertise for Rare Disorders in Pediatric Neurology, EpiCARE Member, Sos. Berceni 10, Bucharest/S4, Romania.
| |
Collapse
|
37
|
Maleki A, Look-Why S, Manhapra A, Foster CS. COVID-19 Recombinant mRNA Vaccines and Serious Ocular Inflammatory Side Effects: Real or Coincidence? J Ophthalmic Vis Res 2021; 16:490-501. [PMID: 34394876 PMCID: PMC8358769 DOI: 10.18502/jovr.v16i3.9443] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose To report two cases; bilateral arteritic anterior ischemic optic neuropathy (AAION) and bilateral acute zonal occult outer retinopathy (AZOOR) after COVID-19 mRNA vaccination. Case Report The first patient was a 79-year-old female was presented to us 35 days after a sudden bilateral loss of vision, which occurred two days after receiving the second recombinant mRNA vaccine (Pfizer) injection. Temporal artery biopsy was compatible with AAION. At presentation, the best-corrected visual acuity was 20/1250 and 20/40 in the right and left eyes on the Snellen acuity chart, respectively. There was 3+ afferent pupillary defect in the right eye. The anterior segment and posterior segment exams were normal except for pallor of the optic nerve head in both eyes. Intraocular pressure was normal in both eyes. She was diagnosed with bilateral AAION and Subcutaneous tocilizumab 162 mg weekly was recommended with monitoring her ESR, CRP, and IL-6. The second patient was a 33-year-old healthy female who was referred to us for a progressive nasal field defect in her left eye, and for flashes in both eyes. Her symptoms started 10 days after receiving the second recombinant mRNA vaccine (Moderna) injection. Complete bloodwork performed by a uveitis specialist demonstrated high ESR (25) and CRP (19) levels. As a result, she was diagnosed with unilateral AZOOR in her left eye and was subsequently treated with an intravitreal dexamethasone implant in the same eye. At presentation, vision was20/20 in both eyes. The anterior segment and posterior segment exams were completely normal except for the presence of abnormal white reflex in the temporal macula of her left eye. We diagnosed her with bilateral AZOOR. Since she was nursing, intravitreal dexamethasone implant was recommended for the right eye. Conclusion There may be a correlation between ocular inflammatory diseases with autoimmune mechanism and the mRNA COVID-19 vaccination.
Collapse
Affiliation(s)
- Arash Maleki
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, United States.,The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States
| | - Sydney Look-Why
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, United States.,The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States
| | - Ambika Manhapra
- Massachusetts Eye Research and Surgery Institution, Waltham, MA, United States.,The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States
| | - C Stephen Foster
- The Ocular Immunology and Uveitis Foundation, Waltham, MA, United States.,Harvard Medical School, Department of Ophthalmology, Boston, MA, United States
| |
Collapse
|
38
|
Can Vaccination Trigger Autoimmune Disorders? A Meta-Analysis. Vaccines (Basel) 2021; 9:vaccines9080821. [PMID: 34451946 PMCID: PMC8402438 DOI: 10.3390/vaccines9080821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 12/04/2022] Open
Abstract
Vaccination as an important tool in the fight against infections has been suggested as a possible trigger of autoimmunity over the last decades. To confirm or refute this assumption, a Meta-analysis of Autoimmune Disorders Association With Immunization (MADAWI) was conducted. Included in the meta-analysis were a total of 144 studies published in 1968–2019 that were available in six databases and identified by an extensive literature search conducted on 30 November 2019. The risk of bias classification of the studies was performed using the Newcastle–Ottawa Quality Assessment Scale. The strength of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation. While our primary analysis was conducted in terms of measures of association employed in studies with a low risk of bias, the robustness of the MADAWI outcome was tested using measures independent of each study risk of bias. Additionally, subgroup analyses were performed to determine the stability of the outcome. The pooled association of 0.99 (95% confidence interval, 0.97–1.02), based on a total of 364 published estimates, confirmed an equivalent occurrence of autoimmune disorders in vaccinated and unvaccinated persons. The same level of association reported by studies independently of the risk of bias was supported by a sufficient number of studies, and no serious limitation, inconsistency, indirectness, imprecision, and publication bias. A sensitivity analysis did not reveal any discrepancy in the primary result. Current common vaccination is not the cause of any of the examined autoimmune disorders in the medium and long terms.
Collapse
|
39
|
Mining the capacity of human-associated microorganisms to trigger rheumatoid arthritis-A systematic immunoinformatics analysis of T cell epitopes. PLoS One 2021; 16:e0253918. [PMID: 34185818 PMCID: PMC8241107 DOI: 10.1371/journal.pone.0253918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases, often triggered by infection, affect ~5% of the worldwide population. Rheumatoid Arthritis (RA)–a painful condition characterized by the chronic inflammation of joints—comprises up to 20% of known autoimmune pathologies, with the tendency of increasing prevalence. Molecular mimicry is recognized as the leading mechanism underlying infection-mediated autoimmunity, which assumes sequence similarity between microbial and self-peptides driving the activation of autoreactive lymphocytes. T lymphocytes are leading immune cells in the RA-development. Therefore, deeper understanding of the capacity of microorganisms (both pathogens and commensals) to trigger autoreactive T cells is needed, calling for more systematic approaches. In the present study, we address this problem through a comprehensive immunoinformatics analysis of experimentally determined RA-related T cell epitopes against the proteomes of Bacteria, Fungi, and Viruses, to identify the scope of organisms providing homologous antigenic peptide determinants. By this, initial homology screening was complemented with de novo T cell epitope prediction and another round of homology search, to enable: i) the confirmation of homologous microbial peptides as T cell epitopes based on the predicted binding affinity to RA-related HLA polymorphisms; ii) sequence similarity inference for top de novo T cell epitope predictions to the RA-related autoantigens to reveal the robustness of RA-triggering capacity for identified (micro/myco)organisms. Our study reveals a much larger repertoire of candidate RA-triggering organisms, than previously recognized, providing insights into the underestimated role of Fungi in autoimmunity and the possibility of a more direct involvement of bacterial commensals in RA-pathology. Finally, our study pinpoints Endoplasmic reticulum chaperone BiP as the most potent (most likely mimicked) RA-related autoantigen, opening an avenue for identifying the most potent autoantigens in a variety of different autoimmune pathologies, with possible implications in the design of next-generation therapeutics aiming to induce self-tolerance by affecting highly reactive autoantigens.
Collapse
|
40
|
Wang G, Tanaka A, Zhao H, Jia J, Ma X, Harada K, Wang FS, Wei L, Wang Q, Sun Y, Hong Y, Rao H, Efe C, Lau G, Payawal D, Gani R, Lindor K, Jafri W, Omata M, Sarin SK. The Asian Pacific Association for the Study of the Liver clinical practice guidance: the diagnosis and management of patients with autoimmune hepatitis. Hepatol Int 2021; 15:223-257. [PMID: 33942203 PMCID: PMC8144150 DOI: 10.1007/s12072-021-10170-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Guiqiang Wang
- Peking University First Hospital, Beijing, China. .,Peking University International Hospital, Beijing, China.
| | | | - Hong Zhao
- Peking University First Hospital, Beijing, China.,Peking University International Hospital, Beijing, China
| | - Jidong Jia
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiong Ma
- Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine Kanazawa, Kanazawa, Japan
| | - Fu-Sheng Wang
- Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lai Wei
- Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Qixia Wang
- Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Sun
- Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuan Hong
- Peking University First Hospital, Beijing, China
| | - Huiying Rao
- Peking University People's Hospital, Beijing, China
| | - Cumali Efe
- Department of Gastroenterology, Harran University, Şanlıurfa, Turkey
| | - George Lau
- Humanity and Health Medical Group, Hong Kong Special Administrative Region, China
| | - Diana Payawal
- Department of Hepatology, Cardinal Santos Medical Center, Manila, Philippines
| | - Rino Gani
- Department of Internal Medicine, Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Keith Lindor
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | | | - Masao Omata
- Department of Gastroenterology, Yamanashi Prefectural Central Hospital, Kofu-City, Yamanashi, Japan.,The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
41
|
Clarke JP, Thibault PA, Salapa HE, Levin MC. A Comprehensive Analysis of the Role of hnRNP A1 Function and Dysfunction in the Pathogenesis of Neurodegenerative Disease. Front Mol Biosci 2021; 8:659610. [PMID: 33912591 PMCID: PMC8072284 DOI: 10.3389/fmolb.2021.659610] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP family of conserved proteins that is involved in RNA transcription, pre-mRNA splicing, mRNA transport, protein translation, microRNA processing, telomere maintenance and the regulation of transcription factor activity. HnRNP A1 is ubiquitously, yet differentially, expressed in many cell types, and due to post-translational modifications, can vary in its molecular function. While a plethora of knowledge is known about the function and dysfunction of hnRNP A1 in diseases other than neurodegenerative disease (e.g., cancer), numerous studies in amyotrophic lateral sclerosis, frontotemporal lobar degeneration, multiple sclerosis, spinal muscular atrophy, Alzheimer’s disease, and Huntington’s disease have found that the dysregulation of hnRNP A1 may contribute to disease pathogenesis. How hnRNP A1 mechanistically contributes to these diseases, and whether mutations and/or altered post-translational modifications contribute to pathogenesis, however, is currently under investigation. The aim of this comprehensive review is to first describe the background of hnRNP A1, including its structure, biological functions in RNA metabolism and the post-translational modifications known to modify its function. With this knowledge, the review then describes the influence of hnRNP A1 in neurodegenerative disease, and how its dysfunction may contribute the pathogenesis.
Collapse
Affiliation(s)
- Joseph P Clarke
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
| | - Patricia A Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael C Levin
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
42
|
Gruca A, Ziemska-Legiecka J, Jarnot P, Sarnowska E, Sarnowski TJ, Grynberg M. Common low complexity regions for SARS-CoV-2 and human proteomes as potential multidirectional risk factor in vaccine development. BMC Bioinformatics 2021; 22:182. [PMID: 33832440 PMCID: PMC8027979 DOI: 10.1186/s12859-021-04017-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The rapid spread of the COVID-19 demands immediate response from the scientific communities. Appropriate countermeasures mean thoughtful and educated choice of viral targets (epitopes). There are several articles that discuss such choices in the SARS-CoV-2 proteome, other focus on phylogenetic traits and history of the Coronaviridae genome/proteome. However none consider viral protein low complexity regions (LCRs). Recently we created the first methods that are able to compare such fragments. RESULTS We show that five low complexity regions (LCRs) in three proteins (nsp3, S and N) encoded by the SARS-CoV-2 genome are highly similar to regions from human proteome. As many as 21 predicted T-cell epitopes and 27 predicted B-cell epitopes overlap with the five SARS-CoV-2 LCRs similar to human proteins. Interestingly, replication proteins encoded in the central part of viral RNA are devoid of LCRs. CONCLUSIONS Similarity of SARS-CoV-2 LCRs to human proteins may have implications on the ability of the virus to counteract immune defenses. The vaccine targeted LCRs may potentially be ineffective or alternatively lead to autoimmune diseases development. These findings are crucial to the process of selection of new epitopes for drugs or vaccines which should omit such regions.
Collapse
Affiliation(s)
- Aleksandra Gruca
- Department of Computer Networks and Systems, Silesian University of Technology, Gliwice, Poland
| | | | - Patryk Jarnot
- Department of Computer Networks and Systems, Silesian University of Technology, Gliwice, Poland
| | - Elzbieta Sarnowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
43
|
Butler T, Hall H, McCallum K. Polysystemic autoimmune disease in a Cocker Spaniel with neurological and cardiac manifestations. VETERINARY RECORD CASE REPORTS 2021. [DOI: 10.1002/vrc2.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Butler
- Department of Veterinary Medicine Queen's Veterinary School Hospital Cambridge UK
| | - Harriet Hall
- Department of Veterinary Medicine Queen's Veterinary School Hospital Cambridge UK
| | - Katie McCallum
- Department of Veterinary Medicine Queen's Veterinary School Hospital Cambridge UK
| |
Collapse
|
44
|
Wang CX. Assessment and Management of Acute Disseminated Encephalomyelitis (ADEM) in the Pediatric Patient. Paediatr Drugs 2021; 23:213-221. [PMID: 33830467 PMCID: PMC8026386 DOI: 10.1007/s40272-021-00441-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 01/18/2023]
Abstract
Acute disseminated encephalomyelitis (ADEM) is an inflammatory demyelinating disease of the central nervous system that typically presents in childhood and is associated with encephalopathy and multifocal brain lesions. Although ADEM is thought to be a post-infectious disorder, the etiology is still poorly understood. ADEM is often a monophasic disorder, in contrast to other demyelinating disorders such as multiple sclerosis and neuromyelitis optica spectrum disorder. With increasing awareness, understanding, and testing for myelin oligodendrocyte glycoprotein antibodies, this disease is now known to be a cause of pediatric ADEM and also has the potential to be relapsing. Diagnostic evaluation for ADEM involves neuroimaging and laboratory studies to exclude potential infectious, inflammatory, neoplastic, and genetic mimics of ADEM. Acute treatment modalities include high-dose intravenous corticosteroids, therapeutic plasma exchange, and intravenous immunoglobulin. Long-term outcomes for ADEM are generally favorable, but some children have significant morbidity related to the severity of acute illness and/or manifest ongoing neurocognitive sequelae. Further research related to the optimal management of pediatric ADEM and its impact on prognosis is needed. This review summarizes the current knowledge of the pathogenesis, epidemiology, clinical features, diagnostic evaluation, treatment approaches, and outcomes in pediatric ADEM.
Collapse
Affiliation(s)
- Cynthia X. Wang
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd, Dallas, TX 75390 USA ,Department of Pediatrics, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| |
Collapse
|
45
|
Suárez LJ, Garzón H, Arboleda S, Rodríguez A. Oral Dysbiosis and Autoimmunity: From Local Periodontal Responses to an Imbalanced Systemic Immunity. A Review. Front Immunol 2020; 11:591255. [PMID: 33363538 PMCID: PMC7754713 DOI: 10.3389/fimmu.2020.591255] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The current paradigm of onset and progression of periodontitis includes oral dysbiosis directed by inflammophilic bacteria, leading to altered resolution of inflammation and lack of regulation of the inflammatory responses. In the construction of explanatory models of the etiopathogenesis of periodontal disease, autoimmune mechanisms were among the first to be explored and historically, for more than five decades, they have been described in an isolated manner as part of the tissue damage process observed in periodontitis, however direct participation of these mechanisms in the tissue damage is still controversial. Autoimmunity is affected by genetic and environmental factors, leading to an imbalance between the effector and regulatory responses, mostly associated with failed resolution mechanisms. However, dysbiosis/infection and chronic inflammation could trigger autoimmunity by several mechanisms including bystander activation, dysregulation of toll-like receptors, amplification of autoimmunity by cytokines, epitope spreading, autoantigens complementarity, autoantigens overproduction, microbial translocation, molecular mimicry, superantigens, and activation or inhibition of receptors related to autoimmunity by microorganisms. Even though autoreactivity in periodontitis is biologically plausible, the associated mechanisms could be related to non-pathologic responses which could even explain non-recognized physiological functions. In this review we shall discuss from a descriptive point of view, the autoimmune mechanisms related to periodontitis physio-pathogenesis and the participation of oral dysbiosis on local periodontal autoimmune responses as well as on different systemic inflammatory diseases.
Collapse
Affiliation(s)
- Lina J. Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hernan Garzón
- Grupo de Investigación en Salud Oral, Universidad Antonio Nariño, Bogotá, Colombia
| | - Silie Arboleda
- Unidad de Investigación en Epidemiologia Clínica Oral (UNIECLO), Universidad El Bosque, Bogotá, Colombia
| | - Adriana Rodríguez
- Centro de Investigaciones Odontológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
46
|
Etzioni-Friedman T, Etzioni A. Adherence to Immunization: Rebuttal of Vaccine Hesitancy. Acta Haematol 2020; 144:413-417. [PMID: 33202404 PMCID: PMC7705945 DOI: 10.1159/000511760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Immunizations have been saving the lives of millions of people since they were first used by Edward Jenner in 1796, and new vaccines are being developed all the time. Hopefully, a new vaccine for coronavirus disease 2019 (COVID-19) will be developed in the near future, and perhaps even one for human immunodeficiency virus. Although the effectiveness of vaccinations has been proven over the years and adverse effects to currently available vaccinations are extremely rare, many people continue to defer immunizations for themselves and their families. According to the World Health Organization (WHO), this phenomenon, known as "vaccine hesitancy," is a major public health problem globally. This review summarizes the unproven adverse effects of various vaccines and stresses the importance of enforcing vaccination policies to minimize vaccine hesitancy. Every effort should be made to improve existing vaccines and to produce new ones, according to carefully designed scientific preclinical and clinical trials. This is particularly important in today's era, in light of the global transparency regarding vaccination development, and the potential for future pandemics such as COVID-19.
Collapse
Affiliation(s)
- Tamar Etzioni-Friedman
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Pediatrics, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Amos Etzioni
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel,
| |
Collapse
|
47
|
Moon J, Yoon CH, Choi SH, Kim MK. Can Gut Microbiota Affect Dry Eye Syndrome? Int J Mol Sci 2020; 21:E8443. [PMID: 33182758 PMCID: PMC7697210 DOI: 10.3390/ijms21228443] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Using metagenomics, continuing evidence has elicited how intestinal microbiota trigger distant autoimmunity. Sjögren's syndrome (SS) is an autoimmune disease that affects the ocular surface, with frequently unmet therapeutic needs requiring new interventions for dry eye management. Current studies also suggest the possible relation of autoimmune dry eye with gut microbiota. Herein, we review the current knowledge of how the gut microbiota interact with the immune system in homeostasis as well as its influence on rheumatic and ocular autoimmune diseases, and compare their characteristics with SS. Both rodent and human studies regarding gut microbiota in SS and environmental dry eye are explored, and the effects of prebiotics and probiotics on dry eye are discussed. Recent clinical studies have commonly observed a correlation between gut dysbiosis and clinical manifestations of SS, while environmental dry eye portrays characteristics in between normal and autoimmune. Moreover, a decrease in both the Firmicutes/Bacteroidetes ratio and genus Faecalibacterium have most commonly been observed in SS subjects. The presumable pathways forming the "gut dysbiosis-ocular surface-lacrimal gland axis" are introduced. This review may provide perspectives into the link between the gut microbiome and dry eye, enhance our understanding of the pathogenesis in autoimmune dry eye, and be useful in the development of future interventions.
Collapse
Affiliation(s)
- Jayoon Moon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Chang Ho Yoon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Se Hyun Choi
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
- Department of Ophthalmology, Hallym University Sacred Heart Hospital, Anyang-si 14068, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| |
Collapse
|
48
|
Geuking MB, Burkhard R. Microbial modulation of intestinal T helper cell responses and implications for disease and therapy. Mucosal Immunol 2020; 13:855-866. [PMID: 32792666 DOI: 10.1038/s41385-020-00335-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Induction of intestinal T helper cell subsets by commensal members of the intestinal microbiota is an important component of the many immune adaptations required to establish host-microbial homeostasis. Importantly, altered intestinal T helper cell profiles can have pathological consequences that are not limited to intestinal sites. Therefore, microbial-mediated modulation of the intestinal T helper cell profile could have strong therapeutic potentials. However, in order to develop microbial therapies that specifically induce the desired alterations in the intestinal T helper cell compartment one has to first gain a detailed understanding of how microbial composition and the metabolites derived or induced by the microbiota impact on intestinal T helper cell responses. Here we summarize the milestone findings in the field of microbiota-intestinal T helper cell crosstalk with a focus on the role of specific commensal bacteria and their metabolites. We discuss mechanistic mouse studies and are linking these to human studies where possible. Moreover, we highlight recent advances in the field of microbial CD4 T cell epitope mimicry in autoimmune diseases and the role of microbially-induced CD4 T cells in cancer immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Markus B Geuking
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Regula Burkhard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
49
|
Lee CH, Salio M, Napolitani G, Ogg G, Simmons A, Koohy H. Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors. Front Immunol 2020; 11:565096. [PMID: 33193332 PMCID: PMC7642207 DOI: 10.3389/fimmu.2020.565096] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptive immune recognition is mediated by specific interactions between heterodimeric T cell receptors (TCRs) and their cognate peptide-MHC (pMHC) ligands, and the methods to accurately predict TCR:pMHC interaction would have profound clinical, therapeutic and pharmaceutical applications. Herein, we review recent developments in predicting cross-reactivity and antigen specificity of TCR recognition. We discuss current experimental and computational approaches to investigate cross-reactivity and antigen-specificity of TCRs and highlight how integrating kinetic, biophysical and structural features may offer valuable insights in modeling immunogenicity. We further underscore the close inter-relationship of these two interconnected notions and the need to investigate each in the light of the other for a better understanding of T cell responsiveness for the effective clinical applications.
Collapse
Affiliation(s)
- Chloe H. Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
Sioud M. Microbial sensing by haematopoietic stem and progenitor cells: Vigilance against infections and immune education of myeloid cells. Scand J Immunol 2020; 92:e12957. [PMID: 32767789 DOI: 10.1111/sji.12957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Bone marrow haematopoietic stem and progenitor cells (HSPCs) express pattern recognition receptors such as Toll-like receptors (TLRs) to sense microbial products and activation of these innate immune receptors induces cytokine expression and redirects bone marrow haematopoiesis towards the increased production of myeloid cells. Secreted cytokines by HSPCs in response to TLR ligands can act in an autocrine or paracrine manner to regulate haematopoiesis. Moreover, tonic activation of HSPCs by microbiota-derived compounds might educate HSPCs to produce superior myeloid cells equipped with innate memory responses to combat pathogens. While haematopoietic stem cell activation through TLRs meets the increased demand for blood leucocytes to protect the host against infection, persistent exposure to inflammatory cytokines or microbial products might impair their function and even induce malignant transformation. This review highlights the potential outcomes of HSPCs in response to TLR ligands.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Cancer Immunology, Oslo University Hospital-Radiumhospitalet, Montebello, Norway
| |
Collapse
|