1
|
Skoracka K, Hryhorowicz S, Schulz P, Zawada A, Ratajczak-Pawłowska AE, Rychter AM, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. The role of leptin and ghrelin in the regulation of appetite in obesity. Peptides 2025; 186:171367. [PMID: 39983918 DOI: 10.1016/j.peptides.2025.171367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Leptin and ghrelin are two key hormones that play opposing roles in the regulation of appetite and energy balance. Ghrelin stimulates appetite and food intake following binding to receptors and the subsequent activation of orexigenic neurons in the arcuate nucleus. Leptin, conversely, has been demonstrated to suppress appetite and reduce food intake. This occurs through the inhibition of ghrelin-activated neurons, while simultaneously activating those that promote satiety and increase energy expenditure. A lack of biological response despite elevated leptin levels, which is known as leptin resistance, is observed in individuals with excess body weight and represents a significant challenge. As the dysregulation of ghrelin and leptin signalling has been linked to the development of obesity and other metabolic disorders, an in-depth understanding of the genetic determinants affecting these two hormones may facilitate a more comprehensive grasp of the intricate interactions that underpin the pathogenesis of obesity.
Collapse
Affiliation(s)
- Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland; Doctoral School, Poznan University of Medical Sciences, Bukowska 70, Poznan 60-812, Poland.
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, Poznan 60-479, Poland
| | - Piotr Schulz
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland
| | - Alicja Ewa Ratajczak-Pawłowska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland; Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan 60-355, Poland
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland; Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan 60-355, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, Poznan 60-479, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland; Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan 60-355, Poland.
| |
Collapse
|
2
|
Lord RA, Inglis MA, Juengel JL, Anderson GM. A Leptin Receptor Mutation Which Impairs Fertility in Ewes Causes Delayed Puberty in Male and Female Mice. Endocrinology 2025; 166:bqaf058. [PMID: 40130278 PMCID: PMC11979093 DOI: 10.1210/endocr/bqaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 03/26/2025]
Abstract
Reproductive function is tightly linked to nutritional status due to its high energetic demands. Leptin, a key adipose tissue-derived hormone signalling energy reserves to the brain, integrates metabolic status with the hypothalamic-pituitary-gonadal axis to ensure reproductive function is maintained or suppressed appropriately. Mutations in leptin or its receptor (LepR) are known to cause infertility and obesity in mice. In Davisdale ewes, 2 naturally occurring LepR mutations (R62C and P1019S) were associated with delayed puberty and subfertility, but their effects in males or in other species remain to be determined. This study examined the impact of analogous LepR mutations (A63C and P1018S) in mice using CRISPR-Cas9 gene editing. Puberty onset, adult fertility, and metabolic phenotypes were assessed in wild-type, heterozygous, and homozygous mutant mice. The A63C mutation, located in the extracellular domain of the receptor, resulted in increased body weight and adiposity in females, along with delays in puberty onset in both sexes. Despite these delays, adult reproductive function was maintained. Immunohistochemical analysis revealed no detectable reductions in leptin-induced pSTAT3, pERK1/2, or pmTOR signalling in the hypothalamic arcuate nucleus in either mutant line, indicating these pathways remain largely intact. These findings demonstrate the conserved importance of this region of the leptin receptor for puberty onset and adiposity across species, but also the resilience of leptin signalling in preserving reproductive function despite genetic variation.
Collapse
Affiliation(s)
- Rebecca A Lord
- Centre for Neuroendocrinology, and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Megan A Inglis
- Centre for Neuroendocrinology, and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Jennifer L Juengel
- Agricultural Systems and Reproduction, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel 9092, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology, and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| |
Collapse
|
3
|
Wyatt RA, Jamaluddin A, Mistry V, Quinn C, Gorvin CM. Obesity-associated MRAP2 variants impair multiple MC4R-mediated signaling pathways. Hum Mol Genet 2025; 34:533-546. [PMID: 39807633 PMCID: PMC11891872 DOI: 10.1093/hmg/ddaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed at hypothalamic neurons that has an important role in appetite suppression and food intake. Mutations in MC4R are the most common cause of monogenic obesity and can affect multiple signaling pathways including Gs-cAMP, Gq, ERK1/2, β-arrestin recruitment, internalization and cell surface expression. The melanocortin-2 receptor accessory protein 2 (MRAP2), is a single-pass transmembrane protein that interacts with and regulates signaling by MC4R. Variants in MRAP2 have also been identified in overweight and obese individuals. However, functional studies that have only measured the effect of MRAP2 variants on MC4R-mediated cAMP signaling have produced inconsistent findings and most do not reduce MC4R function. Here we investigated the effect of twelve of these previously reported MRAP2 variants and showed that all variants that have been identified in overweight or obese individuals impair MC4R function. When expressed at equal concentrations, seven MRAP2 variants impaired MC4R-mediated cAMP signaling, while nine variants impaired IP3 signaling. Four mutations in the MRAP2 C-terminus affected internalization. MRAP2 variants had no effect on total or cell surface expression of either the MRAP2 or MC4R proteins. Structural models predicted that MRAP2 interacts with MC4R transmembrane helices 5 and 6, and mutations in two MRAP2 residues in putative contact sites impaired the ability of MRAP2 to facilitate MC4R signaling. In summary, our studies demonstrate that human MRAP2 variants associated with obesity impair multiple MC4R signaling pathways and that both Gs-cAMP and Gq-IP3 pathways should be assessed to determine variant pathogenicity.
Collapse
Affiliation(s)
- Rachael A Wyatt
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, United Kingdom
| | - Aqfan Jamaluddin
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, United Kingdom
| | - Vinesh Mistry
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Caitlin Quinn
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Caroline M Gorvin
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
4
|
Kato T, Matsuzawa F, Shojima N, Yamauchi T. Pathogenic variants in the fibronectin type III domain of leptin receptor: Molecular dynamics simulation and structural analysis. J Mol Graph Model 2025; 135:108912. [PMID: 39608136 DOI: 10.1016/j.jmgm.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Several case reports have identified leptin receptor (LEPR) variants associated with severe obesity in humans. However, the structure of LEPR has only been partially understood until recently, and few studies have investigated the detrimental effects of these variants on the protein's three-dimensional structure. Notably, fibronectin type III (FnIII) domains play a crucial role in signal transduction. In this study, we examined the impact of 10 variants within the FnIII domains on LEPR structure using molecular dynamics (MD) simulations and structural analysis. Our 300 ns MD simulations revealed that the C604S variant, which disrupts a key disulfide bond, significantly increased the overall root-mean-square deviation (RMSD) of the FnIII-2 and FnIII-3 domains, indicating destabilization of the interdomain rigidity required for proper signaling. Variants such as P639L, N718S, and W646C also induced abnormal bending and rotational misalignment between the FnIII domains, contributing to interdomain destabilization. Structural analysis identified folding nuclei and demonstrated that L662S, W664R, H684P, and S723F destabilize the internal domain. Variants affecting interdomain resulted in lower-than-expected damage prediction scores by bioinformatics tools. This study is expected to contribute to the elucidation of the disease-causing mechanisms of missense variants in the leptin receptor.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fumiko Matsuzawa
- Tokyo R&D Center, Altif Laboratories, Inc., 3F Shiodome Building, 1-2-20 Kaigan, Minato-ku, Tokyo, 105-0022, Japan
| | - Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
5
|
Sáenz de Miera C, Bellefontaine N, Silveira MA, Fortin CN, Zampieri TT, Donato J, Williams KW, Mendes-da-Silva C, Heikkinen L, Broberger C, Frazao R, Elias CF. Nutritionally responsive PMv DAT neurons are dynamically regulated during pubertal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636271. [PMID: 39975315 PMCID: PMC11838509 DOI: 10.1101/2025.02.03.636271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Pubertal development is tightly regulated by energy balance. The crosstalk between metabolism and reproduction is orchestrated by complex neural networks and leptin action in the hypothalamus plays a critical role. The ventral premammillary nucleus (PMv) leptin receptor (LepRb) neurons act as an essential relay for leptin action on reproduction. Here, we show that mouse PMv cells expressing the dopamine transporter (DAT) gene, Slc6a3 (PMvDAT) form a novel subpopulation of LepRb neurons. Virtually all PMvDAT neurons expressed Lepr mRNA and responded to acute leptin treatment. Electrophysiological recordings from DATCRE;tdTomato mice showed that PMvDAT cells in prepubertal females have a hyperpolarized resting membrane potential compared to diestrous females. Slc6a3 mRNA expression in the PMv was higher in prepubertal than in adult females. In prepubertal females Slc6a3 mRNA expression was higher in overnourished females from small size litters than in controls. Prepubertal Lep ob females showed decreased PMv Slc6a3 mRNA expression, that recovered to control levels after 3 days of leptin injections. Using a tracer adenoassociated virus in the PMv of adult DATCre;Kiss1hrGFP females, we observed PMvDAT projections in the anteroventral periventricular and periventricular nucleus (AVPV/PeN), surrounding Kiss1hrGFP neurons, a population critical for sexual maturation and positive estrogen feedback in females. The DATCRE;tdTomato projections to the AVPV were denser in adult than in prepubertal females. In adults, they surrounded tyrosine hydroxylase neurons. Overall, these findings suggest that the DAT expressing PMvLepRb subpopulation play a role in leptin regulation of sexual maturation via actions on AVPV kisspeptin/tyrosine hydroxylase neurons.
Collapse
Affiliation(s)
- Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
| | - Marina A Silveira
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil, 05508
| | - Chelsea N Fortin
- Department of Obstetrics and Gynecology University of Michigan, Ann Arbor, MI, 48109
| | - Thais T Zampieri
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil, 05508
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil, 05508
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, Peter O’Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390
| | | | - Laura Heikkinen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Christian Broberger
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Renata Frazao
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil, 05508
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
- Department of Obstetrics and Gynecology University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
6
|
Collet TH, Schwitzgebel V. Exploring the therapeutic potential of precision medicine in rare genetic obesity disorders: a scientific perspective. Front Nutr 2024; 11:1509994. [PMID: 39777073 PMCID: PMC11705004 DOI: 10.3389/fnut.2024.1509994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The prevalence of obesity is increasing worldwide, affecting both children and adults. This obesity epidemic is mostly driven by an increase in energy intake (abundance of highly palatable energy-dense food and drinks) and to a lesser degree a decrease in energy expenditure (sedentary lifestyle). A small proportion of individuals with obesity are affected by genetic forms of obesity, which often relate to mutations in the leptin-melanocortin pathway or are part of syndromes such as the Bardet-Biedl syndrome. These rare forms of obesity have provided valuable insights into the genetic architecture of obesity. Recent advances in understanding the molecular mechanisms that control appetite, hunger, and satiety have led to the development of drugs that can override genetic defects, enabling precision treatment. Leptin deficiency is uniquely treated with recombinant human metreleptin, while those with LEPR, PCSK1, or POMC deficiency can now be treated with the MC4R agonist setmelanotide. This review highlights the most frequent monogenic and syndromic forms of obesity, and the future outlook of precision treatment for these conditions.
Collapse
Affiliation(s)
- Tinh-Hai Collet
- Service of Endocrinology, Diabetes, Nutrition, and Therapeutic Education, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
| | - Valerie Schwitzgebel
- Faculty of Medicine, Diabetes Center, University of Geneva, Geneva, Switzerland
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Obstetrics, and Gynecology, Geneva University Hospitals, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Semenova E, Guo A, Liang H, Hernandez CJ, John EB, Thaker VV. The expanding landscape of genetic causes of obesity. Pediatr Res 2024:10.1038/s41390-024-03780-6. [PMID: 39690244 DOI: 10.1038/s41390-024-03780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 12/19/2024]
Abstract
Obesity and weight regulation disorders are determined by the combined effects of genetics and environment. Polygenic obesity results from the combination of common variants in several genes which predisposes the individual to obesity and its related complications. In contrast, monogenic obesity results from changes in single genes, especially those in leptin-melanocortin pathway, and presents with early onset severe obesity, with or without other syndromic features. Rare variants in melanocortin 4 receptor are the commonest form of monogenic obesity. In addition, structural variation in small or large segments of chromosomes may also present with syndromic forms of obesity. Prader-Willi Syndrome, caused by imprinting errors in chromosome 15q11-13, is the most prevalent genetic cause of severe hyperphagia and obesity. With the advances in technologies, the past decade has witnessed a revolution in the identification of novel genetic causes of obesity, primarily in genes related to the leptin melanocortin pathway. The availability of safe melanocortin analogs holds the potential for targeted therapies for some of these disorders. This review summarizes known and novel rare genetic forms of obesity, along with approaches for the clinical investigation of copy number and sequence variants. The goal is to provide a reference for practicing clinicians to encourage genetic testing in obesity. IMPACT: What does this article add to the existing literature? Genetic obesity is an expanding frontier with potential to change management. Here, we summarize current information on the genetic causes of obesity and provide guidance for genetic testing. Emerging treatments may provide targeted precise treatment and change management practices.
Collapse
Affiliation(s)
- Ekaterina Semenova
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Guo
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Harry Liang
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Cindy J Hernandez
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Ella B John
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Vidhu V Thaker
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Pediatric Endocrinology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Delplanque J, Le Collen L, Loiselle H, Leloire A, Toussaint B, Vaillant E, Charpentier G, Franc S, Balkau B, Marre M, Henriques E, Buse Falay E, Derhourhi M, Froguel P, Bonnefond A. Monoallelic pathogenic variants in LEPR do not cause obesity. Am J Hum Genet 2024; 111:2668-2674. [PMID: 39561769 PMCID: PMC11639077 DOI: 10.1016/j.ajhg.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Individuals with obesity caused by biallelic pathogenic LEPR (leptin receptor) variants can benefit from setmelanotide, the novel MC4R agonist. An ongoing phase 3 clinical trial (NCT05093634) includes individuals with obesity who carry a heterozygous LEPR variant, although the obesogenic impact of these variants remains incompletely evaluated. The aim of this study was to functionally assess heterozygous variants in LEPR and to evaluate their effect on obesity. We sequenced LEPR in ∼10,000 participants from the French RaDiO study. We found 86 rare heterozygous variants. Each identified variant was then investigated in vitro using luciferase and western blot assays. Using the criteria of the American College of Medical Genetics and Genomics (ACMG), including the strong criterion related to functional assays, we found 12 pathogenic LEPR variants. Most heterozygotes did not present with obesity, and we found no association between these pathogenic variants and body mass index (BMI). This lack of association between pathogenic LEPR variants and obesity risk or BMI was confirmed using exome data from 200,000 individuals in the UK Biobank. In the literature, among 55 reported heterozygotes for of a rare pathogenic LEPR variant, only 27% had obesity. In conclusion, monoallelic pathogenic LEPR variants were functionally tested, and they do not elevate the risk of obesity or BMI levels. This raises questions about the use of setmelanotide, a costly drug with potential side effects, based solely on the presence of a heterozygous LEPR variant.
Collapse
Affiliation(s)
- Jérôme Delplanque
- Inserm/CNRS UMR 1283/8199, Institut Pasteur de Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France
| | - Lauriane Le Collen
- Inserm/CNRS UMR 1283/8199, Institut Pasteur de Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, Nancy University Hospital, Nancy, France; Department of Metabolism, Nancy University Hospital, Nancy, France
| | - Hélène Loiselle
- Inserm/CNRS UMR 1283/8199, Institut Pasteur de Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France
| | - Audrey Leloire
- Inserm/CNRS UMR 1283/8199, Institut Pasteur de Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France
| | - Bénédicte Toussaint
- Inserm/CNRS UMR 1283/8199, Institut Pasteur de Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France
| | - Emmanuel Vaillant
- Inserm/CNRS UMR 1283/8199, Institut Pasteur de Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France
| | - Guillaume Charpentier
- CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France
| | - Sylvia Franc
- CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France
| | - Beverley Balkau
- Paris-Saclay University, Paris-Sud University, University of Versailles Saint-Quentin-en-Yvelines, Center for Research in Epidemiology and Population Health, Inserm U1018 Clinical Epidemiology, Villejuif, France
| | - Michel Marre
- Necker-Enfants Malades Institute, Inserm, University of Paris, Paris, France; Ambroise Paré Clinic, Neuilly-sur-Seine, France
| | - Emma Henriques
- Inserm/CNRS UMR 1283/8199, Institut Pasteur de Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France
| | - Emmanuel Buse Falay
- Inserm/CNRS UMR 1283/8199, Institut Pasteur de Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France
| | - Mehdi Derhourhi
- Inserm/CNRS UMR 1283/8199, Institut Pasteur de Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France
| | - Philippe Froguel
- Inserm/CNRS UMR 1283/8199, Institut Pasteur de Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London, UK.
| | - Amélie Bonnefond
- Inserm/CNRS UMR 1283/8199, Institut Pasteur de Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
9
|
Bartkowiak K, Bartkowiak M, Jankowska-Steifer E, Ratajska A, Czarnowska E, Kujawa M, Aniołek O, Niderla-Bielińska J. Expression of mRNA for molecules that regulate angiogenesis, endothelial cell survival, and vascular permeability is altered in endothelial cells isolated from db/db mouse hearts. Histochem Cell Biol 2024; 162:523-539. [PMID: 39317805 PMCID: PMC11455669 DOI: 10.1007/s00418-024-02327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Metabolic syndrome (MetS) is a condition that includes symptoms, such as obesity, hyperglycemia, and hypertension, which elevate cardiovascular risk. An impaired angiogenic response of endothelial cells (ECs) in heart and peripheral organs has been proposed in MetS, but the mechanisms of this phenomenon have not been thoroughly explored. Results obtained from evaluating the whole myocardium are inconsistent, since different types of cells react differently to MetS environment and a variety of molecular pathways are involved in the angiogenic response. Therefore, the aim of this paper was to study one selected pathway-the VEGF/VEGFR pathway, which regulates the angiogenic response and microvascular permeability in ECs isolated from db/db mouse hearts. The expression of mRNAs for VEGF/VEGFR axis proteins was assessed with RT-PCR in ECs isolated from control and db/db mouse myocardium. The density of CD31-, VEGFR2-, and VE-cadherin-positive cells was examined with confocal microscopy, and the ultrastructure of ECs was analyzed with transmission electron microscopy. The aortic ring assay was used to assess the capacity of ECs to respond to angiogenic stimuli. Our results showed a decreased number of microvessels, diminished expression of VE-cadherin and VEGFR2 and widened gaps between the ECs of microcapillaries. The aortic ring assay showed a diminished number of sprouts in db/db mice. These results may indicate that ECs in MetS enhance the production of mRNA for VEGF/VRGFR axis proteins, yet sprout formation and vascular barrier maintenance are limited. These novel data may provide a foundation for further studies on ECs dysfunction in MetS.
Collapse
Affiliation(s)
- Krzysztof Bartkowiak
- Histology and Embryology Department, Medical University of Warsaw, Chalubinskiego 5 Str, 02-004, Warsaw, Poland
| | - Mateusz Bartkowiak
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jankowska-Steifer
- Histology and Embryology Department, Medical University of Warsaw, Chalubinskiego 5 Str, 02-004, Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Kujawa
- Department of Histology and Embryology, Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - Olga Aniołek
- Department of Histology and Embryology, Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - Justyna Niderla-Bielińska
- Histology and Embryology Department, Medical University of Warsaw, Chalubinskiego 5 Str, 02-004, Warsaw, Poland.
| |
Collapse
|
10
|
Liu D, Liu Y, Lu CY, Wang Q, Bao Y, Yu Y, Wang Q, Peng W. Investigating genetic variants in early-onset obesity through exome sequencing: A retrospective cohort study. Obes Res Clin Pract 2024; 18:417-425. [PMID: 39667993 DOI: 10.1016/j.orcp.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE This study aimed to examine clinical data and analyze exome sequencing (ES) findings in children diagnosed with early-onset obesity. METHODS We screened children presenting with severe (body mass index-standard deviation score >3) and early-onset (<7 years) obesity using ES. Participants were categorized into either the "no variant identified" group or the "variant identified" group, facilitating the exploration of correlations between clinical-demographic characteristics and genetic mutations linked to early-onset obesity. The functional implications of identified variants were assessed through in silico analyses. RESULTS Of the patients, 32 (35.5 %) possessed one or more mutations in pathways associated with obesity, all of which were heterozygous and patients with more than two obesity-associated variants were more obese. This cohort included 29 novel mutations distinct to our study population, 7 previously reported pathogenic variants, two instances of uniparental disomy, and one mitochondrial hotspot mutation. Variants in the SH2B1 gene emerged as a prevalent genetic determinant of obesity within our group, accounting for 16.6 % of cases. Statistical evaluations showed no significant differences in demographic attributes between the two groups. CONCLUSION Exome sequencing proves to be an instrumental approach for uncovering new variants and broadening the spectrum of mutations in early-onset obesity among children. Concurrently, further functional studies, both in vitro and in vivo, are crucial to elucidate the contributions of these variants to obesity's pathogenesis.
Collapse
Affiliation(s)
- Deyun Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Yuxiang Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Chen Yu Lu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qian Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yingying Bao
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yue Yu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qiang Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wu Peng
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
11
|
Renard E, Thevenard-Berger A, Meyre D. Medical semiology of patients with monogenic obesity: A systematic review. Obes Rev 2024; 25:e13797. [PMID: 38956946 DOI: 10.1111/obr.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Patients with monogenic obesity display numerous medical features on top of hyperphagic obesity, but no study to date has provided an exhaustive description of their semiology. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases from inception to January 2022 to identify studies that described symptoms of patients carrying pathogenic mutations in at least one of eight monogenic obesity genes (ADCY3, LEP, LEPR, MC3R, MC4R, MRAP2, PCSK1, and POMC). Of 5207 identified references, 269 were deemed eligible after title and abstract screening, full-text reading, and risk of bias and quality assessment. Data extraction included mutation spectrum and mode of inheritance, clinical presentation (e.g., anthropometry, energy intake and eating behaviors, digestive function, puberty and fertility, cognitive features, infectious diseases, morphological characteristics, chronic respiratory disease, and cardiovascular disease), biological characteristics (metabolic profile, endocrinology, hematology), radiological features, and treatments. The review provides an exhaustive description of mandatory, non-mandatory, and unique symptoms in heterozygous and homozygous carriers of mutation in eight monogenic obesity genes. This information is critical to help clinicians to orient genetic testing in subsets of patients with suspected monogenic obesity and provide actionable treatments (e.g., recombinant leptin and MC4R agonist).
Collapse
Affiliation(s)
- Emeline Renard
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Department of Pediatrics, University Hospital of Nancy, Nancy, France
| | | | - David Meyre
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Nancy, France
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| |
Collapse
|
12
|
Siddiqui J, Kinney CE, Han JC. The Genetics of Obesity. Pediatr Clin North Am 2024; 71:897-917. [PMID: 39343500 DOI: 10.1016/j.pcl.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Understanding the genetic causes of obesity permits anticipatory guidance and targeted treatments. Children with hyperphagia and severe early-onset obesity should receive genetic testing for rare monogenic and syndromic disorders caused by pathogenic variants involving a single gene or single chromosomal region. Gene panels covering the leptin pathway, the key regulator of energy balance, are becoming more widely available and at lower cost. Polygenic obesity is much more common and involves multiple genes throughout the genome, although the overlap in genes for rare and common disorders suggests a spectrum of severity and the potential of shared precision medicine approaches for treatment.
Collapse
Affiliation(s)
- Juwairriyyah Siddiqui
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Mount Sinai Hospital, Diabetes, Obesity, and Metabolism Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Clint E Kinney
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Mount Sinai Hospital, Diabetes, Obesity, and Metabolism Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Joan C Han
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Mount Sinai Hospital, Diabetes, Obesity, and Metabolism Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
13
|
von Schnurbein J, Zorn S, Nunziata A, Brandt S, Moepps B, Funcke JB, Hussain K, Farooqi IS, Fischer-Posovszky P, Wabitsch M. Classification of Congenital Leptin Deficiency. J Clin Endocrinol Metab 2024; 109:2602-2616. [PMID: 38470203 PMCID: PMC11403321 DOI: 10.1210/clinem/dgae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE Biallelic pathogenic leptin gene variants cause severe early-onset obesity usually associated with low or undetectable circulating leptin levels. Recently, variants have been described resulting in secreted mutant forms of the hormone leptin with either biologically inactive or antagonistic properties. METHODS We conducted a systematic literature research supplemented by unpublished data from patients at our center as well as new in vitro analyses to provide a systematic classification of congenital leptin deficiency based on the molecular and functional characteristics of the underlying leptin variants and investigated the correlation of disease subtype with severity of the clinical phenotype. RESULTS A total of 28 distinct homozygous leptin variants were identified in 148 patients. The identified variants can be divided into 3 different subtypes of congenital leptin deficiency: classical hormone deficiency (21 variants in 128 patients), biologically inactive hormone (3 variants in 12 patients), and antagonistic hormone (3 variants in 7 patients). Only 1 variant (n = 1 patient) remained unclassified. Patients with biological inactive leptin have a higher percentage of 95th body mass index percentile compared to patients with classical hormone deficiency. While patients with both classical hormone deficiency and biological inactive hormone can be treated with the same starting dose of metreleptin, patients with antagonistic hormone need a variant-tailored treatment approach to overcome the antagonistic properties of the variant leptin. MAIN CONCLUSION Categorization of leptin variants based on molecular and functional characteristics helps to determine the most adequate approach to treatment of patients with congenital leptin deficiency.
Collapse
Affiliation(s)
- Julia von Schnurbein
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
| | - Stefanie Zorn
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
| | - Adriana Nunziata
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
| | - Stephanie Brandt
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
| | - Barbara Moepps
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, 89075, Germany
| | - Jan-Bernd Funcke
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatrics, Sidra Medicine, OPC, C6-340, PO Box 26999, Doha, Qatar
| | - I Sadaf Farooqi
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Pamela Fischer-Posovszky
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
| |
Collapse
|
14
|
Fitch AK, Malhotra S, Conroy R. Differentiating monogenic and syndromic obesities from polygenic obesity: Assessment, diagnosis, and management. OBESITY PILLARS 2024; 11:100110. [PMID: 38766314 PMCID: PMC11101890 DOI: 10.1016/j.obpill.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Background Obesity is a multifactorial neurohormonal disease that results from dysfunction within energy regulation pathways and is associated with increased morbidity, mortality, and reduced quality of life. The most common form is polygenic obesity, which results from interactions between multiple gene variants and environmental factors. Highly penetrant monogenic and syndromic obesities result from rare genetic variants with minimal environmental influence and can be differentiated from polygenic obesity depending on key symptoms, including hyperphagia; early-onset, severe obesity; and suboptimal responses to nontargeted therapies. Timely diagnosis of monogenic or syndromic obesity is critical to inform management strategies and reduce disease burden. We outline the physiology of weight regulation, role of genetics in obesity, and differentiating characteristics between polygenic and rare genetic obesity to facilitate diagnosis and transition toward targeted therapies. Methods In this narrative review, we focused on case reports, case studies, and natural history studies of patients with monogenic and syndromic obesities and clinical trials examining the efficacy, safety, and quality of life impact of nontargeted and targeted therapies in these populations. We also provide comprehensive algorithms for diagnosis of patients with suspected rare genetic causes of obesity. Results Patients with monogenic and syndromic obesities commonly present with hyperphagia (ie, pathologic, insatiable hunger) and early-onset, severe obesity, and the presence of hallmark characteristics can inform genetic testing and diagnostic approach. Following diagnosis, specialized care teams can address complex symptoms, and hyperphagia is managed behaviorally. Various pharmacotherapies show promise in these patient populations, including setmelanotide and glucagon-like peptide-1 receptor agonists. Conclusion Understanding the pathophysiology and differentiating characteristics of monogenic and syndromic obesities can facilitate diagnosis and management and has led to development of targeted pharmacotherapies with demonstrated efficacy for reducing body weight and hunger in the affected populations.
Collapse
Affiliation(s)
| | - Sonali Malhotra
- Harvard Medical School, Boston, MA, USA
- Rhythm Pharmaceuticals, Inc., Boston, MA, USA
- Massachussetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
15
|
Jacobsen JM, Petersen N, Torz L, Gerstenberg MK, Pedersen K, Østergaard S, Wulff BS, Andersen B, Raun K, Christoffersen BØ, John LM, Reitman ML, Kuhre RE. Housing mice near vs. below thermoneutrality affects drug-induced weight loss but does not improve prediction of efficacy in humans. Cell Rep 2024; 43:114501. [PMID: 39067024 PMCID: PMC11380917 DOI: 10.1016/j.celrep.2024.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Evaluation of weight loss drugs is usually performed in diet-induced obese mice housed at ∼22°C. This is a cold stress that increases energy expenditure by ∼35% compared to thermoneutrality (∼30°C), which may overestimate drug-induced weight loss. We investigated five anti-obesity mechanisms that have been in clinical development, comparing weight loss in mice housed at 22°C vs. 30°C. Glucagon-like peptide-1 (GLP-1), human fibroblast growth factor 21 (hFGF21), and melanocortin-4 receptor (MC4R) agonist induced similar weight losses. Peptide YY elicited greater vehicle-subtracted weight loss at 30°C (7.2% vs. 1.4%), whereas growth differentiation factor 15 (GDF15) was more effective at 22°C (13% vs. 6%). Independent of ambient temperature, GLP-1 and hFGF21 prevented the reduction in metabolic rate caused by weight loss. There was no simple rule for a better prediction of human drug efficacy based on ambient temperature, but since humans live at thermoneutrality, drug testing using mice should include experiments near thermoneutrality.
Collapse
Affiliation(s)
- Julie M Jacobsen
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Natalia Petersen
- Liver and Gut Biology, Obesity & NASH, Global Drug Discovery, Novo Nordisk A/S, Bagsværd, Denmark
| | - Lola Torz
- Liver and Gut Biology, Obesity & NASH, Global Drug Discovery, Novo Nordisk A/S, Bagsværd, Denmark
| | | | - Kent Pedersen
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Søren Østergaard
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Birgitte S Wulff
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Birgitte Andersen
- Diabetes, Obesity and NASH, Global Drug Discovery, Novo Nordisk A/S, Bagsværd, Denmark
| | - Kirsten Raun
- Lead Portfolio Projects, Research and Early Development, Novo Nordisk A/S, Bagsværd, Denmark
| | | | - Linu M John
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Rune E Kuhre
- Obesity and Liver Pharmacology, Integrated Physiology Research, Novo Nordisk A/S, Bagsværd, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Sáenz de Miera C, Bellefontaine N, Allen SJ, Myers MG, Elias CF. Glutamate neurotransmission from leptin receptor cells is required for typical puberty and reproductive function in female mice. eLife 2024; 13:RP93204. [PMID: 39007235 PMCID: PMC11249761 DOI: 10.7554/elife.93204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor long form (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determined the role of glutamatergic neurotransmission from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces luteinizing hormone (LH) release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LeprCre (LepRb-Cre) mice. We collected blood sequentially before and for 1 hr after intravenous clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of Fos immunoreactive neurons in the PMv. Next, females with deletion of Slc17a6 (Vglut2) in LepRb neurons (LeprΔVGlut2) showed delayed age of puberty, disrupted estrous cycles, increased gonadotropin-releasing hormone (GnRH) concentration in the axon terminals, and disrupted LH secretion, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LeprloxTB) with concomitant deletion of Slc17a6 (Vglut2flox) mice. Rescue of Lepr and deletion of Slc17a6 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LeprloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation, and became pregnant, while LeprloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic neurotransmission from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.
Collapse
Affiliation(s)
- Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Susan J Allen
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Martin G Myers
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
- Elizabeth W. Caswell Diabetes Institute, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan–Ann ArborAnn ArborUnited States
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan–Ann ArborAnn ArborUnited States
- Elizabeth W. Caswell Diabetes Institute, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Obstetrics and Gynecology, University of Michigan–Ann ArborAnn ArborUnited States
| |
Collapse
|
17
|
Sivakumar S, Lama D, Rabhi N. Childhood obesity from the genes to the epigenome. Front Endocrinol (Lausanne) 2024; 15:1393250. [PMID: 39045266 PMCID: PMC11263020 DOI: 10.3389/fendo.2024.1393250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
The prevalence of obesity and its associated comorbidities has surged dramatically in recent decades. Especially concerning is the increased rate of childhood obesity, resulting in diseases traditionally associated only with adulthood. While obesity fundamentally arises from energy imbalance, emerging evidence over the past decade has revealed the involvement of additional factors. Epidemiological and murine studies have provided extensive evidence linking parental obesity to increased offspring weight and subsequent cardiometabolic complications in adulthood. Offspring exposed to an obese environment during conception, pregnancy, and/or lactation often exhibit increased body weight and long-term metabolic health issues, suggesting a transgenerational inheritance of disease susceptibility through epigenetic mechanisms rather than solely classic genetic mutations. In this review, we explore the current understanding of the mechanisms mediating transgenerational and intergenerational transmission of obesity. We delve into recent findings regarding both paternal and maternal obesity, shedding light on the underlying mechanisms and potential sex differences in offspring outcomes. A deeper understanding of the mechanisms behind obesity inheritance holds promise for enhancing clinical management strategies in offspring and breaking the cycle of increased metabolic risk across generations.
Collapse
Affiliation(s)
| | | | - Nabil Rabhi
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
18
|
Welling MS, Mohseni M, Meeusen REH, de Groot CJ, Boon MR, Kleinendorst L, Visser JA, van Haelst MM, van den Akker ELT, van Rossum EFC. Clinical phenotypes of adults with monogenic and syndromic genetic obesity. Obesity (Silver Spring) 2024; 32:1257-1267. [PMID: 38807300 DOI: 10.1002/oby.24047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE Considering limited evidence on diagnostics of genetic obesity in adults, we evaluated phenotypes of adults with genetic obesity. Additionally, we assessed the applicability of Endocrine Society (ES) recommendations for genetic testing in pediatric obesity. METHODS We compared clinical features, including age of onset of obesity and appetite, between adults with non-syndromic monogenic obesity (MO), adults with syndromic obesity (SO), and adults with common obesity (CO) as control patients. RESULTS A total of 79 adults with genetic obesity (32 with MO, 47 with SO) were compared with 186 control patients with CO. Median BMI was similar among the groups: 41.2, 39.5, and 38.7 kg/m2 for patients with MO, SO, and CO, respectively. Median age of onset of obesity was 3 (IQR: 1-6) years in patients with MO, 9 (IQR: 4-13) years in patients with SO, and 21 (IQR: 13-33) years in patients with CO (p < 0.001). Patients with genetic obesity more often reported increased appetite: 65.6%, 68.1%, and 33.9% in patients with MO, SO, and CO, respectively (p < 0.001). Intellectual deficit and autism spectrum disorder were more prevalent in patients with SO (53.2% and 21.3%) compared with those with MO (3.1% and 6.3%) and CO (both 0.0%). The ES recommendations were fulfilled in 56.3%, 29.8%, and 2.7% of patients with MO, SO, and CO, respectively (p < 0.001). CONCLUSIONS We found distinct phenotypes in adult genetic obesity. Additionally, we demonstrated low sensitivity for detecting genetic obesity in adults using pediatric ES recommendations, necessitating specific genetic testing recommendations in adult obesity care.
Collapse
Affiliation(s)
- Mila S Welling
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mostafa Mohseni
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Renate E H Meeusen
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cornelis J de Groot
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mariëtte R Boon
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lotte Kleinendorst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jenny A Visser
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erica L T van den Akker
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Shenno M, Al-Qiami A, Ibrahim IA, Elhaw L, Nashwan AJ. A rare presentation of bilateral periventricular nodular heterotopia with intra-axial pontine Lesion: A case report and treatment approach. INTERDISCIPLINARY NEUROSURGERY 2024; 36:101894. [DOI: 10.1016/j.inat.2023.101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
|
20
|
Shoemaker A. Bardet-Biedl syndrome: A clinical overview focusing on diagnosis, outcomes and best-practice management. Diabetes Obes Metab 2024; 26 Suppl 2:25-33. [PMID: 38383825 DOI: 10.1111/dom.15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Bardet-Biedl syndrome (BBS) is a genetic disorder characterized by early-onset obesity, polydactyly, genital and kidney anomalies, developmental delay and vision loss due to rod-cone dystrophy. BBS is an autosomal recessive disorder with >20 implicated genes. The genotype-phenotype relationship in BBS is not clear, and there may be additional modifying factors. The underlying mechanism is dysfunction of primary cilia. In BBS, receptor trafficking in and out of the cilia is compromised, affecting multiple organ systems. Along with early-onset obesity, hyperphagia is a prominent symptom and contributes significantly to clinical morbidity and caregiver burden. While there is no cure for BBS, setmelanotide is a new pharmacotherapy approved for treatment of obesity in BBS. The differential diagnosis for BBS includes other ciliopathies, such as Alstrom syndrome, and other genetic obesity syndromes, such as Prader-Willi syndrome. Careful clinical history and genetic testing can help determine the diagnosis and a multidisciplinary team is necessary to guide clinical management.
Collapse
Affiliation(s)
- Ashley Shoemaker
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
21
|
de Miera CS, Bellefontaine N, Allen SJ, Myers MG, Elias CF. Glutamate neurotransmission from leptin receptor cells is required for typical puberty and reproductive function in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558865. [PMID: 37790549 PMCID: PMC10542178 DOI: 10.1101/2023.09.21.558865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determine the role of glutamatergic signaling from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces LH release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LepRb-Cre mice. We collected blood sequentially before and for 1h after iv. clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of cFos immunoreactive neurons in the PMv. Next, females with deletion of Vglut2 in LepRb neurons (LepR∆VGlut2) showed delayed age of puberty, disrupted estrous cycles, increased GnRH concentration in the axon terminals and disrupted LH responses, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LepRloxTB) with concomitant deletion of Vglut2 (Vglut2-floxed) mice. Rescue of Lepr and deletion of Vglut2 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LepRloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation and became pregnant, while LepRloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic signaling from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.
Collapse
Affiliation(s)
- Cristina Sáenz de Miera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Susan J. Allen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Martin G. Myers
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Carol F. Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| |
Collapse
|
22
|
Kalinderi K, Goula V, Sapountzi E, Tsinopoulou VR, Fidani L. Syndromic and Monogenic Obesity: New Opportunities Due to Genetic-Based Pharmacological Treatment. CHILDREN (BASEL, SWITZERLAND) 2024; 11:153. [PMID: 38397265 PMCID: PMC10886848 DOI: 10.3390/children11020153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Obesity is a significant health problem with a continuously increasing prevalence among children and adolescents that has become a modern pandemic during the last decades. Nowadays, the genetic contribution to obesity is well-established. For this narrative review article, we searched PubMed and Scopus databases for peer-reviewed research, review articles, and meta-analyses regarding the genetics of obesity and current pharmacological treatment, published in the English language with no time restrictions. We also screened the references of the selected articles for possible additional articles in order to include most of the key recent evidence. Our research was conducted between December 2022 and December 2023. We used the terms "obesity", "genetics", "monogenic", "syndromic", "drugs", "autosomal dominant", "autosomal recessive", "leptin-melanocortin pathway", and "children" in different combinations. Recognizing the genetic background in obesity can enhance the effectiveness of treatment. During the last years, intense research in the field of obesity treatment has increased the number of available drugs. This review analyzes the main categories of syndromic and monogenic obesity discussing current data on genetic-based pharmacological treatment of genetic obesity and highlighting the necessity that cases of genetic obesity should follow specific, pharmacological treatment based on their genetic background.
Collapse
Affiliation(s)
- Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasiliki Goula
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Evdoxia Sapountzi
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.S.); (V.R.T.)
| | - Vasiliki Rengina Tsinopoulou
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.S.); (V.R.T.)
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.S.); (V.R.T.)
| |
Collapse
|
23
|
Concepción-Zavaleta MJ, Quiroz-Aldave JE, Durand-Vásquez MDC, Gamarra-Osorio ER, Valencia de la Cruz JDC, Barrueto-Callirgos CM, Puelles-León SL, Alvarado-León EDJ, Leiva-Cabrera F, Zavaleta-Gutiérrez FE, Concepción-Urteaga LA, Paz-Ibarra J. A comprehensive review of genetic causes of obesity. World J Pediatr 2024; 20:26-39. [PMID: 37725322 DOI: 10.1007/s12519-023-00757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Obesity is a multifactorial chronic disease with a high, increasing worldwide prevalence. Genetic causes account for 7% of the cases in children with extreme obesity. DATA SOURCES This narrative review was conducted by searching for papers published in the PubMed/MEDLINE, Embase and SciELO databases and included 161 articles. The search used the following search terms: "obesity", "obesity and genetics", "leptin", "Prader-Willi syndrome", and "melanocortins". The types of studies included were systematic reviews, clinical trials, prospective cohort studies, cross-sectional and prospective studies, narrative reviews, and case reports. RESULTS The leptin-melanocortin pathway is primarily responsible for the regulation of appetite and body weight. However, several important aspects of the pathophysiology of obesity remain unknown. Genetic causes of obesity can be grouped into syndromic, monogenic, and polygenic causes and should be assessed in children with extreme obesity before the age of 5 years, hyperphagia, or a family history of extreme obesity. A microarray study, an analysis of the melanocortin type 4 receptor gene mutations and leptin levels should be performed for this purpose. There are three therapeutic levels: lifestyle modifications, pharmacological treatment, and bariatric surgery. CONCLUSIONS Genetic study technologies are in constant development; however, we are still far from having a personalized approach to genetic causes of obesity. A significant proportion of the affected individuals are associated with genetic causes; however, there are still barriers to its approach, as it continues to be underdiagnosed. Video Abstract (MP4 1041807 KB).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - José Paz-Ibarra
- Department of Medicine, School of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
24
|
Adeva-Andany MM, Domínguez-Montero A, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, González-Lucán M. Body Fat Distribution Contributes to Defining the Relationship between Insulin Resistance and Obesity in Human Diseases. Curr Diabetes Rev 2024; 20:e160823219824. [PMID: 37587805 DOI: 10.2174/1573399820666230816111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 08/18/2023]
Abstract
The risk for metabolic and cardiovascular complications of obesity is defined by body fat distribution rather than global adiposity. Unlike subcutaneous fat, visceral fat (including hepatic steatosis) reflects insulin resistance and predicts type 2 diabetes and cardiovascular disease. In humans, available evidence indicates that the ability to store triglycerides in the subcutaneous adipose tissue reflects enhanced insulin sensitivity. Prospective studies document an association between larger subcutaneous fat mass at baseline and reduced incidence of impaired glucose tolerance. Case-control studies reveal an association between genetic predisposition to insulin resistance and a lower amount of subcutaneous adipose tissue. Human peroxisome proliferator-activated receptorgamma (PPAR-γ) promotes subcutaneous adipocyte differentiation and subcutaneous fat deposition, improving insulin resistance and reducing visceral fat. Thiazolidinediones reproduce the effects of PPAR-γ activation and therefore increase the amount of subcutaneous fat while enhancing insulin sensitivity and reducing visceral fat. Partial or virtually complete lack of adipose tissue (lipodystrophy) is associated with insulin resistance and its clinical manifestations, including essential hypertension, hypertriglyceridemia, reduced HDL-c, type 2 diabetes, cardiovascular disease, and kidney disease. Patients with Prader Willi syndrome manifest severe subcutaneous obesity without insulin resistance. The impaired ability to accumulate fat in the subcutaneous adipose tissue may be due to deficient triglyceride synthesis, inadequate formation of lipid droplets, or defective adipocyte differentiation. Lean and obese humans develop insulin resistance when the capacity to store fat in the subcutaneous adipose tissue is exhausted and deposition of triglycerides is no longer attainable at that location. Existing adipocytes become large and reflect the presence of insulin resistance.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | - Carlos Fernández-Fernández
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Manuel González-Lucán
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
25
|
Argente J, Tena-Sempere M. Clinical and Molecular Features of Patients With Leptin and Leptin Receptor Deficiency: Lessons of 25 Years of Research. J Clin Endocrinol Metab 2023; 109:e424-e425. [PMID: 37310322 DOI: 10.1210/clinem/dgad353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Affiliation(s)
- Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Universidad Autónoma de Madrid; University Hospital Niño Jesús, Instituto de Investigación Sanitaria La Princesa, 28009 Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- IMDEA Food Institute, 28049 Madrid, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
26
|
Han JC, Rasmussen MC, Forte AR, Schrage SB, Zafar SK, Haqq AM. Management of Monogenic and Syndromic Obesity. Gastroenterol Clin North Am 2023; 52:733-750. [PMID: 37919024 DOI: 10.1016/j.gtc.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Similar to the general population, lifestyle interventions focused on nutrition and physical activity form the foundation for treating obesity caused by rare genetic disorders. Additional therapies, including metreleptin and setmelanotide, that target defects within the leptin signaling pathway can effectively synergize with lifestyle efforts to treat monogenic disorders of leptin, leptin receptor, proopiomelanocortin (POMC), and proprotein convertase subtilisin/kexin type 1 (PCSK1) and syndromic conditions, such as the ciliopathies Bardet-Biedl and Alström syndromes, whose pathophysiological mechanisms also converge on the leptin pathway. Investigational treatments for Prader-Willi syndrome target specific defects caused by reduced expression of paternally derived genes within the chromosome 15q region.
Collapse
Affiliation(s)
- Joan C Han
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Marcus C Rasmussen
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison R Forte
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie B Schrage
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah K Zafar
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea M Haqq
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Ruck L, Wiegand S, Kühnen P. Relevance and consequence of chronic inflammation for obesity development. Mol Cell Pediatr 2023; 10:16. [PMID: 37957462 PMCID: PMC10643747 DOI: 10.1186/s40348-023-00170-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Increasing prevalence of morbid obesity accompanied by comorbidities like type 2 diabetes mellitus (T2DM) led to a demand for improving therapeutic strategies and pharmacological intervention options. Apart from genetics, inflammation processes have been hypothesized to be of importance for the development of obesity and related aspects like insulin resistance. MAIN TEXT Within this review, we provide an overview of the intricate interplay between chronic inflammation of the adipose tissue and the hypothalamus and the development of obesity. Further understanding of this relationship might improve the understanding of the underlying mechanism and may be of relevance for the establishment of new treatment strategies.
Collapse
Affiliation(s)
- Lisa Ruck
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany.
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany.
| | - Susanna Wiegand
- Abteilung Interdisziplinär, Sozial-Pädiatrisches Zentrum, Charité Universitätsmedizin, Berlin, Germany
| | - Peter Kühnen
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
28
|
Wu W, Chen Z, Han J, Qian L, Wang W, Lei J, Wang H. Endocrine, genetic, and microbiome nexus of obesity and potential role of postbiotics: a narrative review. Eat Weight Disord 2023; 28:84. [PMID: 37861729 PMCID: PMC10589153 DOI: 10.1007/s40519-023-01593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 10/21/2023] Open
Abstract
Obesity is a public health crisis, presenting a huge burden on health care and the economic system in both developed and developing countries. According to the WHO's latest report on obesity, 39% of adults of age 18 and above are obese, with an increase of 18% compared to the last few decades. Metabolic energy imbalance due to contemporary lifestyle, changes in gut microbiota, hormonal imbalance, inherent genetics, and epigenetics is a major contributory factor to this crisis. Multiple studies have shown that probiotics and their metabolites (postbiotics) supplementation have an effect on obesity-related effects in vitro, in vivo, and in human clinical investigations. Postbiotics such as the SCFAs suppress obesity by regulating metabolic hormones such as GLP-1, and PPY thus reducing feed intake and suppressing appetite. Furthermore, muramyl di-peptides, bacteriocins, and LPS have been tested against obesity and yielded promising results in both human and mice studies. These insights provide an overview of targetable pharmacological sites and explore new opportunities for the safer use of postbiotics against obesity in the future.
Collapse
Affiliation(s)
- Weiming Wu
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Zhengfang Chen
- Department of Endocrinology, Changshu First People's Hospital, Changshu, 215501, Jiangsu, People's Republic of China.
| | - Jiani Han
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Lingling Qian
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Wanqiu Wang
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Jiacai Lei
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China
| | - Huaguan Wang
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China.
| |
Collapse
|
29
|
Abstract
Obesity is a common complex trait that elevates the risk for various diseases, including type 2 diabetes and cardiovascular disease. A combination of environmental and genetic factors influences the pathogenesis of obesity. Advances in genomic technologies have driven the identification of multiple genetic loci associated with this disease, ranging from studying severe onset cases to investigating common multifactorial polygenic forms. Additionally, findings from epigenetic analyses of modifications to the genome that do not involve changes to the underlying DNA sequence have emerged as key signatures in the development of obesity. Such modifications can mediate the effects of environmental factors, including diet and lifestyle, on gene expression and clinical presentation. This review outlines what is known about the genetic and epigenetic contributors to obesity susceptibility, along with the albeit limited therapeutic options currently available. Furthermore, we delineate the potential mechanisms of actions through which epigenetic changes can mediate environmental influences and the related opportunities they present for future interventions in the management of obesity.
Collapse
Affiliation(s)
- Khanh Trang
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Diabetes and Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
30
|
Jolic M, Ruscsák K, Emanuelsson L, Norlindh B, Thomsen P, Shah FA, Palmquist A. Leptin receptor gene deficiency minimally affects osseointegration in rats. Sci Rep 2023; 13:15631. [PMID: 37730735 PMCID: PMC10511412 DOI: 10.1038/s41598-023-42379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023] Open
Abstract
Metabolic syndrome represents a cluster of conditions such as obesity, hyperglycaemia, dyslipidaemia, and hypertension that can lead to type 2 diabetes mellitus and/or cardiovascular disease. Here, we investigated the influence of obesity and hyperglycaemia on osseointegration using a novel, leptin receptor-deficient animal model, the Lund MetS rat. Machined titanium implants were installed in the tibias of animals with normal leptin receptor (LepR+/+) and those harbouring congenic leptin receptor deficiency (LepR-/-) and were left to heal for 28 days. Extensive evaluation of osseointegration was performed using removal torque measurements, X-ray micro-computed tomography, quantitative backscattered electron imaging, Raman spectroscopy, gene expression analysis, qualitative histology, and histomorphometry. Here, we found comparable osseointegration potential at 28 days following implant placement in LepR-/- and LepR+/+ rats. However, the low bone volume within the implant threads, higher bone-to-implant contact, and comparable biomechanical stability of the implants point towards changed bone formation and/or remodelling in LepR-/- rats. These findings are corroborated by differences in the carbonate-to-phosphate ratio of native bone measured using Raman spectroscopy. Observations of hypermineralised cartilage islands and increased mineralisation heterogeneity in native bone confirm the delayed skeletal development of LepR-/- rats. Gene expression analyses reveal comparable patterns between LepR-/- and LepR+/+ animals, suggesting that peri-implant bone has reached equilibrium in healing and/or remodelling between the animal groups.
Collapse
Affiliation(s)
- Martina Jolic
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Birgitta Norlindh
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
31
|
Saeed S, Khanam R, Janjua QM, Manzoor J, Ning L, Hanook S, Canouil M, Ali M, Ayesha H, Khan WI, Farooqi IS, Yeo GSH, O'Rahilly S, Bonnefond A, Butt TA, Arslan M, Froguel P. High morbidity and mortality in children with untreated congenital deficiency of leptin or its receptor. Cell Rep Med 2023; 4:101187. [PMID: 37659411 PMCID: PMC10518629 DOI: 10.1016/j.xcrm.2023.101187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 08/11/2023] [Indexed: 09/04/2023]
Abstract
The long-term clinical outcomes of severe obesity due to leptin signaling deficiency are unknown. We carry out a retrospective cross-sectional investigation of a large cohort of children with leptin (LEP), LEP receptor (LEPR), or melanocortin 4 receptor (MC4R) deficiency (n = 145) to evaluate the progression of the disease. The affected individuals undergo physical, clinical, and metabolic evaluations. We report a very high mortality in children with LEP (26%) or LEPR deficiency (9%), mainly due to severe pulmonary and gastrointestinal infections. In addition, 40% of surviving children with LEP or LEPR deficiency experience life-threatening episodes of lung or gastrointestinal infections. Although precision drugs are currently available for LEP and LEPR deficiencies, as yet, they are not accessible in Pakistan. An appreciation of the severe impact of LEP or LEPR deficiency on morbidity and early mortality, educational attainment, and the attendant stigmatization should spur efforts to deliver the available life-saving drugs to these children as a matter of urgency.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France.
| | - Roohia Khanam
- KAM School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Qasim M Janjua
- Department of Physiology and Biophysics, College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Oman
| | - Jaida Manzoor
- Department of Paediatric Endocrinology, Children's Hospital, Lahore, Pakistan
| | - Lijiao Ning
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France
| | - Sharoon Hanook
- Department of Statistics, Forman Christian College, Lahore, Pakistan
| | - Mickaël Canouil
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France
| | - Muhammad Ali
- Paediatric Endocrinology, Mayo Hospital, Lahore, Pakistan
| | - Hina Ayesha
- Department of Paediatrics, Punjab Medical College, Faisalabad, Pakistan
| | - Waqas I Khan
- The Children Hospital and the Institute of Child Health, Multan, Pakistan
| | - I Sadaf Farooqi
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Giles S H Yeo
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Stephen O'Rahilly
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Amélie Bonnefond
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France
| | - Taeed A Butt
- Department of Pediatrics, Fatima Memorial Hospital, Lahore, Pakistan
| | - Muhammad Arslan
- KAM School of Life Sciences, Forman Christian College, Lahore, Pakistan.
| | - Philippe Froguel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France.
| |
Collapse
|
32
|
Page L, Younge N, Freemark M. Hormonal Determinants of Growth and Weight Gain in the Human Fetus and Preterm Infant. Nutrients 2023; 15:4041. [PMID: 37764824 PMCID: PMC10537367 DOI: 10.3390/nu15184041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The factors controlling linear growth and weight gain in the human fetus and newborn infant are poorly understood. We review here the changes in linear growth, weight gain, lean body mass, and fat mass during mid- and late gestation and the early postnatal period in the context of changes in the secretion and action of maternal, placental, fetal, and neonatal hormones, growth factors, and adipocytokines. We assess the effects of hormonal determinants on placental nutrient delivery and the impact of preterm delivery on hormone expression and postnatal growth and metabolic function. We then discuss the effects of various maternal disorders and nutritional and pharmacologic interventions on fetal and perinatal hormone and growth factor production, growth, and fat deposition and consider important unresolved questions in the field.
Collapse
Affiliation(s)
- Laura Page
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Noelle Younge
- Neonatology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Michael Freemark
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
- The Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
33
|
Vasile CM, Padovani P, Rujinski SD, Nicolosu D, Toma C, Turcu AA, Cioboata R. The Increase in Childhood Obesity and Its Association with Hypertension during Pandemics. J Clin Med 2023; 12:5909. [PMID: 37762850 PMCID: PMC10531996 DOI: 10.3390/jcm12185909] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
There has been a major ongoing health impact of the COVID-19 pandemic on children's lives, including lifestyle and overall health. Enforcement of prevention measures, such as school closures and social distancing, has significantly affected children's daily routines and activities. This perspective manuscript aims to explore the rise in childhood obesity and its association with hypertension during pandemics. The COVID-19 pandemic has led to significant disruptions in children's routines, including reduced physical activity, increased sedentary behavior, and changes in dietary patterns. These factors, coupled with the psychological impact of the pandemic, have contributed to an alarming increase in childhood obesity rates. This paper has highlighted the concerning increase in childhood obesity and hypertension during pandemics. The disruptions caused by the COVID-19 pandemic, including reduced physical activity, increased sedentary behaviors, and changes in dietary patterns, have contributed to the rise in these health conditions. It is crucial to recognize the long-term consequences of childhood obesity and hypertension and the urgent need for a comprehensive approach to address them.
Collapse
Affiliation(s)
- Corina Maria Vasile
- Department of Pediatric and Adult Congenital Cardiology, University Hospital of Bordeaux, F-33600 Bordeaux, France;
| | - Paul Padovani
- Nantes Université, CHU Nantes, Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PreciCare, F-44000 Nantes, France;
- Nantes Université, CHU Nantes, INSERM, CIC FEA 1413, F-44000 Nantes, France
| | | | - Dragos Nicolosu
- Pneumology Department, Victor Babes University Hospital Craiova, 200515 Craiova, Romania; (D.N.); (R.C.)
| | - Claudia Toma
- Pneumology Department, University of Medicine Carol Davila, 020021 Bucharest, Romania;
| | - Adina Andreea Turcu
- Faculty of Dentistry, University of Pharmacy and Medicine Craiova, 200349 Craiova, Romania
| | - Ramona Cioboata
- Pneumology Department, Victor Babes University Hospital Craiova, 200515 Craiova, Romania; (D.N.); (R.C.)
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
| |
Collapse
|
34
|
Besci Ö, Fırat SN, Özen S, Çetinkaya S, Akın L, Kör Y, Pekkolay Z, Özalkak Ş, Özsu E, Erdeve ŞS, Poyrazoğlu Ş, Berberoğlu M, Aydın M, Omma T, Akıncı B, Demir K, Oral EA. A National Multicenter Study of Leptin and Leptin Receptor Deficiency and Systematic Review. J Clin Endocrinol Metab 2023; 108:2371-2388. [PMID: 36825860 DOI: 10.1210/clinem/dgad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
CONTEXT Homozygous leptin (LEP) and leptin receptor (LEPR) variants lead to childhood-onset obesity. OBJECTIVE To present new cases with LEP and LEPR deficiency, report the long-term follow-up of previously described patients, and to define, based on all reported cases in literature, genotype-phenotype relationships. METHODS Our cohort included 18 patients (LEP = 11, LEPR = 7), 8 of whom had been previously reported. A systematic literature review was conducted in July 2022. Forty-two of 47 studies on LEP/LEPR were selected. RESULTS Of 10 new cases, 2 novel pathogenic variants were identified in LEP (c.16delC) and LEPR (c.40 + 5G > C). Eleven patients with LEP deficiency received metreleptin, 4 of whom had been treated for over 20 years. One patient developed loss of efficacy associated with neutralizing antibody development. Of 152 patients, including 134 cases from the literature review in addition to our cases, frameshift variants were the most common (48%) in LEP and missense variants (35%) in LEPR. Patients with LEP deficiency were diagnosed at a younger age [3 (9) vs 7 (13) years, P = .02] and had a higher median body mass index (BMI) SD score [3.1 (2) vs 2.8 (1) kg/m2, P = 0.02], which was more closely associated with frameshift variants (P = .02). Patients with LEP deficiency were more likely to have hyperinsulinemia (P = .02). CONCLUSION Frameshift variants were more common in patients with LEP deficiency whereas missense variants were more common in LEPR deficiency. Patients with LEP deficiency were identified at younger ages, had higher BMI SD scores, and had higher rates of hyperinsulinemia than patients with LEPR deficiency. Eleven patients benefitted from long-term metreleptin, with 1 losing efficacy due to neutralizing antibodies.
Collapse
Affiliation(s)
- Özge Besci
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir 35340, Turkey
| | - Sevde Nur Fırat
- Division of Endocrinology and Metabolism, University of Health Sciences Ankara Training and Research Hospital, Ankara 06230, Turkey
| | - Samim Özen
- Division of Pediatric Endocrinology, Faculty of Medicine, Ege University, İzmir 35100, Turkey
| | - Semra Çetinkaya
- Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Ankara 06010, Turkey
| | - Leyla Akın
- Division of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55030, Turkey
| | - Yılmaz Kör
- Division of Pediatric Endocrinology, Ministry of Health, Adana Public Hospitals Association, Adana City Hospital, Adana 01040, Turkey
| | - Zafer Pekkolay
- Division of Endocrinology and Metabolism, Dicle University Faculty of Medicine, Diyarbakır 21280, Turkey
| | - Şervan Özalkak
- Division Pediatric Endocrinology, Diyarbakir Gazi Yaşargil Training and Research Hospital, Diyarbakır 21070, Turkey
| | - Elif Özsu
- Department of Pediatric Endocrinology, Ankara University Faculty of Medicine, Ankara 06100, Turkey
| | - Şenay Savaş Erdeve
- Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Ankara 06010, Turkey
| | - Şükran Poyrazoğlu
- Department of Pediatric Endocrinology, Istanbul University Istanbul Faculty of Medicine, İstanbul 34098, Turkey
| | - Merih Berberoğlu
- Department of Pediatric Endocrinology, Ankara University Faculty of Medicine, Ankara 06100, Turkey
| | - Murat Aydın
- Division of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55030, Turkey
| | - Tülay Omma
- Division of Endocrinology and Metabolism, University of Health Sciences Ankara Training and Research Hospital, Ankara 06230, Turkey
| | - Barış Akıncı
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University, İzmir 35340, Turkey
| | - Korcan Demir
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir 35340, Turkey
| | - Elif Arioglu Oral
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
35
|
Mazen IH, El-Gammal MA, Elaidy AA, Anwar GM, Ashaat EA, Abdel-Ghafar SF, Abdel-Hamid MS. Congenital leptin and leptin receptor deficiencies in nine new families: identification of six novel variants and review of literature. Mol Genet Genomics 2023; 298:919-929. [PMID: 37140700 DOI: 10.1007/s00438-023-02025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Early childhood obesity is a real public health problem worldwide. Identifying the etiologies, especially treatable and preventable causes, can direct health professionals toward proper management. Measurement of serum leptin levels is helpful in the diagnosis of congenital leptin and leptin receptor deficiencies which are considered important rare causes of early childhood obesity. The main aim of this study was to investigate the frequency of LEP, LEPR, and MC4R gene variants among a cohort of Egyptian patients with severe early onset obesity. The current cross-sectional study included 30 children who developed obesity during the first year of life with BMI > 2SD (for age and sex). The studied patients were subjected to full medical history taking, anthropometric measurements, serum leptin and insulin assays, and genetic testing of LEP, LEPR and MC4R. Disease causing variants in LEP and LEPR were identified in 10/30 patients with a detection rate of 30%. Eight different homozygous variants (two pathogenic, three likely pathogenic, and three variants of uncertain significant) were identified in the two genes, including six previously unreported LEPR variants. Of them, a new frameshift variant in LEPR gene (c.1045delT, p.S349Lfs*22) was recurrent in two unrelated families and seems to have a founder effect in our population. In conclusion, we reported ten new patients with leptin and leptin receptor deficiencies and identified six novel LEPR variants expanding the mutational spectrum of this rare disorder. Furthermore, the diagnosis of these patients helped us in genetic counseling and patients' managements specially with the availability of drugs for LEP and LEPR deficiencies.
Collapse
Affiliation(s)
- Inas H Mazen
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mona A El-Gammal
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Aya A Elaidy
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ghada M Anwar
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Sherif F Abdel-Ghafar
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Eltahrir Street, Dokki, Cairo, 12311, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Eltahrir Street, Dokki, Cairo, 12311, Egypt.
| |
Collapse
|
36
|
Monahan GE, Schiavi-Tritz J, Britton M, Vaughan TJ. Longitudinal alterations in bone morphometry, mechanical integrity and composition in Type-2 diabetes in a Zucker diabetic fatty (ZDF) rat. Bone 2023; 170:116672. [PMID: 36646266 DOI: 10.1016/j.bone.2023.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Individuals with Type-2 Diabetes (T2D) have an increased risk of bone fracture, without a reduction in bone mineral density. It is hypothesised that the hyperglycaemic state caused by T2D forms an excess of Advanced Glycated End-products (AGEs) in the organic matrix of bone, which are thought to stiffen the collagen network and lead to impaired mechanical properties. However, the mechanisms are not well understood. This study aimed to investigate the geometrical, structural and material properties of diabetic cortical bone during the development and progression of T2D in ZDF (fa/fa) rats at 12-, 26- and 46-weeks of age. Longitudinal bone growth was impaired as early as 12-weeks of age and by 46-weeks bone size was significantly reduced in ZDF (fa/fa) rats versus controls (fa/+). Diabetic rats had significant structural deficits, such as bending rigidity, ultimate moment and energy-to-failure measured via three-point bend testing. Tissue material properties, measured by taking bone geometry into account, were altered as the disease progressed, with significant reductions in yield and ultimate strength for ZDF (fa/fa) rats at 46-weeks. FTIR analysis on cortical bone powder demonstrated that the tissue material deficits coincided with changes in tissue composition, in ZDF (fa/fa) rats with long-term diabetes having a reduced carbonate:phosphate ratio and increased acid phosphate content when compared to age-matched controls, indicative of an altered bone turnover process. AGE accumulation, measured via fluorescent assays, was higher in the skin of ZDF (fa/fa) rats with long-term T2D, bone AGEs did not differ between strains and neither AGEs correlated with bone strength. In conclusion, bone fragility in the diabetic ZDF (fa/fa) rats likely occurs through a multifactorial mechanism influenced initially by impaired bone growth and development and proceeding to an altered bone turnover process that reduces bone quality and impairs biomechanical properties as the disease progresses.
Collapse
Affiliation(s)
- Genna E Monahan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Jessica Schiavi-Tritz
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland; Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR, 7274 Nancy, France
| | - Marissa Britton
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
37
|
Micheletti C, Jolic M, Grandfield K, Shah FA, Palmquist A. Bone structure and composition in a hyperglycemic, obese, and leptin receptor-deficient rat: Microscale characterization of femur and calvarium. Bone 2023; 172:116747. [PMID: 37028238 DOI: 10.1016/j.bone.2023.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Metabolic abnormalities, such as diabetes mellitus and obesity, can impact bone quantity and/or bone quality. In this work, we characterize bone material properties, in terms of structure and composition, in a novel rat model with congenic leptin receptor (LepR) deficiency, severe obesity, and hyperglycemia (type 2 diabetes-like condition). Femurs and calvaria (parietal region) from 20-week-old male rats are examined to probe bones formed both by endochondral and intramembranous ossification. Compared to the healthy controls, the LepR-deficient animals display significant alterations in femur microarchitecture and in calvarium morphology when analyzed by micro-computed X-ray tomography (micro-CT). In particular, shorter femurs with reduced bone volume, combined with thinner parietal bones and shorter sagittal suture, point towards a delay in the skeletal development of the LepR-deficient rodents. On the other hand, LepR-deficient animals and healthy controls display analogous bone matrix composition, which is assessed in terms of tissue mineral density by micro-CT, degree of mineralization by quantitative backscattered electron imaging, and various metrics extrapolated from Raman hyperspectral images. Some specific microstructural features, i.e., mineralized cartilage islands in the femurs and hyper-mineralized areas in the parietal bones, also show comparable distribution and characteristics in both groups. Overall, the altered bone microarchitecture in the LepR-deficient animals indicates compromised bone quality, despite the normal bone matrix composition. The delayed development is also consistent with observations in humans with congenic Lep/LepR deficiency, making this animal model a suitable candidate for translational research.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada; Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Jolic
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada
| | - Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
38
|
Saxton RA, Caveney NA, Moya-Garzon MD, Householder KD, Rodriguez GE, Burdsall KA, Long JZ, Garcia KC. Structural insights into the mechanism of leptin receptor activation. Nat Commun 2023; 14:1797. [PMID: 37002197 PMCID: PMC10066393 DOI: 10.1038/s41467-023-37169-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/04/2023] [Indexed: 04/03/2023] Open
Abstract
Leptin is an adipocyte-derived protein hormone that promotes satiety and energy homeostasis by activating the leptin receptor (LepR)-STAT3 signaling axis in a subset of hypothalamic neurons. Leptin signaling is dysregulated in obesity, however, where appetite remains elevated despite high levels of circulating leptin. To gain insight into the mechanism of leptin receptor activation, here we determine the structure of a stabilized leptin-bound LepR signaling complex using single particle cryo-EM. The structure reveals an asymmetric architecture in which a single leptin induces LepR dimerization via two distinct receptor-binding sites. Analysis of the leptin-LepR binding interfaces reveals the molecular basis for human obesity-associated mutations. Structure-based design of leptin variants that destabilize the asymmetric LepR dimer yield both partial and biased agonists that partially suppress STAT3 activation in the presence of wild-type leptin and decouple activation of STAT3 from LepR negative regulators. Together, these results reveal the structural basis for LepR activation and provide insights into the differential plasticity of signaling pathways downstream of LepR.
Collapse
Affiliation(s)
- Robert A Saxton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| | - Nathanael A Caveney
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Karsten D Householder
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Grayson E Rodriguez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kylie A Burdsall
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
39
|
Tsirigotaki A, Dansercoer A, Verschueren KHG, Marković I, Pollmann C, Hafer M, Felix J, Birck C, Van Putte W, Catteeuw D, Tavernier J, Fernando Bazan J, Piehler J, Savvides SN, Verstraete K. Mechanism of receptor assembly via the pleiotropic adipokine Leptin. Nat Struct Mol Biol 2023; 30:551-563. [PMID: 36959263 DOI: 10.1038/s41594-023-00941-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/06/2023] [Indexed: 03/25/2023]
Abstract
The adipokine Leptin activates its receptor LEP-R in the hypothalamus to regulate body weight and exerts additional pleiotropic functions in immunity, fertility and cancer. However, the structure and mechanism of Leptin-mediated LEP-R assemblies has remained unclear. Intriguingly, the signaling-competent isoform of LEP-R is only lowly abundant amid several inactive short LEP-R isoforms contributing to a mechanistic conundrum. Here we show by X-ray crystallography and cryo-EM that, in contrast to long-standing paradigms, Leptin induces type I cytokine receptor assemblies featuring 3:3 stoichiometry and demonstrate such Leptin-induced trimerization of LEP-R on living cells via single-molecule microscopy. In mediating these assemblies, Leptin undergoes drastic restructuring that activates its site III for binding to the Ig domain of an adjacent LEP-R. These interactions are abolished by mutations linked to obesity. Collectively, our study provides the structural and mechanistic framework for how evolutionarily conserved Leptin:LEP-R assemblies with 3:3 stoichiometry can engage distinct LEP-R isoforms to achieve signaling.
Collapse
Affiliation(s)
- Alexandra Tsirigotaki
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Ann Dansercoer
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Koen H G Verschueren
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Iva Marković
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Christoph Pollmann
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Maximillian Hafer
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Jan Felix
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Catherine Birck
- Integrated Structural Biology Platform, Centre for Integrative Biology (CBI), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U1258, University of Strasbourg, Illkirch, France
| | | | - Dominiek Catteeuw
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences, Ghent, Belgium
| | - J Fernando Bazan
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- ħ Bioconsulting llc, Stillwater, MN, USA
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Savvas N Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Kenneth Verstraete
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
40
|
Review of Basic Research about Ossification of the Spinal Ligaments Focusing on Animal Models. J Clin Med 2023; 12:jcm12051958. [PMID: 36902744 PMCID: PMC10003841 DOI: 10.3390/jcm12051958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a heterotopic ossification that may cause spinal cord compression. With the recent development of computed tomography (CT) imaging, it is known that patients with OPLL often have complications related to ossification of other spinal ligaments, and OPLL is now considered part of ossification of the spinal ligaments (OSL). OSL is known to be a multifactorial disease with associated genetic and environmental factors, but its pathophysiology has not been clearly elucidated. To elucidate the pathophysiology of OSL and develop novel therapeutic strategies, clinically relevant and validated animal models are needed. In this review, we focus on animal models that have been reported to date and discuss their pathophysiology and clinical relevance. The purpose of this review is to summarize the usefulness and problems of existing animal models and to help further the development of basic research on OSL.
Collapse
|
41
|
Shah BP, Sleiman PM, Mc Donald J, Moeller IH, Kleyn P. Functional characterization of all missense variants in LEPR, PCSK1, and POMC genes arising from single-nucleotide variants. Expert Rev Endocrinol Metab 2023; 18:209-219. [PMID: 36864747 DOI: 10.1080/17446651.2023.2179985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE Hyperphagia and early-onset, severe obesity are clinical characteristics of rare melanocortin-4 receptor (MC4R) pathway diseases due to loss-of-function (LOF) variants in genes comprising the MC4R pathway. In vitro functional characterization of 12,879 possible exonic missense variants from single-nucleotide variants (SNVs) of LEPR, POMC, and PCSK1 was performed to determine the impact of these variants on protein function. METHODS SNVs of the three genes were transiently transfected into cell lines, and each variant was subsequently classified according to functional impact. We validated three assays by comparing classifications against functional characterization of 29 previously published variants. RESULTS Our results significantly correlated with previously published pathogenic categories (r = 0.623; P = 3.03 × 10-4) of all potential missense variants arising from SNVs. Of all observed variants identified through available databases and a tested cohort of 16,061 patients with obesity, 8.6% of LEPR, 63.2% of PCSK1, and 10.6% of POMC variants exhibited LOF, including variants currently classified as a variant of uncertain significance (VUS). CONCLUSIONS The functional data provided here can assist in the reclassification of several VUS in LEPR, PCSK1, and POMC and highlight their impact in MC4R pathway diseases.
Collapse
Affiliation(s)
- Bhavik P Shah
- Rhythm Pharmaceuticals, Inc, Boston, MA, USA
- Bridgebio Pharma, Palo Alto, CA
| | | | | | - Ida H Moeller
- Rhythm Pharmaceuticals, Inc, Boston, MA, USA
- Sarepta Therapeutics, Cambridge, MA, USA
| | | |
Collapse
|
42
|
Kwak J, Shin D. Gene-Nutrient Interactions in Obesity: COBLL1 Genetic Variants Interact with Dietary Fat Intake to Modulate the Incidence of Obesity. Int J Mol Sci 2023; 24:ijms24043758. [PMID: 36835164 PMCID: PMC9959357 DOI: 10.3390/ijms24043758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The COBLL1 gene is associated with leptin, a hormone important for appetite and weight maintenance. Dietary fat is a significant factor in obesity. This study aimed to determine the association between COBLL1 gene, dietary fat, and incidence of obesity. Data from the Korean Genome and Epidemiology Study were used, and 3055 Korean adults aged ≥ 40 years were included. Obesity was defined as a body mass index ≥ 25 kg/m2. Patients with obesity at baseline were excluded. The effects of the COBLL1 rs6717858 genotypes and dietary fat on incidence of obesity were evaluated using multivariable Cox proportional hazard models. During an average follow-up period of 9.2 years, 627 obesity cases were documented. In men, the hazard ratio (HR) for obesity was higher in CT, CC carriers (minor allele carriers) in the highest tertile of dietary fat intake than for men with TT carriers in the lowest tertile of dietary fat intake (Model 1: HR: 1.66, 95% confidence interval [CI]: 1.07-2.58; Model 2: HR: 1.63, 95% CI: 1.04-2.56). In women, the HR for obesity was higher in TT carriers in the highest tertile of dietary fat intake than for women with TT carriers in the lowest tertile of dietary fat intake (Model 1: HR: 1.49, 95% CI: 1.08-2.06; Model 2: HR: 1.53, 95% CI: 1.10-2.13). COBLL1 genetic variants and dietary fat intake had different sex-dependent effects in obesity. These results imply that a low-fat diet may protect against the effects of COBLL1 genetic variants on future obesity risk.
Collapse
|
43
|
Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci 2023; 24:ijms24021422. [PMID: 36674935 PMCID: PMC9860943 DOI: 10.3390/ijms24021422] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Excess body weight is frequently associated with low-grade inflammation. Evidence indicates a relationship between obesity and cancer, as well as with other diseases, such as diabetes and non-alcoholic fatty liver disease, in which inflammation and the actions of various adipokines play a role in the pathological mechanisms involved in these disorders. Leptin is mainly produced by adipose tissue in proportion to fat stores, but it is also synthesized in other organs, where leptin receptors are expressed. This hormone performs numerous actions in the brain, mainly related to the control of energy homeostasis. It is also involved in neurogenesis and neuroprotection, and central leptin resistance is related to some neurological disorders, e.g., Parkinson's and Alzheimer's diseases. In peripheral tissues, leptin is implicated in the regulation of metabolism, as well as of bone density and muscle mass. All these actions can be affected by changes in leptin levels and the mechanisms associated with resistance to this hormone. This review will present recent advances in the molecular mechanisms of leptin action and their underlying roles in pathological situations, which may be of interest for revealing new approaches for the treatment of diseases where the actions of this adipokine might be compromised.
Collapse
|
44
|
Hinney A, Körner A, Fischer-Posovszky P. The promise of new anti-obesity therapies arising from knowledge of genetic obesity traits. Nat Rev Endocrinol 2022; 18:623-637. [PMID: 35902734 PMCID: PMC9330928 DOI: 10.1038/s41574-022-00716-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
Obesity is a multifactorial and complex disease that often manifests in early childhood with a lifelong burden. Polygenic and monogenic obesity are driven by the interaction between genetic predisposition and environmental factors. Polygenic variants are frequent and confer small effect sizes. Rare monogenic obesity syndromes are caused by defined pathogenic variants in single genes with large effect sizes. Most of these genes are involved in the central nervous regulation of body weight; for example, genes of the leptin-melanocortin pathway. Clinically, patients with monogenic obesity present with impaired satiety, hyperphagia and pronounced food-seeking behaviour in early childhood, which leads to severe early-onset obesity. With the advent of novel pharmacological treatment options emerging for monogenic obesity syndromes that target the central melanocortin pathway, genetic testing is recommended for patients with rapid weight gain in infancy and additional clinical suggestive features. Likewise, patients with obesity associated with hypothalamic damage or other forms of syndromic obesity involving energy regulatory circuits could benefit from these novel pharmacological treatment options. Early identification of patients affected by syndromic obesity will lead to appropriate treatment, thereby preventing the development of obesity sequelae, avoiding failure of conservative treatment approaches and alleviating stigmatization of patients and their families.
Collapse
Affiliation(s)
- Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy and University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Antje Körner
- Leipzig University, Medical Faculty, Hospital for Children and Adolescents, Centre of Paediatric Research (CPL), Leipzig, Germany
- LIFE Child, Leipzig Research Centre for Civilization Diseases, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | | |
Collapse
|
45
|
Saengkaew T, Howard SR. Genetics of pubertal delay. Clin Endocrinol (Oxf) 2022; 97:473-482. [PMID: 34617615 PMCID: PMC9543006 DOI: 10.1111/cen.14606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
The timing of pubertal development is strongly influenced by the genetic background, and clinical presentations of delayed puberty are often found within families with clear patterns of inheritance. The discovery of the underlying genetic regulators of such conditions, in recent years through next generation sequencing, has advanced the understanding of the pathogenesis of disorders of pubertal timing and the potential for genetic testing to assist diagnosis for patients with these conditions. This review covers the significant advances in the understanding of the biological mechanisms of delayed puberty that have occurred in the last two decades.
Collapse
Affiliation(s)
- Tansit Saengkaew
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Endocrinology Unit, Department of Paediatrics, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Sasha R. Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
46
|
Cuda S, Censani M, Kharofa R, Williams DR, O'Hara V, Karjoo S, Paisley J, Browne NT. Social consequences and genetics for the child with overweight and obesity: An obesity medicine association (OMA) clinical practice statement 2022. OBESITY PILLARS (ONLINE) 2022; 3:100032. [PMID: 37990726 PMCID: PMC10662046 DOI: 10.1016/j.obpill.2022.100032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2023]
Abstract
Background This Obesity Medicine Association (OMA) clinical practice statement (CPS) covers two topics: 1) genetics and 2) social consequences for the child with overweight and obesity. This CPS is intended to provide clinicians with an overview of clinical practices applicable to children and adolescents with body mass indices greater than or equal to the 85th percentile for their ages, particularly those with adverse consequences resulting from increased body mass. The information in this CPS is based on scientific evidence, supported by the medical literature, and derived from the clinical experiences of members of the OMA. Methods The scientific information and clinical guidance in this CPS is based upon referenced evidence and derived from the clinical perspectives of the authors. Results This OMA clinical practice statement details two topics: 1) genetics and 2) social consequences for the child with overweight and obesity. Conclusions This OMA clinical practice statement on genetics and social consequences for the child with overweight and obesity is an overview of current literature. The literature provides a roadmap to the improvement of the health of children and adolescents with obesity, especially those with metabolic, physiological, and psychological complications.
Collapse
Affiliation(s)
- Suzanne Cuda
- Alamo City Healthy Kids and Families, 1919 Oakwell Farms Parkway, Ste 145 San Antonio, TX, 78218, USA
| | - Marisa Censani
- Associate Professor of Clinical Pediatrics, Division of Pediatric Endocrinology, Department of Pediatrics, New York Presbyterian Hospital, Weill Cornell Medicine, 525 East 68th Street, Box 103, New York, NY, 10021, USA
| | - Roohi Kharofa
- Center for Better Health & Nutrition, The Heart Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Dominique R. Williams
- The Ohio State University College of MedicineCenter for Healthy Weight and Nutrition, Nationwide Children's Hospital 700 Children's Drive LA, Suite 5F Columbus, OH, 43215, USA
| | - Valerie O'Hara
- Medical Director, WOW 4 Wellness Clinic/ PCHC, 6 Telcom Drive, Bangor, ME, 04401, USA
| | - Sara Karjoo
- Johns Hopkins All Children's Hospital Pediatric Gastroenterology, 501 6th Ave S, St. Petersburg, FL, 33701, USA
| | - Jennifer Paisley
- St Elizabeth Physician's Group Primary Care 98 Elm Street Lawrenceburg, IN, 47025-2048, USA
| | | |
Collapse
|
47
|
Sohn YB. Genetic obesity: an update with emerging therapeutic approaches. Ann Pediatr Endocrinol Metab 2022; 27:169-175. [PMID: 36203267 PMCID: PMC9537668 DOI: 10.6065/apem.2244188.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Based on the genetic contribution, childhood obesity can be classified into 3 groups: common polygenic obesity, syndromic obesity, and monogenic obesity. More genetic causes of obesity are being identified along with the advances in the genetic testing. Genetic obesities including syndromic and monogenic obesity should be suspected and evaluated in children with early-onset morbid obesity and hyperphagia under 5 years of age. Patients with syndromic obesity have early-onset severe obesity associated specific genetic syndromes including Prader-Willi syndrome, Bardet-Biedle syndrome, and Alstrom syndrome. Syndromic obesity is often accompanied with neurodevelopmental delay or dysmorphic features. Nonsyndromic monogenic obesity is caused by variants in single gene which are usually involved in the regulation of hunger and satiety associated with the hypothalamic leptin-melanocortin pathway in central nervous system. Unlike syndromic obesity, patients with monogenic obesity usually show normal neurodevelopment. They would be presented with hyperphagia and early-onset severe obesity with additional clinical symptoms including short stature, red hair, adrenal insufficiency, hypothyroidism, hypogonadism, pituitary insufficiencies, diabetes insipidus, increased predisposition to infection or intractable recurrent diarrhea. Identifying patients with genetic obesity is critical as new innovative therapies including melanocortin 4 receptor agonist have become available. Early genetic evaluation enables to identify treatable obesity and provide timely intervention which may eventually achieve favorable outcome by establishing personalized management.
Collapse
Affiliation(s)
- Young Bae Sohn
- Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea,Address for correspondence: Young Bae Sohn Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
| |
Collapse
|
48
|
Nalbantoğlu Ö, Hazan F, Acar S, Gürsoy S, Özkan B. Screening of non-syndromic early-onset child and adolescent obese patients in terms of LEP, LEPR, MC4R and POMC gene variants by next-generation sequencing. J Pediatr Endocrinol Metab 2022; 35:1041-1050. [PMID: 35801948 DOI: 10.1515/jpem-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Non-syndromic monogenic obesity is a rare cause of early-onset severe obesity in the childhood period. The aim of this study was to screen four obesity related genes (LEP, LEPR, MC4R and POMC) in children and adolescents who had severe, non-syndromic early onset obesity. METHODS Next-generation sequencing of all exons in LEP, LEPR, MC4R and POMC was performed in 154 children and adolescents with early onset severe obesity obesity. RESULTS Fifteen different variants in nineteen patients were identified with a variant detection rate of 12.3%. While six different heterozygous variants were observed in MC4R gene (10/154 patients; 6.5%), five different variants in POMC gene (four of them were heterozygous and one of them was homozygous) (6/154 patients; 3.9%) and four different homozygous variants in LEPR gene (3/154 patients; 1.9%) were described. However, no variants were detected in the LEP gene. The most common pathogenic variant was c.496G>A in MC4R gene, which was detected in four unrelated patients. Six novel variants (6/15 variants; 40%) were described in seven patients. Four of them including c.233C>A and c.752T>C in MC4R gene and c.761dup and c.1221dup in LEPR gene were evaluated as pathogenic or likely pathogenic. CONCLUSIONS In conclusion, MC4R variants are the most common genetic cause of monogenic early-onset obesity, consistent with the literature. The c.496G>A variant in MC4R gene is highly prevalent in early-onset obese patients.
Collapse
Affiliation(s)
- Özlem Nalbantoğlu
- Clinic of Pediatric Endocrinology, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Filiz Hazan
- Clinic of Medical Genetics, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Sezer Acar
- Clinic of Pediatric Endocrinology, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Semra Gürsoy
- Clinic of Pediatric Genetics, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Behzat Özkan
- Clinic of Pediatric Endocrinology, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
49
|
Chaves C, Kay T, Anselmo J. Early onset obesity due to a mutation in the human leptin receptor gene. Endocrinol Diabetes Metab Case Rep 2022; 2022:21-0124. [PMID: 36001025 PMCID: PMC9422261 DOI: 10.1530/edm-21-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Summary Leptin is secreted by adipocytes in response to fat storage and binds to its receptor (LEPR), which is ubiquitously expressed throughout the body. Leptin regulates energy expenditure and is anorexigenic. In this study, we describe the clinical and hormonal findings of three siblings with a personal history of rapid weight gain during the first months of life. They had delayed puberty, high levels of FSH (15.6 ± 3.7 mUI/mL; reference: 1.5-12.4) and LH (12.3 ± 2.2 mUI/mL; reference: 1.7-8.6), normal oestradiol and total testosterone and successful fertility. None of the patients had dyslipidemia, diabetes or thyroid disease. Next-generation sequencing identified a pathogenic homozygous variant c.2357T>C, p.(Leu786Pro) in LEPR. Their parents and children were heterozygous for this mutation. We compared clinical and biochemical findings of homozygous carriers with first-degree heterozygous family members and ten randomly selected patients with adult-onset morbid obesity. Homozygous carriers of the mutation had significantly higher BMI (32.2 ± 1.7 kg/m2 vs 44.5 ± 7.1 kg/m2, P = 0.023) and increased serum levels of leptin (26.3 ± 9.3 ng/mL vs 80 ± 36.4 ng/mL, P = 0.028) than their heterozygous relatives. Compared with the ten patients with adult-onset morbid obesity, serum levels of leptin were not significantly higher in homozygous carriers (53.8 ± 24.1 ng/mL vs 80 ± 36.4 ng/mL, P = 0.149), and thus serum levels of leptin were not a useful discriminative marker of LEPR mutations. We described a rare three-generation family with monogenic obesity due to a mutation in LEPR. Patients with early onset obesity should be considered for genetic screening, as the identification of mutations may allow personalized treatment options (e.g. MC4R-agonists) and targeted successful weight loss. Learning points The early diagnosis of monogenic forms of obesity can be of great interest since new treatments for these conditions are becoming available. Since BMI and leptin levels in patients with leptin receptor mutations are not significantly different from those found in randomly selected morbid obese patients, a careful medical history is mandatory to suspect this condition. Loss of leptin receptor function has been associated with infertility. However, our patients were able to conceive, emphasizing the need for genetic counselling in affected patients with this condition.
Collapse
Affiliation(s)
- Carolina Chaves
- Department of Endocrinology and Nutrition, Hospital Divino Espírito Santo de Ponta Delgada, EPER, Azores Islands, Portugal
| | - Teresa Kay
- Department of Medical Genetics, Hospital Dona Estefânia, Centro Hospitalar de Lisboa Central, EPE, Lisbon, Portugal
| | - João Anselmo
- Department of Endocrinology and Nutrition, Hospital Divino Espírito Santo de Ponta Delgada, EPER, Azores Islands, Portugal
| |
Collapse
|
50
|
Liang Z, Dong X, Zhang Z, Zhang Q, Zhao Y. Age-related thymic involution: Mechanisms and functional impact. Aging Cell 2022; 21:e13671. [PMID: 35822239 PMCID: PMC9381902 DOI: 10.1111/acel.13671] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022] Open
Abstract
The thymus is the primary immune organ responsible for generating self‐tolerant and immunocompetent T cells. However, the thymus gradually involutes during early life resulting in declined naïve T‐cell production, a process known as age‐related thymic involution. Thymic involution has many negative impacts on immune function including reduced pathogen resistance, high autoimmunity incidence, and attenuated tumor immunosurveillance. Age‐related thymic involution leads to a gradual reduction in thymic cellularity and thymic stromal microenvironment disruption, including loss of definite cortical‐medullary junctions, reduction of cortical thymic epithelial cells and medullary thymic epithelial cells, fibroblast expansion, and an increase in perivascular space. The compromised thymic microenvironment in aged individuals substantially disturbs thymocyte development and differentiation. Age‐related thymic involution is regulated by many transcription factors, micro RNAs, growth factors, cytokines, and other factors. In this review, we summarize the current understanding of age‐related thymic involution mechanisms and effects.
Collapse
Affiliation(s)
- Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|