1
|
Bell TN, Kusi-Appiah AE, Tocci V, Lyu P, Zhu L, Zhu F, Van Winkle D, Cao H, Singh MS, Lenhert S. Scalable lipid droplet microarray fabrication, validation, and screening. PLoS One 2024; 19:e0304736. [PMID: 38968248 PMCID: PMC11226032 DOI: 10.1371/journal.pone.0304736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/16/2024] [Indexed: 07/07/2024] Open
Abstract
High throughput screening of small molecules and natural products is costly, requiring significant amounts of time, reagents, and operating space. Although microarrays have proven effective in the miniaturization of screening for certain biochemical assays, such as nucleic acid hybridization or antibody binding, they are not widely used for drug discovery in cell culture due to the need for cells to internalize lipophilic drug candidates. Lipid droplet microarrays are a promising solution to this problem as they are capable of delivering lipophilic drugs to cells at dosages comparable to solution delivery. However, the scalablility of the array fabrication, assay validation, and screening steps has limited the utility of this approach. Here we take several new steps to scale up the process for lipid droplet array fabrication, assay validation in cell culture, and drug screening. A nanointaglio printing process has been adapted for use with a printing press. The arrays are stabilized for immersion into aqueous solution using a vapor coating process. In addition to delivery of lipophilic compounds, we found that we are also able to encapsulate and deliver a water-soluble compound in this way. The arrays can be functionalized by extracellular matrix proteins such as collagen prior to cell culture as the mechanism for uptake is based on direct contact with the lipid delivery vehicles rather than diffusion of the drug out of the microarray spots. We demonstrate this method for delivery to 3 different cell types and the screening of 92 natural product extracts on a microarray covering an area of less than 0.1 cm2. The arrays are suitable for miniaturized screening, for instance in high biosafety level facilities where space is limited and for applications where cell numbers are limited, such as in functional precision medicine.
Collapse
Affiliation(s)
- Tracey N. Bell
- Department of Biological Science and Integrative NanoScience Institute, Florida State University, Tallahassee, Florida, United States of America
| | - Aubrey E. Kusi-Appiah
- Department of Biological Science and Integrative NanoScience Institute, Florida State University, Tallahassee, Florida, United States of America
| | - Vincent Tocci
- Department of Biological Science and Integrative NanoScience Institute, Florida State University, Tallahassee, Florida, United States of America
| | - Pengfei Lyu
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Lei Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - David Van Winkle
- Department of Physics, Florida State University, Tallahassee, Florida, United States of America
| | - Hongyuan Cao
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Mandip S. Singh
- College of Pharmacy and Pharmaceutical Science, Florida A&M University, Tallahassee, Florida, United States of America
| | - Steven Lenhert
- Department of Biological Science and Integrative NanoScience Institute, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
2
|
Zhou S, Chen C, Yang J, Liao L, Wang Z, Wu D, Chu J, Wen L, Ding W. On-Demand Maneuvering of Diverse Prodrug Liquids on a Light-Responsive Candle-Soot-Hybridized Lubricant-Infused Slippery Surface for Highly Effective Toxicity Screening. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31667-31676. [PMID: 35791814 DOI: 10.1021/acsami.2c06973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
At present, microscale high-throughput screening (HTS) for drug toxicity has drawn increased attention. Reported methods are often constrained by the inability to execute rapid fusion over diverse droplets or the inflexibility of relying on rigid customized templates. Herein, a light-responsive candle-soot-hybridized lubricant-infused slippery surface (CS-LISS) was reported by one-step femtosecond laser cross-scanning to realize highly effective and flexible drug HTS. Due to its low-hysteresis merits, the CS-LISS can readily steer diverse droplets toward arbitrary directions at a velocity over 1.0 mm/s with the help of tracing lateral near-infrared irradiation; additionally, it has the capability of self-cleaning and self-deicing. Significantly, by integrating the CS-LISS with a GFP HeLa cell chip, high-efficiency drug toxicity screening can be successfully achieved with the aid of fluorescence imaging. This work provides insights into the design of microscale high-throughput drug screening.
Collapse
Affiliation(s)
- Shuneng Zhou
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chao Chen
- Department of Materials Physics and New Energy Device, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junfeng Yang
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Lirui Liao
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Zekun Wang
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Dong Wu
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Jiaru Chu
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Li Wen
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Weiping Ding
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
3
|
Miniaturized technologies for high-throughput drug screening enzymatic assays and diagnostics – A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Kim SH, Jin H, Meng RY, Kim DY, Liu YC, Chai OH, Park BH, Kim SM. Activating Hippo Pathway via Rassf1 by Ursolic Acid Suppresses the Tumorigenesis of Gastric Cancer. Int J Mol Sci 2019; 20:E4709. [PMID: 31547587 PMCID: PMC6801984 DOI: 10.3390/ijms20194709] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
The Hippo pathway is often dysregulated in many carcinomas, which results in various stages of tumor progression. Ursolic acid (UA), a natural compound that exists in many herbal plants, is known to obstruct cancer progression and exerts anti-carcinogenic effect on a number of human cancers. In this study, we aimed to examine the biological mechanisms of action of UA through the Hippo pathway in gastric cancer cells. MTT assay showed a decreased viability of gastric cancer cells after treatment with UA. Following treatment with UA, colony numbers and the sizes of gastric cancer cells were significantly diminished and apoptosis was observed in SNU484 and SNU638 cells. The invasion and migration rates of gastric cancer cells were suppressed by UA in a dose-dependent manner. To further determine the gene expression patterns that are related to the effects of UA, a microarray analysis was performed. Gene ontology analysis revealed that several genes, such as the Hippo pathway upstream target gene, ras association domain family (RASSF1), and its downstream target genes (MST1, MST2, and LATS1) were significantly upregulated by UA, while the expression of YAP1 gene, together with oncogenes (FOXM1, KRAS, and BATF), were significantly decreased. Similar to the gene expression profiling results, the protein levels of RASSF1, MST1, MST2, LATS1, and p-YAP were increased, whereas those of CTGF were decreased by UA in gastric cancer cells. The p-YAP expression induced in gastric cancer cells by UA was reversed with RASSF1 silencing. In addition, the protein levels in the Hippo pathway were increased in the UA-treated xenograft tumor tissues as compared with that in the control tumor tissues; thus, UA significantly inhibited the tumorigenesis of gastric cancer in vivo in xenograft animals. Collectively, UA diminishes the proliferation and metastasis of gastric cancer via the regulation of Hippo pathway through Rassf1, which suggests that UA can be used as a potential chemopreventive and therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Seong-Hun Kim
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Hua Jin
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Ruo Yu Meng
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Da-Yeah Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Yu Chuan Liu
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Ok Hee Chai
- Department of Anatomy and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Byung Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Soo Mi Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University, Jeonju 54907, Korea.
- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea.
| |
Collapse
|
5
|
Starkuviene V, Kallenberger SM, Beil N, Lisauskas T, Schumacher BSS, Bulkescher R, Wajda P, Gunkel M, Beneke J, Erfle H. High-Density Cell Arrays for Genome-Scale Phenotypic Screening. SLAS DISCOVERY 2019; 24:274-283. [PMID: 30682322 DOI: 10.1177/2472555218818757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to high associated costs and considerable time investments of cell-based screening, there is a strong demand for new technologies that enable preclinical development and tests of diverse biologicals in a cost-saving and time-efficient manner. For those reasons we developed the high-density cell array (HD-CA) platform, which miniaturizes cell-based screening in the form of preprinted and ready-to-run screening arrays. With the HD-CA technology, up to 24,576 samples can be tested in a single experiment, thereby saving costs and time for microscopy-based screening by 75%. Experiments on the scale of the entire human genome can be addressed in a real parallel manner, with screening campaigns becoming more comfortable and devoid of robotics infrastructure on the user side. The high degree of miniaturization enables working with expensive reagents and rare and difficult-to-obtain cell lines. We have also optimized an automated imaging procedure for HD-CA and demonstrate the applicability of HD-CA to CRISPR-Cas9- and RNAi-mediated phenotypic assessment of the gene function.
Collapse
Affiliation(s)
- Vytaute Starkuviene
- 1 BioQuant, Heidelberg University, Heidelberg, Germany.,2 Institute of Biosciences, Vilnius University Life Sciences Center, Vilnius, Lithuania
| | - Stefan M Kallenberger
- 1 BioQuant, Heidelberg University, Heidelberg, Germany.,3 Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Beil
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| | | | | | | | - Piotr Wajda
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| | - Manuel Gunkel
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| | - Jürgen Beneke
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| | - Holger Erfle
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
6
|
Park D, Kang M, Choi JW, Paik SM, Ko J, Lee S, Lee Y, Son K, Ha J, Choi M, Park W, Kim HY, Jeon NL. Microstructure guided multi-scale liquid patterning on an open surface. LAB ON A CHIP 2018; 18:2013-2022. [PMID: 29873341 DOI: 10.1039/c7lc01288h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Liquid patterning is a quintessential aspect in cell-based screening. While there are a variety of methods to handle microliquids utilizing surface treatments, complex microfluidic systems, and automated dispensing, most of the stated methods are both expensive and difficult to implement. Here, we present a fast multi-scale microliquid-patterning method on an open surface using embossed microstructures without surface modification. Arrays of micropillars can trap microliquids when a bulk drop is swept by an elastic sweeper on polystyrene (PS) substrates. The patterning mechanism on a basic form of a 2 × 2 rectangular array of circular pillars is analyzed theoretically and verified with experiments. Nanoliter-to-microliter volumes of liquids are patterned into various shapes by arranging the pillars based on the analysis. Furthermore, an array of geometrically modified pillars can capture approximately 8000 droplets on a large substrate (55 mm × 55 mm) in one step. Given the simplistic method of wipe patterning, the proposed platform can be utilized in both manual benchtop and automated settings. We will provide proof of concept experiments of single colony isolation using nanoliter-scale liquid patterning and of human angiogenic vessel formation using sequential patterning of microliter-scale liquids.
Collapse
Affiliation(s)
- Dohyun Park
- Division of WCU (World Class University) Multiscale Mechanical Design, Seoul National University, Seoul, 08826, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jin BJ, Lee S, Verkman AS. Hollow Micropillar Array Method for High-Capacity Drug Screening on Filter-Grown Epithelial Cells. Anal Chem 2018; 90:7675-7681. [PMID: 29779372 DOI: 10.1021/acs.analchem.8b01554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
New high-throughput assay formats and innovative screening technologies are needed for miniaturized screens using small quantities of near-native, patient-derived cells. Here, we developed a hollow micropillar array method to screen compounds using epithelial cells cultured on a porous support, with the goal of screening thousands of compounds using a single 24 mm diameter transwell filter containing cultured cells. Test compounds (∼1 nL) in an alginate hydrogel were printed by microinjection in hollow cylindrical micropillars (height = 150 μm, inner diameter = 100 μm) spaced 300 μm apart in a square array configuration. Compounds were delivered by positioning the array near the surface of a cell layer, with 5-10 μm of distance between the micropillars and cell surface. Micropillar array geometry, and the viscosity of the hydrogel and overlying solutions, were optimized computationally and experimentally to produce sustained exposure of cells to test compounds with minimal cross-talk from compounds in neighboring micropillar wells. The method was implemented using a 10 × 10 micropillar array (size = 3 × 3 mm) on CFTR-expressing epithelial cells, in which CFTR chloride channel function was measured from fluorescence in response to iodide addition using a genetically encoded cytoplasmic yellow fluorescent protein halide indicator. The hollow micropillar array platform developed here should be generally applicable for high-capacity drug screening using small numbers of cells cultured on solid or porous supports.
Collapse
Affiliation(s)
- Byung-Ju Jin
- Departments of Medicine and Physiology , University of California , San Francisco , California 94143-0521 , United States
| | - Sujin Lee
- Departments of Medicine and Physiology , University of California , San Francisco , California 94143-0521 , United States
| | - Alan S Verkman
- Departments of Medicine and Physiology , University of California , San Francisco , California 94143-0521 , United States
| |
Collapse
|
8
|
Peng B, Yu C, Du S, Liew SS, Mao X, Yuan P, Na Z, Yao SQ. MSN-on-a-Chip: Cell-Based Screenings Made Possible on a Small-Molecule Microarray of Native Natural Products. Chembiochem 2018; 19:986-996. [PMID: 29465822 DOI: 10.1002/cbic.201800101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 12/17/2022]
Abstract
Standard small-molecule microarrays (SMMs) are not well-suited for cell-based screening assays. Of the few attempts made thus far to render SMMs cell-compatible, all encountered major limitations. Here we report the first mesoporous silica nanoparticle (MSN)-on-a-chip platform capable of allowing high-throughput cell-based screening to be conducted on SMMs. By making use of a glass surface on which hundreds of MSNs, each encapsulated with a different native natural product, were immobilized in spatially defined manner, followed by on-chip mammalian cell growth and on-demand compound release, high-content screening was successfully carried out with readily available phenotypic detection methods. By combining this new MSN-on-a-chip system with small interfering RNA technology for the first time, we discovered that (+)-usniacin possesses synergistic inhibitory properties similar to those of olaparib (an FDA-approved drug) in BRCA1-knockdown cancer cells.
Collapse
Affiliation(s)
- Bo Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Changmin Yu
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21816, China
| | - Shubo Du
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Si S Liew
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Xin Mao
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Peiyan Yuan
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Zhenkun Na
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| |
Collapse
|
9
|
Roelse M, Henquet MGL, Verhoeven HA, de Ruijter NCA, Wehrens R, van Lenthe MS, Witkamp RF, Hall RD, Jongsma MA. Calcium Imaging of GPCR Activation Using Arrays of Reverse Transfected HEK293 Cells in a Microfluidic System. SENSORS 2018; 18:s18020602. [PMID: 29462903 PMCID: PMC5855233 DOI: 10.3390/s18020602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 11/16/2022]
Abstract
Reverse-transfected cell arrays in microfluidic systems have great potential to perform large-scale parallel screening of G protein-coupled receptor (GPCR) activation. Here, we report the preparation of a novel platform using reverse transfection of HEK293 cells, imaging by stereo-fluorescence microscopy in a flowcell format, real-time monitoring of cytosolic calcium ion fluctuations using the fluorescent protein Cameleon and analysis of GPCR responses to sequential sample exposures. To determine the relationship between DNA concentration and gene expression, we analyzed cell arrays made with variable concentrations of plasmid DNA encoding fluorescent proteins and the Neurokinin 1 (NK1) receptor. We observed pronounced effects on gene expression of both the specific and total DNA concentration. Reverse transfected spots with NK1 plasmid DNA at 1% of total DNA still resulted in detectable NK1 activation when exposed to its ligand. By varying the GPCR DNA concentration in reverse transfection, the sensitivity and robustness of the receptor response for sequential sample exposures was optimized. An injection series is shown for an array containing the NK1 receptor, bitter receptor TAS2R8 and controls. Both receptors were exposed 14 times to alternating samples of two ligands. Specific responses remained reproducible. This platform introduces new opportunities for high throughput screening of GPCR libraries.
Collapse
Affiliation(s)
- Margriet Roelse
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- Laboratory of Plant Physiology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Maurice G L Henquet
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Harrie A Verhoeven
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Norbert C A de Ruijter
- Laboratory of Cell Biology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Ron Wehrens
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- BU Biometris, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Marco S van Lenthe
- BU Biometris, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Renger F Witkamp
- Human Nutrition and Health, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Robert D Hall
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- Laboratory of Plant Physiology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Maarten A Jongsma
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
10
|
Seo J, Shin JY, Leijten J, Jeon O, Camci-Unal G, Dikina AD, Brinegar K, Ghaemmaghami AM, Alsberg E, Khademhosseini A. High-throughput approaches for screening and analysis of cell behaviors. Biomaterials 2018; 153:85-101. [PMID: 29079207 PMCID: PMC5702937 DOI: 10.1016/j.biomaterials.2017.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
Abstract
The rapid development of new biomaterials and techniques to modify them challenge our capability to characterize them using conventional methods. In response, numerous high-throughput (HT) strategies are being developed to analyze biomaterials and their interactions with cells using combinatorial approaches. Moreover, these systematic analyses have the power to uncover effects of delivered soluble bioactive molecules on cell responses. In this review, we describe the recent developments in HT approaches that help identify cellular microenvironments affecting cell behaviors and highlight HT screening of biochemical libraries for gene delivery, drug discovery, and toxicological studies. We also discuss HT techniques for the analyses of cell secreted biomolecules and provide perspectives on the future utility of HT approaches in biomedical engineering.
Collapse
Affiliation(s)
- Jungmok Seo
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Center for Biomaterials, Korea Institute of Science and Technology, 14 Hwarang-ro, Seongbuk-gu, Seoul, 02792, South Korea
| | - Jung-Youn Shin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gulden Camci-Unal
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA, 01854-2827, USA
| | - Anna D Dikina
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Katelyn Brinegar
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, 44106, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA; Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
| |
Collapse
|
11
|
Hong HJ, Koom WS, Koh WG. Cell Microarray Technologies for High-Throughput Cell-Based Biosensors. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1293. [PMID: 28587242 PMCID: PMC5492771 DOI: 10.3390/s17061293] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 12/27/2022]
Abstract
Due to the recent demand for high-throughput cellular assays, a lot of efforts have been made on miniaturization of cell-based biosensors by preparing cell microarrays. Various microfabrication technologies have been used to generate cell microarrays, where cells of different phenotypes are immobilized either on a flat substrate (positional array) or on particles (solution or suspension array) to achieve multiplexed and high-throughput cell-based biosensing. After introducing the fabrication methods for preparation of the positional and suspension cell microarrays, this review discusses the applications of the cell microarray including toxicology, drug discovery and detection of toxic agents.
Collapse
Affiliation(s)
- Hye Jin Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| |
Collapse
|
12
|
Abstract
Speed and throughput are vital ingredients for discovery driven, "-omics" research. The small molecule microarray (SMM) succeeds at delivering phenomenal screening throughput and versatility. The concept at the heart of the technology is elegant, yet simple: by presenting large collections of molecules in high density on a flat surface, one is able to interrogate all possible interactions with desired targets, in just a single step. SMMs have become established as the choice platform for screening, lead discovery, and molecular characterization. This introduction describes the principles governing microarray construction and use, focusing on practical challenges faced when conducting SMM experiments. It will explain the key design considerations and lay the foundation for the chapters that follow. (An earlier version of this chapter appeared in Small Molecule Microarrays: Methods and Protocols, published in 2010.).
Collapse
Affiliation(s)
- Mahesh Uttamchandani
- Defence Medical and Environmental Research Institute, DMERI, DSO National Laboratories, #09-01, 27 Medical Drive, Singapore, Singapore, 117510. .,Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, Singapore, 117543.
| | - Shao Q Yao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, Singapore, 117543.
| |
Collapse
|
13
|
Fujita S, Onuki-Nagasaki R, Ikuta K, Hara Y. A simple method for producing multiple copies of controlled release small molecule microarrays for cell-based screening. Biofabrication 2016; 9:011001. [DOI: 10.1088/1758-5090/9/1/011001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Ghazanfari L, Lenhert S. Screening of Lipid Composition for Scalable Fabrication of Solvent-Free Lipid Microarrays. FRONTIERS IN MATERIALS 2016; 3:55. [PMID: 29333429 PMCID: PMC5761732 DOI: 10.3389/fmats.2016.00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Liquid microdroplet arrays on surfaces are a promising approach to the miniaturization of laboratory processes such as high-throughput screening. The fluid nature of these droplets poses unique challenges and opportunities in their fabrication and application, particularly for the scalable integration of multiple materials over large areas and immersion into cell culture solution. Here, we use pin spotting and nanointaglio printing to screen a library of lipids and their mixtures for their compatibility with these fabrication processes, as well as stability upon immersion into aqueous solution. More than 200 combinations of natural and synthetic oils composed of fatty acids, triglycerides, and hydrocarbons were tested for their pin-spotting and nanointaglio print quality and their ability to contain the fluorescent compound tetramethylrhodamine B isothiocyanate (TRITC) upon immersion in water. A combination of castor oil and hexanoic acid at the ratio of 1:1 (w/w) was found optimal for producing reproducible patterns that are stable upon immersion into water. This method is capable of large-scale nanomaterials integration.
Collapse
|
15
|
Screening Mammalian Cells on a Hydrogel: Functionalized Small Molecule Microarray. Methods Mol Biol 2016. [PMID: 27873211 DOI: 10.1007/978-1-4939-6584-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mammalian cell-based microarray technology has gained wide attention, for its plethora of promising applications. The platform is able to provide simultaneous information on multiple parameters for a given target, or even multiple target proteins, in a complex biological system. Here we describe the preparation of mammalian cell-based microarrays using selectively captured of human prostate cancer cells (PC-3). This platform was then used in controlled drug release and measuring the associated drug effects on these cancer cells.
Collapse
|
16
|
Popova AA, Demir K, Hartanto TG, Schmitt E, Levkin PA. Droplet-microarray on superhydrophobic–superhydrophilic patterns for high-throughput live cell screenings. RSC Adv 2016. [DOI: 10.1039/c6ra06011k] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Droplet-microarray platform based on superhydrophobic–superhydrophilic patterning allows for miniaturized high throughput drug and transfection screenings of live cells in separated nanoliter droplets.
Collapse
Affiliation(s)
- Anna A. Popova
- Karlsruhe Institute of Technology
- Institute of Toxicology and Genetics
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Konstantin Demir
- Karlsruhe Institute of Technology
- Institute of Toxicology and Genetics
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Titus Genisius Hartanto
- Karlsruhe Institute of Technology
- Institute of Toxicology and Genetics
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Eric Schmitt
- Karlsruhe Institute of Technology
- Institute of Toxicology and Genetics
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Pavel A. Levkin
- Karlsruhe Institute of Technology
- Institute of Toxicology and Genetics
- 76344 Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|
17
|
Ock J, Li W. Fabrication of a three-dimensional tissue model microarray using laser foaming of a gas-impregnated biodegradable polymer. Biofabrication 2015; 6:024110. [PMID: 24999514 DOI: 10.1088/1758-5082/6/2/024110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A microarray containing three-dimensional (3D) tissue models is a promising substitute for the two-dimensional (2D) cell-based microarrays currently available for high throughput, tissue-based biomedical assays. A cell culture microenvironment similar to in vivo conditions could be achieved with biodegradable porous scaffolds. In this study, a laser foaming technique is developed to create an array of micro-scale 3D porous scaffolds. The effects of major process parameters and the morphology of the resulting porous structure were investigated. For comparison, cell culture studies were conducted with both foamed and unfoamed samples using T98G cells. The results show that by laser foaming gas-impregnated polylactic acid it is possible to generate an array of inverse cone shaped wells with porous walls. The size of the foamed region can be controlled with laser power and exposure time, while the pore size of the scaffold can be manipulated with the saturation pressure. T98G cells grow well in the foamed scaffolds, forming clusters that have not been observed in 2D cell cultures. Cells are more viable in the 3D scaffolds than in the 2D cell culture cases. The 3D porous microarray could be used for parallel studies of drug toxicity, guided stem cell differentiation, and DNA binding profiles.
Collapse
|
18
|
Kusi-Appiah AE, Lowry TW, Darrow EM, Wilson KA, Chadwick BP, Davidson MW, Lenhert S. Quantitative dose-response curves from subcellular lipid multilayer microarrays. LAB ON A CHIP 2015; 15:3397-404. [PMID: 26167949 PMCID: PMC4532382 DOI: 10.1039/c5lc00478k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The dose-dependent bioactivity of small molecules on cells is a crucial factor in drug discovery and personalized medicine. Although small-molecule microarrays are a promising platform for miniaturized screening, it has been a challenge to use them to obtain quantitative dose-response curves in vitro, especially for lipophilic compounds. Here we establish a small-molecule microarray assay capable of controlling the dosage of small lipophilic molecules delivered to cells by varying the sub-cellular volumes of surface supported lipid micro- and nanostructure arrays fabricated with nanointaglio. Features with sub-cellular lateral dimensions were found necessary to obtain normal cell adhesion with HeLa cells. The volumes of the lipophilic drug-containing nanostructures were determined using a fluorescence microscope calibrated by atomic-force microscopy. We used the surface supported lipid volume information to obtain EC-50 values for the response of HeLa cells to three FDA-approved lipophilic anticancer drugs, docetaxel, imiquimod and triethylenemelamine, which were found to be significantly different from neat lipid controls. No significant toxicity was observed on the control cells surrounding the drug/lipid patterns, indicating lack of interference or leakage from the arrays. Comparison of the microarray data to dose-response curves for the same drugs delivered liposomally from solution revealed quantitative differences in the efficacy values, which we explain in terms of cell-adhesion playing a more important role in the surface-based assay. The assay should be scalable to a density of at least 10,000 dose response curves on the area of a standard microtiter plate.
Collapse
Affiliation(s)
- A E Kusi-Appiah
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhu B, Jiang B, Na Z, Yao SQ. Controlled proliferation and screening of mammalian cells on a hydrogel-functionalized small molecule microarray. Chem Commun (Camb) 2015; 51:10431-4. [PMID: 26028192 DOI: 10.1039/c5cc03278d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrogel-functionalized small molecule microarray has been developed, on which PC-3 cancer cells were selectively grown. Subsequent controlled release of immobilized bioactive compounds enabled cell-based screening to be directly carried out on this platform.
Collapse
Affiliation(s)
- Biwei Zhu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore117543.
| | | | | | | |
Collapse
|
20
|
Vafai N, Lowry TW, Wilson KA, Davidson MW, Lenhert S. Evaporative edge lithography of a liposomal drug microarray for cell migration assays. NANOFABRICATION 2015; 2:34-42. [PMID: 27617264 PMCID: PMC5015892 DOI: 10.1515/nanofab-2015-0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lipid multilayer microarrays are a promising approach to miniaturize laboratory procedures by taking advantage of the microscopic compartmentalization capabilities of lipids. Here, we demonstrate a new method to pattern lipid multilayers on surfaces based on solvent evaporation along the edge where a stencil contacts a surface called evaporative edge lithography (EEL). As an example of an application of this process, we use EEL to make microarrays suitable for a cell-based migration assay. Currently existing cell migration assays require a separate compartment for each drug which is dissolved at a single concentration in solution. An advantage of the lipid multilayer microarray assay is that multiple compounds can be tested on the same surface. We demonstrate this by testing the effect of two different lipophilic drugs, Taxol and Brefeldin A, on collective cell migration into an unpopulated area. This particular assay should be scalable to test of 2000 different lipophilic compounds or dosages on a standard microtiter plate area, or if adapted for individual cell migration, it would allow for high-throughput screening of more than 50,000 compounds per plate.
Collapse
Affiliation(s)
- Nicholas Vafai
- Department of Biological Sciences, Florida State University, Tallahassee, FL, 32306-4370, USA
| | - Troy W. Lowry
- Department of Physics, Florida State University, Tallahassee, FL, 32306-4350, USA
| | - Korey A. Wilson
- Department of Biological Sciences, Florida State University, Tallahassee, FL, 32306-4370, USA
| | - Michael W. Davidson
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Florida State University, Tallahassee, FL 32310-3706, USA
| | - Steven Lenhert
- Department of Biological Sciences, Florida State University, Tallahassee, FL, 32306-4370, USA
| |
Collapse
|
21
|
Drug-eluting microarrays to identify effective chemotherapeutic combinations targeting patient-derived cancer stem cells. Proc Natl Acad Sci U S A 2015; 112:8732-7. [PMID: 26124098 DOI: 10.1073/pnas.1505374112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A new paradigm in oncology establishes a spectrum of tumorigenic potential across the heterogeneous phenotypes within a tumor. The cancer stem cell hypothesis postulates that a minute fraction of cells within a tumor, termed cancer stem cells (CSCs), have a tumor-initiating capacity that propels tumor growth. An application of this discovery is to target this critical cell population using chemotherapy; however, the process of isolating these cells is arduous, and the rarity of CSCs makes it difficult to test potential drug candidates in a robust fashion, particularly for individual patients. To address the challenge of screening drug libraries on patient-derived populations of rare cells, such as CSCs, we have developed a drug-eluting microarray, a miniaturized platform onto which a minimal quantity of cells can adhere and be exposed to unique treatment conditions. Hundreds of drug-loaded polymer islands acting as drug depots colocalized with adherent cells are surrounded by a nonfouling background, creating isolated culture environments on a solid substrate. Significant results can be obtained by testing <6% of the cells required for a typical 96-well plate. Reliability was demonstrated by an average coefficient of variation of 14% between all of the microarrays and 13% between identical conditions within a single microarray. Using the drug-eluting array, colorectal CSCs isolated from two patients exhibited unique responses to drug combinations when cultured on the drug-eluting microarray, highlighting the potential as a prognostic tool to identify personalized chemotherapeutic regimens targeting CSCs.
Collapse
|
22
|
Wegener J. Cell-Based Microarrays for In Vitro Toxicology. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:335-358. [PMID: 26077916 DOI: 10.1146/annurev-anchem-071213-020051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
DNA/RNA and protein microarrays have proven their outstanding bioanalytical performance throughout the past decades, given the unprecedented level of parallelization by which molecular recognition assays can be performed and analyzed. Cell microarrays (CMAs) make use of similar construction principles. They are applied to profile a given cell population with respect to the expression of specific molecular markers and also to measure functional cell responses to drugs and chemicals. This review focuses on the use of cell-based microarrays for assessing the cytotoxicity of drugs, toxins, or chemicals in general. It also summarizes CMA construction principles with respect to the cell types that are used for such microarrays, the readout parameters to assess toxicity, and the various formats that have been established and applied. The review ends with a critical comparison of CMAs and well-established microtiter plate (MTP) approaches.
Collapse
Affiliation(s)
- Joachim Wegener
- Institute for Analytical Chemistry, University of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
23
|
NOUSOU T, IMAJO A, SHIRAISHI K. Immobilization of Thermoresponsive Poly( N-isoporopylacrylamide) on Glass Substrate by Surface-Initiated Atom Transfer Radical Polymerization and Thermal Stimuli-Exfoliation of Human Immortal Mesenchymal Stem Cells. KOBUNSHI RONBUNSHU 2015. [DOI: 10.1295/koron.2014-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tatsuki NOUSOU
- Cluster of Biotechnology and Chemistry Systems, Program in Systems Engineering, Graduate School of Systems Engineering, Kinki University
| | - Akinori IMAJO
- Cluster of Biotechnology and Chemistry Systems, Program in Systems Engineering, Graduate School of Systems Engineering, Kinki University
| | - Kohei SHIRAISHI
- Research Institute of Fundamental Technology for Next Generation, Kinki University
- Department of Biotechnology and Chemistry, Faculty of Engineering, Kinki University
- Cluster of Biotechnology and Chemistry Systems, Program in Systems Engineering, Graduate School of Systems Engineering, Kinki University
| |
Collapse
|
24
|
Lowry TW, Kusi-Appiah A, Guan J, Van Winkle DH, Davidson MW, Lenhert S. Materials Integration by Nanointaglio. ADVANCED MATERIALS INTERFACES 2014; 1:10.1002/admi.201300127. [PMID: 25485228 PMCID: PMC4255286 DOI: 10.1002/admi.201300127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Troy W. Lowry
- Department of Biological Sciences and Integrative Nanoscience Institute, Florida State University, Tallahassee, Florida 32306-4370, USA; Department of Physics Florida State University Tallahassee, Florida, 32306-4350, USA
| | - Aubrey Kusi-Appiah
- Department of Biological Sciences and Integrative Nanoscience Institute, Florida State University, Tallahassee, Florida 32306-4370, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310-6046, USA
| | - David H. Van Winkle
- Department of Physics Florida State University Tallahassee, Florida, 32306-4350, USA
| | - Michael W. Davidson
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310-3706, USA
| | - Steven Lenhert
- Department of Biological Sciences and Integrative Nanoscience Institute, Florida State University, Tallahassee, Florida 32306-4370, USA
| |
Collapse
|
25
|
Håkanson M, Cukierman E, Charnley M. Miniaturized pre-clinical cancer models as research and diagnostic tools. Adv Drug Deliv Rev 2014; 69-70:52-66. [PMID: 24295904 PMCID: PMC4019677 DOI: 10.1016/j.addr.2013.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/09/2013] [Accepted: 11/24/2013] [Indexed: 12/14/2022]
Abstract
Cancer is one of the most common causes of death worldwide. Consequently, important resources are directed towards bettering treatments and outcomes. Cancer is difficult to treat due to its heterogeneity, plasticity and frequent drug resistance. New treatment strategies should strive for personalized approaches. These should target neoplastic and/or activated microenvironmental heterogeneity and plasticity without triggering resistance and spare host cells. In this review, the putative use of increasingly physiologically relevant microfabricated cell-culturing systems intended for drug development is discussed. There are two main reasons for the use of miniaturized systems. First, scaling down model size allows for high control of microenvironmental cues enabling more predictive outcomes. Second, miniaturization reduces reagent consumption, thus facilitating combinatorial approaches with little effort and enables the application of scarce materials, such as patient-derived samples. This review aims to give an overview of the state-of-the-art of such systems while predicting their application in cancer drug development.
Collapse
Affiliation(s)
- Maria Håkanson
- CSEM SA, Section for Micro-Diagnostics, 7302 Landquart, Switzerland
| | - Edna Cukierman
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | - Mirren Charnley
- Centre for Micro-Photonics and Industrial Research Institute Swinburne, Swinburne University of Technology, Victoria 3122, Australia.
| |
Collapse
|
26
|
Abstract
In the postgenomic era, DNA and protein arrays are increasing the speed at which knowledge is gathered on gene expression in cells and tissues. At the same time, researchers realize that a miniaturized and parallelized analysis of whole cells may equally expedite the acquisition of data describing cellular properties and function. Researchers are starting to explore means of generating and using cell microarrays to investigate cells at higher throughput. In this initial phase of exploration, cell microarrays are being developed for various cellular analyses including the effects of gene expression, cellular reactions to the biomolecular environment, and profiling of cell surface molecules. This article will provide an overview of different types of eukaryotic cell microarrays described to date, how they are generated, and their fields of application.
Collapse
Affiliation(s)
- Brigitte Angres
- Department of Cellular Assay Systems, NMI Natural & Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany.
| |
Collapse
|
27
|
Deiss F, Mazzeo A, Hong E, Ingber DE, Derda R, Whitesides GM. Platform for high-throughput testing of the effect of soluble compounds on 3D cell cultures. Anal Chem 2013; 85:8085-94. [PMID: 23952342 DOI: 10.1021/ac400161j] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In vitro 3D culture could provide an important model of tissues in vivo, but assessing the effects of chemical compounds on cells in specific regions of 3D culture requires physical isolation of cells and thus currently relies mostly on delicate and low-throughput methods. This paper describes a technique ("cells-in-gels-in-paper", CiGiP) that permits rapid assembly of arrays of 3D cell cultures and convenient isolation of cells from specific regions of these cultures. The 3D cultures were generated by stacking sheets of 200-μm-thick paper, each sheet supporting 96 individual "spots" (thin circular slabs) of hydrogels containing cells, separated by hydrophobic material (wax, PDMS) impermeable to aqueous solutions, and hydrophilic and most hydrophobic solutes. A custom-made 96-well holder isolated the cell-containing zones from each other. Each well contained media to which a different compound could be added. After culture and disassembly of the holder, peeling the layers apart "sectioned" the individual 3D cultures into 200-μm-thick sections which were easy to analyze using 2D imaging (e.g., with a commercial gel scanner). This 96-well holder brings new utilities to high-throughput, cell-based screening, by combining the simplicity of CiGiP with the convenience of a microtiter plate. This work demonstrated the potential of this type of assays by examining the cytotoxic effects of phenylarsine oxide (PAO) and cyclophosphamide (CPA) on human breast cancer cells positioned at different separations from culture media in 3D cultures.
Collapse
Affiliation(s)
- Frédérique Deiss
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
28
|
Tasoglu S, Gurkan UA, Wang S, Demirci U. Manipulating biological agents and cells in micro-scale volumes for applications in medicine. Chem Soc Rev 2013; 42:5788-808. [PMID: 23575660 PMCID: PMC3865707 DOI: 10.1039/c3cs60042d] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development.
Collapse
Affiliation(s)
- Savas Tasoglu
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Umut Atakan Gurkan
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - ShuQi Wang
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Utkan Demirci
- Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Division of Biomedical Engineering and Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
29
|
Ankam S, Teo BKK, Kukumberg M, Yim EKF. High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment. Organogenesis 2013; 9:128-42. [PMID: 23899508 PMCID: PMC3896583 DOI: 10.4161/org.25425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/19/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023] Open
Abstract
Stem cells in vivo are housed within a functional microenvironment termed the "stem cell niche." As the niche components can modulate stem cell behaviors like proliferation, migration and differentiation, evaluating these components would be important to determine the most optimal platform for their maintenance or differentiation. In this review, we have discussed methods and technologies that have aided in the development of high throughput screening assays for stem cell research, including enabling technologies such as the well-established multiwell/microwell plates and robotic spotting, and emerging technologies like microfluidics, micro-contact printing and lithography. We also discuss the studies that utilized high throughput screening platform to investigate stem cell response to extracellular matrix, topography, biomaterials and stiffness gradients in the stem cell niche. The combination of the aforementioned techniques could lay the foundation for new perspectives in further development of high throughput technology and stem cell research.
Collapse
Affiliation(s)
- Soneela Ankam
- Department of Bioengineering; National University of Singapore; Singapore
- Duke-NUS Graduate Medical School; Singapore
| | - Benjamin KK Teo
- Department of Bioengineering; National University of Singapore; Singapore
- Mechanobiology Institute Singapore; National University of Singapore; Singapore
| | - Marek Kukumberg
- Mechanobiology Institute Singapore; National University of Singapore; Singapore
| | - Evelyn KF Yim
- Department of Bioengineering; National University of Singapore; Singapore
- Mechanobiology Institute Singapore; National University of Singapore; Singapore
- Department of Surgery; National University of Singapore; Singapore
| |
Collapse
|
30
|
Abstract
High-content assays have the potential to drastically increase throughput in cell biology and drug discovery, but handling and culturing large libraries of cells such as primary tumor or cancer cell lines requires expensive, dedicated robotic equipment. We developed a simple yet powerful method that uses contact spotting to generate high-density nanowell arrays of live mammalian cells for the culture and interrogation of cell libraries.
Collapse
|
31
|
Puvirajesinghe TM, Turnbull JE. Glycomics approaches for the bioassay and structural analysis of heparin/heparan sulphates. Metabolites 2012; 2:1060-89. [PMID: 24957775 PMCID: PMC3901230 DOI: 10.3390/metabo2041060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 01/16/2023] Open
Abstract
The glycosaminoglycan heparan sulphate (HS) has a heterogeneous structure; evidence shows that specific structures may be responsible for specific functions in biological processes such as blood coagulation and regulation of growth factor signalling. This review summarises the different experimental tools and methods developed to provide more rapid methods for studying the structure and functions of HS. Rapid and sensitive methods for the facile purification of HS, from tissue and cell sources are reviewed. Data sets for the structural analysis are often complex and include multiple sample sets, therefore different software and tools have been developed for the analysis of different HS data sets. These can be readily applied to chromatographic data sets for the simplification of data (e.g., charge separation using strong anion exchange chromatography and from size separation using gel filtration techniques. Finally, following the sequencing of the human genome, research has rapidly advanced with the introduction of high throughput technologies to carry out simultaneous analyses of many samples. Microarrays to study macromolecular interactions (including glycan arrays) have paved the way for bioassay technologies which utilize cell arrays to study the effects of multiple macromolecules on cells. Glycan bioassay technologies are described in which immobilisation techniques for saccharides are exploited to develop a platform to probe cell responses such as signalling pathway activation. This review aims at reviewing available techniques and tools for the purification, analysis and bioassay of HS saccharides in biological systems using "glycomics" approaches.
Collapse
Affiliation(s)
- Tania M Puvirajesinghe
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, 10039 Marseille, France.
| | - Jeremy E Turnbull
- Centre for Glycobiology, Department of Biochemistry and Cell Biology, Institute of Integrative Biology, The University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
32
|
Drug discovery: a view through the looking glass. Future Med Chem 2012; 4:2011-3. [PMID: 23157232 DOI: 10.4155/fmc.12.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
Overview of micro- and nano-technology tools for stem cell applications: micropatterned and microelectronic devices. SENSORS 2012. [PMID: 23202240 PMCID: PMC3522993 DOI: 10.3390/s121115947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element.
Collapse
|
34
|
Puvirajesinghe TM, Ahmed YA, Powell AK, Fernig DG, Guimond SE, Turnbull JE. Array-based functional screening of heparin glycans. ACTA ACUST UNITED AC 2012; 19:553-8. [PMID: 22633407 DOI: 10.1016/j.chembiol.2012.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 11/18/2022]
Abstract
Array methodologies have become powerful tools for interrogation of glycan-protein interactions but have critically lacked the ability to generate cell response data. Here, we report the development of a slide-based array method exemplified by measurement of activation of fibroblast growth factor signaling by heparin saccharides. Heparan sulfate-deficient Swiss 3T3 cells were overlaid onto an aminosilane-coated slide surface onto which heparin saccharides had been spotted and immobilized. The cells were transiently stimulated with FGF2 and immunofluorescence measured to assess downstream ERK1/2 phosphorylation. Activation of this signaling pathway response was restricted to cells exposed to heparin saccharides competent to activate FGF2 signaling. Differential activation of the overlaid cells by different-sized heparin saccharides was demonstrated by quantitative measurement of fluorescence intensity. This "glycobioarray" platform has significant potential as a generic tool for functional glycomics screening.
Collapse
Affiliation(s)
- Tania M Puvirajesinghe
- Centre for Glycobiology, Department of Biochemistry and Cell Biology, Institute of Integrative Biology, The University of Liverpool, Liverpool L69 7ZB, UK
| | | | | | | | | | | |
Collapse
|
35
|
Martins SAM, Trabuco JRC, Monteiro GA, Chu V, Conde JP, Prazeres DMF. Towards the miniaturization of GPCR-based live-cell screening assays. Trends Biotechnol 2012; 30:566-74. [PMID: 22921755 DOI: 10.1016/j.tibtech.2012.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 01/13/2023]
Abstract
G protein-coupled receptors (GPCRs) play a key role in many physiological or disease-related processes and for this reason are favorite targets of the pharmaceutical industry. Although ~30% of marketed drugs target GPCRs, their potential remains largely untapped. The discovery of new leads calls for the screening of thousands of compounds with high-throughput cell-based assays. Although microtiter plate-based high-throughput screening platforms are well established, microarray and microfluidic technologies hold potential for miniaturization, automation, and biosensor integration that may well redefine the format of GPCR screening assays. This paper reviews the latest research efforts directed to bringing microarray and microfluidic technologies into the realm of GPCR-based, live-cell screening assays.
Collapse
Affiliation(s)
- Sofia A M Martins
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
36
|
Evenou F, Di Meglio JM, Ladoux B, Hersen P. Micro-patterned porous substrates for cell-based assays. LAB ON A CHIP 2012; 12:1717-22. [PMID: 22434338 DOI: 10.1039/c2lc20696j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the search for new therapeutic chemicals, lab-on-a-chip systems have recently emerged as innovative and efficient tools for cell-based assays and high throughput screening. Here, we describe a novel, versatile and simple device for cell-based assays at the bench-top. We created spatial variations of porosity on the surface of a membrane filter by microcontact printing with a biocompatible polymer (PDMS). We called such systems Micro-Printed Membranes (μPM). Active compounds dispensed on the porous areas, where the membrane pores are not clogged by the polymer, can cross the membrane and reach cells growing on the opposite side. Only cells immediately below those porous areas could be stimulated by chemicals. We performed proof-of-principle experiments using Hoechst nuclear staining, calcein-AM cell viability assay and destabilization of the cytoskeleton organisation by cytochalasin B. Resulting fluorescent staining properly matched the drops positioning and no cross-contaminations were observed between adjacent tests. This well-less cell-based screening system is highly flexible by design and it enables multiple compounds to be tested on the same cell tissue. Only low sample volumes in the microlitre range are required. Moreover, chemicals can be delivered sequentially and removed at any time while cells can be monitored in real time. This allows the design of complex, sequential and combinatorial drug assays. μPMs appear as ideal systems for cell-based assays. We anticipate that this lab-on-chip device will be adapted for both manual and automated high content screening experiments.
Collapse
Affiliation(s)
- Fanny Evenou
- Matière et Systèmes Complexes, UMR 7057 CNRS & Université Paris Diderot, 75013 Paris, France
| | | | | | | |
Collapse
|
37
|
Zhou L, Huang G, Wang S, Wu J, Lee WG, Chen Y, Xu F, Lu T. Advances in cell-based biosensors using three-dimensional cell-encapsulating hydrogels. Biotechnol J 2012; 6:1466-76. [PMID: 22162496 DOI: 10.1002/biot.201100098] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cell-based biosensors (CBBs) have emerged as promising biotechnical tools whereby various cell types can be used as basic sensing units to detect external stimuli. Specifically, CBBs have been applied in environmental monitoring, drug screening, clinical diagnosis and biosecurity. For these applications, CBBs offer several advantages over conventional molecular-based biosensors or living animal-based approaches, such as the capability to better mimic physiological situations, to enhance detection specificity and sensitivity, and to detect unknown compounds and toxins. On the other hand, existing CBBs suffer from several limitations, such as weak cell-substrate attachment, two-dimensional (2D) cell microenvironment, and limited shelf life. An emerging method for scaffold-free three-dimensional (3D) cell culture uses hydrogels to encapsulate cells. Advances in novel biomaterials and nano/microscale technologies have enabled encapsulation of cells in hydrogels to fabricate 3D CBBs, which hold great potential for addressing the limitation in existing 2D CBBs. Here, we present an overview of the emerging hydrogel-based CBBs, their applications in pathogen/toxin detection, drug screening and screening of cell-biomaterials interaction, and the associated challenges and potential solutions.
Collapse
Affiliation(s)
- Lihong Zhou
- Biomedical Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P R China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kusi-Appiah AE, Vafai N, Cranfill PJ, Davidson MW, Lenhert S. Lipid multilayer microarrays for in vitro liposomal drug delivery and screening. Biomaterials 2012; 33:4187-94. [PMID: 22391265 DOI: 10.1016/j.biomaterials.2012.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/09/2012] [Indexed: 12/17/2022]
Abstract
Screening for effects of small molecules on cells grown in culture is a well-established method for drug discovery and testing, and faster throughput at lower cost is needed. Small-molecule arrays and microfluidics are promising approaches. Here we introduce a simple method of surface-mediated delivery of drugs to cells from a microarray of phospholipid multilayers (layers thicker than a bilayer) encapsulating small molecules. The multilayer patterns are of sub-cellular dimensions and controllable thickness and were formed by dip-pen nanolithography. The patterns successfully delivered a rhodamine-tagged lipid and drugs only to the cells directly over them, indicating successful encapsulation and no cross-contamination to cells grown next to the patterns. We also demonstrated multilayer thickness-dependant uptake of the lipids from spots with sub-cellular lateral dimensions, and therefore the possibility of delivering different dosages from different areas of the array. The efficacies of two drugs were assayed on the same surface, and we were able to deliver dosages comparable to those of solution based delivery (up to the equivalent of 30 μg/mL). We expect our method to be a promising first step toward producing a single high-throughput liposome-based screening microarray plate that can be used in the same way as a standard well plate.
Collapse
Affiliation(s)
- Aubrey E Kusi-Appiah
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | | | |
Collapse
|
39
|
Shaw SY, Brettman AD. Phenotyping patient-derived cells for translational studies in cardiovascular disease. Circulation 2012; 124:2444-55. [PMID: 22125190 DOI: 10.1161/circulationaha.111.043943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley Y Shaw
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
40
|
Szymański P, Markowicz M, Mikiciuk-Olasik E. Adaptation of high-throughput screening in drug discovery-toxicological screening tests. Int J Mol Sci 2011; 13:427-52. [PMID: 22312262 PMCID: PMC3269696 DOI: 10.3390/ijms13010427] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/11/2011] [Accepted: 12/19/2011] [Indexed: 11/23/2022] Open
Abstract
High-throughput screening (HTS) is one of the newest techniques used in drug design and may be applied in biological and chemical sciences. This method, due to utilization of robots, detectors and software that regulate the whole process, enables a series of analyses of chemical compounds to be conducted in a short time and the affinity of biological structures which is often related to toxicity to be defined. Since 2008 we have implemented the automation of this technique and as a consequence, the possibility to examine 100,000 compounds per day. The HTS method is more frequently utilized in conjunction with analytical techniques such as NMR or coupled methods e.g., LC-MS/MS. Series of studies enable the establishment of the rate of affinity for targets or the level of toxicity. Moreover, researches are conducted concerning conjugation of nanoparticles with drugs and the determination of the toxicity of such structures. For these purposes there are frequently used cell lines. Due to the miniaturization of all systems, it is possible to examine the compound's toxicity having only 1-3 mg of this compound. Determination of cytotoxicity in this way leads to a significant decrease in the expenditure and to a reduction in the length of the study.
Collapse
Affiliation(s)
- Paweł Szymański
- Department of Pharmaceutical Chemistry and Drug Analysis, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland; E-Mails: (P.S.); (E.M.-O.)
| | - Magdalena Markowicz
- Department of Pharmaceutical Chemistry and Drug Analysis, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland; E-Mails: (P.S.); (E.M.-O.)
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry and Drug Analysis, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland; E-Mails: (P.S.); (E.M.-O.)
| |
Collapse
|
41
|
Geyer FL, Ueda E, Liebel U, Grau N, Levkin PA. Superhydrophobic-Superhydrophilic Micropatterning: Towards Genome-on-a-Chip Cell Microarrays. Angew Chem Int Ed Engl 2011; 50:8424-7. [PMID: 21751312 DOI: 10.1002/anie.201102545] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/06/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Florian L Geyer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Germany
| | | | | | | | | |
Collapse
|
42
|
Geyer FL, Ueda E, Liebel U, Grau N, Levkin PA. Superhydrophob-superhydrophile Mikrostrukturen: Auf dem Weg zum Ein-Genom-Zellmikroarray. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Xu F, Wu J, Wang S, Durmus NG, Gurkan UA, Demirci U. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 2011; 3:034101. [PMID: 21725152 DOI: 10.1088/1758-5082/3/3/034101] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.
Collapse
Affiliation(s)
- Feng Xu
- Department of Medicine, Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
44
|
Kwon CH, Wheeldon I, Kachouie NN, Lee SH, Bae H, Sant S, Fukuda J, Kang JW, Khademhosseini A. Drug-eluting microarrays for cell-based screening of chemical-induced apoptosis. Anal Chem 2011; 83:4118-25. [PMID: 21476591 PMCID: PMC3105158 DOI: 10.1021/ac200267t] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Traditional high-throughput screening (HTS) is carried out in centralized facilities that require extensive robotic liquid and plate handling equipment. This model of HTS is restrictive as such facilities are not accessible to many researchers. We have designed a simple microarray platform for cell-based screening that can be carried out at the benchtop. The device creates a microarray of 2100 individual cell-based assays in a standard microscope slide format. A microarray of chemical-laden hydrogels addresses a matching array of cell-laden microwells thus creating a microarray of sealed microscale cell cultures each with unique conditions. We demonstrate the utility of the device by screening the extent of apoptosis and necrosis in MCF-7 breast cancer cells in response to exposure to a small library of chemical compounds. From a set of screens we produced a rank order of chemicals that preferentially induce apoptosis over necrosis in MCF-7 cells. Treatment with doxorubicin induced high levels of apoptosis in comparison with staurosporine, ethanol, and hydrogen peroxide, whereas treatment with 100 μM ethanol induced minimal apoptosis with high levels of necrosis. We anticipate broad application of the device for various research and discovery applications as it is easy to use, scalable, and can be fabricated and operated with minimal peripheral equipment.
Collapse
Affiliation(s)
- Cheong Hoon Kwon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ian Wheeldon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115
| | - Nezamoddin N. Kachouie
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Seung Hwan Lee
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hojae Bae
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Shilpa Sant
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115
| | - Junji Fukuda
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan 305-8573
| | - Jeong Won Kang
- Department of Chemical and Biological Engineering, Korea University, 5-Ga Anam-Dong, Sungbuk-Ku, Seoul, South Korea 136-701
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115
| |
Collapse
|
45
|
Soni M, Lai F. Cell-based co-transfection microarrays for use with HEK293T cells on a poly D-lysine-coated polystyrene microplate. Methods Mol Biol 2011; 706:13-25. [PMID: 21104051 DOI: 10.1007/978-1-61737-970-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Analysis of the human genome sequence has identified thousands of putative genes with unknown function; therefore, a new tool allowing for rapid identification of gene functions is needed. Reverse transfection microarray technology, which turns a DNA microarray into a cell-based microarray, has emerged for simultaneously studying the function of many genes. Since the initial demonstration in 2001, many variations have surfaced, making the technology more versatile for a broad range of applications. We have developed a protocol to make ready-to-transfect DNA microarrays in a 96-well microplate for co-transfection of two plasmids into HEK293T cells. This cell-based microarray in a microplate may be used for screening hundreds of analytes against multiple protein targets in parallel, providing a powerful tool for functional genomics and drug discovery.
Collapse
Affiliation(s)
- Meenal Soni
- Science and Technology Division, Corning Inc., Corning, NY, USA
| | | |
Collapse
|
46
|
Abstract
Cell-based microarrays were first described by Ziauddin and Sabatini in 2001 as a novel method for performing high-throughput screens of gene function. They reported a technique whereby expression vectors containing the open reading frame (ORF) of human genes were printed onto glass microscope slides to form a microarray. Transfection reagents were added pre- or post-spotting and cells grown over the surface of the array. They demonstrated that cells growing in the immediate vicinity of the expression vectors underwent 'reverse transfection' and that subsequent alterations in cell function could then be detected by secondary assays performed on the array. Subsequent publications have adapted the technique to a variety of applications and have also shown that the approach works when arrays are fabricated using siRNAs and compounds. The potential of this method for performing analyses of gene function and identification of novel therapeutic agents has now been clearly demonstrated. Current efforts are focused on improving and harnessing this technology for high-throughput screening applications.
Collapse
Affiliation(s)
- Ella Palmer
- Clinical Sciences Centre, Hammersmith Hospital, London, UK.
| |
Collapse
|
47
|
Challenges and perspectives of chemical biology, a successful multidisciplinary field of natural sciences. Molecules 2011; 16:2672-87. [PMID: 21441869 PMCID: PMC6259834 DOI: 10.3390/molecules16032672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/09/2011] [Accepted: 03/15/2011] [Indexed: 12/17/2022] Open
Abstract
Objects, goals, and main methods as well as perspectives of chemical biology are discussed. This review is focused on the fundamental aspects of this emerging field of life sciences: chemical space, the small molecule library and chemical sensibilization (small molecule microassays).
Collapse
|
48
|
Yamaguchi S, Matsunuma E, Nagamune T. Immobilized culture and transfection microarray of non-adherent cells. Methods Mol Biol 2011; 706:151-7. [PMID: 21104061 DOI: 10.1007/978-1-61737-970-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cell-based microarrays are promising tools for high-throughput functional analysis of gene products, but their application has been limited to adherent cells due to the difficulty in immobilization of non-adherent cells. Herein, we have introduced our techniques that can rapidly and strongly immobilize non-adherent cells and can allow the transfection of non-adherent cells with plasmid cDNA and small interfering RNA (siRNA) at a defined position on substrates with poly(ethylene-glycol)-lipid-modified surface.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
49
|
Lee SH, Heinz AJ, Choi SE, Park W, Kwon S. Polymer based chemical delivery to multichannel capillary patterned cells. LAB ON A CHIP 2011; 11:605-608. [PMID: 21240397 DOI: 10.1039/c0lc00328j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In order to match the controllability of traditional pipetting with the advantages of microfluidics, we introduce the concept of polymer based chemical delivery to multichannel capillary patterned cells. Here we demonstrate that UV polymerized hydrogel can be used as a miniature pipet to deliver picolitre chemical quantities to multichannel capillary patterned cells.
Collapse
Affiliation(s)
- Sung Hoon Lee
- School of Electrical Engineering and Computer Science, Seoul National University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
50
|
Jung JP, Moyano JV, Collier JH. Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices. Integr Biol (Camb) 2011; 3:185-96. [PMID: 21249249 DOI: 10.1039/c0ib00112k] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrices (ECMs) are complex materials, containing at least dozens of different macromolecules that are assembled together, thus complicating their optimization towards applications in 3D cell culture or tissue engineering. The natural complexity of ECMs has limited cell-matrix investigations predominantly to experiments where only one matrix component is adjusted at a time, making it difficult to uncover interactions between different matrix components or to efficiently determine optimal matrix compositions for specific desired biological responses. Here we have developed modular synthetic ECMs based on peptide self-assembly whose incorporation of multiple different peptide ligands can be adjusted. The peptides can co-assemble in a wide range of combinations to form hydrogels of uniform morphology and consistent mechanical properties, but with precisely varied mixtures of peptide ligands. The modularity of this system in turn enabled multi-factorial experimental designs for investigating interactions between these ligands and for determining a multi-peptide matrix formulation that maximized endothelial cell growth. In cultures of HUVECs, we observed a previously unknown antagonistic interaction between the laminin-derived peptide YIGSR and RGDS-mediated cell attachment and growth. We also identified an optimized combination of self-assembled peptides bearing the ligands RGDS and IKVAV that led to endothelial cell growth equivalent to that on native full-length fibronectin. Both of these findings would have been challenging to uncover using more traditional one-factor-at-a-time analyses.
Collapse
Affiliation(s)
- Jangwook P Jung
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Mail code 5032, Chicago, IL 60637, USA
| | | | | |
Collapse
|