1
|
Zheng L, Pan T, Wang H, He Z, Tian J. Integrin β3 N125 glycosylation is essential for human cytomegalovirus entry into fibroblasts. Int J Biol Macromol 2025; 313:144322. [PMID: 40383337 DOI: 10.1016/j.ijbiomac.2025.144322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/25/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Human cytomegalovirus (hCMV) infection is highly prevalent worldwide. N-glycosylation of viral receptors is a key factor in early viral infection. Integrin β3 functions as an entry receptor for hCMV infection in fibroblasts; however, the role of integrin β3 N-glycosylation in hCMV entry remains unclear. This study aims to investigate the involvement and mechanism of integrin β3 N-glycosylation in hCMV early infection. The N-glycopeptide profile of recombinant integrin β3 was examined using LC-MS/MS. To assess the effects of specific N-glycosite mutations, viral infection, attachment, and internalization in MRC-5 cells were evaluated through various virological techniques. Moreover, the role of integrin β3 N-glycosylation in receptor-ligand interactions and downstream viral entry signaling pathways was analyzed. Glycomics analysis revealed that integrin β3 N125 mainly contained complex-type glycans, with A2S1G1 as the major glycoform. The N125 mutation in integrin β3 led to a marked reduction in hCMV-induced cytopathic effects, viral DNA load, expression of immediate-early (IE) proteins, and the production of new hCMV particles. Further analysis revealed that this inhibitory effect occurred during the viral entry phase, as the N125 mutation significantly disrupted internalization without affecting viral attachment. Furthermore, the N125 mutation suppressed hCMV glycoprotein H (gH) binding to integrin β3 and inhibited activation of the integrin/Src and RhoA/cofilin signaling pathways. These findings demonstrate that integrin β3 N125 glycosylation is essential for hCMV entry into fibroblasts. More importantly, this study establishes a correlation between hCMV ligand-receptor glycosylation and viral entry signaling pathways, providing novel insights into glycobiological targets for hCMV internalization and potential strategies for antiviral drug and vaccine development.
Collapse
Affiliation(s)
- Luping Zheng
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| | - Taowen Pan
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Huiyi Wang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Zeyi He
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jiaxu Tian
- The first affiliated hospital of Dalian Medical University, Dalian 116044, China
| |
Collapse
|
2
|
Adu OF, Sempere Borau M, Früh SP, Karakus U, Weichert WS, Wasik BR, Stertz S, Parrish CR. Cell binding, uptake, and infection of influenza A virus using recombinant antibody-based receptors. J Virol 2025; 99:e0227524. [PMID: 40207931 PMCID: PMC12090727 DOI: 10.1128/jvi.02275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Human and avian influenza A viruses bind to sialic acid (Sia) receptors on cells as their primary receptors, and this results in endocytic uptake of the virus. While the role of Sia on glycoproteins and/or glycolipids for virus entry is crucial, the roles of the carrier proteins are still not well understood. Furthermore, it is still unclear how receptor binding leads to infection, including whether the receptor plays a structural or other roles beyond being a simple tether. To enable the investigation of the receptor binding and cell entry processes in a more controlled manner, we have designed a protein receptor for pandemic H1 influenza A viruses. The engineered receptor possesses the binding domains of an anti-HA antibody prepared as a single-chain variable fragment (scFv) fused with the stalk, transmembrane, and cytoplasmic sequences of the feline transferrin receptor type-1 (fTfR). When expressed in cells that lack efficient display of Sia due to a knockout of the Slc35A1 gene, which encodes for the solute carrier family 35 transporter (SLC35A1), the anti-H1 receptor was displayed on the cell surface, bound virus, or hemagglutinin proteins, and the virus was efficiently endocytosed into the cells. Infection occurred at similar levels to those seen after reintroducing Sia expression, and lower affinity receptor mutants displayed enhanced infections. Treatment with clathrin-mediated endocytosis (CME) inhibitors significantly reduced viral entry, indicating that virus rescue by the antibody-based receptor follows a similar internalization route as Sia-expressing cells.IMPORTANCEInfluenza A viruses primarily circulate among avian reservoir hosts but can also jump species, causing outbreaks in mammals, including humans. A key interaction of the viruses is with host cell sialic acids, which vary in chemical form, in their linkages within the oligosaccharide, and in their display on various surface glycoproteins or glycolipids with differing properties. Here, we report a new method for examining the processes of receptor binding and uptake into cells during influenza A virus infection, by use of an engineered HA-binding membrane glycoprotein, where antibody variable domains are used to bind the virus, and the transferrin receptor uptake structures mediate efficient entry. This will allow us to test and manipulate the processes of cell binding, entry, and infection.
Collapse
Affiliation(s)
- Oluwafemi F. Adu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | | | - Simon P. Früh
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
- Department of Veterinary Sciences, Ludwig-Maximilians-University, Munich, Germany
| | - Umut Karakus
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Wendy S. Weichert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | - Brian R. Wasik
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Colin R. Parrish
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
3
|
Wang G, Jiang L, Yan Y, Kong F, Li Q, Zhang J, Hou S, Wang B, Wang X, Kong H, Deng G, Shi J, Tian G, Zeng X, Chen H, Li C. Cellular SLC35B4 promotes internalization during influenza A virus entry. mBio 2025; 16:e0019425. [PMID: 40130891 PMCID: PMC12077083 DOI: 10.1128/mbio.00194-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
SLC35B4, a nucleotide sugar transporter that mediates the transport of UDP-GlcNAc and UDP-xylose, was found to be required for the replication of influenza A virus (IAV) of the H5N1 subtype in our genome-wide siRNA library screen. We found that defective IAV replication in SLC35B4-deficient A549 cells was independent of virus strain specificity, and the virulence of IAV in Slc35b4 knockdown mice was also decreased. By examining the individual stages of the IAV replication cycle, we discovered that the amount of internalized IAV was significantly reduced in SLC35B4-knockout A549 cells. Mechanistically, SLC35B4 facilitated IAV replication by transporting UDP-xylose, which attaches to the serine residue of heparan sulfate proteoglycans (HSPGs) in the heparan sulfate (HS) biosynthesis pathway. Knockdown of associated host factors (i.e., XYLT2, B4GALT7, EXT1, and EXT2) in the HS biosynthesis pathway also impaired IAV replication. Furthermore, we revealed that AGRN, a unique HSPG family member, was important for the endocytosis of IAV in A549 cells. Moreover, we found that the homeostasis of the AGRN protein was regulated by HS modification mediated by the initial UDP-xylose transporter SLC35B4, thereby affecting the expression level of endocytic adapter AP2B1 to influence IAV internalization. Collectively, these findings establish that SLC35B4 is an important regulator of IAV replication and uncover the underlying mechanisms by which SLC35B4 employs UDP-xylose transport activity to promote IAV internalization.IMPORTANCEThe entry process of IAV represents a favorable target for drug development. In this study, we identified SLC35B4 as an important host factor for the efficient replication of different subtypes of IAV in vitro and for the virulence of IAV in mice. We revealed that SLC35B4 employed its UDP-xylose transport activity to promote the HS biosynthesis pathway, thereby assisting IAV internalization into target cells in the early stage of viral infection. Consistently, several downstream factors in the HS biosynthesis pathway, i.e., XYLT2, B4GALT7, EXT1, and EXT2, as well as a specific HSPG member AGRN were also important for the replication of IAV. Furthermore, the UDP-xylose-transporting activity of SLC35B4 was involved in the regulation of the homeostasis of the AGRN protein by HS modification, which influenced virus internalization by affecting the expression levels of AP2B1. Together, the identification of the SLC35B4-XYLT2-B4GALT7-EXT1-EXT2-AGRN-AP2B1 axis may shed light on the development of potential anti-IAV therapeutics.
Collapse
Affiliation(s)
- Guangwen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Li Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Ya Yan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Fandi Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Qibing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Shuangshuang Hou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Bo Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiurong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Luczo JM, Spackman E. Molecular Evolution of the H5 and H7 Highly Pathogenic Avian Influenza Virus Haemagglutinin Cleavage Site Motif. Rev Med Virol 2025; 35:e70012. [PMID: 39730318 DOI: 10.1002/rmv.70012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024]
Abstract
Avian influenza viruses are ubiquitous in the Anatinae subfamily of aquatic birds and occasionally spill over to poultry. Infection with low pathogenicity avian influenza viruses generally leads to subclinical or mild clinical disease. In contrast, highly pathogenic avian influenza viruses emerge from low pathogenic forms and can cause severe disease associated with extraordinarily high mortality rates. Here, we describe the natural history of avian influenza virus, with a focus on H5Nx and H7Nx subtypes, and the emergence of highly pathogenic forms; we review the biology of AIV; we examine cleavage of haemagglutinin by host cell enzymes with a particular emphasis on the biochemical properties of the proprotein convertases, and trypsin and trypsin-like proteases; we describe mechanisms implicated in the functional evolution of the haemagglutinin cleavage site motif that leads to emergence of HPAIVs; and finally, we discuss the diversity of H5 and H7 haemagglutinin cleavage site sequence motifs. It is crucial to understand the molecular attributes that drive the emergence and evolution of HPAIVs with pandemic potential to inform risk assessments and mitigate the threat of HPAIVs to poultry and human populations.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, East Geelong, Australia
- United States Department of Agriculture, Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA
| | - Erica Spackman
- United States Department of Agriculture, Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA
| |
Collapse
|
5
|
Leong J, Husain M. HDAC1 and HDAC2 Are Involved in Influenza A Virus-Induced Nuclear Translocation of Ectopically Expressed STAT3-GFP. Viruses 2024; 17:33. [PMID: 39861822 PMCID: PMC11769489 DOI: 10.3390/v17010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Influenza A virus (IAV) remains a pandemic threat. Particularly, the evolution and increased interspecies and intercontinental transmission of avian IAV H5N1 subtype highlight the importance of continuously studying the IAV and identifying the determinants of its pathogenesis. Host innate antiviral response is the first line of defense against IAV infection, and the transcription factor, the signal transducer and activator of transcription 3 (STAT3), has emerged as a critical component of this response. Also, histone deacetylase 1 (HDAC1) and HDAC2 have been identified as important components of IAV-induced host innate antiviral response. Upon IAV infection, STAT3 is activated and translocated to the nucleus to initiate the transcription of innate response genes. Also, the HDAC1 and HDAC2 are localized to the nucleus. In this study, we sought to investigate the role of HDAC1 and HDAC2 in IAV-induced STAT3 nuclear translocation. We employed a quantitative confocal microscopy approach and analyzed the nuclear translocation of plasmid-expressed STAT3-GFP in IAV-infected cells depleted with the expression of HDAC1 or HDAC2. We found that the depletion of both HDAC1 and HDAC2 expression inhibits the IAV-induced nuclear translocation of STAT3-GFP. These findings will help elucidate the significance of the emerging role of acetylation in IAV infection and disease severity.
Collapse
Affiliation(s)
| | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
6
|
Siwak KC, LeBlanc EV, Scott HM, Kim Y, Pellizzari-Delano I, Ball AM, Temperton NJ, Capicciotti CJ, Colpitts CC. Cellular sialoglycans are differentially required for endosomal and cell-surface entry of SARS-CoV-2 in lung cell lines. PLoS Pathog 2024; 20:e1012365. [PMID: 39625989 PMCID: PMC11642992 DOI: 10.1371/journal.ppat.1012365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/13/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Cell entry of severe acute respiratory coronavirus-2 (SARS-CoV-2) and other CoVs can occur via two distinct routes. Following receptor binding by the spike glycoprotein, membrane fusion can be triggered by spike cleavage either at the cell surface in a transmembrane serine protease 2 (TMPRSS2)-dependent manner or within endosomes in a cathepsin-dependent manner. Cellular sialoglycans have been proposed to aid in CoV attachment and entry, although their functional contributions to each entry pathway are unknown. In this study, we used genetic and enzymatic approaches to deplete sialic acid from cell surfaces and compared the requirement for sialoglycans during endosomal and cell-surface CoV entry using lentiviral particles pseudotyped with the spike proteins of different sarbecoviruses. We show that entry of SARS-CoV-1, WIV1-CoV and WIV16-CoV, like the SARS-CoV-2 omicron variant, depends on endosomal cathepsins and requires cellular sialoglycans for entry. Ancestral SARS-CoV-2 and the delta variant can use either pathway for entry, but only require sialic acid for endosomal entry in cells lacking TMPRSS2. Binding of SARS-CoV-2 spike protein to cells did not require sialic acid, nor was sialic acid required for SARS-CoV-2 entry in TMRPSS2-expressing cells. These findings suggest that cellular sialoglycans are not strictly required for SARS-CoV-2 attachment, receptor binding or fusion, but rather promote endocytic entry of SARS-CoV-2 and related sarbecoviruses. In contrast, the requirement for sialic acid during entry of MERS-CoV pseudoparticles and authentic HCoV-OC43 was not affected by TMPRSS2 expression, consistent with a described role for sialic acid in merbecovirus and embecovirus cell attachment. Overall, these findings clarify the role of sialoglycans in SARS-CoV-2 entry and suggest that cellular sialoglycans mediate endosomal, but not cell-surface, SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Kimberley C. Siwak
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Emmanuelle V. LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Heidi M. Scott
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | | | - Alice M. Ball
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Nigel J. Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - Chantelle J. Capicciotti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
- Department of Chemistry, Queen’s University, Kingston, Canada
- Department of Surgery, Queen’s University, Kingston, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| |
Collapse
|
7
|
Hsu T, Talley MJ, Yang P, Geiselhoeringer A, Yang C, Gorla A, Rahman MJ, Silva L, Chen D, Yang B. Identification of infectious viruses for risk-based virus testing of CHO unprocessed bulk using next-generation sequencing. Biotechnol Prog 2024; 40:e3485. [PMID: 39051853 DOI: 10.1002/btpr.3485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
It is important to increase manufacturing speed to make medicines more widely available. One bottleneck for CHO-based drug substance release is the in vitro viral (IVV) cell-based assay on unprocessed bulk. To increase process speed, we evaluate the suitability of replacing the IVV cell-based assay with next-generation sequencing (NGS). First, we outline how NGS is currently used in the pharmaceutical industry, and how it may apply to CHO virus testing. Second, we examine CHO virus contamination history. Since prior virus contaminants can replicate in the production bioreactor, we perform a literature search and classify 159 viruses as high, medium, low, or unknown risk based on their ability to infect CHO cells. Overall, the risk of virus contamination during the CHO manufacturing process is low. Only six viruses were reported to have contaminated CHO bioprocesses over the past several decades, and were primarily caused by fetal bovine serum or cell culture components. These virus contamination events can be mitigated through limitation and control of raw materials, combined with virus testing and virus clearance technologies. The list of CHO infectious viruses provides a starting framework for virus safety risk assessment and NGS development. Furthermore, ICH Q5A (R2) includes NGS as a molecular method for adventitious agent testing, paving a path forward for modernizing CHO virus testing.
Collapse
Affiliation(s)
- Tiffany Hsu
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Mary Jo Talley
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Ping Yang
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Angela Geiselhoeringer
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Cindy Yang
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Aditya Gorla
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - M Julhasur Rahman
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Lindsey Silva
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Dayue Chen
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Bin Yang
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| |
Collapse
|
8
|
Kosmicki JA, Marcketta A, Sharma D, Di Gioia SA, Batista S, Yang XM, Tzoneva G, Martinez H, Sidore C, Kessler MD, Horowitz JE, Roberts GHL, Justice AE, Banerjee N, Coignet MV, Leader JB, Park DS, Lanche R, Maxwell E, Knight SC, Bai X, Guturu H, Baltzell A, Girshick AR, McCurdy SR, Partha R, Mansfield AJ, Turissini DA, Zhang M, Mbatchou J, Watanabe K, Verma A, Sirugo G, Ritchie MD, Salerno WJ, Shuldiner AR, Rader DJ, Mirshahi T, Marchini J, Overton JD, Carey DJ, Habegger L, Reid JG, Economides A, Kyratsous C, Karalis K, Baum A, Cantor MN, Rand KA, Hong EL, Ball CA, Siminovitch K, Baras A, Abecasis GR, Ferreira MAR. Genetic risk factors for COVID-19 and influenza are largely distinct. Nat Genet 2024; 56:1592-1596. [PMID: 39103650 PMCID: PMC11319199 DOI: 10.1038/s41588-024-01844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
Coronavirus disease 2019 (COVID-19) and influenza are respiratory illnesses caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses, respectively. Both diseases share symptoms and clinical risk factors1, but the extent to which these conditions have a common genetic etiology is unknown. This is partly because host genetic risk factors are well characterized for COVID-19 but not for influenza, with the largest published genome-wide association studies for these conditions including >2 million individuals2 and about 1,000 individuals3-6, respectively. Shared genetic risk factors could point to targets to prevent or treat both infections. Through a genetic study of 18,334 cases with a positive test for influenza and 276,295 controls, we show that published COVID-19 risk variants are not associated with influenza. Furthermore, we discovered and replicated an association between influenza infection and noncoding variants in B3GALT5 and ST6GAL1, neither of which was associated with COVID-19. In vitro small interfering RNA knockdown of ST6GAL1-an enzyme that adds sialic acid to the cell surface, which is used for viral entry-reduced influenza infectivity by 57%. These results mirror the observation that variants that downregulate ACE2, the SARS-CoV-2 receptor, protect against COVID-19 (ref. 7). Collectively, these findings highlight downregulation of key cell surface receptors used for viral entry as treatment opportunities to prevent COVID-19 and influenza.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giorgio Sirugo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | - Alina Baum
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | |
Collapse
|
9
|
Ni Z, Wang J, Yu X, Wang Y, Wang J, He X, Li C, Deng G, Shi J, Kong H, Jiang Y, Chen P, Zeng X, Tian G, Chen H, Bu Z. Influenza virus uses mGluR2 as an endocytic receptor to enter cells. Nat Microbiol 2024; 9:1764-1777. [PMID: 38849624 PMCID: PMC11222159 DOI: 10.1038/s41564-024-01713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Influenza virus infection is initiated by the attachment of the viral haemagglutinin (HA) protein to sialic acid receptors on the host cell surface. Most virus particles enter cells through clathrin-mediated endocytosis (CME). However, it is unclear how viral binding signals are transmitted through the plasma membrane triggering CME. Here we found that metabotropic glutamate receptor subtype 2 (mGluR2) and potassium calcium-activated channel subfamily M alpha 1 (KCa1.1) are involved in the initiation and completion of CME of influenza virus using an siRNA screen approach. Influenza virus HA directly interacted with mGluR2 and used it as an endocytic receptor to initiate CME. mGluR2 interacted and activated KCa1.1, leading to polymerization of F-actin, maturation of clathrin-coated pits and completion of the CME of influenza virus. Importantly, mGluR2-knockout mice were significantly more resistant to different influenza subtypes than the wild type. Therefore, blocking HA and mGluR2 interaction could be a promising host-directed antiviral strategy.
Collapse
Affiliation(s)
- Zixin Ni
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jinliang Wang
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaofei Yu
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yifan Wang
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jingfei Wang
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xijun He
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yongping Jiang
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Pucheng Chen
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
| |
Collapse
|
10
|
Khanna M, Sharma K, Saxena SK, Sharma JG, Rajput R, Kumar B. Unravelling the interaction between Influenza virus and the nuclear pore complex: insights into viral replication and host immune response. Virusdisease 2024; 35:231-242. [PMID: 39071870 PMCID: PMC11269558 DOI: 10.1007/s13337-024-00879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Influenza viruses are known to cause severe respiratory infections in humans, often associated with significant morbidity and mortality rates. Virus replication relies on various host factors and pathways, which also determine the virus's infectious potential. Nonetheless, achieving a comprehensive understanding of how the virus interacts with host cellular components is essential for developing effective therapeutic strategies. One of the key components among host factors, the nuclear pore complex (NPC), profoundly affects both the Influenza virus life cycle and the host's antiviral defenses. Serving as the sole gateway connecting the cytoplasm and nucleoplasm, the NPC plays a vital role as a mediator in nucleocytoplasmic trafficking. Upon infection, the virus hijacks and alters the nuclear pore complex and the nuclear receptors. This enables the virus to infiltrate the nucleus and promotes the movement of viral components between the nucleus and cytoplasm. While the nucleus and cytoplasm play pivotal roles in cellular functions, the nuclear pore complex serves as a crucial component in the host's innate immune system, acting as a defense mechanism against virus infection. This review provides a comprehensive overview of the intricate relationship between the Influenza virus and the nuclear pore complex. Furthermore, we emphasize their mutual influence on viral replication and the host's immune responses.
Collapse
Affiliation(s)
- Madhu Khanna
- Department of Virology, V.P Chest Institute, University of Delhi, Delhi, India
| | - Kajal Sharma
- Department of Virology, V.P Chest Institute, University of Delhi, Delhi, India
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shailendra K. Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow, India
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Roopali Rajput
- Department of Virology, V.P Chest Institute, University of Delhi, Delhi, India
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala India
| |
Collapse
|
11
|
Yu L, Liu X, Wei X, Ren J, Wang X, Wu S, Lan K. C1QTNF5 is a novel attachment factor that facilitates the entry of influenza A virus. Virol Sin 2024; 39:277-289. [PMID: 38246238 PMCID: PMC11074642 DOI: 10.1016/j.virs.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Influenza A virus (IAV) binds sialic acid receptors on the cell surface to enter the host cells, which is the key step in initiating infection, transmission and pathogenesis. Understanding the factors that contribute to the highly efficient entry of IAV into human cells will help elucidate the mechanism of viral entry and pathogenicity, and provide new targets for intervention. In the present study, we reported a novel membrane protein, C1QTNF5, which binds to the hemagglutinin protein of IAV and promotes IAV infection in vitro and in vivo. We found that the HA1 region of IAV hemagglutinin is critical for the interaction with C1QTNF5 protein, and C1QTNF5 interacts with hemagglutinin mainly through its N-terminus (1-103 aa). In addition, we further demonstrated that overexpression of C1QTNF5 promotes IAV entry, while blocking the interaction between C1QTNF5 and IAV hemagglutinin greatly inhibits viral entry. However, C1QTNF5 does not function as a receptor to mediate IAV infection in sialic acid-deficient CHO-Lec2 cells, but promotes IAV to attach to these cells, suggesting that C1QTNF5 is an important attachment factor for IAV. This work reveals C1QTNF5 as a novel IAV attachment factor and provides a new perspective for antiviral strategies.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinjin Liu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoqin Wei
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junrui Ren
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xueyun Wang
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuwen Wu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Ke Lan
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
12
|
Dey D, Dasgupta A, Ghosh D, Bhattacharjee O, Ghosh A, Honda A, Chattopadhyay D. Host proteins Alpha-2-Macroglobulin and LRP1 associate with Chandipura virus. Biochimie 2024; 218:105-117. [PMID: 37517577 DOI: 10.1016/j.biochi.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Chandipura Virus is an emerging tropical pathogen with a high mortality rate among children. No mode of treatment or antivirals exists against CHPV infection, due to little information regarding its host interaction. Studying viral pathogen interaction with its host can not only provide valuable information regarding its propagation strategy, but also on which host proteins interact with the virus. Identifying these proteins and understanding their role in the infection process can provide more stable anti-viral targets. In this study, we focused on identifying host factors that interact with CHPV and may play a critical role in CHPV infection. We are the first to report the successful identification of Alpha-2-Macroglobulin (A2M), a secretory protein of the host that interacts with CHPV. We also established that LRP1 (Low-density lipoprotein receptor-related protein 1) and GRP78 (Glucose regulated protein 78), receptors of A2M, also interact with CHPV. Furthermore, we could also demonstrate that knocking out A2M has a severe effect on viral infection. We conclusively show the interaction of these host proteins with CHPV. Our findings also indicate that these host proteins could play a role in viral entry into the host cell.
Collapse
Affiliation(s)
- Dhritiman Dey
- Department of Biotechnology, University of Calcutta, Kolkata, India
| | | | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | | | - Abhrajyoti Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Ayae Honda
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | |
Collapse
|
13
|
Hook JL, Bhattacharya J. The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier. Front Immunol 2024; 15:1328453. [PMID: 38343548 PMCID: PMC10853445 DOI: 10.3389/fimmu.2024.1328453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Lung infection by influenza A virus (IAV) is a major cause of global mortality from lung injury, a disease defined by widespread dysfunction of the lung's air-blood barrier. Endocytosis of IAV virions by the alveolar epithelium - the cells that determine barrier function - is central to barrier loss mechanisms. Here, we address the current understanding of the mechanistic steps that lead to endocytosis in the alveolar epithelium, with an eye to how the unique structure of lung alveoli shapes endocytic mechanisms. We highlight where future studies of alveolar interactions with IAV virions may lead to new therapeutic approaches for IAV-induced lung injury.
Collapse
Affiliation(s)
- Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jahar Bhattacharya
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
14
|
Zhou W, Hong J, Han J, Cai F, Tang Q, Yu Q, Li G, Ma S, Liu X, Huo S, Chen K, Zhu F. Silkworm glycosaminoglycans bind to Bombyx mori nuclear polyhedrosis virus and facilitate its entry. Int J Biol Macromol 2023; 253:127352. [PMID: 37838120 DOI: 10.1016/j.ijbiomac.2023.127352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Interacting with cell surface attachment factors or receptors is the first step for virus infection. Glycans cover a thick layer on eukaryotic cells and are potential targets of various viruses. Bombyx mori nuclear polyhedrosis viruses (BmNPV) is a baculovirus that causes huge economic loss to the sericulture industry but the mechanism of infection is unclear. Looking for potential host receptors for the virus is an important task. In this study, we investigated the role of glycosaminoglycan (GAG) modifications, including heparan sulfate (HS) and chondroitin sulfate (CS), during BmNPV infection. Enzymatic removal of cell surface HS and CS effectively inhibited BmNPV infection and replication. Exogenous HS and CS can directly bind to BmNPV virion in solution and act as neutralizers for viral infection. Furthermore, the expression of enzymes involved in GAG biosynthesis was upregulated in the BmNPV susceptible silkworm after virus administration, but down-regulated in the resistant strain after virus treatment, suggesting that BmNPV was able to utilize host cell machinery to promote the biosynthesis of GAGs. This study demonstrated HS and CS as important attachment factors that facilitate the viral entry process, and targeting HS and CS can be an effective means of inhibiting BmNPV infection.
Collapse
Affiliation(s)
- Weiwei Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jindie Hong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jinying Han
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Fuchuan Cai
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qi Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qian Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Guohui Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
15
|
Liang CY, Huang I, Han J, Sownthirarajan B, Kulhankova K, Murray NB, Taherzadeh M, Archer-Hartmann S, Pepi L, Manivasagam S, Plung J, Sturtz M, Yu Y, Vogel OA, Kandasamy M, Gourronc FA, Klingelhutz AJ, Choudhury B, Rong L, Perez JT, Azadi P, McCray PB, Neelamegham S, Manicassamy B. Avian influenza A viruses exhibit plasticity in sialylglycoconjugate receptor usage in human lung cells. J Virol 2023; 97:e0090623. [PMID: 37843369 PMCID: PMC10688379 DOI: 10.1128/jvi.00906-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE It is well known that influenza A viruses (IAV) initiate host cell infection by binding to sialic acid, a sugar molecule present at the ends of various sugar chains called glycoconjugates. These sugar chains can vary in chain length, structure, and composition. However, it remains unknown if IAV strains preferentially bind to sialic acid on specific glycoconjugate type(s) for host cell infection. Here, we utilized CRISPR gene editing to abolish sialic acid on different glycoconjugate types in human lung cells, and evaluated human versus avian IAV infections. Our studies show that both human and avian IAV strains can infect human lung cells by utilizing any of the three major sialic acid-containing glycoconjugate types, specifically N-glycans, O-glycans, and glycolipids. Interestingly, simultaneous elimination of sialic acid on all three major glycoconjugate types in human lung cells dramatically decreased human IAV infection, yet had little effect on avian IAV infection. These studies show that avian IAV strains effectively utilize other less prevalent glycoconjugates for infection, whereas human IAV strains rely on a limited repertoire of glycoconjugate types. The remarkable ability of avian IAV strains to utilize diverse glycoconjugate types may allow for easy transmission into new host species.
Collapse
Affiliation(s)
- Chieh-Yu Liang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
| | - Iris Huang
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Julianna Han
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | | | - Nathan B. Murray
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Mehrnoush Taherzadeh
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lauren Pepi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Jesse Plung
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Miranda Sturtz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
| | - Yolanda Yu
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olivia A. Vogel
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | - Biswa Choudhury
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois, USA
| | - Jasmine T. Perez
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Paul B. McCray
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, lowa, USA
| | - Sriram Neelamegham
- Department of Chemical and Biomedical Engineering, University at Buffalo, Buffalo, New York, USA
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
| |
Collapse
|
16
|
Spruit CM, Sweet IR, Maliepaard JCL, Bestebroer T, Lexmond P, Qiu B, Damen MJA, Fouchier RAM, Reiding KR, Snijder J, Herfst S, Boons GJ, de Vries RP. Contemporary human H3N2 influenza A viruses require a low threshold of suitable glycan receptors for efficient infection. Glycobiology 2023; 33:784-800. [PMID: 37471650 PMCID: PMC10629718 DOI: 10.1093/glycob/cwad060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
Recent human H3N2 influenza A viruses have evolved to employ elongated glycans terminating in α2,6-linked sialic acid as their receptors. These glycans are displayed in low abundancies by (humanized) Madin-Darby Canine Kidney cells, which are commonly employed to propagate influenza A virus, resulting in low or no viral propagation. Here, we examined whether the overexpression of the glycosyltransferases β-1,3-N-acetylglucosaminyltransferase and β-1,4-galactosyltransferase 1, which are responsible for the elongation of poly-N-acetyllactosamines (LacNAcs), would result in improved A/H3N2 propagation. Stable overexpression of β-1,3-N-acetylglucosaminyltransferase and β-1,4-galactosyltransferase 1 in Madin-Darby Canine Kidney and "humanized" Madin-Darby Canine Kidney cells was achieved by lentiviral integration and subsequent antibiotic selection and confirmed by qPCR and protein mass spectrometry experiments. Flow cytometry and glycan mass spectrometry experiments using the β-1,3-N-acetylglucosaminyltransferase and/or β-1,4-galactosyltransferase 1 knock-in cells demonstrated increased binding of viral hemagglutinins and the presence of a larger number of LacNAc repeating units, especially on "humanized" Madin-Darby Canine Kidney-β-1,3-N-acetylglucosaminyltransferase cells. An increase in the number of glycan receptors did, however, not result in a greater infection efficiency of recent human H3N2 viruses. Based on these results, we propose that H3N2 influenza A viruses require a low number of suitable glycan receptors to infect cells and that an increase in the glycan receptor display above this threshold does not result in improved infection efficiency.
Collapse
Affiliation(s)
- Cindy M Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Igor R Sweet
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Joshua C L Maliepaard
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Theo Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Boning Qiu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Mirjam J A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| |
Collapse
|
17
|
Li H, Wang A, Zhang Y, Wei F. Diverse roles of lung macrophages in the immune response to influenza A virus. Front Microbiol 2023; 14:1260543. [PMID: 37779697 PMCID: PMC10534047 DOI: 10.3389/fmicb.2023.1260543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Influenza viruses are one of the major causes of human respiratory infections and the newly emerging and re-emerging strains of influenza virus are the cause of seasonal epidemics and occasional pandemics, resulting in a huge threat to global public health systems. As one of the early immune cells can rapidly recognize and respond to influenza viruses in the respiratory, lung macrophages play an important role in controlling the severity of influenza disease by limiting viral replication, modulating the local inflammatory response, and initiating subsequent adaptive immune responses. However, influenza virus reproduction in macrophages is both strain- and macrophage type-dependent, and ineffective replication of some viral strains in mouse macrophages has been observed. This review discusses the function of lung macrophages in influenza virus infection in order to better understand the pathogenesis of the influenza virus.
Collapse
Affiliation(s)
- Haoning Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Aoxue Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
18
|
Arruda BL, Kanefsky RA, Hau S, Janzen GM, Anderson TK, Vincent Baker AL. Mucin 4 is a cellular biomarker of necrotizing bronchiolitis in influenza A virus infection. Microbes Infect 2023; 25:105169. [PMID: 37295769 DOI: 10.1016/j.micinf.2023.105169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Influenza A virus (IAV) in the human and swine host infects epithelial cells lining the respiratory tract causing a necrotizing bronchitis and bronchiolitis. These epithelial surfaces are protected by large glycoproteins called mucins. Mucin 4 (MUC4) is a transmembrane mucin that consists of an alpha subunit responsible for surface protection and intracellular beta subunit involved in signal transduction which repress apoptosis and stimulate epithelial proliferation. This study was designed to determine the expression and potential role of MUC4 during IAV infection. We used immunohistochemistry in combination with machine learning image analysis to quantify differential protein expression of MUC4 subunits in IAV-infected and uninfected lung in a porcine model. MUC4 protein basal expression in control animals varied significantly by litter. MUC4 protein expression was significantly increased in bronchioles with necrotizing bronchiolitis compared to histologically normal bronchioles, likely representing a regenerative response to restore mucosal integrity of conducting airways. Understanding the impact of differential MUC4 expression among healthy individuals and during IAV infection will facilitate control strategies by elucidating mechanisms associated with susceptibility to IAV that can be therapeutically or genetically regulated and may be extended to other respiratory diseases.
Collapse
Affiliation(s)
- Bailey L Arruda
- Virus and Prion Research Unit, National Animal Disease Center, USDA Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA.
| | - Rachel A Kanefsky
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA 01536, USA
| | - Samantha Hau
- Virus and Prion Research Unit, National Animal Disease Center, USDA Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Garrett M Janzen
- Virus and Prion Research Unit, National Animal Disease Center, USDA Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| |
Collapse
|
19
|
Petkidis A, Andriasyan V, Greber UF. Label-free microscopy for virus infections. Microscopy (Oxf) 2023; 72:204-212. [PMID: 37079744 PMCID: PMC10250014 DOI: 10.1093/jmicro/dfad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023] Open
Abstract
Microscopy has been essential to elucidate micro- and nano-scale processes in space and time and has provided insights into cell and organismic functions. It is widely employed in cell biology, microbiology, physiology, clinical sciences and virology. While label-dependent microscopy, such as fluorescence microscopy, provides molecular specificity, it has remained difficult to multiplex in live samples. In contrast, label-free microscopy reports on overall features of the specimen at minimal perturbation. Here, we discuss modalities of label-free imaging at the molecular, cellular and tissue levels, including transmitted light microscopy, quantitative phase imaging, cryogenic electron microscopy or tomography and atomic force microscopy. We highlight how label-free microscopy is used to probe the structural organization and mechanical properties of viruses, including virus particles and infected cells across a wide range of spatial scales. We discuss the working principles of imaging procedures and analyses and showcase how they open new avenues in virology. Finally, we discuss orthogonal approaches that enhance and complement label-free microscopy techniques.
Collapse
Affiliation(s)
- Anthony Petkidis
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| |
Collapse
|
20
|
Mazel-Sanchez B, Niu C, Williams N, Bachmann M, Choltus H, Silva F, Serre-Beinier V, Karenovics W, Iwaszkiewicz J, Zoete V, Kaiser L, Hartley O, Wehrle-Haller B, Schmolke M. Influenza A virus exploits transferrin receptor recycling to enter host cells. Proc Natl Acad Sci U S A 2023; 120:e2214936120. [PMID: 37192162 PMCID: PMC10214170 DOI: 10.1073/pnas.2214936120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/07/2023] [Indexed: 05/18/2023] Open
Abstract
Influenza A virus (IAV) enters host cells mostly through clathrin-dependent receptor-mediated endocytosis. A single bona fide entry receptor protein supporting this entry mechanism remains elusive. Here we performed proximity ligation of biotin to host cell surface proteins in the vicinity of attached trimeric hemagglutinin-HRP and characterized biotinylated targets using mass spectrometry. This approach identified transferrin receptor 1 (TfR1) as a candidate entry protein. Genetic gain-of-function and loss-of-function experiments, as well as in vitro and in vivo chemical inhibition, confirmed the functional involvement of TfR1 in IAV entry. Recycling deficient mutants of TfR1 do not support entry, indicating that TfR1 recycling is essential for this function. The binding of virions to TfR1 via sialic acids confirmed its role as a directly acting entry factor, but unexpectedly even headless TfR1 promoted IAV particle uptake in trans. TIRF microscopy localized the entering virus-like particles in the vicinity of TfR1. Our data identify TfR1 recycling as a revolving door mechanism exploited by IAV to enter host cells.
Collapse
Affiliation(s)
- Beryl Mazel-Sanchez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Chengyue Niu
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Nathalia Williams
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Michael Bachmann
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Hélèna Choltus
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Filo Silva
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | | | | | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015Lausanne, Switzerland
- Computer-Aided Molecular Engineering Group, Department of Oncology (University of Lausanne and the Lausanne University Hospital), Ludwig Institute for Cancer Research Lausanne, 1066Épalinges, Switzerland
| | - Laurent Kaiser
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, 1205Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, 1205Geneva, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
- Geneva Center of Inflammation Research, University of Geneva, 1211Geneva, Switzerland
| |
Collapse
|
21
|
Negi G, Sharma A, Dey M, Dhanawat G, Parveen N. Membrane attachment and fusion of HIV-1, influenza A, and SARS-CoV-2: resolving the mechanisms with biophysical methods. Biophys Rev 2022; 14:1109-1140. [PMID: 36249860 PMCID: PMC9552142 DOI: 10.1007/s12551-022-00999-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022] Open
Abstract
Attachment to and fusion with cell membranes are two major steps in the replication cycle of many human viruses. We focus on these steps for three enveloped viruses, i.e., HIV-1, IAVs, and SARS-CoV-2. Viral spike proteins drive the membrane attachment and fusion of these viruses. Dynamic interactions between the spike proteins and membrane receptors trigger their specific attachment to the plasma membrane of host cells. A single virion on cell membranes can engage in binding with multiple receptors of the same or different types. Such dynamic and multivalent binding of these viruses result in an optimal attachment strength which in turn leads to their cellular entry and membrane fusion. The latter process is driven by conformational changes of the spike proteins which are also class I fusion proteins, providing the energetics of membrane tethering, bending, and fusion. These viruses exploit cellular and membrane factors in regulating the conformation changes and membrane processes. Herein, we describe the major structural and functional features of spike proteins of the enveloped viruses including highlights on their structural dynamics. The review delves into some of the case studies in the literature discussing the findings on multivalent binding, membrane hemifusion, and fusion of these viruses. The focus is on applications of biophysical tools with an emphasis on single-particle methods for evaluating mechanisms of these processes at the molecular and cellular levels.
Collapse
Affiliation(s)
- Geetanjali Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manorama Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Garvita Dhanawat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
22
|
Jang SS, Noh JY, Kim MC, Lim HA, Song MS, Kim HK. α2,3-Linked Sialic Acids Are the Potential Attachment Receptor for Shaan Virus Infection in MARC-145 Cells. Microbiol Spectr 2022; 10:e0125622. [PMID: 35924912 PMCID: PMC9430483 DOI: 10.1128/spectrum.01256-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Shaan virus (ShaV), a novel species of the genus Jeilongvirus, family Paramyxoviridae, was isolated from an insectivore bat (Miniopterus schreibersii) in Korea in 2016. ShaV particles contain a hemagglutinin-neuraminidase (HN) glycoprotein in their envelope that allows the virus to target cells. Typically, diverse paramyxoviruses with HN glycoprotein are reported to interact predominantly with sialic acids, but there are no studies of receptors for ShaV. In this study, the identification of potential receptors for ShaV was demonstrated using sialidase treatments, glycan microarray, magnetic bead-based virus binding assay, and neuraminidase inhibitor treatments. Pretreatment of MARC-145 cells with sialidase, which cleaves α2,3-linked sialic acids, showed higher inhibition of viral infection than α2,6-linked-specific sialidase. These data were supported by the binding of ShaV to predominantly α2,3-linked sialylated glycans in the screening of sialyl linkage patterns through glycan microarray. To further confirm the direct interaction between ShaV and α2,3-linked sialic acids, ShaV was incubated with α2,3- or α2,6-linked sialylated glycans conjugated to magnetic beads, and binding signals were detected only for α2,3-linked sialylated glycans. In addition, the potential of sialic acids as a receptor was demonstrated by the viral replication inhibitory effect of the neuraminidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminicacid (DANA) in the mature virion release steps. Collectively, these results support that α2,3-linked sialic acids are the potential receptor for ShaV infection in MARC-145 cells. IMPORTANCE Bats host major mammalian paramyxoviruses, and novel paramyxoviruses are increasingly being reported around the world. Shaan virus (ShaV), from the genus Jeilongvirus, family Paramyxoviridae, has a potential attachment glycoprotein, HN. Here, we identify that ShaV binds to sialic acid and demonstrate that α2,3-linked sialic acids are the potential receptor for ShaV infection. The presented data regarding ShaV receptor specificity will enable studies into the viral tropism for the host and contribute to the development of new antiviral strategies targeting viral receptors.
Collapse
Affiliation(s)
- Seong Sik Jang
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Ji Yeong Noh
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Min Chan Kim
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyun A. Lim
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Min Suk Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Hye Kwon Kim
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
23
|
Influenza A Virus Agnostic Receptor Tropism Revealed Using a Novel Biological System with Terminal Sialic Acid Knockout Cells. J Virol 2022; 96:e0041622. [PMID: 35862707 PMCID: PMC9364805 DOI: 10.1128/jvi.00416-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Avian or human influenza A viruses bind preferentially to avian- or human-type sialic acid receptors, respectively, indicating that receptor tropism is an important factor for determining the viral host range. However, there are currently no reliable methods for analyzing receptor tropism biologically under physiological conditions. In this study, we established a novel system using MDCK cells with avian- or human-type sialic acid receptors and with both sialic acid receptors knocked out (KO). When we examined the replication of human and avian influenza viruses in these KO cells, we observed unique viral receptor tropism that could not be detected using a conventional solid-phase sialylglycan binding assay, which directly assesses physical binding between the virus and sialic acids. Furthermore, we serially passaged an engineered avian-derived H4N5 influenza virus, whose PB2 gene was deleted, in avian-type receptor KO cells stably expressing PB2 to select a mutant with enhanced replication in KO cells; however, its binding to human-type sialylglycan was undetectable using the solid-phase binding assay. These data indicate that a panel of sialic acid receptor KO cells could be a useful tool for determining the biological receptor tropism of influenza A viruses. Moreover, the PB2KO virus experimental system could help to safely and efficiently identify the mutations required for avian influenza viruses to adapt to human cells that could trigger a new influenza pandemic. IMPORTANCE The acquisition of mutations that allow avian influenza A virus hemagglutinins to recognize human-type receptors is mandatory for the transmission of avian viruses to humans, which could lead to a pandemic. In this study, we established a novel system using a set of genetically engineered MDCK cells with knocked out sialic acid receptors to biologically evaluate the receptor tropism for influenza A viruses. Using this system, we observed unique receptor tropism in several virus strains that was undetectable using conventional solid-phase binding assays that measure physical binding between the virus and artificially synthesized sialylglycans. This study contributes to elucidation of the relationship between the physical binding of virus and receptor and viral infectivity. Furthermore, the system using sialic acid knockout cells could provide a useful tool to explore the sialic acid-independent entry mechanism. In addition, our system could be safely used to identify mutations that could acquire human-type receptor tropism.
Collapse
|
24
|
Praena B, Wan XF. Influenza Virus Infections in Polarized Cells. Viruses 2022; 14:1307. [PMID: 35746778 PMCID: PMC9231244 DOI: 10.3390/v14061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
In humans and other mammals, the respiratory tract is represented by a complex network of polarized epithelial cells, forming an apical surface facing the external environment and a basal surface attached to the basement layer. These cells are characterized by differential expression of proteins and glycans, which serve as receptors during influenza virus infection. Attachment between these host receptors and the viral surface glycoprotein hemagglutinin (HA) initiates the influenza virus life cycle. However, the virus receptor binding specificities may not be static. Sialylated N-glycans are the most well-characterized receptors but are not essential for the entry of influenza viruses, and other molecules, such as O-glycans and non-sialylated glycans, may be involved in virus-cell attachment. Furthermore, correct cell polarity and directional trafficking of molecules are essential for the orderly development of the system and affect successful influenza infection; on the other hand, influenza infection can also change cell polarity. Here we review recent advances in our understanding of influenza virus infection in the respiratory tract of humans and other mammals, particularly the attachment between the virus and the surface of the polar cells and the polarity variation of these cells due to virus infection.
Collapse
Affiliation(s)
- Beatriz Praena
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
| |
Collapse
|
25
|
Lin HY, Zeng YT, Lin CJ, Harroun SG, Anand A, Chang L, Wu CJ, Lin HJ, Huang CC. Partial carbonization of quercetin boosts the antiviral activity against H1N1 influenza A virus. J Colloid Interface Sci 2022; 622:481-493. [PMID: 35525149 DOI: 10.1016/j.jcis.2022.04.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
Abstract
Inflenza A viruses (IAVs) are highly transmissible and pathogenic Orthomyxoviruses, which have led to worldwide outbreaks and seasonal pandemics of acute respiratory diseases, causing serious threats to public health. Currently used anti-influenza drugs may cause neurological side effects, and they are increasingly less effective against mutant strains. To help prevent the spread of IAVs, in this work, we have developed quercetin-derived carbonized nanogels (CNGsQur) that display potent viral inhibitory, antioxidative, and anti-inflammatory activities. The antiviral CNGsQur were synthesized by mild carbonization of quercetin (Qur), which successfully preserved their antioxidative and anti-inflammatory properties while also contributed enhanced properties, such as water solubility, viral binding, and biocompatibility. Antiviral assays of co-treatment, pre-treatment, and post-treatment indicate that CNGsQur interacts with the virion, revealing that the major antiviral mechanism resulting in the inhibition of the virus is by their attachment on the cell surface. Among them, the selectivity index (SI) of CNGsQur270 (>857.1) clearly indicated its great potential for clinical application in IAVs inhibition, which was much higher than that of pristine quercetin (63.7) and other clinical drugs (4-81). Compared with quercetin at the same dose, the combined effects of viral inhibition, antioxidative and anti-inflammatory activities impart the superior therapeutic effects of CNGsQur270 aerosol inhalation in the treatment of IAVs infection, as evidenced by a mouse model. These CNGsQur effectively prevent the spread of IAVs and suppress virus-induced inflammation while also exhibiting good in vivo biocompatibility. CNGsQur shows much promise as a clinical therapeutic agent against infection by IVAs.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yu-Ting Zeng
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Scott G Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Lung Chang
- Department of Pediatrics, Nursing and Management, Mackay Memorial Hospital and Mackay Junior College of Medicine, Taipei 10449, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
26
|
Structural analysis of N-glycans in chicken trachea and lung reveals potential receptors of chicken influenza viruses. Sci Rep 2022; 12:2081. [PMID: 35136109 PMCID: PMC8827061 DOI: 10.1038/s41598-022-05961-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
Although avian influenza A viruses (avian IAVs) bind preferentially to terminal sialic acids (Sia) on glycans that possess Siaα2-3Gal, the actual glycan structures found in chicken respiratory tracts have not been reported. Herein, we analyzed N-glycan structures in chicken trachea and lung, the main target tissues of low pathogenic avian IAVs. 2-Aminopyridine (PA)-labeled N-glycans from chicken tissues were analyzed by combined methods using reversed-phase liquid chromatography (LC), electrospray ionization (ESI)-mass spectrometry (MS), MS/MS, and multistage MS (MSn), with or without modifications using exoglycosidases, sialic acid linkage-specific alkylamidation (SALSA), and/or permethylation. The results of SALSA indicated that PA-N-glycans in both chicken trachea and lung harbored slightly more α2,6-Sia than α2,3-Sia. Most α2,3-Sia on N-glycans in chicken trachea was a fucosylated form (sialyl Lewis X, sLex), whereas no sLex was detected in lung. By contrast, small amounts of N-glycans with 6-sulfo sialyl LacNAc were detected in lung but not in trachea. Considering previous reports that hemagglutinins (HAs) of avian IAVs originally isolated from chicken bind preferentially to α2,3-Sia with or without fucosylation and/or 6-sulfation but not to α2,6-Sia, our results imply that avian IAVs do not evolve to possess HAs that bind preferentially to α2,6-Sia, regardless of the abundance of α2,6-Sia.
Collapse
|
27
|
Sphingomyelin-Sequestered Cholesterol Domain Recruits Formin-Binding Protein 17 for Constricting Clathrin-Coated Pits in Influenza Virus Entry. J Virol 2022; 96:e0181321. [PMID: 35020471 DOI: 10.1128/jvi.01813-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) is a global health threat. The cellular endocytic machineries harnessed by IAV remain elusive. Here, by tracking single IAV particles and quantifying the internalized IAV, we found that the sphingomyelin (SM)-sequestered cholesterol, but not the accessible cholesterol, is essential for the clathrin-mediated endocytosis (CME) of IAV. The clathrin-independent endocytosis of IAV is cholesterol-independent. Whereas, the CME of transferrin depends on SM-sequestered cholesterol and accessible cholesterol. Furthermore, three-color single-virus tracking and electron microscopy showed that the SM-cholesterol complex nanodomain is recruited to the IAV-containing clathrin-coated structure (CCS) and facilitates neck constriction of the IAV-containing CCS. Meanwhile, formin-binding protein 17 (FBP17), a membrane-bending protein which activates actin nucleation, is recruited to IAV-CCS complex in a manner dependent on the SM-cholesterol complex. We propose that the SM-cholesterol nanodomain at the neck of CCS recruits FBP17 to induce neck constriction by activating actin assembly. These results unequivocally show the physiological importance of the SM-cholesterol complex in IAV entry. Importance: IAV infects the cells by harnessing cellular endocytic machineries. Better understanding of the cellular machineries used for its entry might lead to the development of antiviral strategies, and would also provide important insights into physiological endocytic processes. This work demonstrated that a special pool of cholesterol in plasma membrane, SM-sequestered cholesterol, recruits FBP17 for the constriction of clathrin-coated pits in IAV entry. Meanwhile, the clathrin-independent cell entry of IAV is cholesterol-independent. The internalization of transferrin, the gold-standard cargo endocytosed solely via CME, is much less dependent on the SM-cholesterol complex. These results would provide new insights into IAV infection and pathway/cargo-specific involvement of cholesterol pool(s).
Collapse
|
28
|
Sriwilaijaroen N, Suzuki Y. Roles of Glycans and Non-glycans on the Epithelium and in the Immune System in H1-H18 Influenza A Virus Infections. Methods Mol Biol 2022; 2556:205-242. [PMID: 36175637 DOI: 10.1007/978-1-0716-2635-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The large variation of influenza A viruses (IAVs) in various susceptible hosts and their rapid evolution, which allows host/tissue switching, host immune escape, vaccine escape, and drug resistance, are difficult challenges for influenza control in all countries worldwide. Access and binding of the IAV to actual receptors at endocytic sites is critical for the establishment of influenza infection. In this chapter, the progress in identification of and roles of glycans and non-glycans on the epithelium and in the immune system in H1-H18 IAV infections are reviewed. The first part of the review is on current knowledge of H1-H16 IAV receptors on the epithelium including sialyl glycans, other negatively charged glycans, and annexins. The second part of the review focuses on H1-H16 IAV receptors in the immune system including acidic surfactant phospholipids, Sia on surfactant proteins, the carbohydrate recognition domain (CRD) of surfactant proteins, Sia on mucins, Sia and C-type lectins on macrophages and dendritic cells, and Sia on NK cells. The third part of the review is about a possible H17-H18 IAV receptor. Binding of these receptors to IAVs may result in inhibition or enhancement of IAV infection depending on their location, host cell type, and IAV strain. Among these receptors, host sialyl glycans are key determinants of viral hemagglutinin (HA) lectins for H1-H16 infections. HA must acquire mutations to bind to sialyl glycans that are dominant on a new target tissue when switching to a new host for efficient transmission and to bind to long sialyl glycans found in the case of seasonal HAs with multiple glycosylation sites as a consequence of immune evasion. Although sialyl receptors/C-type lectins on immune cells are decoy receptors/pathogen recognition receptors for capturing viral HA lectin/glycans protecting HA antigenic sites, some IAV strains do not escape, such as by release with neuraminidase, but hijack these molecules to gain entry and replication in immune cells. An understanding of the virus-host battle tactics at the receptor level might lead to the establishment of novel strategies for effective control of influenza.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand.
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
29
|
Lucas TM, Gupta C, Altman MO, Sanchez E, Naticchia MR, Gagneux P, Singharoy A, Godula K. Mucin-mimetic glycan arrays integrating machine learning for analyzing receptor pattern recognition by influenza A viruses. Chem 2021; 7:3393-3411. [PMID: 34993358 PMCID: PMC8726012 DOI: 10.1016/j.chempr.2021.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Influenza A viruses (IAVs) exploit host glycans in airway mucosa for entry and infection. Detection of changes in IAV glycan-binding phenotype can provide early indication of transmissibility and infection potential. While zoonotic viruses are monitored for mutations, the influence of host glycan presentation on viral specificity remains obscured. Here, we describe an array platform which uses synthetic mimetics of mucin glycoproteins to model how receptor presentation and density in the mucinous glycocalyx may impact IAV recognition. H1N1 and H3N2 binding in arrays of α2,3- and α2,6-sialyllactose receptors confirmed their known sialic acid-binding specificities and revealed their different sensitivities to receptor presentation. Further, the transition of H1N1 from avian to mammalian cell culture improved the ability of the virus to recognize mucin-like displays of α2,6-sialic acid receptors. Support vector machine (SVM) learning efficiently characterized this shift in binding preference and may prove useful to study viral evolution to a new host.
Collapse
Affiliation(s)
- Taryn M. Lucas
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Meghan O. Altman
- Department of Pathology, Division of Comparative Pathology and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Emi Sanchez
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Matthew R. Naticchia
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Pascal Gagneux
- Department of Pathology, Division of Comparative Pathology and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
30
|
Abstract
Bluetongue virus (BTV), a member of Orbivirus genus, is transmitted by biting midges (gnats, Culicoides sp) and is one of the most widespread animal pathogens, causing serious outbreaks in domestic animals, particularly in sheep, with high economic impact. The non-enveloped BTV particle is a double-capsid structure of seven proteins and a genome of ten double-stranded RNA segments. Although the outermost spike-like VP2 acts as the attachment protein during BTV entry, no specific host receptor has been identified for BTV. Recent high-resolution cryo-electron (cryoEM) structures and biological data have suggested that VP2 may interact with sialic acids (SAs). To confirm this, we have generated protein-based nanoparticles displaying multivalent VP2 and used them to probe glycan arrays. The data show that VP2 binds α2,3-linked SA with high affinity but also binds α2,6-linked SA. Further, Maackia Amurensis Lectin II (MAL II) and Sambucus Nigra Lectin (SNA), which specifically bind α2,3-linked and α2,6-linked SAs respectively, inhibited BTV infection and virus growth in susceptible sheep cells while SNA alone inhibited virus growth in Culicoides-derived cells. A combination of hydrogen deuterium exchange mass spectrometry and site-directed mutagenesis allowed the identification of the specific SA binding residues of VP2. This study provides direct evidence that sialic acids act as key receptor for BTV and that the outer capsid protein VP2 specifically binds SA during BTV entry in both mammalian and insect cells. Importance To date no receptor has been assigned for non-enveloped bluetongue virus. To determine if the outermost spike-like VP2 protein is responsible for host cell attachment via interaction with sialic acids, we first generated a protein-based VP2-nanoparticle, for the multivalent presentation of recombinant VP2 protein. Using nanoparticles-displaying VP2 to probe a glycan array, we identified that VP2 binds both α2,3-linked and α2,6-linked sialic acids. Lectin inhibitors targeting both linkages of sialic acids showed strong inhibition to BTV infection and progeny virus production in mammalian cells, however the inhibition was only seen with the lectin targeting α2,6-linked sialic acid in insect vector cells. In addition, we identified the VP2 sialic acid binding sites in the exposed tip domain. Our data provides direct evidence that sialic acids act as key receptors for BTV attachment and entry in to both mammalian and insect cells.
Collapse
|
31
|
Shin H, Jang Y, Jun S, Lee Y, Kim M. Determination of the vRNA and cRNA promoter activity by M segment-specific non-coding nucleotides of influenza A virus. RNA Biol 2021; 18:785-795. [PMID: 33317417 PMCID: PMC8078515 DOI: 10.1080/15476286.2020.1864182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 10/27/2022] Open
Abstract
Eight-segmented, negative-sense, single-stranded genomic RNAs of influenza A virus are terminated with 5' and 3' untranslated regions (UTRs). All segments have highly conserved extremities of 13 and 12 nucleotides at the 5' and 3' UTRs, respectively, constructing the viral RNA (vRNA) promoter. Adjacent to the duplex stem of 3 base pairs (bps) between the two conserved strands, additional 1-4 bps are existing in a segment-specific manner. We investigated the roles of the matrix (M) segment-specific base pair between the 14th nucleotide uridine (U14') of the 5' UTR and the 13th nucleotide adenosine (A13) of the 3' UTR by preparing possible vRNA promoters, named vXY, as well as cRNA promoters, named cYX. We analysed their RNA-dependent RNA replication efficiency using the minigenome replicon system and an enzyme assay system in vitro with synthetic RNA promoters. Notably, in contrast to vAC(s) that is a synthetic vRNA promoter with A14' and C13, base-pair disruption at the complementary RNA (cRNA) promoter in cAC(s), which has A13' and C14, not only reduced viral RNA replication in cells but also impaired de novo initiation of unprimed vRNA synthesis. Reverse genetics experiments confirmatively exhibited that this breakage in the cRNA promoter affected the rescue of infectious virus. The present study suggests that the first segment-specific base pair plays an essential role in generating infectious viruses by regulating the promoter activity of cRNA rather than vRNA. It could provide insights into the role of the segment-specific nucleotides in viral genome replication for sustainable infection.
Collapse
Affiliation(s)
- Heegwon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea
- Convergent Research Center for Emerging Virus Infection, KRICT, Daejeon, Republic of Korea
| | - Younghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
32
|
The Immunomodulatory CEA Cell Adhesion Molecule 6 (CEACAM6/CD66c) Is a Protein Receptor for the Influenza a Virus. Viruses 2021; 13:v13050726. [PMID: 33919410 PMCID: PMC8143321 DOI: 10.3390/v13050726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 12/24/2022] Open
Abstract
To establish a productive infection in host cells, viruses often use one or multiple host membrane glycoproteins as their receptors. For Influenza A virus (IAV) such a glycoprotein receptor has not been described, to date. Here we show that IAV is using the host membrane glycoprotein CD66c as a receptor for entry into human epithelial lung cells. Neuraminidase (NA), a viral spike protein, binds to CD66c on the cell surface during IAV entry into the host cells. Lung cells overexpressing CD66c showed an increase in virus binding and subsequent entry into the cell. Upon comparison, CD66c demonstrated higher binding capacity than other membrane glycoproteins (EGFR and DC-SIGN) reported earlier to facilitate IAV entry into host cells. siRNA mediated knockdown of CD66c from lung cells inhibited virus binding on cell surface and entry into cells. Blocking CD66c by antibody on the cell surface resulted in decreased virus entry. We found that CD66c is a specific glycoprotein receptor for influenza A virus that did not affect entry of non-IAV RNA virus (Hepatitis C virus). Finally, IAV pre-incubated with recombinant CD66c protein when administered intranasally in mice showed decreased cytopathic effects in mice lungs. This publication is the first to report CD66c (Carcinoembryonic cell adhesion molecule 6 or CEACAM6) as a glycoprotein receptor for Influenza A virus.
Collapse
|
33
|
Overeem NJ, van der Vries E, Huskens J. A Dynamic, Supramolecular View on the Multivalent Interaction between Influenza Virus and Host Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007214. [PMID: 33682339 DOI: 10.1002/smll.202007214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Understanding how influenza viruses traverse the mucus and recognize host cells is critical for evaluating their zoonotic potential, and for prevention and treatment of the disease. The surface of the influenza A virus is covered with the receptor-binding protein hemagglutinin and the receptor-cleaving enzyme neuraminidase, which jointly control the interactions between the virus and the host cell. These proteins are organized in closely spaced trimers and tetramers to facilitate multivalent interactions with sialic acid-terminated glycans. This review shows that the individually weak multivalent interactions of influenza viruses allow superselective binding, virus-induced recruitment of receptors, and the formation of dynamic complexes that facilitate molecular walking. Techniques to measure the avidity and receptor specificity of influenza viruses are reviewed, and the pivotal role of multivalent interactions with their emergent properties in crossing the mucus and entering host cells is discussed. A model is proposed for the initiation of cell entry through virus-induced receptor clustering. The multivalent interactions of influenza viruses are maintained in a dynamic regime by a functional balance between binding and cleaving.
Collapse
Affiliation(s)
- Nico J Overeem
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Erhard van der Vries
- Royal GD, Arnsbergstraat 7, Deventer, 7418 EZ, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Jurriaan Huskens
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
34
|
Zhou Y, Pu J, Wu Y. The Role of Lipid Metabolism in Influenza A Virus Infection. Pathogens 2021; 10:303. [PMID: 33807642 PMCID: PMC7998359 DOI: 10.3390/pathogens10030303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus (IAV) is an important zoonotic pathogen that can cause disease in animals such as poultry and pigs, and it can cause infection and even death in humans, posing a serious threat to public health. IAV is an enveloped virus that relies on host cell metabolic systems, especially lipid metabolism systems, to complete its life cycle in host cells. On the other side, host cells regulate their metabolic processes to prevent IAV replication and maintain their normal physiological functions. This review summarizes the roles of fatty acid, cholesterol, phospholipid and glycolipid metabolism in IAV infection, proposes future research challenges, and looks forward to the prospective application of lipid metabolism modification to limit IAV infection, which will provide new directions for the development of anti-influenza drugs.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (J.P.)
| | - Juan Pu
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.Z.); (J.P.)
| | - Yuping Wu
- College of Life Science and Basic Medicine/Center for Biotechnology Research, Xinxiang University, Xinxiang 453003, China
| |
Collapse
|
35
|
Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. NANO TODAY 2021; 36:101031. [PMID: 33519948 PMCID: PMC7836394 DOI: 10.1016/j.nantod.2020.101031] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 04/14/2023]
Abstract
The continued emergence of novel viruses poses a significant threat to global health. Uncontrolled outbreaks can result in pandemics that have the potential to overburden our healthcare and economic systems. While vaccination is a conventional modality that can be employed to promote herd immunity, antiviral vaccines can only be applied prophylactically and do little to help patients who have already contracted viral infections. During the early stages of a disease outbreak when vaccines are unavailable, therapeutic antiviral drugs can be used as a stopgap solution. However, these treatments do not always work against emerging viral strains and can be accompanied by adverse effects that sometimes outweigh the benefits. Nanotechnology has the potential to overcome many of the challenges facing current antiviral therapies. For example, nanodelivery vehicles can be employed to drastically improve the pharmacokinetic profile of antiviral drugs while reducing their systemic toxicity. Other unique nanomaterials can be leveraged for their virucidal or virus-neutralizing properties. In this review, we discuss recent developments in antiviral nanotherapeutics and provide a perspective on the application of nanotechnology to the SARS-CoV-2 outbreak and future virus pandemics.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
36
|
Habashy NH, Abu-Serie MM. The potential antiviral effect of major royal jelly protein2 and its isoform X1 against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Insight on their sialidase activity and molecular docking. J Funct Foods 2020; 75:104282. [PMID: 33199981 PMCID: PMC7656998 DOI: 10.1016/j.jff.2020.104282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/01/2022] Open
Abstract
Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 is a newly emerging type of CoV. We evaluated the predicted anti-SARS-CoV-2 effect of major royal jelly protein (MRJP)2 and MRJP2 isoform X1, which recently showed high efficacy against other enveloped RNA-viruses (HCV and HIV). Some in-silico analyses have been performed to predict the impact of these proteins on viral entry, replication, and complications. These proteins have shown a high potency in sialic acid hydrolysis from the lung cells (WI-38) surface. Docking analysis showed that these proteins have a high binding affinity to viral receptor-binding sites in the receptor-binding domain, causing attachment prevention. Moreover, MRJPs can exert an inhibitory influence, via different mechanisms, for SARS-CoV-2 non-structural proteins (main and papain proteases, RNA replicase, RNA-dependent RNA polymerase, and methyltransferase). Also, they can bind to hemoglobin-binding sites on viral-nsps and prevent their hemoglobin attack. Thus, MRJP2 and MRJP2 X1 can be a promising therapy for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab 21934, Alexandria, Egypt
| |
Collapse
|
37
|
TRIM Proteins and Their Roles in the Influenza Virus Life Cycle. Microorganisms 2020; 8:microorganisms8091424. [PMID: 32947942 PMCID: PMC7565951 DOI: 10.3390/microorganisms8091424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) has been recognized for regulating fundamental cellular processes, followed by induction of proteasomal degradation of target proteins, and triggers multiple signaling pathways that are crucial for numerous aspects of cellular physiology. Especially tripartite motif (TRIM) proteins, well-known E3 ubiquitin ligases, emerge as having critical roles in several antiviral signaling pathways against varying viral infections. Here we highlight recent advances in the study of antiviral roles of TRIM proteins toward influenza virus infection in terms of the modulation of pathogen recognition receptor (PRR)-mediated innate immune sensing, direct obstruction of influenza viral propagation, and participation in virus-induced autophagy.
Collapse
|
38
|
Guinea pig cytomegalovirus trimer complex gH/gL/gO uses PDGFRA as universal receptor for cell fusion and entry. Virology 2020; 548:236-249. [PMID: 32791352 DOI: 10.1016/j.virol.2020.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Species-specific guinea pig cytomegalovirus (GPCMV) causes congenital CMV and the virus encodes homolog glycoprotein complexes to human CMV, including gH-based trimer (gH/gL/gO) and pentamer-complex (PC). Platelet-derived growth factor receptor alpha (gpPDGFRA), only present on fibroblast cells, was identified via CRISPR as the putative receptor for PC-independent GPCMV infection. Immunoprecipitation assays demonstrated direct interaction of gH/gL/gO with gpPDGFRA but not in absence of gO. Expression of viral gB also resulted in precipitation of gB/gH/gL/gO/gpPDGFRA complex. Cell-cell fusion assays determined that expression of gpPDGFRA and gH/gL/gO in adjacent cells enabled cell fusion, which was not enhanced by gB. N-linked gpPDGFRA glycosylation inhibition had limited effect and blocking tyrosine kinase (TK) transduction had no impact on infection. Ectopically expressed gpPDGFRA or TK-domain mutant in trophoblast or epithelial cells previously non-susceptible to GPCMV(PC-) enabled viral infection. In contrast, transient human PDGFRA expression did not complement GPCMV(PC-) infection, a potential basis for viral species specificity.
Collapse
|
39
|
Development of an RNA Strand-Specific Hybridization Assay To Differentiate Replicating versus Nonreplicating Influenza A Viruses. J Clin Microbiol 2020; 58:JCM.00252-20. [PMID: 32245834 DOI: 10.1128/jcm.00252-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/27/2020] [Indexed: 02/03/2023] Open
Abstract
Replication of influenza A virus (IAV) from negative-sense viral RNA (vRNA) requires the generation of positive-sense RNA (+RNA). Most molecular assays, such as conventional real-time reverse transcriptase PCR (rRT-PCR), detect total RNA in a sample without differentiating vRNA from +RNA. These assays are not designed to distinguish IAV infection versus exposure of an individual to an environment enriched with IAVs but wherein no viral replication occurs. We therefore developed a strand-specific hybridization (SSH) assay that differentiates between vRNA and +RNA and quantifies relative levels of each RNA species. The SSH assay exhibited a linearity of 7 logs with a lower limit of detection of 6.0 × 102 copies of molecules per reaction. No signal was detected in samples with a high load of nontarget template or influenza B virus, demonstrating assay specificity. IAV +RNA was detected 2 to 4 h postinoculation of MDCK cells, whereas synthesis of cold-adapted IAV +RNA was significantly impaired at 37°C. The SSH assay was then used to test IAV rRT-PCR positive nasopharyngeal specimens collected from individuals exposed to IAV at swine exhibitions (n = 7) or while working at live bird markets (n = 2). The SSH assay was able to differentiate vRNA and +RNA in samples collected from infected, symptomatic individuals versus individuals who were exposed to IAV in the environment but had no active viral replication. Data generated with this technique, especially when coupled with clinical data and assessment of seroconversion, will facilitate differentiation of actual IAV infection with replicating virus versus individuals exposed to high levels of environmental contamination but without virus infection.
Collapse
|
40
|
Abstract
Influenza A virus (IAV) is an enveloped virus of the Orthomyxoviridae with a negative-sense single-stranded RNA genome. During virus cell entry, viral and cellular cues are delivered in a stepwise manner within two distinct cellular compartments-the endosomes and the cytosol. Endosome maturation primes the viral core for uncoating by cytosolic host proteins and host-mediated virus disaggregation is essential for genome import and replication in the nucleus. Recent evidence shows that two well-known cellular proteins-histone deacetylase 6 (HDAC6) and karyopherin-β2 (kapβ2)-uncoat influenza virus. HDAC6 is 1 of 11 HDACs and an X-linked, cytosolic lysine deacetylase. Under normal cellular conditions HDAC6 is the tubulin deacetylase. Under proteasomal stress HDAC6 binds unanchored ubiquitin, dynein and myosin II to sequester misfolded protein aggregates for autophagy. Kapβ2 is a member of the importin β family that transports RNA-binding proteins into the nucleus by binding to disordered nuclear localization signals (NLSs) known as PY-NLS. Kapβ2 is emerging as a universal uncoating factor for IAV and human immunodeficiency virus type 1 (HIV-1). Kapβ2 can also reverse liquid-liquid phase separation (LLPS) of RNA-binding proteins by promoting their disaggregation. Thus, it is becoming evident that key players in the management of cellular condensates and membraneless organelles are potent virus uncoating factors. This emerging concept reveals implications in viral pathogenesis, as well as, the promise for cell-targeted therapeutic strategies to block universal virus uncoating pathways hijacked by enveloped RNA viruses.
Collapse
Affiliation(s)
- Yohei Yamauchi
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
41
|
Breaking the Convention: Sialoglycan Variants, Coreceptors, and Alternative Receptors for Influenza A Virus Entry. J Virol 2020; 94:JVI.01357-19. [PMID: 31776280 DOI: 10.1128/jvi.01357-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
The influenza A virus (IAV) envelope protein hemagglutinin binds α2,6- or α2,3-linked sialic acid as a host cell receptor. Bat IAV subtypes H17N10 and H18N11 form an exception to this rule and do not bind sialic acid but enter cells via major histocompatibility complex (MHC) class II. Here, we review current knowledge on IAV receptors with a focus on sialoglycan variants, protein coreceptors, and alternative receptors that impact IAV attachment and internalization beyond the well-described sialic acid binding.
Collapse
|
42
|
Covés-Datson EM, King SR, Legendre M, Gupta A, Chan SM, Gitlin E, Kulkarni VV, Pantaleón García J, Smee DF, Lipka E, Evans SE, Tarbet EB, Ono A, Markovitz DM. A molecularly engineered antiviral banana lectin inhibits fusion and is efficacious against influenza virus infection in vivo. Proc Natl Acad Sci U S A 2020; 117:2122-2132. [PMID: 31932446 PMCID: PMC6995028 DOI: 10.1073/pnas.1915152117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is a strong need for a new broad-spectrum antiinfluenza therapeutic, as vaccination and existing treatments are only moderately effective. We previously engineered a lectin, H84T banana lectin (H84T), to retain broad-spectrum activity against multiple influenza strains, including pandemic and avian, while largely eliminating the potentially harmful mitogenicity of the parent compound. The amino acid mutation at position 84 from histidine to threonine minimizes the mitogenicity of the wild-type lectin while maintaining antiinfluenza activity in vitro. We now report that in a lethal mouse model H84T is indeed nonmitogenic, and both early and delayed therapeutic administration of H84T intraperitoneally are highly protective, as is H84T administered subcutaneously. Mechanistically, attachment, which we anticipated to be inhibited by H84T, was only somewhat decreased by the lectin. Instead, H84T is internalized into the late endosomal/lysosomal compartment and inhibits virus-endosome fusion. These studies reveal that H84T is efficacious against influenza virus in vivo, and that the loss of mitogenicity seen previously in tissue culture is also seen in vivo, underscoring the potential utility of H84T as a broad-spectrum antiinfluenza agent.
Collapse
Affiliation(s)
- Evelyn M Covés-Datson
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Steven R King
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Therapeutic Systems Research Laboratories, Inc., Ann Arbor, MI 48108
| | - Maureen Legendre
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Auroni Gupta
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Susana M Chan
- Therapeutic Systems Research Laboratories, Inc., Ann Arbor, MI 48108
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109
| | - Emily Gitlin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Vikram V Kulkarni
- Division of Internal Medicine, Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jezreel Pantaleón García
- Division of Internal Medicine, Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Donald F Smee
- Animal, Dairy and Veterinary Sciences Department, Utah State University, Logan, UT 84322
| | - Elke Lipka
- Therapeutic Systems Research Laboratories, Inc., Ann Arbor, MI 48108
| | - Scott E Evans
- Division of Internal Medicine, Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - E Bart Tarbet
- Animal, Dairy and Veterinary Sciences Department, Utah State University, Logan, UT 84322
| | - Akira Ono
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109
| | - David M Markovitz
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109;
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109
- Cancer Biology Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
43
|
Hemagglutinin Stability Regulates H1N1 Influenza Virus Replication and Pathogenicity in Mice by Modulating Type I Interferon Responses in Dendritic Cells. J Virol 2020; 94:JVI.01423-19. [PMID: 31694942 DOI: 10.1128/jvi.01423-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/03/2019] [Indexed: 01/29/2023] Open
Abstract
Hemagglutinin (HA) stability, or the pH at which HA is activated to cause membrane fusion, has been associated with the replication, pathogenicity, transmissibility, and interspecies adaptation of influenza A viruses. Here, we investigated the mechanisms by which a destabilizing HA mutation, Y17H (activation pH, 6.0), attenuates virus replication and pathogenicity in DBA/2 mice compared to wild-type (WT) virus (activation pH, 5.5). The extracellular lung pH was measured to be near neutral (pH 6.9 to 7.5). WT and Y17H viruses had similar environmental stability at pH 7.0; thus, extracellular inactivation was unlikely to attenuate the Y17H virus. The Y17H virus had accelerated replication kinetics in MDCK, A549, and RAW 264.7 cells when inoculated at a multiplicity of infection (MOI) of 3 PFU/cell. The destabilizing mutation also increased early infectivity and type I interferon (IFN) responses in mouse bone marrow-derived dendritic cells (DCs). In contrast, the HA-Y17H mutation reduced virus replication in murine airway murine nasal epithelial cell and murine tracheal epithelial cell cultures and attenuated virus replication, virus spread, the severity of infection, and cellular infiltration in the lungs of mice. Normalizing virus infection and weight loss in mice by inoculating them with Y17H virus at a dose 500-fold higher than that of WT virus revealed that the destabilized mutant virus triggered the upregulation of more host genes and increased type I IFN responses and cytokine expression in DBA/2 mouse lungs. Overall, HA destabilization decreased virulence in mice by boosting early infection in DCs, resulting in the greater activation of antiviral responses, including the type I IFN response. These studies reveal that HA stability may regulate pathogenicity by modulating IFN responses.IMPORTANCE Diverse influenza A viruses circulate in wild aquatic birds, occasionally infecting farm animals. Rarely, an avian- or swine-origin influenza virus adapts to humans and starts a pandemic. Seasonal and many universal influenza vaccines target the HA surface protein, which is a key component of pandemic influenza viruses. Understanding the HA properties needed for replication and pathogenicity in mammals may guide response efforts to control influenza. Some antiviral drugs and broadly reactive influenza vaccines that target the HA protein have suffered resistance due to destabilizing HA mutations that do not compromise replicative fitness in cell culture. Here, we show that despite not compromising fitness in standard cell cultures, a destabilizing H1N1 HA stalk mutation greatly diminishes viral replication and pathogenicity in vivo by modulating type I IFN responses. This encourages targeting the HA stalk with antiviral drugs and vaccines as well as reevaluating previous candidates that were susceptible to destabilizing resistance mutations.
Collapse
|
44
|
Wang G, Jiang L, Wang J, Zhang J, Kong F, Li Q, Yan Y, Huang S, Zhao Y, Liang L, Li J, Sun N, Hu Y, Shi W, Deng G, Chen P, Liu L, Zeng X, Tian G, Bu Z, Chen H, Li C. The G Protein-Coupled Receptor FFAR2 Promotes Internalization during Influenza A Virus Entry. J Virol 2020; 94:e01707-19. [PMID: 31694949 PMCID: PMC6955252 DOI: 10.1128/jvi.01707-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022] Open
Abstract
Influenza A virus (IAV) coopts numerous host factors to complete its replication cycle. Here, we identify free fatty acid receptor 2 (FFAR2) as a cofactor for IAV entry into host cells. We found that downregulation of FFAR2 or Ffar2 expression significantly reduced the replication of IAV in A549 or RAW 264.7 cells. The treatment of A549 cells with small interfering RNA (siRNA) targeting FFAR2 or the FFAR2 pathway agonists 2-(4-chlorophenyl)-3-methyl-N-(thiazol-2-yl)butanamide (4-CMTB) and compound 58 (Cmp58) [(S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide] dramatically inhibited the nuclear accumulation of viral nucleoprotein (NP) at early time points postinfection, indicating that FFAR2 functions in the early stage of the IAV replication cycle. FFAR2 downregulation had no effect on the expression of sialic acid (SA) receptors on the cell membrane, the attachment of IAV to the SA receptors, or the activity of the viral ribonucleoprotein (vRNP) complex. Rather, the amount of internalized IAVs was significantly reduced in FFAR2-knocked-down or 4-CMTB- or Cmp58-treated A549 cells. Further studies showed that FFAR2 associated with β-arrestin1 and that β-arrestin1 interacted with the β2-subunit of the AP-2 complex (AP2B1), the essential adaptor of the clathrin-mediated endocytosis pathway. Notably, siRNA knockdown of either β-arrestin1 or AP2B1 dramatically impaired IAV replication, and AP2B1 knockdown or treatment with Barbadin, an inhibitor targeting the β-arrestin1/AP2B1 complex, remarkably decreased the amount of internalized IAVs. Moreover, we found that FFAR2 interacted with three G protein-coupled receptor (GPCR) kinases (i.e., GRK2, GRK5, and GRK6) whose downregulation inhibited IAV replication. Together, our findings demonstrate that the FFAR2 signaling cascade is important for the efficient endocytosis of IAV into host cells.IMPORTANCE To complete its replication cycle, IAV hijacks the host endocytosis machinery to invade cells. However, the underlying mechanisms of how IAV is internalized into host cells remain poorly understood, emphasizing the need to elucidate the role of host factors in IAV entry into cells. In this study, we identified FFAR2 as an important host factor for the efficient replication of both low-pathogenic and highly pathogenic IAV. We revealed that FFAR2 facilitates the internalization of IAV into target cells during the early stage of infection. Upon further characterization of the role of FFAR2-associated proteins in virus replication, we found that the FFAR2-β-arrestin1-AP2B1 signaling cascade is important for the efficient endocytosis of IAV. Our findings thus further our understanding of the biological details of IAV entry into host cells and establish FFAR2 as a potential target for antiviral drug development.
Collapse
Affiliation(s)
- Guangwen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinliang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jie Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fandi Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qibing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ya Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shanyu Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuhui Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junping Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Nan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzhen Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjun Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
45
|
de Vries E, Du W, Guo H, de Haan CA. Influenza A Virus Hemagglutinin-Neuraminidase-Receptor Balance: Preserving Virus Motility. Trends Microbiol 2020; 28:57-67. [PMID: 31629602 PMCID: PMC7172302 DOI: 10.1016/j.tim.2019.08.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
Influenza A viruses (IAVs) occasionally cross the species barrier and adapt to novel host species. This requires readjustment of the functional balance of the sialic acid receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA) to the sialoglycan-receptor repertoire of the new host. Novel techniques have revealed mechanistic details of this HA-NA-receptor balance, emphasizing a previously underappreciated crucial role for NA in driving the motility of receptor-associated IAV particles. Motility enables virion penetration of the sialylated mucus layer as well as attachment to, and uptake into, underlying epithelial cells. As IAVs are essentially irreversibly bound in the absence of NA activity, the fine-tuning of the HA-NA-receptor balance rather than the binding avidity of IAV particles per se is an important factor in determining host species tropism.
Collapse
Affiliation(s)
- Erik de Vries
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands.
| | - Wenjuan Du
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Hongbo Guo
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Cornelis A.M. de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands,Correspondence:
| |
Collapse
|
46
|
Zheng L, Li H, Fu L, Liu S, Yan Q, Leng SX. Blocking cellular N-glycosylation suppresses human cytomegalovirus entry in human fibroblasts. Microb Pathog 2020; 138:103776. [PMID: 31600539 DOI: 10.1016/j.micpath.2019.103776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
Abstract
N-glycosylation plays an important role in the pathogenesis of viral infections. However, the role of host cell N-glycosylation in human cytomegalovirus (hCMV) infection remains to be elucidated. In this study, we found that blocking or removal of cellular N-glycosylation by tunicamycin, peptide-N-glycosidase F (PNGase F) treatment, or N-acetylglucosaminyltransferase I (MGAT1) knockdown resulted in suppression of hCMV infection in human fibroblasts. This suppression was reversed following N-glycosylation restoration. Immunofluorescence and flow cytometry analysis showed that blockade of cellular N-glycosylation interfered with hCMV entry rather than binding. Removal of N-glycosylation on epidermal growth factor (EGFR) and integrin β3, two proposed hCMV receptors, blocked their interaction with hCMV glycoproteins B and H. It also suppressed activation of these receptors and downstream integrin β3/Src signaling. Taken together, these results suggest that N-glycosylation of host cell glycoproteins including two proposed hCMV receptors is critical for hCMV entry rather than attachment. They provide novel insights into the biological process important for the early stage of hCMV infection with potential therapeutic implications.
Collapse
Affiliation(s)
- Luping Zheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian, Liaoning Province, China
| | - Huifen Li
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Li Fu
- Institute of Dalian Fusheng Natural Medicine, Development District, Dalian, Liaoning Province, China
| | - Sally Liu
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian, Liaoning Province, China.
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
47
|
Han J, Perez JT, Chen C, Li Y, Benitez A, Kandasamy M, Lee Y, Andrade J, tenOever B, Manicassamy B. Genome-wide CRISPR/Cas9 Screen Identifies Host Factors Essential for Influenza Virus Replication. Cell Rep 2019; 23:596-607. [PMID: 29642015 PMCID: PMC5939577 DOI: 10.1016/j.celrep.2018.03.045] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/24/2018] [Accepted: 03/10/2018] [Indexed: 11/13/2022] Open
Abstract
The emergence of influenza A viruses (IAVs) from zoonotic reservoirs poses a great threat to human health. As seasonal vaccines are ineffective against zoonotic strains, and newly transmitted viruses can quickly acquire drug resistance, there remains a need for host-directed therapeutics against IAVs. Here, we performed a genome-scale CRISPR/Cas9 knockout screen in human lung epithelial cells with a human isolate of an avian H5N1 strain. Several genes involved in sialic acid biosynthesis and related glycosylation pathways were highly enriched post-H5N1 selection, including SLC35A1, a sialic acid transporter essential for IAV receptor expression and thus viral entry. Importantly, we have identified capicua (CIC) as a negative regulator of cell-intrinsic immunity, as loss of CIC resulted in heightened antiviral responses and restricted replication of multiple viruses. Therefore, our study demonstrates that the CRISPR/Cas9 system can be utilized for the discovery of host factors critical for the replication of intracellular pathogens.
Collapse
Affiliation(s)
- Julianna Han
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Jasmine T Perez
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Cindy Chen
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Yan Li
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637, USA
| | - Asiel Benitez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jorge Andrade
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637, USA
| | - Benjamin tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Balaji Manicassamy
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
48
|
Liu JH, Chang CC, Chen CW, Wong LT, Chu YW. Conservation region finding for influenza A viruses by machine learning methods of N-linked glycosylation sites and B-cell epitopes. Math Biosci 2019; 315:108217. [PMID: 31220511 DOI: 10.1016/j.mbs.2019.108217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 05/07/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022]
Abstract
Influenza type A, a serious infectious disease of the human respiratory tract, poses an enormous threat to human health worldwide. It leads to high mortality rates in poultry, pigs, and humans. The primary target identity regions for the human immune system are hemagglutinin (HA) and neuraminidase (NA), two surface proteins of the influenza A virus. Research and development of vaccines is highly complex because the influenza A virus evolves rapidly. This study focused on three genetic features of viral surface proteins: ribonucleic acid (RNA) sequence conservation, linear B-cell epitopes, and N-linked glycosylation. On the basis of these three properties, we analyzed 12,832 HA and 9487 NA protein sequences, which we retrieved from the influenza virus database. We classified the viral surface protein sequences into the 18 HA and 11 NA subtypes that have been identified thus far. Using available analytic tools, we searched for the representative strain of each virus subtype. Furthermore, using machine learning methods, we looked for conservation regions with sequences showing linear B-cell epitopes and N-linked glycosylation. Compared to the prediction of the Immune Epitope Database (IEDB) antibody neutralization response (i.e., screening of antibody sequence regions), in this study, the virus sequence coverage was large and accurate and contained N-linked glycosylation sites. The results of this study proved that we can use the machine learning-based prediction method to solve the problem of vaccine invalidation that occurred during the rapid evolution of the influenza A virus and also as a prevaccine assessment. In addition, the screening fragments can be used as a universal influenza vaccine design reference in the future.
Collapse
Affiliation(s)
- Jone-Han Liu
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Chi-Chang Chang
- School of Medical Informatics, Chung-Shan Medical University, Taichung 402, Taiwan, ROC; IT Office, Chung-Shan Medical University Hospital, Taichung 402, Taiwan, ROC
| | - Chi-Wei Chen
- Institute of Genomics and Bioinformatics, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan, ROC
| | - Li-Ting Wong
- Institute of Genomics and Bioinformatics, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan, ROC
| | - Yen-Wei Chu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan, ROC; Biotechnology Center, Agricultural Biotechnology Center, Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC.
| |
Collapse
|
49
|
Takada K, Kawakami C, Fan S, Chiba S, Zhong G, Gu C, Shimizu K, Takasaki S, Sakai-Tagawa Y, Lopes TJS, Dutta J, Khan Z, Kriti D, van Bakel H, Yamada S, Watanabe T, Imai M, Kawaoka Y. A humanized MDCK cell line for the efficient isolation and propagation of human influenza viruses. Nat Microbiol 2019; 4:1268-1273. [PMID: 31036910 DOI: 10.1038/s41564-019-0433-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
Abstract
Here, we developed hCK, a Madin-Darby canine kidney (MDCK) cell line that expresses high levels of human influenza virus receptors and low levels of avian virus receptors. hCK cells supported human A/H3N2 influenza virus isolation and growth much more effectively than conventional MDCK or human virus receptor-overexpressing (AX4) cells. A/H3N2 viruses propagated in hCK cells also maintained higher genetic stability than those propagated in MDCK and AX4 cells.
Collapse
Affiliation(s)
- Kosuke Takada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Gongxun Zhong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Chunyang Gu
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kohei Shimizu
- Yokohama City Institute of Public Health, Kanagawa, Japan
| | - Sara Takasaki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tiago J S Lopes
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan. .,Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
50
|
Hao C, Yu G, He Y, Xu C, Zhang L, Wang W. Marine glycan–based antiviral agents in clinical or preclinical trials. Rev Med Virol 2019; 29:e2043. [PMID: 30942528 DOI: 10.1002/rmv.2043] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Cui Hao
- Systems Biology and Medicine Center for Complex DiseasesAffiliated Hospital of Qingdao University Qingdao PR China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of EducationOcean University of China Qingdao PR China
| | - Yanli He
- Systems Biology and Medicine Center for Complex DiseasesAffiliated Hospital of Qingdao University Qingdao PR China
| | - Cuijing Xu
- Key Laboratory of Marine Drugs, Ministry of EducationOcean University of China Qingdao PR China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex DiseasesAffiliated Hospital of Qingdao University Qingdao PR China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of EducationOcean University of China Qingdao PR China
| |
Collapse
|